2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021
The 2021 Virtual World Medical Innovation Forum will focus on the growing impact of gene and cell therapy. Senior healthcare leaders from all over look to shape and debate the area of gene and cell therapy. Our shared belief: no matter the magnitude of change, responsible healthcare is centered on a shared commitment to collaborative innovation–industry, academia, and practitioners working together to improve patients’ lives.
About the World Medical Innovation Forum
Mass General Brigham is pleased to present the World Medical Innovation Forum (WMIF) virtual event Wednesday, May 19 – Friday, May 21. This interactive web event features expert discussions of gene and cell therapy (GCT) and its potential to change the future of medicine through its disease-treating and potentially curative properties. The agenda features 150+ executive speakers from the healthcare industry, venture, startups, life sciences manufacturing, consumer health and the front lines of care, including many Harvard Medical School-affiliated researchers and clinicians. The annual in-person Forum will resume live in Boston in 2022. The World Medical Innovation Forum is presented by Mass General Brigham Innovation, the global business development unit supporting the research requirements of 7,200 Harvard Medical School faculty and research hospitals including Massachusetts General, Brigham and Women’s, Massachusetts Eye and Ear, Spaulding Rehab and McLean Hospital. Follow us on Twitter: twitter.com/@MGBInnovation
Accelerating the Future of Medicine with Gene and Cell Therapy What Comes Next
https://worldmedicalinnovation.org/agenda/
Virtual | May 19–21, 2021
#WMIF2021
@MGBInnovation
Leaders in Pharmaceutical Business Intelligence (LPBI) Group
will cover the event in Real Time
Aviva Lev-Ari, PhD, RN
Founder LPBI 1.0 & LPBI 2.0

