Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Biotech Investment and Venture Growth: The Franchising of Intellectual Property as a Business Model’


 

From Technicall.y Philly.com

Reporter: Stephen J. Williams, PhD

Spark Therapeutics’ $4.8B deal confirmed as biggest-ever VC-backed exit in Philly

Quick update on this week’s news: The University City life sciences company’s acquisition by Swiss pharma giant Roche is the biggest acquisition ever of a VC-backed company within city limits, per PitchBook and PACT.

The eye-popping $4.8 billion sticker price on Spark Therapeutics’acquisition deal with Roche announced on Monday is shaping up to be the largest exit ever within city limits for a venture-backed company, according to data from financial data provider PitchBook and the Philadelphia Alliance for Capital and Technologies (PACT).

“Filtering down to just Philadelphia proper does reveal that Spark Therapeutics, once the deal closes, will be the biggest exit ever for Philly-based venture-backed exits,” the company said in an email, citing data from an upcoming report.

According to the Seattle-based company’s data, the current holder of the largest Philly-proper exit title goes to Avid Radiopharmaceuticals, which in 2010 announced its acquisition by Lilly in a deal valued at up to $800 million.

Founded in 2013, Spark is a publicly traded spinout of Children’s Hospital of Philadelphia (CHOP), which invested $33 million in the company. The Philadelphia Inquirer reports that CHOP stands to reap a total return of $430 million for its minority stake in Spark Therapeutics.

As part of the acquisition deal, the company will remain based out of 3711 Market St., and continue to do business as a standalone Roche company.

“This transaction demonstrates the enormous value that global biotech companies like Roche see in gene therapy, a field in which Philadelphia is the unquestioned leader,” said Saul Behar, senior VP of  advancement and strategic initiatives at the University City Science Center, the West Philly research park where Spark began and grew its operations. “[This] further validates Greater Philadelphia’s status as a biotech hub with a very bright future.”

Spark CEO Jeff Marrazzo said the deep pool of resources from Roche, the company plans to “accelerate the development of more gene therapies for more patients for more diseases and further expedite our vision of a world where no life is limited by genetic disease.”

Other articles on Gene Therapy and Retinal Disease on this Open Access Online Journal include:

Women Leaders in Cell and Gene Therapy

AGTC (AGTC) , An adenoviral gene therapy startup, expands in Florida with help from $1 billion deal with Biogen

Artificial Vision: Cornell and Stanford Researchers crack Retinal Code

D-Eye: a smartphone-based retinal imaging system

 

 

Advertisements

Read Full Post »


37th Annual J.P. Morgan HEALTHCARE CONFERENCE: News at #JPM2019 for Jan. 10, 2019: Deals and Announcements

Reporter: Stephen J. Williams, Ph.D.

From Biospace.com

 

JP Morgan Healthcare Conference Update: Sage, Mersana, Shutdown Woes and Babies

Speaker presenting to audience at a conference

With the J.P. Morgan Healthcare Conference winding down, companies remain busy striking deals and informing investors about pipeline advances. BioSpace snagged some of the interesting news bits to come out of the conference from Wednesday.

SAGE Therapeutics – Following a positive Phase III report that its postpartum depression treatment candidate SAGE-217 hit the mark in its late-stage clinical trial, Sage Therapeutics is eying the potential to have multiple treatment options available for patients. At the start of J.P. Morgan, Sage said that patients treated with SAGE-217 had a statistically significant improvement of 17.8 points in the Hamilton Rating Scale for Depression, compared to 13.6 for placebo. The company plans to seek approval for SAGE-2017, but before that, the FDA is expected to make a decision on Zulresso in March. Zulresso already passed muster from advisory committees in November, and if approved, would be the first drug specifically for postpartum depression. In an interview with the Business Journal, Chief Business Officer Mike Cloonan said the company believes there is room in the market for both medications, particularly since the medications address different patient populations.

 

Mersana Therapeutics – After a breakup with Takeda Pharmaceutical and the shelving of its lead product, Cambridge, Mass.-based Mersana is making a new path. Even though a partial clinical hold was lifted following the death of a patient the company opted to shelve development of XMT-1522. During a presentation at JPM, CEO Anna Protopapas noted that many other companies are developing therapies that target the HER2 protein, which led to the decision, according to the Boston Business Journal. Protopapas said the HER2 space is highly competitive and now the company will focus on its other asset, XMT-1536, an ADC targeting NaPi2b, an antigen highly expressed in the majority of non-squamous NSCLC and epithelial ovarian cancer. XMT-1536 is currently in Phase 1 clinical trials for NaPi2b-expressing cancers, including ovarian cancer, non-small cell lung cancer and other cancers. Data on XMT-1536 is expected in the first half of 2019.

Novavax – During a JPM presentation, Stan Erck, CEO of Novavax, pointed to the company’s RSV vaccine, which is in late-stage development. The vaccine is being developed for the mother, in order to protect an infant. The mother transfers the antibodies to the infant, which will provide the baby with protection from RSV in its first six months. Erck called the program historic. He said the Phase III program is in its fourth year and the company has vaccinated 4,636 women. He said they are tracking the women and the babies. Researchers call the mothers every week through the first six months of the baby’s life to acquire data. Erck said the company anticipates announcing trial data this quarter. If approved, Erck said the market for the vaccine could be a significant revenue driver.

“You have 3.9 million birth cohorts and we expect 80 percent to 90 percent of those mothers to be vaccinated as a pediatric vaccine and in the U.S. the market rate is somewhere between $750 million and a $1 billion and then double that for worldwide market. So it’s a large market and we will be first to market in this,” Erck said, according to a transcript of the presentation.

Denali Therapeutics – Denali forged a collaboration with Germany-based SIRION Biotech to develop gene therapies for central nervous disorders. The two companies plan to develop adeno-associated virus (AAV) vectors to enable therapeutics to cross the blood-brain barrier for clinical applications in neurodegenerative diseases including Parkinson’s, Alzheimer’s disease, ALS and certain other diseases of the CNS.

