Advertisements
Feeds:
Posts
Comments

Archive for the ‘Atherogenic Processes & Pathology’ Category


Regulatory MicroRNAs in Aberrant Cholesterol Transport and Metabolism

Curator: Marzan Khan, B.Sc

Aberrant levels of lipids and cholesterol accumulation in the body lead to cardiometabolic disorders such as atherosclerosis, one of the leading causes of death in the Western World(1). The physical manifestation of this condition is the build-up of plaque along the arterial endothelium causing the arteries to constrict and resist a smooth blood flow(2). This obstructive deposition of plaque is merely the initiation of atherosclerosis and is enriched in LDL cholesterol (LDL-C) as well foam cells which are macrophages carrying an overload of toxic, oxidized LDL(2). As the condition progresses, the plaque further obstructs blood flow and creates blood clots, ultimately leading to myocardial infarction, stroke and other cardiovascular diseases(2). Therefore, LDL is referred to as “the bad cholesterol”(2).

Until now, statins are most widely prescribed as lipid-lowering drugs that inhibit the enzyme 3-hydroxy-3methylgutaryl-CoA reductase (HMGCR), the rate-limiting step in de-novo cholesterol biogenesis (1). But some people cannot continue with the medication due to it’s harmful side-effects(1). With the need to develop newer therapeutics to combat cardiovascular diseases, Harvard University researchers at Massachusetts General Hospital discovered 4 microRNAs that control cholesterol, triglyceride, and glucose homeostasis(3)

MicroRNAs are non-coding, regulatory elements approximately 22 nucleotides long, with the ability to control post-transcriptional expression of genes(3). The liver is the center for carbohydrate and lipid metabolism. Stringent regulation of endogenous LDL-receptor (LDL-R) pathway in the liver is crucial to maintain a minimal concentration of LDL particles in blood(3). A mechanism whereby peripheral tissues and macrophages can get rid of their excess LDL is mediated by ATP-binding cassette, subfamily A, member 1 (ABCA1)(3). ABCA1 consumes nascent HDL particles- dubbed as the “good cholesterol” which travel back to the liver for its contents of triglycerides and cholesterol to be excreted(3).

Genome-wide association studies (GWASs) meta-analysis carried out by the researchers disclosed 4 microRNAs –(miR-128-1, miR-148a, miR-130b, and miR-301b) to lie close to single-nucleotide polymorphisms (SNPs) associated with abnormal metabolism and transport of lipids and cholesterol(3) Experimental analyses carried out on relevant cell types such as the liver and macrophages have proven that these microRNAs bind to the 3’ UTRs of both LDL-R and ABCA1 transporters, and silence their activity. Overexpression of miR-128-1 and miR148a in mice models caused circulating HDL-C to drop. Corroborating the theory under investigation further, their inhibition led to an increased clearance of LDL from the blood and a greater accumulation in the liver(3).

That the antisense inhibition of miRNA-128-1 increased insulin signaling in mice, propels us to hypothesize that abnormal expression of miR-128-1 might cause insulin resistance in metabolic syndrome, and defective insulin signaling in hepatic steatosis and dyslipidemia(3)

Further examination of miR-148 established that Liver-X-Receptor (LXR) activation of the Sterol regulatory element-binding protein 1c (SREBP1c), the transcription factor responsible for controlling  fatty acid production and glucose metabolism, also mediates the expression of miR-148a(4,5) That the promoter region of miR-148 contained binding sites for SREBP1c was shown by chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq)(4). More specifically, SREBP1c attaches to the E-box2, E-box3 and E-box4 elements on miR-148-1a promoter sites to control its expression(4).

Earlier, the same researchers- Andres Naars and his team had found another microRNA called miR-33 to block HDL generation, and this blockage to reverse upon antisense targeting of miR-33(6).

These experimental data substantiate the theory of miRNAs being important regulators of lipoprotein receptors and transporter proteins as well as underscore the importance of employing antisense technologies to reverse their gene-silencing effects on LDL-R and ABCA1(4). Such a therapeutic approach, that will consequently lower LDL-C and promote HDL-C seems to be a promising strategy to treat atherosclerosis and other cardiovascular diseases(4).