will be in virtual attendance producing the e-Proceedings
and the Tweet Collection of this Global event expecting +15,000 attendees
@pharma_BI
@AVIVA1950
LPBI’s Eighteen Books in Medicine
https://lnkd.in/ekWGNqA
Among them, books on Gene and Cell Therapy include the following:
Topics for May 19 – 21 include:
Impact on Patient Care – Therapeutic and Potentially Curative GCT Developments
GCT Delivery, Manufacturing – What’s Next
GCT Platform Development
Oncolytic Viruses – Cancer applications, start-ups
Regenerative Medicine/Stem Cells
Future of CAR-T
M&A Shaping GCT’s Future
Market Priorities
Venture Investing in GCT
China’s GCT Juggernaut
Disease and Patient Focus: Benign blood disorders, diabetes, neurodegenerative diseases
Click here for the current WMIF agenda
Plus:
Fireside Chats: 1:1 interviews with industry CEOs/C-Suite leaders including Novartis Gene Therapies, ThermoFisher, Bayer AG, FDA
First Look: 18 briefings on emerging GCT research from Mass General Brigham scientists
Virtual Poster Session: 40 research posters and presenters on potential GCT discoveries from Mass General Brigham
Announcement of the Disruptive Dozen, 12 GCT technologies likely to break through in the next few years
AGENDA
Wednesday, May 19, 2021
8:00 AM – 8:10 AM
Opening Remarks
Welcome and the vision for Gene and Cell Therapy and why it is a top Mass General Brigham priority. Introducer: Scott Sperling
- Co-President, Thomas H. Lee Partners
- Chairman of the Board of Directors, PHS
Presenter: Anne Klibanski, MD
- CEO, Mass General Brigham
3,000 people joined 5/19 morning
30 sessions: Lab to Clinic, academia, industry, investment community
May 22,23,24, 2022 – in Boston, in-person 2022 WMIF on CGT 8:10 AM – 8:30 AM
The Grand Challenge of Widespread GCT Patient Benefits
Co-Chairs identify the key themes of the Forum – set the stage for top GCT opportunities, challenges, and where the field might take medicine in the future. Moderator: Susan Hockfield, PhD
- President Emerita and Professor of Neuroscience, MIT
GCT – poised to deliver therapies
Inflection point as Panel will present
Doctors and Patients – Promise for some patients
Barriers for Cell & Gene
Access for patients to therapies like CGT Speakers: Nino Chiocca, MD, PhD
- Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
- Harvey W. Cushing Professor of Neurosurgery, HMS
Oncolytic virus triple threat: Toxic, immunological, combine with anti cancer therapies
Polygenic therapy – multiple genes involved, plug-play, Susan Slaugenhaupt, PhD
- Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
- Professor, Neurology, HMS
- CAO, Mass General Brigham
- Professor, Medicine and Faculty Dean, HMS
Role of academia special to spear head the Polygenic therapy – multiple genes involved, plug-play,
Access critical, relations with IndustryLuk Vandenberghe, PhD
- Grousbeck Family Chair, Gene Therapy, MEE
- Associate Professor, Ophthalmology, HMS
Pharmacology Gene-Drug, Interface academic centers and industry
many CGT drugs emerged in Academic center 8:35 AM – 8:50 AM FIRESIDE
Gene and Cell Therapy 2.0 – What’s Next as We Realize their Potential for Patients
- President, Novartis Gene Therapies
Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT
FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products
payments over time payers and Innovators relations Moderator: Julian Harris, MD
- Partner, Deerfield
Promise of CGT realized, what part?
FDA role and interaction in CGT
Manufacturing aspects which is critical Speaker: Dave Lennon, PhD
- President, Novartis Gene Therapies
Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT
FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products
payments over time payers and Innovators relations
- Q&A 8:55 AM – 9:10 AM
8:55 AM – 9:20 AM
The Patient and GCT
GCT development for rare diseases is driven by patient and patient-advocate communities. Understanding their needs and perspectives enables biomarker research, the development of value-driving clinical trial endpoints and successful clinical trials. Industry works with patient communities that help identify unmet needs and collaborate with researchers to conduct disease natural history studies that inform the development of biomarkers and trial endpoints. This panel includes patients who have received cutting-edge GCT therapy as well as caregivers and patient advocates. Moderator: Patricia Musolino, MD, PhD
- Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
- Assistant Professor of Neurology, HMS
What is the Power of One – the impact that a patient can have on their own destiny by participating in Clinical Trials Contacting other participants in same trial can be beneficial Speakers: Jack Hogan
- Patient, MEE
- Parent of Patient, MEE
- CEO, Backcountry.com
Parkinson patient Constraints by regulatory on participation in clinical trial advance stage is approved participation Patients to determine the level of risk they wish to take Information dissemination is critical Barbara Lavery
- Chief Program Officer, ACGT Foundation
Advocacy agency beginning of work Global Genes educational content and out reach to access the information
Patient has the knowledge of the symptoms and recording all input needed for diagnosis by multiple clinicians Early application for CGTDan Tesler
- Clinical Trial Patient, BWH/DFCC
Experimental Drug clinical trial patient participation in clinical trial is very important to advance the state of scienceSarah Beth Thomas, RN
- Professional Development Manager, BWH
Outcome is unknown, hope for good, support with resources all advocacy groups,
- Q&A 9:25 AM – 9:40 AM
9:25 AM – 9:45 AM FIRESIDE
GCT Regulatory Framework | Why Different?
Moderator: Vicki Sato, PhD
- Chairman of the Board, Vir Biotechnology
Diversity of approaches
Process at FDA generalize from 1st entry to rules more generalizable Speaker: Peter Marks, MD, PhD
- Director, Center for Biologics Evaluation and Research, FDA
Last Spring it became clear that something will work a vaccine by June 2020 belief that enough candidates the challenge manufacture enough and scaling up FDA did not predicted the efficacy of mRNA vaccine vs other approaches expected to work
Recover Work load for the pandemic will wean & clear, Gene Therapies IND application remained flat in the face of the pandemic Rare diseases urgency remains Consensus with industry advisory to get input gene therapy Guidance T-Cell therapy vs Regulation best thinking CGT evolve speedily flexible gained by Guidance
Immune modulators, Immunotherapy Genome editing can make use of viral vectors future technologies nanoparticles and liposome encapsulation
- Q&A 9:50 AM – 10:05 AM
9:50 AM – 10:15 AM
Building a GCT Platform for Mainstream Success
This panel of GCT executives, innovators and investors explore how to best shape a successful GCT strategy. Among the questions to be addressed:
- How are GCT approaches set around defining and building a platform?
- Is AAV the leading modality and what are the remaining challenges?
- What are the alternatives?
- Is it just a matter of matching modalities to the right indications?
Moderator: Jean-François Formela, MD
- Partner, Atlas Venture
Established core components of the Platform Speakers: Katherine High, MD
- President, Therapeutics, AskBio
Three drugs approved in Europe in the Gene therapy space
Regulatory Infrastructure exists for CGT drug approval – as new class of therapeutics
Participants investigators, regulators, patients i. e., MDM
Hemophilia in male most challenging
Human are natural hosts for AV safety signals Dave Lennon, PhD
- President, Novartis Gene Therapies
big pharma has portfolios of therapeutics not one drug across Tx areas: cell, gene iodine therapy
collective learning infrastructure features manufacturing at scale early in development Acquisitions strategy for growth # applications for scaling Rick Modi
- CEO, Affinia Therapeutics
Copy, paste EDIT from product A to B novel vectors leverage knowledge varient of vector, coder optimization choice of indication is critical exploration on larger populations Speed to R&D and Speed to better gene construct get to clinic with better design vs ASAP
Data sharing clinical experience with vectors strategies patients selection, vector selection, mitigation, patient type specific Louise Rodino-Klapac, PhD
- EVP, Chief Scientific Officer, Sarepta Therapeutics
AAV based platform 15 years in development same disease indication vs more than one indication stereotype, analytics as hurdle 1st was 10 years 2nd was 3 years
Safety to clinic vs speed to clinic, difference of vectors to trust
- Q&A 10:20 AM – 10:35 AM
10:20 AM – 10:45 AM
AAV Success Studies | Retinal Dystrophy | Spinal Muscular Atrophy
Recent AAV gene therapy product approvals have catalyzed the field. This new class of therapies has shown the potential to bring transformative benefit to patients. With dozens of AAV treatments in clinical studies, all eyes are on the field to gauge its disruptive impact.
The panel assesses the largest challenges of the first two products, the lessons learned for the broader CGT field, and the extent to which they serve as a precedent to broaden the AAV modality.
- Is AAV gene therapy restricted to genetically defined disorders, or will it be able to address common diseases in the near term?
- Lessons learned from these first-in-class approvals.
- Challenges to broaden this modality to similar indications.
- Reflections on safety signals in the clinical studies?
Moderator: Joan Miller, MD
- Chief, Ophthalmology, MEE
- Cogan Professor & Chair of Ophthalmology, HMS
Retina specialist, Luxturna success FMA condition cell therapy as solution
Lessons learned
Safety Speakers: Ken Mills
- CEO, RegenXBio
Tissue types additional administrations, tech and science, address additional diseases, more science for photoreceptors a different tissue type underlying pathology novelties in last 10 years
Cell therapy vs transplant therapy no immunosuppressionEric Pierce, MD, PhD
- Director, Ocular Genomics Institute, MEE
- Professor of Ophthalmology, HMS
Laxterna success to be replicated platform, paradigms measurement visual improved
More science is needed to continue develop vectors reduce toxicity,
AAV can deliver different cargos reduce adverse events improve vectorsRon Philip
- Chief Operating Officer, Spark Therapeutics
The first retinal gene therapy, voretigene neparvovec-rzyl (Luxturna, Spark Therapeutics), was approved by the FDA in 2017.Meredith Schultz, MD
- Executive Medical Director, Lead TME, Novartis Gene Therapies
Impact of cell therapy beyond muscular dystrophy, translational medicine, each indication, each disease, each group of patients build platform unlock the promise
Monitoring for Safety signals real world evidence remote markers, home visits, clinical trial made safer, better communication of information
- Q&A 10:50 AM – 11:05 AM
10:45 AM – 10:55 AM
Break
10:55 AM – 11:05 AM FIRST LOOK
Control of AAV pharmacology by Rational Capsid Design
- Grousbeck Family Chair, Gene Therapy, MEE
- Associate Professor, Ophthalmology, HMS
AAV a complex driver in Pharmacology durable, vector of choice, administer in vitro, gene editing tissue specificity, pharmacokinetics side effects and adverse events manufacturability site variation diversify portfolios,
Pathway for rational AAV rational design, curated smart variant libraries, AAV sequence screen multiparametric , data enable liver (de-) targeting unlock therapeutics areas: cochlea
- Q&A 11:05 AM – 11:25 AM
11:05 AM – 11:15 AM FIRST LOOK
Enhanced gene delivery and immunoevasion of AAV vectors without capsid modification
- Associate Professor of Neurology, MGH & HMS
Virus Biology: Enveloped (e) or not
enveloped for gene therapy eAAV platform technology: tissue targets and Indications commercialization of eAAV
- Q&A 11:15 AM – 11:35 AM
11:20 AM – 11:45 AM HOT TOPICS
AAV Delivery
This panel will address the advances in the area of AAV gene therapy delivery looking out the next five years. Questions that loom large are: How can biodistribution of AAV be improved? What solutions are in the wings to address immunogenicity of AAV? Will patients be able to receive systemic redosing of AAV-based gene therapies in the future? What technical advances are there for payload size? Will the cost of manufacturing ever become affordable for ultra-rare conditions? Will non-viral delivery completely supplant viral delivery within the next five years?What are the safety concerns and how will they be addressed? Moderators: Xandra Breakefield, PhD
- Geneticist, MGH, MGH
- Professor, Neurology, HMS
- Director, Center for Rare Neurological Diseases, MGH
- Associate Professor, Neurology, HMS
Speakers: Jennifer Farmer