AstraZeneca – Pharma giant AstraZeneca reported that in 2019 net prices on average across the portfolio will decrease versus 2018. With a backdrop of intense public and government scrutiny over pricing, Market Access head Rick Suarez said the company is increasing its pricing transparency. Additionally, he said the company is looking at new ways to price drugs, such as value-based reimbursement agreements with payers, Pink Sheet reported.

Amarin Corporation – As the company eyes a potential label expansion approval for its cardiovascular disease treatment Vascepa, Amarin Corporation has been proactively hiring hundreds of sales reps. In the fourth quarter, the company hired 265 new sales reps, giving the company a sales team of more than 400, CEO John Thero said. Thero noted that is a label expansion is granted by the FDA, “revenues will increase at least 50 percent over what we did in the prior year, which would give us revenues of approximate $350 million in 2019.”

Government Woes – As the partial government shutdown in the United States continues into its third week, biotech leaders at JPM raised concern as the FDA’s carryover funds are dwindling. With no new funding coming in, reviews of New Drug Applications won’t be able to continue past February, Pink Sheet said. While reviews are currently ongoing, no New Drug Applications are being accepted by the FDA at this time. With the halt of NDA applications, that has also caused some companies to delay plans for an initial public offering. It’s hard to raise potential investor excitement without the regulatory support of a potential drug approval. During a panel discussion, Jonathan Leff, a partner at Deerfield Management, noted that the ongoing government shutdown is a reminder of how “overwhelmingly dependent the whole industry of biotech and drug development is on government,” Pink Sheet said.

Other posts on the JP Morgan 2019 Healthcare Conference on this Open Access Journal include:

#JPM19 Conference: Lilly Announces Agreement To Acquire Loxo Oncology

36th Annual J.P. Morgan HEALTHCARE CONFERENCE January 8 – 11, 2018

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: #JPM2019 for Jan. 8, 2019; Opening Videos, Novartis expands Cell Therapies, January 7 – 10, 2019, Westin St. Francis Hotel | San Francisco, California

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: News at #JPM2019 for Jan. 8, 2019: Deals and Announcements

 

Read Full Post »


37th Annual J.P. Morgan HEALTHCARE CONFERENCE: News at #JPM2019 for Jan. 8, 2019: Deals and Announcements

Reporter: Stephen J. Williams, Ph.D.

From Biospace.com

JP Morgan Healthcare Conference Update: FDA, bluebird, Moderna and the Price of Coffee

Researcher holding test tube up behind circle of animated research icons

Tuesday, January 8, was another busy day in San Francisco for the JP Morgan Healthcare Conference. One interesting sideline was the idea that the current government shutdown could complicate some deals. Kent Thiry, chief executive officer of dialysis provider DaVita, who is working on the sale of its medical group to UnitedHealth Group this quarter, said, “We couldn’t guarantee that even if the government wasn’t shut down, but we and the buyer are both working toward that goal with the same intensity if not more.”

And in a slightly amusing bit of synchrony, U.S.Food and Drug Administration (FDA)Commissioner Scott Gottlieb’s keynote address that was delivered by way of video conference from Washington, D.C., had his audio cut out in the middle of the presentation. Gottlieb was talking about teen nicotine use and continued talking, unaware that his audio had shut off for 30 seconds. When it reconnected, the sound quality was reportedly poor.

Click to search for life sciences jobs

bluebird bio’s chief executive officer, Nick Leschlygave an update of his company’s pipeline, with a particular emphasis on a proposed payment model for its upcoming LentiGlobin, a gene therapy being evaluated for transfusion-dependent ß-thalassemia (TDT). The gene therapy is expected to be approved in Europe this year and in the U.S. in 2020. Although the price hasn’t been set, figures up to $2.1 million per treatment have been floated. Bluebird is proposing a five-year payment program, a pledge to not raise prices above CPI, and no costs after the payment period.

Eli Lilly’s chief executive officer David Ricks, just days after acquiring Loxo Oncologyoffered up projections for this year, noting that 45 percent of its revenue will be created by drugs launched in 2015. Those include Trulicity, Taltz and Verzenio. The company also expects to launch two new molecular entities this year—nasal glucagons, a rescue medicine for high blood sugar (hyperglycemia), and Lasmiditan, a rescue drug for migraine headaches.

CNBC’s Jim Cramer interviewed Allergan chief executive officer Brent Saunders, in particular discussing the fact the company’s shares traded in 2015 for $331.15 but were now trading for $145.60. Cramer noted that the company’s internal fundamentals were strong, with multiple pipeline assets and a strong leadership team. Some of the stock problems are related to what Saunders said were “unforced errors,” including intellectual property rights to Restasis, its dry-eye drug, and Allergan’s dubious scheme to protect those patents by transferring the rights to the Saint Regis Mohawk Tribe in New York. On the positive side, the company’s medical aesthetics portfolio, dominated by Botox, is very strong and the overall market is expected to double.

One of the big areas of conversation is so-called “flyover tech.” Biopharma startups are dominant in Boston and in San Francisco, but suddenly venture capital investors have realized there’s a lot going on in between. New York City-based Radian Capital, for example, invests exclusively in markets outside major U.S. cities.

“At Radian, we partner with entrepreneurs who have built their businesses with a focus on strong economics rather than growth at all costs,” Aly Lovett, partner at Radian, told The Observer. “Historically, given the amount of money required to stand up a product, the software knowledge base, and coastal access to capital, health start-ups were concentrated in a handful of cities. As those dynamics have inverted and as the quality of living becomes a more important factor in attracting talent, we’re not seeing a significant increase in the number of amazing companies being built outside of the Bay Area.”

