Feeds:
Posts
Comments

Archive for the ‘Pharmaceutical Analytics’ Category


Top 15 pharmas, then=2026 and now=2020: How the next five years will shake up Big Pharma’s rankings

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Reporter: Stephen J. Williams, PhD

New Drugs on the Horizon: Part 3
Introduction

Andrew J. Phillips, C4 Therapeutics

  • symposium brought by AACR CICR and had about 30 proposals for talks and chose three talks
  • unfortunately the networking event is not possible but hope to see you soon in good health

ABBV-184: A novel survivin specific T cell receptor/CD3 bispecific therapeutic that targets both solid tumor and hematological malignancies

Edward B Reilly
AbbVie Inc. @abbvie

  • T-cell receptors (TCR) can recognize the intracellular targets whereas antibodies only recognize the 25% of potential extracellular targets
  • survivin is expressed in multiple cancers and correlates with poor survival and prognosis
  • CD3 bispecific TCR to survivn (Ab to CD3 on T- cells and TCR to survivin on cancer cells presented in MHC Class A3)
  • ABBV184  effective in vivo in lung cancer models as single agent;
  • in humanized mouse tumor models CD3/survivin bispecific can recruit T cells into solid tumors; multiple immune cells CD4 and CD8 positive T cells were found to infiltrate into tumor
  • therapeutic window as measured by cytokine release assays in tumor vs. normal cells very wide (>25 fold)
  • ABBV184 does not bind platelets and has good in vivo safety profile
  • First- in human dose determination trial: used in vitro cancer cell assays to determine 1st human dose
  • looking at AML and lung cancer indications
  • phase 1 trial is underway for safety and efficacy and determine phase 2 dose
  • survivin has very few mutations so they are not worried about a changing epitope of their target TCR peptide of choice

The discovery of TNO155: A first in class SHP2 inhibitor

Matthew J. LaMarche
Novartis @Novartis

  • SHP2 is an intracellular phosphatase that is upstream of MEK ERK pathway; has an SH2 domain and PTP domain
  • knockdown of SHP2 inhibits tumor growth and colony formation in soft agar
  • 55 TKIs there are very little phosphatase inhibitors; difficult to target the active catalytic site; inhibitors can be oxidized at the active site; so they tried to target the two domains and developed an allosteric inhibitor at binding site where three domains come together and stabilize it
  • they produced a number of chemical scaffolds that would bind and stabilize this allosteric site
  • block the redox reaction by blocking the cysteine in the binding site
  • lead compound had phototoxicity; used SAR analysis to improve affinity and reduce phototox effects
  • was very difficult to balance efficacy, binding properties, and tox by adjusting stuctures
  • TNO155 is their lead into trials
  • SHP2 expressed in T cells and they find good combo with I/O with uptick of CD8 cells
  • TNO155 is very selective no SHP1 inhibition; SHP2 can autoinhibit itself when three domains come together and stabilize; no cross reactivity with other phosphatases
  • they screened 1.5 million compounds and got low hit rate so that is why they needed to chemically engineer and improve on the classes they found as near hits

Closing Remarks

 

Xiaojing Wang
Genentech, Inc. @genentech

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »


Pfizer buys out Array BioPharma for $11.4 Billion to beef up its oncology offerings

Reporter: Stephen J. Williams, PhD

As reported in FiercePharma.com:

by Angus Liu |

Three years after purchasing Medivation for $14.3 billion, Pfizer is back with another hefty M&A deal. And once again, it’s betting on oncology.

In the first big M&A deal under new CEO Albert Bourla, Pfizer has agreed to buy oncology specialist Array BioPharma for a total value of about $11.4 billion, the two companies unveiled Monday. The $48-per-share offer represents a premium of about 62% to Array stock’s closing price on Friday.

With the acquisition, Pfizer will beef up its oncology offerings with two marketed drugs, MEK inhibitor Mektovi and BRAF inhibitor Braftovi, which are approved as a combo treatment for melanoma and recently turned up positive results in colon cancer.

The buy will enhance the Pfizer innovative drug business’ “long-term growth trajectory,” Bourla said in a Monday statement, dubbing Mektovi-Braftovi “a potentially industry-leading franchise for colorectal cancer.”