- CEO, Friedreich’s Ataxia Research Alliance
Ataxia requires therapy targeting multiple organ with one therapy, brain, spinal cord, heart several IND, clinical trials in 2022Mathew Pletcher, PhD
- SVP, Head of Gene Therapy Research and Technical Operations, Astellas
Work with diseases poorly understood, collaborations needs example of existing: DMD is a great example explain dystrophin share placedo data
Continue to explore large animal guinea pig not the mice, not primates (ethical issues) for understanding immunogenicity and immune response Manny Simons, PhD
- CEO, Akouos
AAV Therapy for the fluid of the inner ear, CGT for the ear vector accessible to surgeons translational work on the inner ear for gene therapy right animal model
Biology across species nerve ending in the cochlea
engineer out of the caspid, lowest dose possible, get desired effect by vector use, 2022 new milestones
- Q&A 11:50 AM – 12:05 PM
11:50 AM – 12:15 PM
M&A | Shaping GCT Innovation
The GCT M&A market is booming – many large pharmas have made at least one significant acquisition. How should we view the current GCT M&A market? What is its impact of the current M&A market on technology development? Are these M&A trends new are just another cycle? Has pharma strategy shifted and, if so, what does it mean for GCT companies? What does it mean for patients? What are the long-term prospects – can valuations hold up? Moderator: Adam Koppel, MD, PhD
- Managing Director, Bain Capital Life Sciences
What acquirers are looking for??
What is the next generation vs what is real where is the industry going? Speakers:
Debby Baron,
- Worldwide Business Development, Pfizer
CGT is an important area Pfizer is active looking for innovators, advancing forward programs of innovation with the experience Pfizer has internally
Scalability and manufacturing regulatory conversations, clinical programs safety in parallel to planning getting drug to patients
- Vice President, Business Development and Lilly New Ventures, Eli Lilly and Company
Head of Strategy, Business Development & Licensing, and Member of the Executive Committee, Bayer
Absolute Leadership in Gene editing, gene therapy, via acquisition and strategic alliance
Operating model of the acquired company discussed , company continue independence
- Board Chairman, Encoded Therapeutics & Affinia
Executive Chairman, Jaguar Gene Therapy & Istari Oncology
As acquiree multiple M&A: How the acquirer looks at integration and cultures of the two companies
Traditional integration vs jump start by external acquisition
AAV – epilepsy, next generation of vectors
- Q&A 12:20 PM – 12:35 PM
12:15 PM – 12:25 PM FIRST LOOK
Gene Therapies for Neurological Disorders: Insights from Motor Neuron Disorders
- Chief of Neurology, MGH
ALS – Man 1in 300, Women 1 in 400, next decade increase 7%
10% ALS is heredity 160 pharma in ALS space, diagnosis is late 1/3 of people are not diagnosed, active community for clinical trials Challenges: disease heterogeneity cases of 10 years late in diagnosis. Clinical Trials for ALS in Gene Therapy targeting ASO1 protein therapies FUS gene struck youngsters
- 12:25 PM – 12:45 PM
12:25 PM – 12:35 PM FIRST LOOK
Gene Therapy for Neurologic Diseases
- Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
- Assistant Professor of Neurology, HMS
Cerebral Vascular disease – ACTA2 179H gene smooth muscle cell proliferation disorder
no surgery or drug exist –
Cell therapy for ACTA2 Vasculopathy in the brain and control the BP and stroke – smooth muscle intima proliferation. Viral vector deliver aiming to change platform to non-viral delivery rare disease , gene editing, other mutations of ACTA2 gene target other pathway for atherosclerosis
- Q&A 12:35 PM – 12:55 PM
12:35 PM – 1:15 PM
Lunch
1:15 PM – 1:40 PM
Oncolytic Viruses in Cancer | Curing Melanoma and Beyond
Oncolytic viruses represent a powerful new technology, but so far an FDA-approved oncolytic (Imlygic) has only occurred in one area – melanoma and that what is in 2015. This panel involves some of the protagonists of this early success story. They will explore why and how Imlygic became approved and its path to commercialization. Yet, no other cancer indications exist for Imlygic, unlike the expansion of FDA-approved indication for immune checkpoint inhibitors to multiple cancers. Why? Is there a limitation to what and which cancers can target? Is the mode of administration a problem?
No other oncolytic virus therapy has been approved since 2015. Where will the next success story come from and why? Will these therapies only be beneficial for skin cancers or other easily accessible cancers based on intratumoral delivery?
The panel will examine whether the preclinical models that have been developed for other cancer treatment modalities will be useful for oncolytic viruses. It will also assess the extent pre-clinical development challenges have slowed the development of OVs. Moderator: Nino Chiocca, MD, PhD
- Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
- Harvey W. Cushing Professor of Neurosurgery, HMS
Challenges of manufacturing at Amgen what are they? Speakers: Robert Coffin, PhD
- Chief Research & Development Officer, Replimune
2002 in UK promise in oncolytic therapy GNCSF
Phase III melanoma 2015 M&A with Amgen
oncolytic therapy remains non effecting on immune response
data is key for commercialization
do not belief in systemic therapy achieve maximum immune response possible from a tumor by localized injection Roger Perlmutter, MD, PhD
- Chairman, Merck & Co.
response rates systemic therapy like PD1, Keytruda, OPTIVA well tolerated combination of Oncolytic with systemic
GMP critical for manufacturing David Reese, MD
- Executive Vice President, Research and Development, Amgen
Inter lesion injection of agent vs systemic therapeutics
cold tumors immune resistant render them immune susceptible
Oncolytic virus is a Mono therapy
addressing the unknown Ann Silk, MD
- Physician, Dana Farber-Brigham and Women’s Cancer Center
- Assistant Professor of Medicine, HMS
Which person gets oncolytics virus if patient has immune suppression due to other indications
Safety of oncolytic virus greater than Systemic treatment
series biopsies for injected and non injected tissue and compare Suspect of hot tumor and cold tumors likely to have sme response to agent unknown all potential
- Q&A 1:45 PM – 2:00 PM
1:45 PM – 2:10 PM
Market Interest in Oncolytic Viruses | Calibrating
There are currently two oncolytic virus products on the market, one in the USA and one in China. As of late 2020, there were 86 clinical trials 60 of which were in phase I with just 2 in Phase III the rest in Phase I/II or Phase II. Although global sales of OVs are still in the ramp-up phase, some projections forecast OVs will be a $700 million market by 2026. This panel will address some of the major questions in this area:
What regulatory challenges will keep OVs from realizing their potential? Despite the promise of OVs for treating cancer only one has been approved in the US. Why has this been the case? Reasons such have viral tropism, viral species selection and delivery challenges have all been cited. However, these are also true of other modalities. Why then have oncolytic virus approaches not advanced faster and what are the primary challenges to be overcome?
- Will these need to be combined with other agents to realize their full efficacy and how will that impact the market?
- Why are these companies pursuing OVs while several others are taking a pass?
Moderators: Martine Lamfers, PhD
- Visiting Scientist, BWH
Challenged in development of strategies
Demonstrate efficacyRobert Martuza, MD
- Consultant in Neurosurgery, MGH
- William and Elizabeth Sweet Distinguished Professor of Neurosurgery, HMS
Modulation mechanism Speakers: Anlong Li, MD, PhD
- Clinical Director, Oncology Clinical Development, Merck Research Laboratories
IV delivery preferred – delivery alternative are less aggereable Jeffrey Infante, MD
- Early development Oncolytic viruses, Oncology, Janssen Research & Development
oncologic virus if it will generate systemic effects the adoption will accelerate
What areas are the best efficacious
Direct effect with intra-tumor single injection with right payload
Platform approach Prime with 1 and Boost with 2 – not yet experimented with
Do not have the data at trial design for stratification of patients
Turn off strategy not existing yetLoic Vincent, PhD
- Head of Oncology Drug Discovery Unit, Takeda
R&D in collaboration with Academic
Vaccine platform to explore different payload
IV administration may not bring sufficient concentration to the tumor is administer in the blood stream
Classification of Patients by prospective response type id UNKNOWN yet, population of patients require stratification
- Q&A 2:15 PM – 2:30 PM
2:10 PM – 2:20 PM FIRST LOOK
Oncolytic viruses: turning pathogens into anticancer agents
- Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
- Harvey W. Cushing Professor of Neurosurgery, HMS
Oncolytic therapy DID NOT WORK Pancreatic Cancer and Glioblastoma
Intra- tumoral heterogeniety hinders success
Solution: Oncolytic VIRUSES – Immunological “coldness”
GADD-34 20,000 GBM 40,000 pancreatic cancer
- Q&A 2:25 PM – 2:40 PM
2:20 PM – 2:45 PM
Entrepreneurial Growth | Oncolytic Virus
In 2020 there were a total of 60 phase I trials for Oncolytic Viruses. There are now dozens of companies pursuing some aspect of OV technology. This panel will address:
- How are small companies equipped to address the challenges of developing OV therapies better than large pharma or biotech?
- Will the success of COVID vaccines based on Adenovirus help the regulatory environment for small companies developing OV products in Europe and the USA?
- Is there a place for non-viral delivery and other immunotherapy companies to engage in the OV space? Would they bring any real advantages?
Moderator: Reid Huber, PhD
- Partner, Third Rock Ventures
Critical milestones to observe Speakers: Caroline Breitbach, PhD
- VP, R&D Programs and Strategy, Turnstone Biologics
Trying Intra-tumor delivery and IV infusion delivery oncolytic vaccine pushing dose
translation biomarkers program
transformation tumor microenvironment Brett Ewald, PhD
- SVP, Development & Corporate Strategy, DNAtrix
Studies gets larger, kicking off Phase III multiple tumors Paul Hallenbeck, PhD
- President and Chief Scientific Officer, Seneca Therapeutics
Translation: Stephen Russell, MD, PhD
- CEO, Vyriad
Systemic delivery Oncolytic Virus IV delivery woman in remission
Collaboration with Regeneron
Data collection: Imageable reporter secretable reporter, gene expression
Field is intense systemic oncolytic delivery is exciting in mice and in human, response rates are encouraging combination immune stimulant, check inhibitors
- Q&A 2:50 PM – 3:05 PM
2:45 PM – 3:00 PM
Break
3:00 PM – 3:25 PM
CAR-T | Lessons Learned | What’s Next
Few areas of potential cancer therapy have had the attention and excitement of CAR-T. This panel of leading executives, developers, and clinician-scientists will explore the current state of CAR-T and its future prospects. Among the questions to be addressed are:
- Is CAR-T still an industry priority – i.e. are new investments being made by large companies? Are new companies being financed? What are the trends?
- What have we learned from first-generation products, what can we expect from CAR-T going forward in novel targets, combinations, armored CAR’s and allogeneic treatment adoption?
- Early trials showed remarkable overall survival and progression-free survival. What has been observed regarding how enduring these responses are?
- Most of the approvals to date have targeted CD19, and most recently BCMA. What are the most common forms of relapses that have been observed?
- Is there a consensus about what comes after these CD19 and BCMA trials as to additional targets in liquid tumors? How have dual-targeted approaches fared?
- Moderator:
- Marcela Maus, MD, PhD
- Director, Cellular Immunotherapy Program, Cancer Center, MGH
- Associate Professor, Medicine, HMSIs CAR-T Industry priority
- Speakers:
- Head of R&D, Atara BioTherapeutics
- Phyno-type of the cells for hematologic cancers
- solid tumor
- inventory of Therapeutics for treating patients in the future
- Progressive MS program
- EBBT platform B-Cells and T-Cells
- Stefan Hendriks
- Gobal Head, Cell & Gene, Novartis
- yes, CGT is a strategy in the present and future
- Journey started years ago
- Confirmation the effectiveness of CAR-T therapies, 1 year response prolonged to 5 years 26 months
- Patient not responding – a lot to learn
- Patient after 8 months of chemo can be helped by CAR-T
- Christi Shaw