“Flyover companies” mentioned include Bind in Minneapolis, Minnesota; Solera Health in Phoenix, Arizona; ClearDATA in Austin, Texas; Healthe, in Eden Prairie, Minnesota; HistoSonics in Ann Arbor, Michigan; and many others.

Only a month after its record-breaking IPO, Moderna Therapeutics’ chief executive officer Stephane Bancelspent time both updating the company’s clinical pipeline and justifying the company’s value despite the stock dropping off 26 percent since the IPO. Although one clinical program, a Zika vaccine, mRNA-1325, has been abandoned, the company has three new drugs coming into the clinic: mRNA-2752 for solid tumors or lymphoma; mRNA-4157, a Personalized Cancer Vaccine with Merck; and mRNA-5671, a KRAS cancer vaccine. The company also submitted an IND amendment to the FDA to add an ovarian cancer cohort to its mRNA-2416 program.

One interesting bit of trivia, supplied on Twitter by Rasu Shrestha, chief innovation officer for the University of Pittsburgh Medical Center, this year at the conference, 33 female chief executive officers were presenting corporate updates … compared to 19 men named Michael. Well, it’s a start.

And for another bit of trivia, Elisabeth Bik, of Microbiome Digest, tweeted, “San Francisco prices are so out of control that one hotel is charging the equivalent of $21.25 for a cup of coffee during a JPMorgan conference.”

Other posts on the JP Morgan 2019 Healthcare Conference on this Open Access Journal include:

#JPM19 Conference: Lilly Announces Agreement To Acquire Loxo Oncology

36th Annual J.P. Morgan HEALTHCARE CONFERENCE January 8 – 11, 2018

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: #JPM2019 for Jan. 8, 2019; Opening Videos, Novartis expands Cell Therapies, January 7 – 10, 2019, Westin St. Francis Hotel | San Francisco, California

Read Full Post »


Business Forward Roundtable with John Podesta: Economic Growth and Opportunity

Reporter: Stephen J. Williams, Ph.D.

July 26, 2016 (Philadelphia, PA)

A Round Table and Q&A with the Entrepreneur Group Business Forward and John Podesta,Chairman and Founder of Center for American Progress on Policy, Economic Growth and Opportunity

ABOUT BUSINESS FORWARD

With the help of more than 50 of the world’s most respected companies, Business Forward is making it easier for tens of thousands of business leaders from across America to advise Washington on how to create jobs and accelerate our economy. Business Forward is active in over 100 cities and works with more than 450 senior Administration officials, Members of Congress, mayors, and governors.

Business leaders who have participated in our briefings have seen their suggestions implemented in the Affordable Care Act, the Jobs Act, three trade agreements, and every one of the President’s budgets. Many have also shared their recommendations with their representatives in Congress and through op-eds and interviews with local media. Ninety-eight out of 100 business leaders who have participated in a Business Forward briefing would be interested in participating in another one.

Member Companies

Many of America’s largest and most respected firms – from America’s software, telecommunications, media, hospitality, financial services, manufacturing, apparel, defense and pharmaceutical industries – have already joined Business Forward.

Members include Aetna, American Airlines, AT&T, Comcast, Cheniere Energy, Deloitte, Dow, eBay Inc., Fidelity Investments, Facebook, Ford, Google, Intuit, Lockheed Martin, Microsoft, the National Restaurant Association, Pacific Gas & Electric, POET, Pricewaterhouse Cooper, Qualcomm, SAS, T-Mobile, Time Warner, Time Warner Cable, Verizon, Viacom, Visa, and Walmart.

These corporations work with Business Forward to identify, recruit and brief small business owners, venture capitalists and entrepreneurs of all kinds who are looking for a meaningful way to participate in policy debates.

John Podesta on Economic Policy, Equality and Growth

John Podesta delivered opening remarks at the launch event for the Washington Center for Equitable Growth on November 15, 2013.

Recommendations to Advance Progressive Change

Business Forward Round Table on Economic Strategy and Opportunity Agenda with John Podesta: Policy

John Padesta (JP): We have had an economic bounce back from the recession however it is agreed that wages need to go up in US.  The goal of policy is to return to a more equitable time such as during the 90’s.  The Hillary Clinton campaign is actively reaching out to find out what is happening on all levels of the economy: from small startups to international trade and workers views.

JP: There are five main areas the Clinton campaign is focusing on with regard to economic growth policy

  1.  jobs, investment, create context to spur private-public partnership investments
  2. skills training – human capital
  3. invest in places left behind: promise zones
  4. sustainable growth: allowing workers to share in productivity gains by tax reform, profit sharing
  5. family policy – says they will define this policy later in the week

JP: want to get entrepreneurs more involved with policy decision.  Clear directive from Hillary is that policy requires input from ALL stakeholders in economy in all sectors

There may be a focus on paid leave

Question from audience:  What about the crisis in rural health.

Definitely a problem Ann O’Leary will be heading up the health policy for Clinton campaign

 

 

Read Full Post »


Recents Thoughts of Biotech Innovation: 2015 2016

From WorldofDTCMarketing

Can’t innovate ? Buy small biotech companies that can

cloud-innovationOn a week where a lot of people are taking their final summer vacations the news is that Amgen is buying Onyx and AstraZeneca Plc took a further step to bolster its pipeline of new cancer drugs on Monday by agreeing to acquire privately held U.S. biotech company Amplimmune for up to $500 million.  On paper it’s a good business move but as big pharma companies gobble up small biotech companies they bring with then antiquated processes and business people who are thinking about the bottom line rather than patients.  The results ?  Innovation that led these smaller biotech companies to develop new drugs will be stymied by a bureaucratic business model.