References:

1.Goedeke L1,Wagschal A2,Fernández-Hernando C3, Näär AM4. miRNA regulation of LDL-cholesterol metabolism. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2047-2052

https://www.ncbi.nlm.nih.gov/pubmed/26968099

2.MedicalNewsToday. Joseph Nordgvist. Atherosclerosis:Causes, Symptoms and Treatments. 13.08.2015

http://www.medicalnewstoday.com/articles/247837.php

3.Wagschal A1,2, Najafi-Shoushtari SH1,2, Wang L1,2, Goedeke L3, Sinha S4, deLemos AS5, Black JC1,6, Ramírez CM3, Li Y7, Tewhey R8,9, Hatoum I10, Shah N11, Lu Y11, Kristo F1, Psychogios N4, Vrbanac V12, Lu YC13, Hla T13, de Cabo R14, Tsang JS11, Schadt E15, Sabeti PC8,9, Kathiresan S4,6,8,16, Cohen DE7, Whetstine J1,6, Chung RT5,6, Fernández-Hernando C3, Kaplan LM6,10, Bernards A1,6,16, Gerszten RE4,6, Näär AM1,2. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. . Nat Med.2015 Nov;21(11):1290

https://www.ncbi.nlm.nih.gov/pubmed/26501192

4.Goedeke L1,2,3,4, Rotllan N1,2, Canfrán-Duque A1,2, Aranda JF1,2,3, Ramírez CM1,2, Araldi E1,2,3,4, Lin CS3,4, Anderson NN5,6, Wagschal A7,8, de Cabo R9, Horton JD5,6, Lasunción MA10,11, Näär AM7,8, Suárez Y1,2,3,4, Fernández-Hernando C1,2,3,4. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med. 2015 Nov;21(11):1280-9.

https://www.ncbi.nlm.nih.gov/pubmed/26437365

5.Eberlé D1, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004 Nov;86(11):839-48.

https://www.ncbi.nlm.nih.gov/pubmed/15589694

6.Harvard Medical School. News. MicoRNAs and Metabolism.

https://hms.harvard.edu/news/micrornas-and-metabolism

7. MGH – Four microRNAs identified as playing key roles in cholesterol, lipid metabolism

http://www.massgeneral.org/about/pressrelease.aspx?id=1862

 

Other related articles published in this Open Access Online Scientific Journal include the following:

 

  • Cardiovascular Diseases, Volume Three: Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics,

on Amazon since 11/29/2015

http://www.amazon.com/dp/B018PNHJ84

 

HDL oxidation in type 2 diabetic patients

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/27/hdl-oxidation-in-type-2-diabetic-patients/

 

HDL-C: Target of Therapy – Steven E. Nissen, MD, MACC, Cleveland Clinic vs Peter Libby, MD, BWH

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/11/07/hdl-c-target-of-therapy-steven-e-nissen-md-macc-cleveland-clinic-vs-peter-libby-md-bwh/

 

High-Density Lipoprotein (HDL): An Independent Predictor of Endothelial Function & Atherosclerosis, A Modulator, An Agonist, A Biomarker for Cardiovascular Risk

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/03/31/high-density-lipoprotein-hdl-an-independent-predictor-of-endothelial-function-artherosclerosis-a-modulator-an-agonist-a-biomarker-for-cardiovascular-risk/

 

Risk of Major Cardiovascular Events by LDL-Cholesterol Level (mg/dL): Among those treated with high-dose statin therapy, more than 40% of patients failed to achieve an LDL-cholesterol target of less than 70 mg/dL.

Reporter: Aviva Lev-Ari, PhD., RN

https://pharmaceuticalintelligence.com/2014/07/29/risk-of-major-cardiovascular-events-by-ldl-cholesterol-level-mgdl-among-those-treated-with-high-dose-statin-therapy-more-than-40-of-patients-failed-to-achieve-an-ldl-cholesterol-target-of-less-th/

 

LDL, HDL, TG, ApoA1 and ApoB: Genetic Loci Associated With Plasma Concentration of these Biomarkers – A Genome-Wide Analysis With Replication

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/12/18/ldl-hdl-tg-apoa1-and-apob-genetic-loci-associated-with-plasma-concentration-of-these-biomarkers-a-genome-wide-analysis-with-replication/

 

Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/15/two-mutations-in-a-pcsk9-gene-eliminates-a-protein-involve-in-controlling-ldl-cholesterol/

Artherogenesis: Predictor of CVD – the Smaller and Denser LDL Particles

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/11/15/artherogenesis-predictor-of-cvd-the-smaller-and-denser-ldl-particles/

 

A Concise Review of Cardiovascular Biomarkers of Hypertension

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/04/25/a-concise-review-of-cardiovascular-biomarkers-of-hypertension/