- CEO, Kite
- CAR-T is priority 120 companies in the space
- Manufacturing consistency
- Patients respond with better quality of life
- Blood cancer – more work to be done
- Stefan Hendriks
- 3:30 PM – 3:45 PM
3:30 PM – 3:55 PM HOT TOPICS
CAR-T | Solid Tumors Success | When?
The potential application of CAR-T in solid tumors will be a game-changer if it occurs. The panel explores the prospects of solid tumor success and what the barriers have been. Questions include:
- How would industry and investor strategy for CAR-T and solid tumors be characterized? Has it changed in the last couple of years?
- Does the lack of tumor antigen specificity in solid tumors mean that lessons from liquid tumor CAR-T constructs will not translate well and we have to start over?
- Whether due to antigen heterogeneity, a hostile tumor micro-environment, or other factors are some specific solid tumors more attractive opportunities than others for CAR-T therapy development?
- Given the many challenges that CAR-T faces in solid tumors, does the use of combination therapies from the start, for example, to mitigate TME effects, offer a more compelling opportunity.
Moderator: Oladapo Yeku, MD, PhD
- Clinical Assistant in Medicine, MGH
window of opportunities studies Speakers: Jennifer Brogdon
- Executive Director, Head of Cell Therapy Research, Exploratory Immuno-Oncology, NIBR
2017 CAR-T first approval
M&A and research collaborations
TCR tumor specific antigens avoid tissue toxicity Knut Niss, PhD
- CTO, Mustang Bio
tumor hot start in 12 month clinical trial solid tumors , theraties not ready yet. Combination therapy will be an experimental treatment long journey checkpoint inhibitors to be used in combination maintenance Lipid tumor Barbra Sasu, PhD
- CSO, Allogene
T cell response at prostate cancer
tumor specific
cytokine tumor specific signals move from solid to metastatic cell type for easier infiltration
Where we might go: safety autologous and allogeneic Jay Short, PhD
- Chairman, CEO, Cofounder, BioAlta, Inc.
Tumor type is not enough for development of therapeutics other organs are involved in the periphery
difficult to penetrate solid tumors biologics activated in the tumor only, positive changes surrounding all charges, water molecules inside the tissue acidic environment target the cells inside the tumor and not outside
Combination staggered key is try combination
- Q&A 4:00 PM – 4:15 PM
4:00 PM – 4:25 PM
GCT Manufacturing | Vector Production | Autologous and Allogeneic | Stem Cells | Supply Chain | Scalability & Management
The modes of GCT manufacturing have the potential of fundamentally reordering long-established roles and pathways. While complexity goes up the distance from discovery to deployment shrinks. With the likelihood of a total market for cell therapies to be over $48 billion by 2027, groups of products are emerging. Stem cell therapies are projected to be $28 billion by 2027 and non-stem cell therapies such as CAR-T are projected be $20 billion by 2027. The manufacturing challenges for these two large buckets are very different. Within the CAR-T realm there are diverging trends of autologous and allogeneic therapies and the demands on manufacturing infrastructure are very different. Questions for the panelists are:
- Help us all understand the different manufacturing challenges for cell therapies. What are the trade-offs among storage cost, batch size, line changes in terms of production cost and what is the current state of scaling naïve and stem cell therapy treatment vs engineered cell therapies?
- For cell and gene therapy what is the cost of Quality Assurance/Quality Control vs. production and how do you think this will trend over time based on your perspective on learning curves today?
- Will point of care production become a reality? How will that change product development strategy for pharma and venture investors? What would be the regulatory implications for such products?
- How close are allogeneic CAR-T cell therapies? If successful what are the market implications of allogenic CAR-T? What are the cost implications and rewards for developing allogeneic cell therapy treatments?
Moderator: Michael Paglia
- VP, ElevateBio
Speakers:
- Dannielle Appelhans
- SVP TechOps and Chief Technical Officer, Novartis Gene Therapies
- Thomas Page, PhD
- VP, Engineering and Asset Development, FUJIFILM Diosynth Biotechnologies
- Rahul Singhvi, ScD
- CEO and Co-Founder, National Resilience, Inc.
- Thomas VanCott, PhD
- Global Head of Product Development, Gene & Cell Therapy, Catalent
- 2/3 autologous 1/3 allogeneic CAR-T high doses and high populations scale up is not done today quality maintain required the timing logistics issues centralized vs decentralized allogeneic are health donors innovations in cell types in use improvements in manufacturing
Ropa Pike, Director, Enterprise Science & Partnerships, Thermo Fisher Scientific
Centralized biopharma industry is moving to decentralized models site specific license
- Q&A 4:30 PM – 4:45 PM
4:30 PM – 4:40 PM FIRST LOOK
CAR-T
- Director, Cellular Immunotherapy Program, Cancer Center, MGH
- Assistant Professor, Medicine, HMS
Fit-to-purpose CAR-T cells: 3 lead programs
Tr-fill
CAR-T induce response myeloma and multiple myeloma GBM
27 patents on CAR-T
+400 patients treaded 40 Clinical Trials
- Q&A 4:40 PM – 5:00 PM
4:40 PM – 4:50 PM FIRST LOOK
Repurposed Tumor Cells as Killers and Immunomodulators for Cancer Therapy
- Vice Chair, Neurosurgery Research, BWH
- Director, Center for Stem Cell Therapeutics and Imaging, HMS
Solid tumors are the hardest to treat because: immunosuppressive, hypoxic, Acidic Use of autologous tumor cells self homing ThTC self targeting therapeutic cells Therapeutic tumor cells efficacy pre-clinical models GBM 95% metastesis ThTC translation to patient settings
- Q&A 4:50 PM – 5:10 PM
4:50 PM – 5:00 PM FIRST LOOK
Other Cell Therapies for Cancer
- Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
- Jordan Professor of Medicine, HMS
T-cell are made in bone marrow create cryogel can be an off-the-shelf product repertoire on T Receptor CCL19+ mesenchymal cells mimic Tymus cells –
inter-tymic injection. Non human primate validation
Q&A
5:00 PM – 5:20 PM 5:00 PM – 5:20 PM FIRESIDE
Fireside with Mikael Dolsten, MD, PhD
Introducer: Jonathan Kraft Moderator: Daniel Haber, MD, PhD
- Chair, Cancer Center, MGH
- Isselbacher Professor of Oncology, HMS
Vaccine Status Mikael Dolsten, MD, PhD
- Chief Scientific Officer and President, Worldwide Research, Development and Medical, Pfizer
Deliver vaccine around the Globe, Israel, US, Europe.
3BIL vaccine in 2022 for all Global vaccination
Bio Ntech in Germany
Experience with Biologics immuneoncology & allogeneic antibody cells – new field for drug discovery
mRNA curative effort and cancer vaccine
Access to drugs developed by Pfizer to underdeveloped countries
- Q&A 5:25 PM – 5:40 AM
5:20 PM – 5:30 PM
Closing Remarks
Thursday, May 20, 2021
8:00 AM – 8:25 AM
GCT | The China Juggernaut
China embraced gene and cell therapies early. The first China gene therapy clinical trial was in 1991. China approved the world’s first gene therapy product in 2003—Gendicine—an oncolytic adenovirus for the treatment of advanced head and neck cancer. Driven by broad national strategy, China has become a hotbed of GCT development, ranking second in the world with more than 1,000 clinical trials either conducted or underway and thousands of related patents. It has a booming GCT biotech sector, led by more than 45 local companies with growing IND pipelines.
In late 1990, a T cell-based immunotherapy, cytokine-induced killer (CIK) therapy became a popular modality in the clinic in China for tumor treatment. In early 2010, Chinese researchers started to carry out domestic CAR T trials inspired by several important reports suggested the great antitumor function of CAR T cells. Now, China became the country with the most registered CAR T trials, CAR T therapy is flourishing in China.
The Chinese GCT ecosystem has increasingly rich local innovation and growing complement of development and investment partnerships – and also many subtleties.
This panel, consisting of leaders from the China GCT corporate, investor, research and entrepreneurial communities, will consider strategic questions on the growth of the gene and cell therapy industry in China, areas of greatest strength, evolving regulatory framework, early successes and products expected to reach the US and world market. Moderator: Min Wu, PhD
- Managing Director, Fosun Health Fund
What are the area of CGT in China, regulatory similar to the US Speakers: Alvin Luk, PhD
- CEO, Neuropath Therapeutics
Monogenic rare disease with clear genomic target
Increase of 30% in patient enrollment
Regulatory reform approval is 60 days no delayPin Wang, PhD
- CSO, Jiangsu Simcere Pharmaceutical Co., Ltd.
Similar starting point in CGT as the rest of the World unlike a later starting point in other biologicalRichard Wang, PhD
- CEO, Fosun Kite Biotechnology Co., Ltd
Possibilities to be creative and capitalize the new technologies for innovating drug
Support of the ecosystem by funding new companie allowing the industry to be developed in China
Autologous in patients differences cost challengeTian Xu, PhD
- Vice President, Westlake University
ICH committee and Chinese FDA -r regulation similar to the US
Difference is the population recruitment, in China patients are active participants in skin disease
Active in development of transposome
Development of non-viral methods, CRISPR still in D and transposome
In China price of drugs regulatory are sensitive Shunfei Yan, PhD
- Investment Manager, InnoStar Capital
Indication driven: Hymophilia,
Allogogenic efficiency therapies
Licensing opportunities
- Q&A 8:30 AM – 8:45 AM
8:30 AM – 8:55 AM
Impact of mRNA Vaccines | Global Success Lessons
The COVID vaccine race has propelled mRNA to the forefront of biomedicine. Long considered as a compelling modality for therapeutic gene transfer, the technology may have found its most impactful application as a vaccine platform. Given the transformative industrialization, the massive human experience, and the fast development that has taken place in this industry, where is the horizon? Does the success of the vaccine application, benefit or limit its use as a therapeutic for CGT?
- How will the COVID success impact the rest of the industry both in therapeutic and prophylactic vaccines and broader mRNA lessons?
- How will the COVID success impact the rest of the industry both on therapeutic and prophylactic vaccines and broader mRNA lessons?
- Beyond from speed of development, what aspects make mRNA so well suited as a vaccine platform?
- Will cost-of-goods be reduced as the industry matures?
- How does mRNA technology seek to compete with AAV and other gene therapy approaches?
Moderator: Lindsey Baden, MD
- Director, Clinical Research, Division of Infectious Diseases, BWH
- Associate Professor, HMS
In vivo delivery process regulatory cooperation new opportunities for same platform for new indication Speakers:
- Melissa Moore
- Chief Scientific Officer, Moderna
Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna
How many mRNA can be put in one vaccine: Dose and tolerance to achieve efficacy
45 days for Personalized cancer vaccine one per patient
- Ron Renaud
- CEO, Translate Bio
1.6 Billion doses produced rare disease monogenic correct mRNA like CF multiple mutation infection disease and oncology applications
Platform allowing to swap cargo reusing same nanoparticles address disease beyond Big Pharma options for biotech
WHat strain of Flu vaccine will come back in the future when people do not use masks
- Kate Bingham, UK Vaccine Taskforce
July 2020, AAV vs mRNA delivery across UK local centers administered both types supply and delivery uplift
- Q&A 9:00 AM – 9:15 AM
9:00 AM – 9:25 AM HOT TOPICS
Benign Blood Disorders
Hemophilia has been and remains a hallmark indication for the CGT. Given its well-defined biology, larger market, and limited need for gene transfer to provide therapeutic benefit, it has been at the forefront of clinical development for years, however, product approval remains elusive. What are the main hurdles to this success? Contrary to many indications that CGT pursues no therapeutic options are available to patients, hemophiliacs have an increasing number of highly efficacious treatment options. How does the competitive landscape impact this field differently than other CGT fields? With many different players pursuing a gene therapy option for hemophilia, what are the main differentiators? Gene therapy for hemophilia seems compelling for low and middle-income countries, given the cost of currently available treatments; does your company see opportunities in this market? Moderator: Nancy Berliner, MD