RELATED: Array’s ‘extremely compelling’ new colon cancer data spark blockbuster talk

In a recent interim analysis of a trial in BRAF-mutant metastatic colorectal cancer, the pair, used in tandem with Eli Lilly and Merck KGaA’s Erbitux, produced a benefit in 26% of patients, versus the 2% that chemotherapy helped. The combo also showed it could reduce the risk of death by 48%. SVB Leerink analysts at that time called the data “extremely compelling.”

Right now, one in every three new patients with mutated metastatic melanoma is getting the combo, despite its third-to-market behind combos from Roche and Novartis, Andy Schmeltz, Pfizer’s oncology global president, said during an investor briefing on Monday.

It is being studied in more than 30 clinical studies across several solid tumor indications. Moving forward, Pfizer believes the combo could potentially be used in the adjuvant setting to prevent tumor recurrence after surgery, Pfizer’s chief scientific officer, Mikael Dolsten, said on the call. The company is also keen to know how it could be paired up with Pfizer’s own investigational PD-1, he said, as the combo is already in studies with other PD-1/L1s.

But as Pfizer execs have previously said, the company’s current business development strategy no longer centers on adding revenues “now or soon,” but rather on strengthening Pfizer’s pipeline with earlier-stage assets. And Array can help there, too.

“We are very excited by Array’s impressive track record of successfully discovering and developing innovative small-molecules and targeted cancer therapies,” Dolsten said in a statement.

On top of Mektovi and Braftovi, Array has a long list of out-licensed drugs that could generate big royalties over time. For example, Vitrakvi, the first drug to get an initial FDA approval in tumors with a particular molecular feature regardless of their location, was initially licensed to Loxo Oncology—which was itself snapped up by Eli Lilly for $8 billion—but was taken over by pipeline-hungry Bayer. There are other drugs licensed to the likes of AstraZeneca, Roche, Celgene, Ono Pharmaceutical and Seattle Genetics, among others.

Those drugs are also a manifestation of Array’s strong research capabilities. To keep those Array scientists doing what they do best, Pfizer is keeping a 100-person team in Colorado as a standalone research unit alongside Pfizer’s existing hubs, Schmeltz said.

Pfizer is counting on Array to augment its leadership in breast cancer, an area championed by Ibrance, and prostate cancer, the pharma giant markets Astellas-partnered Xtandi. For 2018, revenues from the Pfizer oncology portfolio jumped to $7.20 billion—up from $6.06 billion in 2017—mainly thanks to those two drugs.

Source: https://www.fiercepharma.com/pharma/pfizer-never-say-never-m-a-buys-oncology-innovator-array-for-11-4b

 

About Array BioPharma

Array markets BRAFTOVI® (encorafenib) capsules in combination with MEKTOVI® (binimetinib)  tablets for the treatment of patients with unresectable or metastatic melanoma with a BRAFV600E or BRAFV600K  mutation in the United States and with partners in other major worldwide markets.* Array’s lead clinical programs, encorafenib and binimetinib, are being investigated in over 30 clinical trials across a number of solid tumor indications, including a Phase 3 trial in BRAF-mutant metastatic colorectal cancer. Array’s pipeline includes several additional programs being advanced by Array or current license-holders, including the following programs currently in registration trials: selumetinib (partnered with AstraZeneca), LOXO-292 (partnered with Eli Lilly), ipatasertib (partnered with Genentech), tucatinib (partnered with Seattle Genetics) and ARRY-797. Vitrakvi® (larotrectinib, partnered with Bayer AG) is approved in the United States and Ganovo® (danoprevir, partnered with Roche) is approved in China.

 

Other Articles of Note of Pfizer Merger and Acquisition deals on this Open Access Journal Include:

From Thalidomide to Revlimid: Celgene to Bristol Myers to possibly Pfizer; A Curation of Deals, Discovery and the State of Pharma

Pfizer Near Allergan Buyout Deal But Will Fed Allow It?

Pfizer offers legal guarantees over AstraZeneca bid

Re-Creation of the Big Pharma Model via Transformational Deals for Accelerating Innovations: Licensing vs In-house inventions

Read Full Post »


Real Time Coverage of BIO 2019 International Convention, June 3-6, 2019 Philadelphia Convention Center, Philadelphia PA

Reporter: Stephen J. Williams, PhD @StephenJWillia2

Please follow LIVE on TWITTER using the following @ handles and # hashtags:

@Handles

@pharma_BI

@AVIVA1950

@BIOConvention

# Hashtags

#BIO2019 (official meeting hashtag)

Please check daily on this OPEN ACCESS JOURNAL for updates on one of the most important BIO Conferences of the year for meeting notes, posts, as well as occasional PODCASTS.