 

Triglycerides: Is it a Risk Factor or a Risk Marker for Atherosclerosis and Cardiovascular Disease ? The Impact of Genetic Mutations on (ANGPTL4) Gene, encoder of (angiopoietin-like 4) Protein, inhibitor of Lipoprotein Lipase

Reporters, Curators and Authors: Aviva Lev-Ari, PhD, RN and Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/13/triglycerides-is-it-a-risk-factor-or-a-risk-marker-for-atherosclerosis-and-cardiovascular-disease-the-impact-of-genetic-mutations-on-angptl4-gene-encoder-of-angiopoietin-like-4-protein-that-in/

 

Excess Eating, Overweight, and Diabetic

Larry H Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/15/excess-eating-overweight-and-diabetic/

 

Obesity Issues

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/12/obesity-issues/

 

Advertisements

Read Full Post »


Reversing Heart Disease: Combination of PCSK9 Inhibitors and Statins – Opinion by Steven Nissen, MD, Chairman of Cardiovascular Medicine at Cleveland Clinic

 

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 5/5/2017

Europeans Mull PCSK9i Post-FOURIER Fallout on Clinical Practice

Patrice Wendling, May 04, 2017

But it was panelist Dr Stephen Nicholls (University of Adelaide, Australia) who took aim at the elephant in the packed auditorium. At an annual cost of about $14,100 for evolocumab and $14,600 for alirocumab (Praluent, Sanofi/Regeneron), the important question facing cardiologists is who will be eligible for these drugs “in a world where we can’t just write a scrip for every FOURIER-type patient; we won’t be allowed to.”

He suggested initially this will include patients with familial hypercholesterolemia and only those with established atherosclerotic CVD whose LDL-C remains unacceptably high despite therapy. Future FOURIER subanalyses may define other eligible high-risk groups.

http://www.medscape.com/viewarticle/879523?nlid=114642_3802&src=WNL_mdplsnews_170505_mscpedit_card&uac=93761AJ&spon=2&impID=1342003&faf=1#vp_2

 

 

UPDATED on 3/14/2017

PCSK9 Inhibitor Access Snarled in Red Tape, Rejections

Patrice Wendling, March 21, 2017

To determine whether this experience is happening nationwide, Navar and colleagues examined first PCSK9 prescriptions in 45,029 patients (median age 66 years; 51% female) between August 1, 2015 and July 31, 2016 in the Symphony Health Solutions database, which covers 90% of retail, 70% of specialty, and 60% of mail-order pharmacies in the US.

Nearly half (48%) of prescribers were cardiologists, and 37% were general practitioners. Most patients (52%) had government insurance, typically Medicare, and 40% had commercial insurance.

In the first 24 hours after being submitted to the pharmacy, 79.2% of prescriptions were rejected. Ultimately, 52.8% of all PCSK9 prescriptions were rejected.

Of special note, 34.7% of prescriptions for the pricy lipid-lowering drugs were abandoned at the pharmacy.

http://www.medscape.com/viewarticle/877515?nlid=113592_3802&src=WNL_mdplsnews_170324_mscpedit_card&uac=93761AJ&spon=2&impID=1314983&faf=1

 

How 2 Drugs Lower Cholesterol Remarkably — and Reverse Heart Disease

Study shows promise for combination of newer drug and statins

How 2 Drugs Lower Cholesterol Remarkably --- and Reverse Heart Disease

Newer cholesterol-lowering drugs combined with more conventional medicine reduces bad cholesterol to incredibly low levels, a new study shows. Perhaps even more important, the combination also reduces the heart-attack-inducing plaque that forms inside the arteries, the study says.

The study was led by cardiologist Steven Nissen, MD, Chairman of Cardiovascular Medicine at Cleveland Clinic. Results appeared recently in the Journal of the American Medical Association (JAMA).

The study looked at the use of a drug called evolocumab by people who took statins to lower the amount of LDL, or bad, cholesterol in their blood. Evolocumab is a drug called a PCSK9 inhibitor. This is a newer kind of medicine that can make LDL cholesterol levels plummet.

The people who took statins and evolocumab had greater reductions in atherosclerosis compared with people who took statins and a placebo.  Atherosclerosis is  a disease in which plaque builds up inside your arteries.  The condition can lead to serious problems, including heart attack, stroke, or even death.