- Chief, Division of Hematology, BWH
- H. Franklin Bunn Professor of Medicine, HMS
Speakers: Theresa Heggie
- CEO, Freeline Therapeutics
Safety concerns, high burden of treatment CGT has record of safety and risk/benefit adoption of Tx functional cure CGT is potent Tx relative small quantity of protein needs be delivered
Potency and quality less quantity drug and greater potency
risk of delivery unwanted DNA, capsules are critical
analytics is critical regulator involvement in potency definition
Close of collaboration is excitingGallia Levy, MD, PhD
- Chief Medical Officer, Spark Therapeutics
Hemophilia CGT is the highest potential for Global access logistics in underdeveloped countries working with NGOs practicality of the Tx
Roche reached 120 Counties great to be part of the Roche GroupAmir Nashat, PhD
- Managing Partner, Polaris Ventures
- Global President of Rare Disease, Pfizer
Gene therapy at Pfizer small molecule, large molecule and CGT – spectrum of choice allowing Hemophilia patients to marry
1/3 internal 1/3 partnership 1/3 acquisitions
Learning from COVID-19 is applied for other vaccine development
review of protocols and CGT for Hemophelia
You can’t buy Time
With MIT Pfizer is developing a model for Hemopilia CGT treatment
- Q&A 9:30 AM – 9:45 AM
9:25 AM – 9:35 AM FIRST LOOK
Treating Rett Syndrome through X-reactivation
- Molecular Biologist, MGH
- Professor of Genetics, HMS
200 disease X chromosome unlock for neurological genetic diseases: Rett Syndromeand other autism spectrum disorders female model vs male mice model
deliver protein to the brain
restore own missing or dysfunctional protein
Epigenetic not CGT – no exogent intervention Xist ASO drug
Female model
- Q&A 9:35 AM – 9:55 AM
9:35 AM – 9:45 AM FIRST LOOK
Rare but mighty: scaling up success in single gene disorders
- Director, Center for Rare Neurological Diseases, MGH
- Associate Professor, Neurology, HMS
Single gene disorder NGS enable diagnosis, DIagnosis to Treatment How to know whar cell to target, make it available and scale up Address gap: missing components Biomarkers to cell types lipid chemistry cell animal biology
crosswalk from bone marrow matter
New gene discovered that causes neurodevelopment of stagnant genes Examining new Biology cell type specific biomarkers
- Q&A 9:45 AM – 10:05 AM
9:50 AM – 10:15 AM HOT TOPICS
Diabetes | Grand Challenge
The American Diabetes Association estimates 30 million Americans have diabetes and 1.5 million are diagnosed annually. GCT offers the prospect of long-sought treatment for this enormous cohort and their chronic requirements. The complexity of the disease and its management constitute a grand challenge and highlight both the potential of GCT and its current limitations.
- Islet transplantation for type 1 diabetes has been attempted for decades. Problems like loss of transplanted islet cells due to autoimmunity and graft site factors have been difficult to address. Is there anything different on the horizon for gene and cell therapies to help this be successful?
- How is the durability of response for gene or cell therapies for diabetes being addressed? For example, what would the profile of an acceptable (vs. optimal) cell therapy look like?
Moderator: Marie McDonnell, MD
- Chief, Diabetes Section and Director, Diabetes Program, BWH
- Lecturer on Medicine, HMS
Type 1 Diabetes cost of insulin for continuous delivery of drug
alternative treatments:
The Future: neuropotent stem cells
What keeps you up at night Speakers: Tom Bollenbach, PhD
- Chief Technology Officer, Advanced Regenerative Manufacturing Institute
Data managment sterility sensors, cell survival after implantation, stem cells manufacturing, process development in manufacturing of complex cells
Data and instrumentation the Process is the Product
Manufacturing tight schedules Manasi Jaiman, MD
- Vice President, Clinical Development, ViaCyte
- Pediatric Endocrinologist
continous glucose monitoring Bastiano Sanna, PhD
- EVP, Chief of Cell & Gene Therapies and VCGT Site Head, Vertex Pharmaceuticals
100 years from discovering Insulin, Insulin is not a cure in 2021 – asking patients to partner more
Produce large quantities of the Islet cells encapsulation technology been developed
Scaling up is a challengeRogerio Vivaldi, MD
- CEO, Sigilon Therapeutics
Advanced made, Patient of Type 1 Outer and Inner compartments of spheres (not capsule) no immune suppression continuous secretion of enzyme Insulin independence without immune suppression
Volume to have of-the-shelf inventory oxegenation in location lymphatic and vascularization conrol the whole process modular platform learning from others
- Q&A 10:20 AM – 10:35 AM
10:20 AM – 10:40 AM FIRESIDE
Building A Unified GCT Strategy
Introducer: John Fish
- CEO, Suffolk
- Chairman of Board Trustees, Brigham Health
Moderator: Meg Tirrell
- Senior Health and Science Reporter, CNBC
Last year, what was it at Novartis Speaker: Jay Bradner, MD
- President, NIBR
Keep eyes open, waiting the Pandemic to end and enable working back on all the indications
Portfolio of MET, Mimi Emerging Therapies
Learning from the Pandemic – operationalize the practice science, R&D leaders, new collaboratives at NIH, FDA, Novartis
Pursue programs that will yield growth, tropic diseases with Gates Foundation, Rising Tide pods for access CGT within Novartis Partnership with UPenn in Cell Therapy
Cost to access to IP from Academia to a Biotech CRISPR accessing few translations to Clinic
Protein degradation organization constraint valuation by parties in a partnership
Novartis: nuclear protein lipid nuclear particles, tamplate for Biotech to collaborate
Game changing: 10% of the Portfolio, New frontiers human genetics in Ophthalmology, CAR-T, CRISPR, Gene Therapy Neurological and payloads of different matter
- Q&A 10:45 AM – 11:00 AM
10:40 AM – 10:50 AM
Break
10:50 AM – 11:00 AM FIRST LOOK
Getting to the Heart of the Matter: Curing Genetic Cardiomyopathy
- Director, Cardiovascular Genetics Center, BWH
- Smith Professor of Medicine & Genetics, HMS
The Voice of Dr. Seidman – Her abstract is cited below
The ultimate opportunity presented by discovering the genetic basis of human disease is accurate prediction and disease prevention. To enable this achievement, genetic insights must enable the identification of at-risk
individuals prior to end-stage disease manifestations and strategies that delay or prevent clinical expression. Genetic cardiomyopathies provide a paradigm for fulfilling these opportunities. Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction with normal or enhanced systolic performance and a unique histopathology: myocyte hypertrophy, disarray and fibrosis. Dilated cardiomyopathy (DCM) exhibits enlarged ventricular volumes with depressed systolic performance and nonspecific histopathology. Both HCM and DCM are prevalent clinical conditions that increase risk for arrhythmias, sudden death, and heart failure. Today treatments for HCM and DCM focus on symptoms, but none prevent disease progression. Human molecular genetic studies demonstrated that these pathologies often result from dominant mutations in genes that encode protein components of the sarcomere, the contractile unit in striated muscles. These data combined with the emergence of molecular strategies to specifically modulate gene expression provide unparalleled opportunities to silence or correct mutant genes and to boost healthy gene expression in patients with genetic HCM and DCM. Many challenges remain, but the active and vital efforts of physicians, researchers, and patients are poised to ensure success.
Hypertrophic and Dilated Cardiomyopaies ‘
10% receive heart transplant 12 years survival
Mutation puterb function
TTN: contribute 20% of dilated cardiomyopaty
Silence gene
pleuripotential cells deliver therapies
- Q&A 11:00 AM – 11:20 AM
11:00 AM – 11:10 AM FIRST LOOK
Unlocking the secret lives of proteins in health and disease
- Medicine, BWH
- Associate Professor, Medicine, HMS
Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech
- 11:10 AM – 11:30 AM
11:10 AM – 11:35 AM
Rare and Ultra Rare Diseases | GCT Breaks Through
One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.
- What is driving the interest in rare diseases?
- What are the biggest barriers to making breakthroughs ‘routine and affordable?’
- What is the role of retrospective and prospective natural history studies in rare disease? When does the expected value of retrospective disease history studies justify the cost?
- Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases? How does this impact the collection of natural history data?
Moderator: Susan Slaugenhaupt, PhD
- Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
- Professor, Neurology, HMS
Speakers: Leah Bloom, PhD
- SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies
Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD
- CEO, Orchard Therapeutics
Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders
Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD
- CEO, Ultragenyx
Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD
- CEO, PTC Therapeutics
Rare disease, challenge for FDA approval and after market commercialization follow ups
Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful
- Q&A 11:40 AM – 11:55 AM
11:40 AM – 12:00 PM FIRESIDE
Partnering Across the GCT Spectrum
Moderator: Erin Harris
- Chief Editor, Cell & Gene
Perspective & professional tenure
Partnership in manufacturing what are the recommendations?
Hospital systems: Partnership Challenges Speaker: Marc Casper
- CEO, ThermoFisher
25 years in Diagnostics last 20 years at ThermoFisher
products used in the Lab for CAR-T research and manufacture
CGT Innovations: FDA will have a high level of approval each year
How move from research to clinical trials to manufacturing Quicker process
Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards
Building capacity by acquisition to avoid the waiting time
Accelerate new products been manufactured
Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’
Customers are extremely knowledgable, scale the capital investment made investment
150MIL a year to improve the Workflow
- Q&A 12:05 PM – 12:20 PM
12:05 PM – 12:30 PM
- 12:05 PM – 12:20 PM
12:05 PM – 12:30 PM
CEO Panel | Anticipating Disruption | Planning for Widespread GCT
The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell
- Senior Health and Science Reporter, CNBC
CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps
- SVP & Chief Business Officer, Novartis Gene Therapies
Reimagine medicine with collaboration at MGH, MDM condition in children
The Science is there, sustainable processes and systems impact is transformational
Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect
Collaboration with FDAKieran Murphy
- CEO, GE Healthcare
Diagnosis of disease to be used in CGT
2021 investment in CAR-T platform
Investment in several CGT frontier
Investment in AI, ML in system design new technologies
GE: Scale and Global distributions, sponsor companies in software
Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital
Telemedicine during is Pandemic: Radiologist needs to read remotely
Supply chain disruptions slow down all ecosystem
Production of ventilators by collaboration with GM – ingenuity
Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD
- Head, Pharmaceuticals Research & Development, Bayer AG
CGT – 2016 and in 2020 new leadership and capability
Disease Biology and therapeutics
Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular
During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions
- Q&A 12:35 PM – 12:50 PM
12:35 PM – 12:55 PM FIRESIDE
Building a GCT Portfolio
GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:
Shinichiro Fuse, PhD
- Managing Partner, MPM Capital
Speaker: Wolfram Carius, PhD
- EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG
CGT will bring treatment to cure, delivery of therapies
Be a Leader repair, regenerate, cure
Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products
Bayer strategy: build platform for use by four domains
Gener augmentation
Autologeneic therapy, analytics
Gene editing
Oncology Cell therapy tumor treatment: What kind of cells – the jury is out
Of 23 product launch at Bayer no prediction is possible some high some lows
- Q&A 1:00 PM – 1:15 PM
12:55 PM – 1:35 PM
Lunch
1:40 PM – 2:05 PM
GCT Delivery | Perfecting the Technology
Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD
- Assistant Professor, BWH
Speakers: Geoff McDonough, MD
- CEO, Generation Bio
- CMO, Evox Therapeutics