 

The BIO International Convention is the largest global event for the biotechnology industry and attracts the biggest names in biotech, offers key networking and partnering opportunities, and provides insights and inspiration on the major trends affecting the industry. The event features keynotes and sessions from key policymakers, scientists, CEOs, and celebrities.  The Convention also features the BIO Business Forum (One-on-One Partnering), hundreds of sessions covering biotech trends, policy issues and technological innovations, and the world’s largest biotechnology exhibition – the BIO Exhibition.

The BIO International Convention is hosted by the Biotechnology Innovation Organization (BIO). BIO represents more than 1,100 biotechnology companies, academic institutions, state biotechnology centers and related organizations across the United States and in more than 30 other nations. BIO members are involved in the research and development of innovative healthcare, agricultural, industrial and environmental biotechnology products.

 

Keynote Speakers INCLUDE:

Fireside Chat with Margaret (Peggy) Hamburg, MD, Foreign Secretary, National Academy of Medicine; Chairman of the Board, American Association for the Advancement of Science

Tuesday Keynote: Siddhartha Mukherjee (Author of the bestsellers Emperor of All Maladies: A Biography of Cancer and  The Gene: An Intimate History)

Fireside Chat with Jeffrey Solomon, Chief Executive Officer, COWEN

Fireside Chat with Christi Shaw, Senior Vice President and President, Lilly BIO-Medicines, Eli Lilly and Company

Wednesday Keynote: Jamie Dimon (Chairman JP Morgan Chase)

Fireside Chat with Kenneth C. Frazier, Chairman of the Board and Chief Executive Officer, Merck & Co., Inc.

Fireside Chat: Understanding the Voices of Patients: Unique Perspectives on Healthcare

Fireside Chat: FDA Town Hall

 

ALSO SUPERSESSIONS including:

Super Session: What’s Next: The Landscape of Innovation in 2019 and Beyond

Super Session: Falling in Love with Science: Championing Science for Everyone, Everywhere

Super Session: Digital Health in Practice: A Conversation with Ameet Nathawani, Chief Digital Officer, Chief Medical Falling in Love with Science: Championing Science for Everyone, Everywhere

Super Session: Realizing the Promise of Gene Therapies for Patients Around the World

Super Session: Biotech’s Contribution to Innovation: Current and Future Drivers of Success

Super Session: The Art & Science of R&D Innovation and Productivity

Super Session: Dealmaker’s Intentions: 2019 Market Outlook

Super Session: The State of the Vaccine Industry: Stimulating Sustainable Growth

 

See here for full AGENDA

Link for Registration: https://convention.bio.org/register/

The BIO International Convention is literally where hundreds of deals and partnerships have been made over the years.

 

BIO performs many services for members, but none of them are more visible than the BIO International Convention. The BIO International Convention helps BIO fulfill its mission to help grow the global biotech industry. Profits from the BIO International Convention are returned to the biotechnology industry by supporting BIO programs and initiatives. BIO works throughout the year to create a policy environment that enables the industry to continue to fulfill its vision of bettering the world through biotechnology innovation.

The key benefits of attending the BIO International Convention are access to global biotech and pharma leaders via BIO One-on-One Partnering, exposure to industry though-leaders with over 1,500 education sessions at your fingertips, and unparalleled networking opportunities with 16,000+ attendees from 74 countries.

In addition, we produce BIOtechNOW, an online blog chronicling ‘innovations transforming our world’ and the BIO Newsletter, the organization’s bi-weekly email newsletter. Subscribe to the BIO Newsletter.

 

Membership with the Biotechnology Innovation Organization (BIO)

BIO has a diverse membership that is comprised of  companies from all facets of biotechnology. Corporate R&D members range from entrepreneurial companies developing a first product to Fortune 100 multinationals. The majority of our members are small companies – 90 percent have annual revenues of $25 million or less, reflecting the broader biotechnology industry. Learn more about how you can save with BIO Membership.

BIO also represents academic centers, state and regional biotech associations and service providers to the industry, including financial and consulting firms.