There is a reason why, after being acquired, that so many employees of smaller biotech companies leave.  Either they don’t want to work for big a big pharma bureaucracy or the acquiring company determines that these people are not needed and shows them the door.  Behind all this are people who provided the start-up funding and want to cash in without awaiting the lengthy process of developing new drugs.  In the end however it’s patients who loose.

bureaucracy

Last week Steve Ballmer, the CEO of Microsoft, announced his resignation.  There is a correlation between what happened at Microsoft and the challenges for big pharma.  Steve was forced out because Microsoft became a huge bureaucracy and could not innovate fast enough.  Those of us who have worked in pharma know of the endless 9-5 meetings to move even small projects forward.  Amgen’s culture revolves around back-to-back meetings with executives from other big pharma companies who are trying to put their power on display.  It’s only a matter of time before people from Onyx leave because of Amgen’s prohibitive culture.

Unknown

Until the costs of developing and launching new drugs is lower more and more innovative biotech firms are going to have a for sale sign hanging in the window hoping big pharma can help investors cash in.

And in a Commentary on CNBC

This is biotech’s real problem

Robert J. Mulroy, president and CEO of Merrimack

Thursday, 1 Oct 2015 | 9:38 AM ET

1

COMMENTJoin the Discussion

Here’s a challenge — name a biotech that’s not a small company with one potential blockbuster in the works or an industry giant that’s acquiring the hottest new technologies. Got one? Great! Now try to name four more.

Biotech

Jian Wan | Vetta | Getty Images

The fact is, midsize biotechs (Ironwood Pharmaceuticals andMedivation are couple of examples) are a rarity these days, and that’s a problem for patients, doctors and investors. Start-ups that are in the process of developing and drawing from a foundation of knowledge are often acquired once they have a promising candidate in the pipeline. If the associated research teams aren’t immediately jettisoned (just when their potential for broader breakthroughs is surging), the top innovators go off to launch another venture that doesn’t build on their current research.

There’s also enormous pressure to focus on that “next big thing” that can crowd out other innovations for patients, while blocking valuable, in-depth examination of existing treatments. In oncology, drug combinations (like Genentech’s combination of Herceptin, pertuzumab and docetaxel to treat HER-2 breast cancer) are making huge strides in prolonging patients’ lives. Such combinations require understanding how specific tumors grow, and designing diagnostics that tell doctors whether a patient’s tumor fits that profile. The problem? Not enough small biotechs have the luxury of developing that understanding before they’re acquired so that big biotechs can gain another drug candidate.

As the CEO of a cancer-focused biotech that’s spent the last 15 years building a diverse product pipeline — the lead candidate is under FDA review with a decision expected next month — my view is that pursuing individual drug targets will bring limited success. Cancer is the ultimate engineering challenge, and effective treatments need to address more than a single facet of the problem.

The real winners in the industry will be the companies that understand how their therapies work in combinations with their own and competing therapies, and help physicians make sense of the explosion of new treatments via companion diagnostics. In fact, regulators could potentially require a more integrated approach to manage the ever-increasing influx of new drugs and data. In August, the American Society of Clinical Oncology issued guidelines for doctors on interpreting multi-gene tests for cancer susceptibility, acknowledging the need for more education and regulation.

Most oncology biotech start-ups dream of developing such an integrated approach. But it takes time and money, and an environment that prioritizes in-depth scientific research.

Doing well by patients, doctors and investors means pursuing sustainable innovation, not just one-offs or single-use purchases. Innovation drives value and can build on itself to address complex challenges. And while innovation takes time and entails risk, it mitigates that risk in the long term.

For example, if you have a deep understanding of how your drug works — say, the tumor-growth mechanisms it disrupts — you can determine whether there are signs that the mechanism it targets is present in a particular patient and then enroll only those patients in clinical trials. That allows for smaller, less expensive trials — and a higher chance of success.

An integrated approach across the industry would allow drug developers to identify responders, and then eliminate the non-responders from clinical trials and from the target population post-approval, ensuring patients only receive treatments likely to benefit them and don’t waste their time enrolling in irrelevant trials.

The current cycle of big pharma acquiring start-ups and dismantling the research teams while divesting in their own R&D appears self-perpetuating, but cracks are showing in the high cost — now in the billions — of bringing a single drug to market.

These companies are dealing with outside pressures that stymie progress. Less than 10 percent of experimental oncology drugs ever get approved. A tactical approach to the pipeline makes sense from a risk-aversion perspective. But sustainable growth requires strategy and investments in the fundamental science work that drives innovation.

Commentary by Robert J. Mulroy, president and CEO of Merrimack, a biotech company focused on cancer treatments. Prior to joining Merrimack, Mr. Mulroy worked as a management consultant in the pharmaceutical and health-care industries. He has served as an advisor to multiple start-up companies in the biotechnology industry.

The New Biotechnology Innovation Organization

Jim's CornerAt BIO, new discoveries in research and development are constantly being made by our members. We take pride in the contributions they have made across a diverse range of biotechnology industries, including: healthcare, agricultural, industrial and environmental.

As one of the world’s strongest catalysts for innovation, our role within the biotechnology community requires us to reflect on who we are, what we do and how we can better serve our members in future.

Biotechnology scientists and entrepreneurs are not just industrious – they are revolutionary, imaginative, inspired, creative, ingenious and inventive. It is these traits that produce innovation.

BIO Logo Vertical RGBAs you may already know, starting today, the Biotechnology Industry Organization will become the Biotechnology Innovation Organization. It’s a one-word name change – from industry to innovation – but the implications are substantial.

Today is a time of tremendous innovation. So much so that our current name no longer best describes our members and our role as one of the world’s leading innovators.

BIO’s members are on the cutting-edge of science and we believe our new name will allow us to build upon our relationships, create new ones and provide our members with better educational and research opportunities.

Our members are discovering scientific breakthroughs and bringing new and innovative therapies to the marketplace. With the help of biotechnology, people are living longer and healthier lives. Our industry embodies innovation and made the world a better place for people everywhere.

Our meaningful innovations also provide the tools to help feed more people, develop new sustainable fuels and products to help protect the planet and devise unique clean technologies to make our environment safer.

In the more than 22 years since its founding, BIO has united scientists, policymakers and the public in a partnership to drive our remarkable progress even further.