- Chief Scientific Officer, Executive Vice President, Intellia Therapeutics
- CEO, Codiak BioSciences
- Q&A 2:10 PM – 2:25 PM
2:05 PM – 2:10 PM
Invention Discovery Grant Announcement
2:10 PM – 2:20 PM FIRST LOOK
Enhancing vesicles for therapeutic delivery of bioproducts
- Geneticist, MGH, MGH
- Professor, Neurology, HMS
- Q&A 2:20 PM – 2:35 PM
2:20 PM – 2:30 PM FIRST LOOK
Versatile polymer-based nanocarriers for targeted therapy and immunomodulation
- Assistant Professor, BWH
- Q&A 2:30 PM – 2:45 PM
2:55 PM – 3:20 PM HOT TOPICS
Gene Editing | Achieving Therapeutic Mainstream
Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.
Today’s panel is made up of pioneers who represent foundational aspects of gene editing. They will discuss the movement of the technology into the therapeutic mainstream.
- Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
- When to use what editing tool – pros and cons of traditional gene-editing v. base editing. Is prime editing the future? Specific use cases for epigenetic editing.
- When we reach widespread clinical use – role of off-target editing – is the risk real? How will we mitigate? How practical is patient-specific off-target evaluation?
Moderator: J. Keith Joung, MD, PhD
- Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
- Professor of Pathology, HMS
Speakers: John Evans
- CEO, Beam Therapeutics
- EVP & CMO, Editas Medicine
- Q&A 3:25 PM – 3:50 PM
3:25 PM – 3:50 PM HOT TOPICS
Common Blood Disorders | Gene Therapy
There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:
- What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
- How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
- How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
- How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
- Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
- What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
- Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?
Moderator: David Scadden, MD
- Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
- Jordan Professor of Medicine, HMS
Speakers: Samarth Kukarni, PhDNick Leschly
- Chief Bluebird, Bluebird Bio
- Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
- Q&A 3:55 PM – 4:15 PM
3:50 PM – 4:00 PM FIRST LOOK
Gene Editing
- Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
- Professor of Pathology, HMS
- Q&A 4:00 PM – 4:20 PM
4:20 PM – 4:45 PM HOT TOPICS
Gene Expression | Modulating with Oligonucleotide-Based Therapies
Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:
How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?
- Will oligonucleotides improve as a class that will make them even more effective? Are further advancements in backbone chemistry anticipated, for example.
- Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
- Are small molecules a threat to oligonucleotide-based therapies?
- Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides? Is there a place for multiple mechanism oligonucleotide medicines?
- Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?
Moderator: Jeannie Lee, MD, PhD
- Molecular Biologist, MGH
- Professor of Genetics, HMS
Speakers: Bob Brown, PhD
- CSO, EVP of R&D, Dicerna
- CEO, Ionis
- EVP, R&D and CMO, Biogen
- Q&A 4:50 PM – 5:05 PM
4:45 PM – 4:55 PM FIRST LOOK
RNA therapy for brain cancer
- Nuerosurgery, BWH
- Assistant Professor of Neurosurgery, HMS
- Q&A 4:55 PM – 5:15 PM
Friday, May 21, 2021
8:30 AM – 8:55 AM
Venture Investing | Shaping GCT Translation
What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD
- Partner, Mass General Brigham Innovation Fund
Speakers: David Berry, MD, PhD
- CEO, Valo Health
- General Partner, Flagship Pioneering
- Managing Director, Co-founder, ARCH Venture Partners
- Managing Partner, 5AM Ventures
- Q&A 9:00 AM – 9:15 AM
9:00 AM – 9:25 AM
Regenerative Medicine | Stem Cells
The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:
- Stem cell sourcing
- Therapeutic indication growth
- Genetic and other modification in cell production
- Cell production to final product optimization and challenges
- How to optimize the final product
Moderator: Ole Isacson, MD, PhD
- Director, Neuroregeneration Research Institute, McLean
- Professor, Neurology and Neuroscience, HMS
Speakers: Kapil Bharti, PhD
- Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH
- VP, Head of Biology, Decibel Therapeutics
- Executive Director, Regenerative Medicine, Astellas
- CEO and Co-Founder, Cellino
- Q&A 9:30 AM – 9:45 AM
9:25 AM – 9:35 AM FIRST LOOK
Stem Cells
- Chairman, Department of Neurosurgery, MGH
- William and Elizabeth Sweet, Professor of Neurosurgery, HMS
- Q&A 9:35 AM – 9:55 AM
9:35 AM – 10:00 AM
Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing
The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players? Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged? Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman
- VP, Venture, Mass General Brigham
Speakers: Ellen Hukkelhoven, PhD
- Managing Director, Perceptive Advisors
- Founder and Managing Partner, RA Capital Management
- Senior Managing Partner, SoftBank Investment Advisors
- Founder & Managing Partner, EcoR1 Capital
- Q&A 10:05 AM – 10:20 AM
10:00 AM – 10:10 AM FIRST LOOK
New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients
- NRL, McLean
- Assistant Professor Psychiatry, HMS
- Q&A 10:10 AM – 10:30 AM
10:10 AM – 10:35 AM HOT TOPICS
Neurodegenerative Clinical Outcomes | Achieving GCT Success
Can stem cell-based platforms become successful treatments for neurodegenerative diseases?
- What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
- Overcoming treatment administration challenges
- GCT impact on degenerative stage of disease
- How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
- Demonstrating clinical value to patients and payers
- Revised clinical trial models to address issues and concerns specific to GCT
Moderator: Bob Carter, MD, PhD
- Chairman, Department of Neurosurgery, MGH
- William and Elizabeth Sweet, Professor of Neurosurgery, HMS
Speakers: Erwan Bezard, PhD
- INSERM Research Director, Institute of Neurodegenerative Diseases
- CEO and Co-Founder, Oryon Cell Therapies
- President & CEO, AVROBIO
- Founding Investigator, BlueRock Therapeutics
- Chair of Neurosurgery, Memorial Sloan Kettering
- Q&A 10:40 AM – 10:55 AM
10:35 AM – 11:35 AM
Disruptive Dozen: 12 Technologies that Will Reinvent GCT
Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM
Concluding Remarks
Friday, May 21, 2021
Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021 8:30 AM – 8:55 AM
Venture Investing | Shaping GCT Translation
What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD
- Partner, Mass General Brigham Innovation Fund
Speakers: David Berry, MD, PhD
- CEO, Valo Health
- General Partner, Flagship Pioneering
- Managing Director, Co-founder, ARCH Venture Partners
- Managing Partner, 5AM Ventures
- Q&A 9:00 AM – 9:15 AM
9:00 AM – 9:25 AM
Regenerative Medicine | Stem Cells
The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:
- Stem cell sourcing
- Therapeutic indication growth
- Genetic and other modification in cell production
- Cell production to final product optimization and challenges
- How to optimize the final product
Moderator: Ole Isacson, MD, PhD
- Director, Neuroregeneration Research Institute, McLean
- Professor, Neurology and Neuroscience, HMS
Speakers: Kapil Bharti, PhD
- Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH
- VP, Head of Biology, Decibel Therapeutics
- Executive Director, Regenerative Medicine, Astellas
- CEO and Co-Founder, Cellino
- Q&A 9:30 AM – 9:45 AM
9:25 AM – 9:35 AM FIRST LOOK
Stem Cells
- Chairman, Department of Neurosurgery, MGH
- William and Elizabeth Sweet, Professor of Neurosurgery, HMS
- Q&A 9:35 AM – 9:55 AM
9:35 AM – 10:00 AM
Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing
The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players? Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged? Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman
- VP, Venture, Mass General Brigham
Speakers: Ellen Hukkelhoven, PhD
- Managing Director, Perceptive Advisors
- Founder and Managing Partner, RA Capital Management
- Senior Managing Partner, SoftBank Investment Advisors
- Founder & Managing Partner, EcoR1 Capital
- Q&A 10:05 AM – 10:20 AM
10:00 AM – 10:10 AM FIRST LOOK
New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients
- NRL, McLean
- Assistant Professor Psychiatry, HMS
- Q&A 10:10 AM – 10:30 AM
10:10 AM – 10:35 AM HOT TOPICS
Neurodegenerative Clinical Outcomes | Achieving GCT Success
Can stem cell-based platforms become successful treatments for neurodegenerative diseases?
- What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
- Overcoming treatment administration challenges
- GCT impact on degenerative stage of disease
- How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
- Demonstrating clinical value to patients and payers
- Revised clinical trial models to address issues and concerns specific to GCT
Moderator: Bob Carter, MD, PhD
- Chairman, Department of Neurosurgery, MGH
- William and Elizabeth Sweet, Professor of Neurosurgery, HMS
Speakers: Erwan Bezard, PhD
- INSERM Research Director, Institute of Neurodegenerative Diseases
- CEO and Co-Founder, Oryon Cell Therapies
- President & CEO, AVROBIO
- Founding Investigator, BlueRock Therapeutics
- Chair of Neurosurgery, Memorial Sloan Kettering
- Q&A 10:40 AM – 10:55 AM
10:35 AM – 11:35 AM
Disruptive Dozen: 12 Technologies that Will Reinvent GCT
Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM
Concluding Remarks
The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.
The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.Christine Seidman, MD
Hypertrophic and Dilated Cardiomyopaies ‘
10% receive heart transplant 12 years survival
Mutation puterb function
TTN: contribute 20% of dilated cardiomyopaty
Silence gene
pleuripotential cells deliver therapies
- Q&A 11:00 AM – 11:20 AM
11:00 AM – 11:10 AM FIRST LOOK
Unlocking the secret lives of proteins in health and disease
- Medicine, BWH
- Associate Professor, Medicine, HMS
Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech
- 11:10 AM – 11:30 AM
11:10 AM – 11:35 AM
Rare and Ultra Rare Diseases | GCT Breaks Through
One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.
- What is driving the interest in rare diseases?
- What are the biggest barriers to making breakthroughs ‘routine and affordable?’
- What is the role of retrospective and prospective natural history studies in rare disease? When does the expected value of retrospective disease history studies justify the cost?
- Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases? How does this impact the collection of natural history data?
Moderator: Susan Slaugenhaupt, PhD
- Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
- Professor, Neurology, HMS
Speakers: Leah Bloom, PhD
- SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies
Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD
- CEO, Orchard Therapeutics
Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders
Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD
- CEO, Ultragenyx
Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD
- CEO, PTC Therapeutics
Rare disease, challenge for FDA approval and after market commercialization follow ups
Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful
- Q&A 11:40 AM – 11:55 AM
11:40 AM – 12:00 PM FIRESIDE
Partnering Across the GCT Spectrum
Moderator: Erin Harris
- Chief Editor, Cell & Gene
Perspective & professional tenure
Partnership in manufacturing what are the recommendations?
Hospital systems: Partnership Challenges Speaker: Marc Casper
- CEO, ThermoFisher
25 years in Diagnostics last 20 years at ThermoFisher
products used in the Lab for CAR-T research and manufacture
CGT Innovations: FDA will have a high level of approval each year
How move from research to clinical trials to manufacturing Quicker process
Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards
Building capacity by acquisition to avoid the waiting time
Accelerate new products been manufactured
Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’
Customers are extremely knowledgable, scale the capital investment made investment
150MIL a year to improve the Workflow
- Q&A 12:05 PM – 12:20 PM
12:05 PM – 12:30 PM
CEO Panel | Anticipating Disruption | Planning for Widespread GCT
The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell
- Senior Health and Science Reporter, CNBC
CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps
- SVP & Chief Business Officer, Novartis Gene Therapies
Reimagine medicine with collaboration at MGH, MDM condition in children