  • 66% R&D-Intensive Companies *Of those: 89% have annual revenues under $25 million,  4% have annual revenues between $25 million and $1 billion, 7% have annual revenues over $1 billion.
  • 16% Nonprofit/Academic
  • 11% Service Providers
  • 7% State/International Affiliate Organizations

Other posts on LIVE CONFERENCE COVERAGE using Social Media on this OPEN ACCESS JOURNAL and OTHER Conferences Covered please see the following link at https://pharmaceuticalintelligence.com/press-coverage/

 

Notable Conferences Covered THIS YEAR INCLUDE: (see full list from 2013 at this link)

  • Koch Institute 2019 Immune Engineering Symposium, January 28-29, 2019, Kresge Auditorium, MIT

https://calendar.mit.edu/event/immune_engineering_symposium_2019#.XBrIDc9Kgcg

http://kochinstituteevents.cvent.com/events/koch-institute-2019-immune-engineering-symposium/event-summary-8d2098bb601a4654991060d59e92d7fe.aspx?dvce=1

 

  • 2019 MassBio’s Annual Meeting, State of Possible Conference ​, March 27 – 28, 2019, Royal Sonesta, Cambridge

http://files.massbio.org/file/MassBio-State-Of-Possible-Conference-Agenda-Feb-22-2019.pdf

 

  • World Medical Innovation Forum, Partners Innovations, ARTIFICIAL INTELLIGENCE | APRIL 8–10, 2019 | Westin, BOSTON

https://worldmedicalinnovation.org/agenda-list/

https://worldmedicalinnovation.org/

 

  • 18th Annual 2019 BioIT, Conference & Expo, April 16-18, 2019, Boston, Seaport World Trade Center, Track 5 Next-Gen Sequencing Informatics – Advances in Large-Scale Computing

http://www.giiconference.com/chi653337/

https://pharmaceuticalintelligence.com/2019/04/22/18th-annual-2019-bioit-conference-expo-april-16-18-2019-boston-seaport-world-trade-center-track-5-next-gen-sequencing-informatics-advances-in-large-scale-computing/

 

  • Translating Genetics into Medicine, April 25, 2019, 8:30 AM – 6:00 PM, The New York Academy of Sciences, 7 World Trade Center, 250 Greenwich St Fl 40, New York

https://pharmaceuticalintelligence.com/2019/04/25/translating-genetics-into-medicine-april-25-2019-830-am-600-pm-the-new-york-academy-of-sciences-7-world-trade-center-250-greenwich-st-fl-40-new-york/

 

  • 13th Annual US-India BioPharma & Healthcare Summit, May 9, 2019, Marriott, Cambridge

https://pharmaceuticalintelligence.com/2019/04/30/13th-annual-biopharma-healthcare-summit-thursday-may-9-2019/

 

  • 2019 Petrie-Flom Center Annual Conference: Consuming Genetics: Ethical and Legal Considerations of New Technologies, May 17, 2019, Harvard Law School

http://petrieflom.law.harvard.edu/events/details/2019-petrie-flom-center-annual-conference

https://pharmaceuticalintelligence.com/2019/01/11/2019-petrie-flom-center-annual-conference-consuming-genetics-ethical-and-legal-considerations-of-new-technologies/

 

  • 2019 Koch Institute Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PM  ET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA

https://pharmaceuticalintelligence.com/2019/03/12/2019-koch-institute-symposium-machine-learning-and-cancer-june-14-2019-800-am-500-pmet-mit-kresge-auditorium-48-massachusetts-ave-cambridge-ma/

 

Read Full Post »


2018 Biopharma CEO Compensation Packages by John Carroll — on May 5, 2019 08:40 AM EDT

 

Reporter: Aviva Lev-Ari, PhD, RN

What we know so far:

Chart

Read Full Post »


Use of 3D Bioprinting for Development of Toxicity Prediction Models

Curator: Stephen J. Williams, PhD

SOT FDA Colloquium on 3D Bioprinted Tissue Models: Tuesday, April 9, 2019

The Society of Toxicology (SOT) and the U.S. Food and Drug Administration (FDA) will hold a workshop on “Alternative Methods for Predictive Safety Testing: 3D Bioprinted Tissue Models” on Tuesday, April 9, at the FDA Center for Food Safety and Applied Nutrition in College Park, Maryland. This workshop is the latest in the series, “SOT FDA Colloquia on Emerging Toxicological Science: Challenges in Food and Ingredient Safety.”

Human 3D bioprinted tissues represent a valuable in vitro approach for chemical, personal care product, cosmetic, and preclinical toxicity/safety testing. Bioprinting of skin, liver, and kidney is already appearing in toxicity testing applications for chemical exposures and disease modeling. The use of 3D bioprinted tissues and organs may provide future alternative approaches for testing that may more closely resemble and simulate intact human tissues to more accurately predict human responses to chemical and drug exposures.