It’s important to note that we are not becoming a different organization. We are not altering our mission or the value we deliver to our members.

We will, however, continue to blaze the trail to accelerate cures – connecting thought leaders, building a stronger, more advanced economy and creating jobs to raise the world’s standard of living.

In the coming years, BIO’s diverse membership – from promising startups to global companies in a wide array of biotechnology and related fields – will drive health, life expectancy and improve quality of life for millions of people.

The Biotechnology Innovation Organization will be there to support our members in their tireless effort to make the world a better place to live.

Read Full Post »


How the ACLU Won the Fight Against Patenting Genes: Article and video on  the History of the Issue of Gene Patents

Curator: Stephen J. Williams, PhD

 

please see the TED talk below on how ACLU took on the Gene Patenting Industry:

Tania Simoncelli – How I took on the gene patent industry — and won – Ted Talks 2016

This fight started with the patenting of the BRCA1/2 gene mutants, which increase the risk of breast/ovarian cancer in women who harbor these mutation as well as their offspring, which would be the basis for genetic testing services offered by Myriad Genetics.

However, as seen below, these patent fights and the patenting of DNA has been around since the mid 1970’s, with the advent of cloning and other molecular biology techniques.

PATENTS IN GENOMICS AND HUMAN GENETICS

Robert Cook-Deegan and Christopher Heaney in Annu Rev Genomics Hum Genet. 2010 Sep 22; 11: 383–425.

In April 2009, the U.S. Patent and Trademark Office (USPTO) granted the 50,000th U.S. patent that entered the DNA Patent Database at Georgetown University. That database includes patents that make claims mentioning terms specific to nucleic acids (e.g., DNA, RNA, nucleotide, plasmid, etc.) (64). The specificity of many terms unique to nucleic acid structures makes it possible to monitor patents that correspond to and arise largely from research in genetics and genomics. Patents have been a part of the story of the rise of genetics and genomics since the 1970s, and not just because they can be counted but also because science and commerce have been deeply intertwined, one chapter in the story of modern biotechnology in medicine, agriculture, energy, environment, and other economic sectors. The first DNA patents were granted in the 1970s, but numbers surged in the mid-1990s as molecular genetic techniques began to produce patentable inventions.

This database (Delphion Patent Database) can be reached at (http://www.delphion.com).

From Cook-Deegan, R. and C. Heany. Annu Rev Genomics Hum Genet. 2010 Sep 22; 11: 383–425.

An external file that holds a picture, illustration, etc. Object name is nihms218000f1.jpg

U.S. Patents: DNA Patents and Patent Applications by Year, 1984–2008. The DNA Patent Database contains patents obtained by searching the Delphion Patent Database (http://www.delphion.com) with an algorithm posted on the DNA Patent Database website that searches for granted U.S. patents (since 1971) and published applications (since 2001) in U.S. patent classes related to genetics and genomics as well as claims that include words specific to nucleic acids, genetics, and genomics. The year 1984 is the first for which more than 100 granted patents are in the DNA Patent Database. Data from Reference 64.

The authors make several points concerning obtaining patents in the genomics field including:

  • Differences in patent practice can be important to scientists working in genetics and genomics. In the United States, a patent goes to the first inventor. If patents or patent applications overlap and the first person to invent is in dispute, then the patent office initiates what’s called an interference proceeding, with intricate rules about deciding priority of invention.
  • Interferences are more than twice as common in biotechnology patents than in any other patent class, six times higher than patents on average (140).
  • The United States also allows a year’s grace period from publication of information pertinent to a patent claim, whereas any public disclosure becomes “prior art” that can defeat patent claims in other jurisdictions.

 

International harmonization of DNA patents exist including:

  1. 1973 European Patent Convention created the European Patent Office (EPO). EPO can issue a patent valid in signatory countries
  2. 1995 Trade-Related Aspects of Intellectual Property Rights (TRIPS) agreement committed signatory countries to adopt patent standards mainly modeled on the developed-country model of strong patent protection
  3. 1998 Biotechnology Directive: the Directive became an important element of European patent law that binds national governments to comply with it
  4. Both the United States House and Senate of the 111th Congress are considering bills similar to one passed by the House of Representatives (but not the Senate) in the 110th Congress (2007–2008). Two provisions particularly relevant to genetic and genomic inventions are (a) shifting from the current “first to invent” U.S. standard to “first inventor to file,” as in the rest of the world; and (b) establishing a mechanism to challenge patent claims closer to the European opposition process.

top 30 institutions holding patents in the DNA Patent Database. Among them are

  1. Agribusiness and chemical companies (Monsanto and DuPont)
  2. U.S. Government (largely attributable to the large intramural research program at the National Institutes of Health)
  3. Public and private universities (Universities of California and Texas, Johns Hopkins, Harvard, Stanford, MIT, etc.)
  4. Pharmaceutical firms (Novartis, Glaxo SmithKline, Pfizer, Merck, SanofiAventis, Takeda, Bayer, Novo Nordisk, Lilly, etc.)
  5. Established biotechnology firms (Genentech, Amgen, Genzyme, ISIS, etc.)
  6. Firms created to exploit genomic technologies (Incyte, Human Genome Sciences, etc.)
  7. Instrumentation and DNA chip firms (LifeTechnologies, Affymetrix, Becton, Dickinson, etc.)
  8. Academic research institutes (Institut Pasteur, Salk, Scripps, and Ludwig Institutes, Cold Spring Harbor Laboratories, etc.)
  9. Hospitals with research units (e.g., Massachusetts General Hospital)

 

 

 

 

 

topUSDNApatentholders

Top U.S. DNA patent holders. The authors compiled a list of assignees with at least 100 patents, combined different names for the same assignee, and updated names to reflect corporate mergers and acquisitions. Patent counts are from the Delphion Patent Database for U.S. patents granted as of October 26, 2009, using the DNA Patent Database algorithm (64). Data from Reference 64. From Cook-Deegan, R. and C. Heany. Annu Rev Genomics Hum Genet. 2010 Sep 22; 11: 383–425.