The Science is there, sustainable processes and systems impact is transformational
Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect
Collaboration with FDAKieran Murphy
- CEO, GE Healthcare
Diagnosis of disease to be used in CGT
2021 investment in CAR-T platform
Investment in several CGT frontier
Investment in AI, ML in system design new technologies
GE: Scale and Global distributions, sponsor companies in software
Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital
Telemedicine during is Pandemic: Radiologist needs to read remotely
Supply chain disruptions slow down all ecosystem
Production of ventilators by collaboration with GM – ingenuity
Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD
- Head, Pharmaceuticals Research & Development, Bayer AG
CGT – 2016 and in 2020 new leadership and capability
Disease Biology and therapeutics
Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular
During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions
- Q&A 12:35 PM – 12:50 PM
12:35 PM – 12:55 PM FIRESIDE
Building a GCT Portfolio
GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:
Shinichiro Fuse, PhD
- Managing Partner, MPM Capital
Speaker: Wolfram Carius, PhD
- EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG
CGT will bring treatment to cure, delivery of therapies
Be a Leader repair, regenerate, cure
Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products
Bayer strategy: build platform for use by four domains
Gener augmentation
Autologeneic therapy, analytics
Gene editing
Oncology Cell therapy tumor treatment: What kind of cells – the jury is out
Of 23 product launch at Bayer no prediction is possible some high some lows
- Q&A 1:00 PM – 1:15 PM
12:55 PM – 1:35 PM
Lunch
1:40 PM – 2:05 PM
GCT Delivery | Perfecting the Technology
Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD
- Assistant Professor, BWH
Speakers: Geoff McDonough, MD
- CEO, Generation Bio
- CMO, Evox Therapeutics
- Chief Scientific Officer, Executive Vice President, Intellia Therapeutics
- CEO, Codiak BioSciences
- Q&A 2:10 PM – 2:25 PM
2:05 PM – 2:10 PM
Invention Discovery Grant Announcement
2:10 PM – 2:20 PM FIRST LOOK
Enhancing vesicles for therapeutic delivery of bioproducts
- Geneticist, MGH, MGH
- Professor, Neurology, HMS
- Q&A 2:20 PM – 2:35 PM
2:20 PM – 2:30 PM FIRST LOOK
Versatile polymer-based nanocarriers for targeted therapy and immunomodulation
- Assistant Professor, BWH
- Q&A 2:30 PM – 2:45 PM
2:55 PM – 3:20 PM HOT TOPICS
Gene Editing | Achieving Therapeutic Mainstream
Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.
Today’s panel is made up of pioneers who represent foundational aspects of gene editing. They will discuss the movement of the technology into the therapeutic mainstream.
- Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
- When to use what editing tool – pros and cons of traditional gene-editing v. base editing. Is prime editing the future? Specific use cases for epigenetic editing.
- When we reach widespread clinical use – role of off-target editing – is the risk real? How will we mitigate? How practical is patient-specific off-target evaluation?
Moderator: J. Keith Joung, MD, PhD
- Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
- Professor of Pathology, HMS
Speakers: John Evans
- CEO, Beam Therapeutics
- EVP & CMO, Editas Medicine
- Q&A 3:25 PM – 3:50 PM
3:25 PM – 3:50 PM HOT TOPICS
Common Blood Disorders | Gene Therapy
There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:
- What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
- How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
- How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
- How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
- Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
- What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
- Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?
Moderator: David Scadden, MD
- Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
- Jordan Professor of Medicine, HMS
Speakers: Samarth Kukarni, PhDNick Leschly
- Chief Bluebird, Bluebird Bio
- Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
- Q&A 3:55 PM – 4:15 PM
3:50 PM – 4:00 PM FIRST LOOK
Gene Editing
- Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
- Professor of Pathology, HMS
- Q&A 4:00 PM – 4:20 PM
4:20 PM – 4:45 PM HOT TOPICS
Gene Expression | Modulating with Oligonucleotide-Based Therapies
Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:
How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?
- Will oligonucleotides improve as a class that will make them even more effective? Are further advancements in backbone chemistry anticipated, for example.
- Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
- Are small molecules a threat to oligonucleotide-based therapies?
- Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides? Is there a place for multiple mechanism oligonucleotide medicines?
- Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?
Moderator: Jeannie Lee, MD, PhD
- Molecular Biologist, MGH
- Professor of Genetics, HMS
Speakers: Bob Brown, PhD
- CSO, EVP of R&D, Dicerna
- CEO, Ionis
- EVP, R&D and CMO, Biogen
- Q&A 4:50 PM – 5:05 PM
4:45 PM – 4:55 PM FIRST LOOK
RNA therapy for brain cancer
- Nuerosurgery, BWH
- Assistant Professor of Neurosurgery, HMS
- Q&A 4:55 PM – 5:15 PM
Friday, May 21, 2021
Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021
8:30 AM – 8:55 AM
Venture Investing | Shaping GCT Translation
What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD
- Partner, Mass General Brigham Innovation Fund
Strategies, success what changes are needed in the drug discovery process Speakers:
- David Berry, MD, PhD
- CEO, Valo Health
- General Partner, Flagship Pioneering
Bring disruptive frontier as a platform with reliable delivery CGT double knock out disease cure all change efficiency and scope human centric vs mice centered right scale of data converted into therapeutics acceleratetion
Innovation in drugs 60% fails in trial because of Toxicology system of the future deal with big diseases
Moderna is an example in unlocking what is inside us Microbiome and beyond discover new drugs epigenetics
- Robert Nelsen
- Managing Director, Co-founder, ARCH Venture Partners
Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization How to systematically scaling up systematize the discovery and the production regulatory innovations
- Kush Parmar, MD, PhD
- Managing Partner, 5AM Ventures
Responsibility mismatch should be and what is “are”
Long term diseases Stack holders and modalities risk benefir for populations
- Q&A 9:00 AM – 9:15 AM
9:00 AM – 9:25 AM
Regenerative Medicine | Stem Cells
The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:
- Stem cell sourcing
- Therapeutic indication growth
- Genetic and other modification in cell production
- Cell production to final product optimization and challenges
- How to optimize the final product
- Moderator:
- Ole Isacson, MD, PhD
- Director, Neuroregeneration Research Institute, McLean
- Professor, Neurology and Neuroscience, MGH, HMS
- Ole Isacson, MD, PhD
Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all Translational medicine funding stem cells enormous opportunities
- Speakers:
- Kapil Bharti, PhD
- Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH
- first drug required to establish the process for that innovations design of animal studies not done before
- Off-th-shelf one time treatment becoming cure
- Intact tissue in a dish is fragile to maintain metabolism
- VP, Head of Biology, Decibel Therapeutics
- Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation
- multiple cell types and tissue to follow
- Executive Director, Regenerative Medicine, Astellas
- In the ocular space immunogenecity
- regulatory communication
- use gene editing for immunogenecity Cas1 and Cas2 autologous cells
- gene editing and programming big opportunities
- CEO and Co-Founder, Cellino
- scale production of autologous cells foundry using semiconductor process in building cassettes
- solution for autologous cells
- Q&A 9:30 AM – 9:45 AM
9:25 AM – 9:35 AM FIRST LOOK
Stem Cells
- Chairman, Department of Neurosurgery, MGH
- William and Elizabeth Sweet, Professor of Neurosurgery, HMS
- Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamin
- skin cell to become autologous cells reprograms to become cells producing dopamine
- transplantation fibroblast cells metabolic driven process lower mutation burden
- Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased
- Q&A 9:35 AM – 9:55 AM
9:35 AM – 10:00 AM
Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing
The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players? Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged? Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman
- VP, Venture, Mass General Brigham
- Saturation reached or more investment is coming in CGT
Speakers: Ellen Hukkelhoven, PhD
- Managing Director, Perceptive Advisors
- Cardiac area transduct cells
- matching tools
- 10% success of phase 1 in drug development next phase matters more
- Founder and Managing Partner, RA Capital Management
- Future proof for new comers disruptors
- Ex Vivo gene therapy to improve funding products what tool kit belongs to
- company insulation from next instability vs comapny stabilizing themselves along few years
- Company interested in SPAC
- cross over investment vs SPAC
- Multi Omics in cancer early screening metastatic diseas will be wiped out
- Senior Managing Partner, SoftBank Investment Advisors
- Young field vs CGT started in the 80s
- high payloads is a challenge
- cost effective fast delivery to large populations
- Mission oriented by the team and management
- Multi Omics disease modality
- Founder & Managing Partner, EcoR1 Capital
- Invest in company next round of investment will be IPO
- Help company raise money cross over investment vs SPAC
- Innovating ideas from academia in need for funding
- Q&A 10:05 AM – 10:20 AM
10:00 AM – 10:10 AM FIRST LOOK
New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients
- NRL, McLean
- Assistant Professor Psychiatry, HMS
- Pharmacologic agent in existing cause another disorders locomo-movement related
- efficacy Autologous cell therapy transplantation approach program T cells into dopamine generating neurons greater than Allogeneic cell transplantation
- Q&A 10:10 AM – 10:30 AM
10:10 AM – 10:35 AM HOT TOPICS
Neurodegenerative Clinical Outcomes | Achieving GCT Success
Can stem cell-based platforms become successful treatments for neurodegenerative diseases?
- What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
- Overcoming treatment administration challenges
- GCT impact on degenerative stage of disease
- How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
- Demonstrating clinical value to patients and payers
- Revised clinical trial models to address issues and concerns specific to GCT
Moderator: Bob Carter, MD, PhD
- Chairman, Department of Neurosurgery, MGH
- William and Elizabeth Sweet, Professor of Neurosurgery, HMS
- Neurogeneration REVERSAL or slowing down
Speakers: Erwan Bezard, PhD
- INSERM Research Director, Institute of Neurodegenerative Diseases
- Cautious on reversal
- Early intervantion versus late
- CEO and Co-Founder, Oryon Cell Therapies
- Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circuitary
- President & CEO, AVROBIO
- Prevent condition to be manifested in the first place
- clinical effect durable single infusion preventions of symptoms to manifest
- Cerebral edema – stabilization
- Gene therapy know which is the abnormal gene grafting the corrected one
- More than biomarker as end point functional benefit not yet established
- Founding Investigator, BlueRock Therapeutics
- Chair of Neurosurgery, Memorial Sloan Kettering
- Current market does not have delivery mechanism that a drug-delivery is the solution Trials would fail on DELIVERY
- Immune suppressed patients during one year to avoid graft rejection Autologous approach of Parkinson patient genetically mutated reprogramed as dopamine generating neuron – unknowns are present
- Circuitry restoration
- Microenvironment disease ameliorate symptoms – education of patients on the treatment
- Q&A 10:40 AM – 10:55 AM
10:35 AM – 11:35 AM
Disruptive Dozen: 12 Technologies that Will Reinvent GCT
Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM
Concluding Remarks
The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.
ALL THE TWEETS PRODUCED ON MAY 21, 2021 INCLUDE THE FOLLOWING:
Erwan Bezard, PhD INSERM Research Director, Institute of Neurodegenerative Diseases Cautious on reversal
Nikola Kojic, PhD CEO and Co-Founder, Oryon Cell Therapies Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circutary