A synopsis of the schedule and related works from the speakers is given below:

 

8:40 AM–9:20 AM Overview and Challenges of Bioprinting
Sharon Presnell, Amnion Foundation, Winston-Salem, NC
9:20 AM–10:00 AM Putting 3D Bioprinting to the Use of Tissue Model Fabrication
Y. Shrike Zhang, Brigham and Women’s Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology, Boston, MA
10:00 AM–10:20 AM Break
10:20 AM–11:00 AM Uses of Bioprinted Liver Tissue in Drug Development
Jean-Louis Klein, GlaxoSmithKline, Collegeville, PA
11:00 AM–11:40 AM Biofabrication of 3D Tissue Models for Disease Modeling and Chemical Screening
Marc Ferrer, National Center for Advancing Translational Sciences, NIH, Rockville, MD

Sharon Presnell, Ph.D. President, Amnion Foundation

Dr. Sharon Presnell was most recently the Chief Scientific Officer at Organovo, Inc., and the President of their wholly-owned subsidiary, Samsara Sciences. She received a Ph.D. in Cell & Molecular Pathology from the Medical College of Virginia and completed her undergraduate degree in biology at NC State. In addition to her most recent roles, Presnell has served as the director of cell biology R&D at Becton Dickinson’s corporate research center in RTP, and as the SVP of R&D at Tengion. Her roles have always involved the commercial and clinical translation of basic research and early development in the cell biology space. She serves on the board of the Coulter Foundation at the University of Virginia and is a member of the College of Life Sciences Foundation Board at NC State. In January 2019, Dr. Presnell will begin a new role as President of the Amnion Foundation, a non-profit organization in Winston-Salem.

A few of her relevant publications:

Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis

Integrating Kupffer cells into a 3D bioprinted model of human liver recapitulates fibrotic responses of certain toxicants in a time and context dependent manner.  This work establishes that the presence of Kupffer cells or macrophages are important mediators in fibrotic responses to certain hepatotoxins and both should be incorporated into bioprinted human liver models for toxicology testing.

Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro

Abstract: Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

A great interview with Dr. Presnell and the 3D Models 2017 Symposium is located here:

Please click here for Web based and PDF version of interview

Some highlights of the interview include

  • Exciting advances in field showing we can model complex tissue-level disease-state phenotypes that develop in response to chronic long term injury or exposure
  • Sees the field developing a means to converge both the biology and physiology of tissues, namely modeling the connectivity between tissues such as fluid flow
  • Future work will need to be dedicated to develop comprehensive analytics for 3D tissue analysis. As she states “we are very conditioned to get information in a simple way from biochemical readouts in two dimension, monocellular systems”  however how we address the complexity of various cellular responses in a 3D multicellular environment will be pertinent.
  • Additional challenges include the scalability of such systems and making such system accessible in a larger way
  1. Shrike Zhang, Brigham and Women’s Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology

Dr. Zhang currently holds an Assistant Professor position at Harvard Medical School and is an Associate Bioengineer at Brigham and Women’s Hospital. His research interests include organ-on-a-chip, 3D bioprinting, biomaterials, regenerative engineering, biomedical imaging, biosensing, nanomedicine, and developmental biology. His scientific contributions have been recognized by >40 international, national, and regional awards. He has been invited to deliver >70 lectures worldwide, and has served as reviewer for >400 manuscripts for >30 journals. He is serving as Editor-in-Chief for Microphysiological Systems, and Associate Editor for Bio-Design and Manufacturing. He is also on Editorial Board of BioprintingHeliyonBMC Materials, and Essays in Biochemistry, and on Advisory Panel of Nanotechnology.

Some relevant references from Dr. Zhang

Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform.

Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A.

Sci Rep. 2017 Aug 18;7(1):8837. doi: 10.1038/s41598-017-08879-x.

 

Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies.

Wu H, Lei P, Liu G, Shrike Zhang Y, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C.

Sci Rep. 2017 Mar 23;7(1):359. doi: 10.1038/s41598-017-00506-z.

 

 

A liver-on-a-chip platform with bioprinted hepatic spheroids.

Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A.

Biofabrication. 2016 Jan 12;8(1):014101. doi: 10.1088/1758-5090/8/1/014101.