And an opinion article by Harvard Law School arguing against the patent-ability of natural products such as DNA:

DNA Sequences as Unpatentable Subject Matter

by  Victor Song & Prof. Peter Hutt

How Merck’s attempt to patent Vitamin B12 may have started a precedent:

In addition to Kuehmsted, the case most frequently cited to support the patentability of “purified and isolated” substances is Merck & Company v. Olin Mathieson Chemical Corporation [44] . In 1958, the United States Court of Appeals for the Fourth Circuit addressed the metes and bounds of the product of nature exception in Merck . The invention at the center of Merck was entitled, “Vitamin B(12)-Active Composition and Process of Preparing Same”.

Prior to the discovery claimed by the patent, vitamin B(12) was unknown to man. What had been known was that patients who had pernicious anemia could mitigate the effects of their condition by consuming cow liver. For years the scientific community analyzed cow liver to determine what in cow liver was the therapeutically active compound. For lack of a better term, scientists named this unknown therapeutic agent the “anti-pernicious anemia” compound.

After a considerable amount of chemical analysis, scientists at Merck isolated the “anti-pernicious anemia” compound in cow liver. They also discovered an alternate source of the “anti-pernicious anemia” compound. Merck scientists were able to harvest the “anti-pernicious anemia” compound from the fermenting eluent of certain microorganisms. After isolating and characterizing the structure of the newly found “anti-pernicious anemia” compound, the scientist renamed it vitamin B(12) for its chemical similarities to the vitamin B family.

Having discovered vitamin B(12), Merck filed for and obtained U.S. patent 2,703,302 (‘the ‘302 patent”) covering both the process of making vitamin B(12) and the actual chemical compound for vitamin B(12). Only the product claims were at issue in Merck [45] . A representative product claim reads:

A vitamin B(12)-active composition comprising recovered elaboration products of the fermentation of a vitamin B(12)-activity producing strain of Fungi selected from the class consisting of Schizomycetes, Torula, and Eremothecium, the L.L.D. activity of said composition being at least 440 L.L.D. units per milligram and less than 11 million L.L.D. units per milligram.[46]

Prior to the appeal, the district court had determined that the product claims were invalid as products of nature. The Court of Appeals for the Fourth Circuit reversed. In reversing the District Court, the Fourth Circuit followed a line of reasoning similar to Kuehmsted.The Court of Appeals reasoned that the product of nature was the unpurified fermenting eluent which had no therapeutic value. However, Merck’s purified fermenting eluent had therapeutic value. Thus, the court believed Merck’s purified product, which was essentially vitamin B(12), was a different from unpurified fermenting eluent. Since Merck’s purified product was different from the product of nature, the court reasoned that it could not be a product of nature.

The main weakness in the Merck decision is similar to weakness of the Kuehmsted decision. Can vitamin B(12) be considered “new” if it always existed in cow liver? In addition, is it necessary to grant Merck both product and process claims? Even without the product claims, Merck will still be able to profit handsomely from the process claims alone. In addition, Merck could have applied for a vitamin B(12) use patent. Merck could have patented the therapeutic use of their vitamin B(12) for treating pernicious anemia.

There are two interesting aspects of the courts decision in Merck . First, in coming to its conclusion that the purified fermentate was not a product of nature the court turned to the phrase “new and useful” contained in section 101. This was an appropriate focus of analysis for the court because it is from this phrase that the product of nature exception is derived. However, in interpreting the phrase “new and useful” the court substituted the patent terms “novelty and utility”.[47]

The threshold for meeting the utility requirement for patentability is very low. Nearly all inventions meet the utility requirement. It is the Fourth Circuit’s reliance on the patent requirement of novelty for the term “new” which is more interesting. The court’s reliance of the novelty standard presents an interesting interpretation because the product of nature exception is not premised solely on the novelty requirement.[48] The product of nature doctrine simply states that products of nature are not patentable because they are made by nature, not by man. Furthermore, since products of nature existed in nature prior to man’s discovery of them, they are not new and thus excluded from patentability.

The novelty standard requires a different analysis. Although the issue of novelty also addresses the question as to whether or not an invention is new, the question of novelty is answered by looking at the prior art. Roughly speaking, the prior art exemplifies man’s entire body of scientific knowledge at the time of invention. In order to be novel, an invention must not be recited in one piece of prior art. For example, to demonstrate a lack of novelty, a single scientific journal article must describe how to extract vitamin B(12) from a fungal fermenting eluent.

The problem with using the novelty requirement to interpret “new” with regard to product of nature purposes is that no product of nature would be found in the prior art before it was discovered. In effect, using the novelty standard eviscerates the product of nature exception. The novelty standard also circumvents the purpose of the product of nature doctrine which is to prevent man from claiming “manifestations of [the] laws of nature”.[49]

For illustrative purposes we can use vitamin B(12) as an example. According to the Fourth Circuit, in order for vitamin B(12) to be considered a product of nature it must lack novelty. To lack novelty, vitamin B(12) must be recited in a single prior art source. Before its discovery by Merck, vitamin B(12) was unknown and hence could not be found in any prior art source. However, vitamin B(12) has always existed as a naturally occurring substance in cow liver (i.e. a product of nature). Despite clear evidence that vitamin B(12) is a product of nature, the Fourth Circuit would permit a patent on vitamin B(12).

This approach nullifies the purpose of the product of nature doctrine. By using the novelty standard, the court never asks the question whether or not vitamin B(12) was made by man. The purpose of the product of nature doctrine is to prevent man from patenting what is made by nature and should thus be accessible to everyone. The Fourth Circuit’s novelty analysis does not consider this.