Bob Carter, MD, PhD Chairman, Department of Neurosurgery, MGH William and Elizabeth Sweet, Professor of Neurosurgery, HMS Neurogeneration REVERSAL or slowing down?

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS efficacy Autologous cell therapy transplantation approach program T cells into dopamine genetating cells greater than Allogeneic cell transplantation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS Pharmacologic agent in existing cause another disorders locomo-movement related


Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT Multi OMICS and academia originated innovations are the most attractive areas
1
3


Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT
1

Oleg Nodelman Founder & Managing Partner, EcoR1 Capital Invest in company next round of investment will be IPO 20% discount


Peter Kolchinsky, PhD Founder and Managing Partner, RA Capital Management Future proof for new comers disruptors Ex Vivo gene therapy to improve funding products what tool kit belongs to

Deep Nishar Senior Managing Partner, SoftBank Investment Advisors Young field vs CGT started in the 80s high payloads is a challenge

Bob Carter, MD, PhD MGH, HMS cells producing dopamine transplantation fibroblast cells metabolic driven process lower mutation burden Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased

Chairman, Department of Neurosurgery, MGH, Professor of Neurosurgery, HMS Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamine skin cell to become autologous cells reprogramed
Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH Off-th-shelf one time treatment becoming cure Intact tissue in a dish is fragile to maintain metabolism to become like semiconductors


Ole Isacson, MD, PhD Director, Neuroregeneration Research Institute, McLean Professor, Neurology and Neuroscience, MGH, HMS Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all

Erin Kimbrel, PhD Executive Director, Regenerative Medicine, Astellas In the ocular space immunogenecity regulatory communication use gene editing for immunogenecity Cas1 and Cas2 autologous cells

Nabiha Saklayen, PhD CEO and Co-Founder, Cellino scale production of autologous cells foundry using semiconductor process in building cassettes by optic physicists

Joe Burns, PhD VP, Head of Biology, Decibel Therapeutics Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation control by genomics
Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH first drug required to establish the process for that innovations design of animal studies not done before

Meredith Fisher, PhD Partner, Mass General Brigham Innovation Fund Strategies, success what changes are needed in the drug discovery process@pharma_BI

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization
1

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures Responsibility mismatch should be and what is “are”

David Berry, MD, PhD CEO, Valo Health GP, Flagship Pioneering Bring disruptive frontier platform reliable delivery CGT double knockout disease cure all change efficiency scope human centric vs mice centered right scale acceleration

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures build it yourself, benefit for patients FIrst Look at MGB shows MEE innovation on inner ear worthy investment

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Frustration with supply chain during the Pandemic, GMC anticipation in advance CGT rapidly prototype rethink and invest proactive investor .edu and Pharma
Leave a Reply