 

Marc Ferrer, National Center for Advancing Translational Sciences, NIH

Marc Ferrer is a team leader in the NCATS Chemical Genomics Center, which was part of the National Human Genome Research Institute when Ferrer began working there in 2010. He has extensive experience in drug discovery, both in the pharmaceutical industry and academic research. Before joining NIH, he was director of assay development and screening at Merck Research Laboratories. For 10 years at Merck, Ferrer led the development of assays for high-throughput screening of small molecules and small interfering RNA (siRNA) to support programs for lead and target identification across all disease areas.

At NCATS, Ferrer leads the implementation of probe development programs, discovery of drug combinations and development of innovative assay paradigms for more effective drug discovery. He advises collaborators on strategies for discovering small molecule therapeutics, including assays for screening and lead identification and optimization. Ferrer has experience implementing high-throughput screens for a broad range of disease areas with a wide array of assay technologies. He has led and managed highly productive teams by setting clear research strategies and goals and by establishing effective collaborations between scientists from diverse disciplines within industry, academia and technology providers.

Ferrer has a Ph.D. in biological chemistry from the University of Minnesota, Twin Cities, and completed postdoctoral training at Harvard University’s Department of Molecular and Cellular Biology. He received a B.Sc. degree in organic chemistry from the University of Barcelona in Spain.

 

Some relevant references for Dr. Ferrer

Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function.

Derr K, Zou J, Luo K, Song MJ, Sittampalam GS, Zhou C, Michael S, Ferrer M, Derr P.

Tissue Eng Part C Methods. 2019 Apr 22. doi: 10.1089/ten.TEC.2018.0318. [Epub ahead of print]

 

Determination of the Elasticity Modulus of 3D-Printed Octet-Truss Structures for Use in Porous Prosthesis Implants.

Bagheri A, Buj-Corral I, Ferrer M, Pastor MM, Roure F.

Materials (Basel). 2018 Nov 29;11(12). pii: E2420. doi: 10.3390/ma11122420.

 

Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug Efficacy.

Wilson KM, Mathews-Griner LA, Williamson T, Guha R, Chen L, Shinn P, McKnight C, Michael S, Klumpp-Thomas C, Binder ZA, Ferrer M, Gallia GL, Thomas CJ, Riggins GJ.

SLAS Technol. 2019 Feb;24(1):28-40. doi: 10.1177/2472630318803749. Epub 2018 Oct 5.

 

A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models.

Boutin ME, Voss TC, Titus SA, Cruz-Gutierrez K, Michael S, Ferrer M.

Sci Rep. 2018 Jul 24;8(1):11135. doi: 10.1038/s41598-018-29169-0.

A High-Throughput Screening Model of the Tumor Microenvironment for Ovarian Cancer Cell Growth.

Lal-Nag M, McGee L, Guha R, Lengyel E, Kenny HA, Ferrer M.

SLAS Discov. 2017 Jun;22(5):494-506. doi: 10.1177/2472555216687082. Epub 2017 Jan 31.

 

Exploring Drug Dosing Regimens In Vitro Using Real-Time 3D Spheroid Tumor Growth Assays.

Lal-Nag M, McGee L, Titus SA, Brimacombe K, Michael S, Sittampalam G, Ferrer M.

SLAS Discov. 2017 Jun;22(5):537-546. doi: 10.1177/2472555217698818. Epub 2017 Mar 15.

 

RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

Fu J, Fernandez D, Ferrer M, Titus SA, Buehler E, Lal-Nag MA.

SLAS Discov. 2017 Jun;22(5):525-536. doi: 10.1177/2472555217696796. Epub 2017 Mar 9.

 

Other Articles on 3D Bioprinting on this Open Access Journal include:

Global Technology Conferences on 3D BioPrinting 2015 – 2016

3D Medical BioPrinting Technology Reporting by Irina Robu, PhD – a forthcoming Article in “Medical 3D BioPrinting – The Revolution in Medicine, Technologies for Patient-centered Medicine: From R&D in Biologics to New Medical Devices”

Bio-Inks and 3D BioPrinting

New Scaffold-Free 3D Bioprinting Method Available to Researchers

Gene Editing for Gene Therapies with 3D BioPrinting

 

Read Full Post »


Third Boston Pharmaceutical Symposium on May 3, 2019 at Pfizer, Building 2, Kendall Sq., Cambridge MA

Reporter: Aviva Lev-Ari, PhD, RN

 

The Boston Chapter of the American Statistical Association (BCASA) invites you all to attend the Third Boston Pharmaceutical Symposium on May 3, 2019 at Pfizer, Building 2, Kendall Sq., Cambridge MA.