The second interesting point about Merck is the product claim itself. In claim 1 recited above, vitamin B(12) is claimed only as a product of fermentation. Merck did not claim the vitamin B(12)chemical formula. This is a significant distinction because competitors could design around Merck’s product claim if they could manufacture vitamin B(12) without utilizing the fermenting eluent of fungi. For example, a manufacturer who processed cow livers to obtain vitamin B(12) could sell its version of vitamin B(12) product without infringing Merck’s product claims[50] . With cases such as Kuehmsted and Merck on one side of the product of nature debate, there are several cases which fall on the other side of the debate[51] . In addition to Funk Brothers, General Electric Co. v. De Forest Radio Co. [52] is representative of a court decision upholding the product of nature exception. The invention at the center of General Electric was the chemical element tungsten (W). General Electric was assigned U.S. Patent 1,082,933 (the ‘933 patent) for tungsten.

Is DNA Patentable Subject Matter?

As the cases discussed indicate, it is not entirely clear whether or not DNA sequences are patentable subject matter. What is clear is that processes for isolating DNA sequences are permissible as are product claims that use DNA sequences (such as Chakrabarty’s genetically modified micro-organism). In addition, inventors could get patents for the therapeutic uses of their DNA sequence products.

The Supreme Court’s decision in Chakrabarty indicates an intention by the court to expand the scope of patentable subject matter, but the product of nature doctrine still remains. Whether or not the product of nature exception will apply to DNA sequences depends upon how the courts view DNA sequences. If the courts analogize isolated and purified DNA sequences to aspirin or vitamin B(12), then DNA sequences would be moved outside the product of nature exception and into the scope of patentable subject matter. On the other hand, if DNA sequences are comparable to tungsten or “manifestation of laws of nature” then the product of nature exception would apply.

As the law is currently interpreted by patent practitioners, the product of nature exception to patentable subject matter is considered a technical problem related to drafting DNA sequence product claims. For the patent attorney, all that is necessary to get around the product of nature exception is to not claim a DNA in its naturally occurring form. In order to resolve this technical problem, a patent attorney will claim DNA sequences in an “isolated and purified” form. For example, Amgen’s DNA sequence claim to EPO in United States Patent 4,703,008 reads, “A purified and isolated DNA sequence consisting essentially of a DNA sequence encoding human erythropoietin.”[57]

DNA sequences have been described as molecular strands of genetic information.[59] Information which is so fundamental that it is akin to the natural laws of science. This fundamental information, in the words of Funk Brothers , is “part of the storehouse of knowledge of all men. They are manifestations of laws of nature, free to all men and reserved exclusively to none.”[60] As manifestations of the laws of nature, DNA sequences should be free to all men. By unlocking the hidden secrets of the genetic code, scientists will be able to produce new medical therapies to treat a wide range of illnesses. It is these new therapeutic inventions, their uses, and the processes for making them which should be patented, not the DNA sequences used to implement these inventions.

Although DNA sequences have been analogized to long polymer chains[65] and as a result should be treated similarly to synthesized polymers, this is not entirely correct. The analogy fails because an inventor’s ingenuity plays a part in designing a polymer chain. A chemist will manipulate reaction conditions to produce a polymer with certain characteristics such as strength, durability, and flexibility. This is not the case with DNA. The inventor’s ingenuity, once again, plays no part in designing the DNA sequence as this was the work of nature over thousands of years of evolution.

So the Harvard Law School article concludes:

  1. Patentable subject matter is statutorily defined in 35 U.S.C. Section 101 to include new and useful products (machines, manufactures, and compositions of matter) and processes. However, subject matter which fall outside the scope of Section 101 are products of nature.
  2. There are two general arguments for excluding products of nature from patentable subject matter. First, is that products of nature are the “manifestations of laws of nature”. As the building blocks of science, to grant ownership to these fundamental products would do more harm than good to scientific innovation. Second, is the patent system’s purpose in encouraging inventorship. An inherent aspect of inventorship is interaction of human ingenuity with the natural world. Products of nature are excluded from patentability because they would grant ownership rights to the natural world without any element of human ingenuity. These product of nature patents would reward inventors for nature’s work.

Man has played no part in creating DNA. What required man’s ingenuity was isolating, purifying, and sequencing the DNA. These inventions deserve patent protection.

Other articles on this Open Access Journal on Patents, Patent Fights and Intellectual Property include:

Top Twenty Universities on a list of the top 100 worldwide universities that received the most U.S. utility patents in 2014

The Patents for CRISPR, the DNA editing technology as the Biggest Biotech Discovery of the Century

Innovators can exit with an idea: How to Monetizing Patents and ideas: yazamIP.com launches Idea Lab

RNA related IP Patents Awards

Linus Pauling: On Lipoprotein(a) Patents and On Vitamin C

Recent Patents on Biomarkers

Litigation on the Way: Broad Institute Gets Patent on Revolutionary Gene-Editing Method

 

 

 

 

Read Full Post »


Bad News this Week for Biotech Deals?

 

Curator: Stephen J. Williams, Ph.D

 

Last week in biotech ( 3/7-3/11/2016) had a plethora of disappointing stories related to biotech drug development and hits to biotech investing and VC.  Since October of 2016 the biotech index has lost 35% to today (see Biotech ETFs Hit 52-Week Lows: Time to Buy?) however were the hit back in October a signal of some of the listed events below (as shown on Biospace News) and includes:

  •  an long-time biotech startup with failure of mesothelioma trial who has struggled in the past
  • multiple clinical trial failures forces the de-listing of a NASDAQ company (other biotechs this year had similar problems)
  • more problems with drug development for Duchenne’s Muscular Dystrophy

GlaxoSmithKline dumps Five Prime’s cancer drug in the midst of Phase I

March 11, 2016 | By Damian Garde

GSK gave Five Prime a 180-day notice that it’s nixing its license to the company’s FP-1039, which is designed to block the spread of cancer by interrupting protein signaling. The decision follows GSK’s January move to stop developing FP-1039 in squamous non-small cell lung cancer due to the rise of immuno-oncology therapies from Merck ($MRK), Bristol-Myers Squibb ($BMY) and others, citing a “change in treatment paradigms.”GlaxoSmithKline ($GSK) is cutting ties with Five Prime Therapeutics’ ($FPRX) in-development cancer therapy, backing out in the middle of a mesothelioma trial.