 

As an annual event, the Boston Pharmaceutical Symposium provides a unique venue for sharing statistical applications and research in the biotech-pharma industry, and building connections among all colleagues of the Greater Boston area engaged in the industry statistical practice. We welcome the participation from industry statisticians, academia researchers, as well as university students and any professionals who are interested in pharmaceutical statistical topics.

 

Third Boston Pharmaceutical Symposium will be a full-day event, featuring a series of invited talks, a poster session, and networking opportunities.

 

Public transportation and parking: The closest T-stop is the Kendall MIT station on the Red line. Parking is available for a fee of $38 for the day at the garage on-site. Please see Pfizer Event Information for more information on parking garages.

 

Confirmed Speakers

 

  • Craig Mallinckrodt, Distinguished Biostatistician, Biogen
  • Neal Thomas, Senior Director, Pfizer
  • Chunlei Ke, Senior Director, Biogen
  • Ying Yuan, Professor, Department of Biostatistics, University of Texas, MD Anderson Cancer Center
  • Satrajit Roychoudhury, Senior Director, Pfizer
  • Matthias Kormaksson, Senior Principal Statistical Consultant, Novartis
  • Laurence Colin, Director, Novartis                

 

Submit a Poster Abstract

 

Please consider participating in Third Boston Pharmaceutical Symposium by submitting an abstract to the poster session.

 

Participants who are interested to have a poster presentation are encouraged to submit an abstract to the poster session. Abstracts need to be submitted by Friday, April 12 to Dr. Olga Vitek via o.vitek@northeastern.edu. Abstracts on topics related to pharmaceutical statistics may include, but are not limited to, adaptive designs, platform trials, umbrella designs, mater protocols, use of machine learning in clinical trials, dose response, wearable devices, analysis of pediatrics studies, etc.

 

Registration:

 

All participants in the symposium should register by Friday, April 26. (Late registration may be possible for a higher fee if the event does not sell out.) The registration fee covers a light breakfast, lunch, afternoon snacks, and symposium materials. The registration fee is $165 for industry professionals. Members of the Boston Chapter (BCASA) receive a discounted registration fee at $135. Thanks to support from Cytel, we are able to reduce the registration fees for participants from academic and nonprofit institutions to encourage broader participation. The fees are $60 for a non-BCASA member and $30 for a BCASA member if a participant is from academic or a nonprofit institution and registers with an academic/nonprofit system email address. To register, please go to https://bcasa2019pharma.eventbrite.com

 

Scientific Committee:

 

  • Olga Vitek, Northeastern University (chair)
  • Weidong Zhang, Pfizer (host)
  • Wenting Cheng, Biogen
  • Tim Clough, Novartis
  • Hrishikesh Kulkarni, Cytel
  • Andrew Lewandowski, Novartis
  • Jameson Luks, Cytel
  • Huyuan Yang, Alnylam Pharmaceuticals

 

Please contact Dr. Olga Vitek via o.vitek@northeastern.edu for general inquiries.

 

Acknowledgements: We thank our colleagues at Pfizer for hosting this event. Financial support from Cytel is also gratefully acknowledged.

SOURCE

From: Tom Lane <tlane@mathworks.com>

Date: Tuesday, March 26, 2019 at 4:46 PM

To: Tom Lane <tlane@mathworks.com>

Subject: [BCASA] Third Boston Pharmaceutical Symposium, May 3 in Cambridge

Read Full Post »


Ability of gut microbiota to influence the bioavailability of in Parkinson’s disease – The presence of more bacteria producing the tyrosine decarboxylase (TDC) enzyme means less levodopa in the bloodstream

 

Reporter: Aviva Lev-Ari, PhD, RN

 

Decarboxylase enzymes can convert levodopa into dopamine. In contrast to levodopa, dopamine cannot cross the , so patients are also given a decarboxylase inhibitor. “But the levels of levodopa that will reach the brain vary strongly among Parkinson’s disease patients.

The bacterial  decarboxylase enzyme, which normally converts tyrosine into tyramine, but was found to also convert levodopa into . “We then determined that the source of this decarboxylase was Enterococcus bacteria.” The researchers also showed that the conversion of levodopa was not inhibited by a high concentration of the amino acid tyrosine, the main substrate of the bacterial tyrosine decarboxylase enzyme.

  • Carbidopa is over 10,000 times more potent in inhibiting the human decarboxylase,
  • the higher abundance of bacterial enzyme in the small intestines of rats reduced levels of levodopa in the bloodstream,
  • positive correlation between disease duration and levels of bacterial tyrosine decarboxylase.
  • Some Parkinson’s disease patients develop an overgrowth of small intestinal bacteria including Enterococci due to frequent uptake of proton pump inhibitors, which they use to treat gastrointestinal symptoms associated with the disease.
  • Altogether, these factors result in a vicious circle leading to an increased levodopa/decarboxylase inhibitor dosage requirement in a subset of patients.El Aidy concludes that
  • the presence of the bacterial tyrosine decarboxylase enzyme can explain why some patients need more frequent dosages of levodopa to treat their motor fluctuations. “This is considered to be a problem for Parkinson’s disease patients, because a higher dose will result in dyskinesia, one of the major side effects of levodopa treatment.

SOURCE

https://www.rdmag.com/news/2019/01/how-gut-bacteria-affect-treatment-parkinsons-disease?type=cta&et_cid=6585419&et_rid=461755519&linkid=Mobius_Link

Article OPEN Published: 

Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease

Nature Communications volume 10, Article number: 310 (2019) Download Citation

Abstract

Human gut microbiota senses its environment and responds by releasing metabolites, some of which are key regulators of human health and disease. In this study, we characterize gut-associated bacteria in their ability to decarboxylate levodopa to dopamine via tyrosine decarboxylases. Bacterial tyrosine decarboxylases efficiently convert levodopa to dopamine, even in the presence of tyrosine, a competitive substrate, or inhibitors of human decarboxylase. In situ levels of levodopa are compromised by high abundance of gut bacterial tyrosine decarboxylase in patients with Parkinson’s disease. Finally, the higher relative abundance of bacterial tyrosine decarboxylases at the site of levodopa absorption, proximal small intestine, had a significant impact on levels of levodopa in the plasma of rats. Our results highlight the role of microbial metabolism in drug availability, and specifically, that abundance of bacterial tyrosine decarboxylase in the proximal small intestine can explain the increased dosage regimen of levodopa treatment in Parkinson’s disease patients.

@@@@@@

RELATED READS

 

Read Full Post »


In 2018, FDA approved an all-time record of 62 new therapeutic drugs (NTDs) [Not including diagnostic imaging agents, included are combination products with at least one new molecular entity as an active ingredient] with average Peak Sales per NTD $1.2Billion.

 

Reporter: Aviva Lev-Ari, PhD, RN

BIOBUSINESS BRIEFS

2018 FDA approvals hit all-time high — but average value slips again

In 2018, the FDA approved an all-time record of 62 new therapeutic drugs (NTDs; see Fig. 1 for the definition and the difference compared with new molecular entities). This is consistent with the increase we predicted last year (Nat. Rev. Drug Discov. 17, 87; 2018) and the overall resurgence of R&D in the last 5 years, with an average of 51 approvals per year in this period even with a low count in 2016. This is substantially more than the average of 31 approvals per year in the period 2000–2013 (Fig. 1).

Fig. 1 | FDA approvals of new therapeutic drugs and aggregate projected peak global annual sales: 2000–2018. We analysed 2018 FDA approvals of new therapeutic drugs (NTDs), defined as new molecular entities approved by the FDA’s Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER), but with two adjustments: first, we excluded diagnostic imaging agents; and second, we included combination products with at least one new molecular entity as an active ingredient. The analysis is based exclusively on approvals by the FDA and the year in which the first indication approval took place. All peak sales values were obtained from EvaluatePharma and were inflation-adjusted to 2018 using standard global GDP-based inflators sourced from the Economist Intelligence Unit. To arrive at peak sales for each NTD, we reviewed both historical actual sales as well as the full range of forecast sales that are available from EvaluatePharma and selected the highest value. Sources: EvaluatePharma, FDA and Boston Consulting Group analysis.

SOURCE

https://www.nature.com/articles/d41573-019-00004-z

Read Full Post »


In 2018 Cardiovascular PharmacoTherapy Market: Anti-thrombotic Drug Class Segment will continue to bring in the biggest profit and dominate production

Reporter: Aviva Lev-Ari, PhD, RN

Who were the top players in cardiovascular disease in 2017?

Read Full Post »

Older Posts »