Now GSK is set to abandon a drug it inherited through its $3 billion acquisition of Human Genome Sciences in 2012, leaving Five Prime to go it alone in an ongoing Phase Ib study testing FP-1039 against mesothelioma. Five Prime said it plans to work with GSK to complete enrollment in the study, adding that it “continues to be encouraged” by the drug’s potential in mesothelioma.

Embattled Bay Area XOMA  (XOMA) Terminates Gevokizumab Trials, Slashes Headcount by 50%

3/11/2016 6:39:17 AM

March 11, 2016
By Alex Keown, BioSpace.com Breaking News Staff

BERKELY, Calif. – Troubled XOMA Corp. (XOMA) is terminating half of its workforce after a late-stage failure of its experimental drug gevokizumab for treatment of pyoderma gangrenosum, the San Francisco Business Times reported this morning.

Following the announcement, Xoma’s stock is down this morning about 5 percent, trading at 91 cents per share as of this writing.

Xoma said it is interested in divesting itself of gevokizumab. In a statement, the company said several companies have approached Xoma about acquiring the drug. Gevokizumab binds to interleukin-1 beta (IL-1 beta), a pro-inflammatory cytokine. Xoma said it will make all information about the drug and study information available to potential buyers. Gevokizumab has had a troubled history with Xoma. The company has halted several trials with the drug for various diseases, including diabetes and a blinding eye disease, the Times reported. In 2014, Xoma was forced to stop testing gevokizumab as an arthritis treatment after the drug did not show significant benefit against placebo after a six-month period.

Struggling Eleven Biotherapeutics (EBIO) Gets Delisting Notice from Nasdaq After Back-to-Back Clinical Trial Failures

3/10/2016 6:07:38 AM

March 10, 2016
By Mark Terry, BioSpace.com Breaking News Staff

With one piece of bad news after another, Cambridge, Mass.-based Eleven Biotherapeutics Inc. (EBIO) filed a Form 8-Kwith the U.S. Securities and Exchange Commission, addressed a delisting notification it received from the Nasdaq on Mar. 3.

The Nasdaq informed the company that its stock dropped below $1 a share, and that the stockholder equity didn’t comply with the $5,000,000 minimum stockholders’ equity requirement. As a result, it has 180 days to comply with Nasdaq rules.

On Jan. 10, the company announced that its Phase III clinical trial of EBI-005 (isunakinra) for severe allergic conjunctivitis did not meet its primary endpoint.

In May 2015, the company reported that its drug, EBI-005, for moderate to severe dry eye disease, failed to prevent damage to the cornea or reduce eye pain in comparison to the control group.

In a January statement, Abbie Celniker, president and chief executive officer of Eleven Biotherapeutics, said, “We are disappointed that isunakinra failed to meet its primary endpoint, and based on these overall results we see no immediate path forward in allergic conjunctivitis. Our efforts will be focused on submitting an investigational new drug application (IND) for EBI-031 in diabetic macular edema in the first half of 2016.”

EBI-031 was designed for intravitreal delivery using the company’s AMP-Rx platform. The drug blocks both free IL-6 and IL-6 complexed to the soluble IL-6 receptor (IL-6R). The compound is being developed to treat diabetic macular edema (DME) and uveitis.

DMD Setback Prompts Sarepta (SRPT) to Shutter West Coast Location and Consolidate to Massachusetts, 30 Jobs Gone

3/9/2016 6:13:13 AM

March 9, 2016
By Mark Terry, BioSpace.com Breaking News Staff

Cambridge, Mass.-based Sarepta Therapeutics (SRPTannounced yesterday that it was shuttering its research-and-development manufacturing facility in Corvalis, Ore. Most of the employees there are expected to move to Sarepta’s facilities in Andover and Cambridge, Mass. About 30 people are expected to be laid off.

On Jan. 21, Sarepta announced that, with an impending snowstorm on the east coast, the U.S. Food and Drug Administration (FDA)’s meeting to review the company’s New Drug Application (NDA) for eteplirsen to treat Duchenne Muscular Dystrophy (DMD) was postponed.

DMD is a muscle wasting disease caused by mutations in the dystrophin gene. The disease is progressive and generally causes death in early adulthood. Complications include serious heart or respiratory-related problems. It mostly affects boys, about 1 in every 3,500 to 5,000 male children.

On Jan. 15, an FDA advisory committee decided to reschedule the meeting, at which point a recommendation or approval decision will be made. That meeting of the Peripheral and Central Nervous System Advisory Committee has not been rescheduled yet, but Sarepta believes it will be prior to May 26, which is the PDUFA date. The Prescription Drug User Fee Act (PDUFA) is a law that allows the FDA to collect an application fee from drug companies when an NDA or Biologics License Application (BLA) is submitted.

The DMD drug arena has been fraught with failures and bad news this year. San Rafael, Calif.-based BioMarin Pharmaceutical Inc. (BMRN)’s application for its DMD drug Kyndrisa (drisapersen) was turned down by the FDA on Jan. 15. The FDA argued that Kyndrisa didn’t show enough benefit.

On Jan. 25, Cambridge, Mass.-based Akashi Therapeuticsannounced that it had halted its DMD trial for HT-100 after one of its patients developed serious, life-threatening health problems. In that DMD is a serious, life-threatening health problem in itself, it’s not clear if the patient’s problems are directly related to the drug. The patient was receiving the highest dose in the HALO trial, while others in the trial with lower doses were not showing adverse side effects.

 

Read Full Post »

Older Posts »