The results are an intriguing indicator — rather than definite proof — that evolocumab may have benefit for patients taking statins, Dr. Nissen says. Researchers are still awaiting the results of large clinical trials investigating whether evolocumab is safe and will prevent heart attack, stroke or death. The first results of these studies are expected in April 2017.

Special ultrasound

In the study, researchers treated for 18 months 968 high-risk people who had extremely high levels of blood cholesterol.

Participants were randomly assigned to take either a statin and a placebo, or a statin and evolocumab.

Researchers monitored the participants’ cholesterol levels. They also used a special ultrasound probe to measure the amount of plaque in their arteries at the beginning and the end of the study. 

“We were able to show that getting the bad cholesterol levels down to really low levels, down to the 20s and 30s, can actually remove plaque from the coronary arteries,” Dr. Nissen says. “This going to levels that we’ve never been able to achieve before.”           

Low cholesterol, less plaque

Results show the group treated with statins and a placebo reduced their LDL cholesterol levels to 93 on average. At the same time, the group treated with the combination of the statin plus evolocumab got down to an average bad cholesterol level of 36.6.

“No one’s ever reached levels that low in a clinical trial,” Dr. Nissen says.

Participants who took evolocumab also had less plaque in their arteries at the end of the study — essentially reversing their heart disease.

“We, for the first time now, have shown that this new class of drugs, the PCSK9 inhibitors, has a favorable effect on the development of plaques on the coronary artery and can actually regress those plaques,” Dr. Nissen says. “And it turns out about two-thirds of patients actually had less plaque at the end of 18 months than they started with.” 

PCSK9 inhibitors, which are expensive, are not for everybody, Dr. Nissen says. Currently, the drug is used in addition to statins for the highest-risk patients with particularly high cholesterol.

SOURCE

Read Full Post »


Advanced Peripheral Artery Disease (PAD): Axillary Artery PCI for Insertion and Removal of Impella Device

Reporter: Aviva Lev-Ari, PhD, RN

 

 

July 15, 2016
Authors:

Rajiv Tayal, MD, MPH1,2;  Mihir Barvalia, MD, MHA1;  Zeshan Rana, MD2;  Benjamin LeSar, MD1;  Humayun Iftikhar, MD1;  Spas Kotev, MD1;  Marc Cohen, MD1;  Najam Wasty, MD1

Abstract: Traditionally, brachial and common femoral arteries have served as access sites of choice, with many operators recently converting to radial artery access for coronary angiography and percutaneous intervention due to literature suggesting reduced bleeding risk, better patient outcomes, and lower hospital-associated costs. However, radial access has limitations when percutaneous procedures requiring larger sheath sizes are performed. Six Fr sheaths are considered the limit for safe use with the radial artery given that the typical luminal diameter of the vessel is approximately 2 mm, while peripheral artery disease (PAD) may often limit use of the common femoral artery, particularly in patients with multiple co-morbid risk factors. Similarly, the brachial artery has fallen out of favor due to both thrombotic and bleeding risks, while also not safely and reliably accommodating sheaths larger than 7 Fr. Here we describe 3 cases of a new entirely percutaneous technique utilizing the axillary artery for delivery of Impella 2.5 (13.5 Fr) and CP (14 Fr) cardiac-assist devices for protected percutaneous coronary intervention in the setting of prohibitive PAD.

J INVASIVE CARDIOL 2016;28(9):374-380. 2016 July 15 (Epub ahead of print)

Key words: axillary artery, percutaneous access, high-risk PCI

 

SOURCE

http://amptheclimeeting.com/ampcentral/articles/totally-percutaneous-insertion-and-removal-impella-device-using-axillary-artery-setting

Read Full Post »


Inferior Vena Caval Filters: Device for Prevention of Pulmonary Embolism and Thrombosis

Reporter: Aviva Lev-Ari, PhD, RN

 

Requiem for Liberalizing Indications for Vena Caval Filters?

Samuel Z. Goldhaber

Guidelines

However, it is premature to hammer nails into the coffin and to gather as a medical community for a requiem that celebrates no indication for liberalizing indications for placing an IVC filter. Instead, we need to shift the focus of the questions that we investigate and pour resources into further randomized and observational trials of IVC filter insertion in special highrisk populations.

There remain important groups of patients who may benefit from IVC filters with reduction in PE and PE-associated mortality (Table 2). In some cases, tantalizing data suggest that these populations warrant filters. In other cases, we lack data to guide us. Patients with massive PE—accompanied by cardiogenic shock requiring vasopressors to support blood pressure—are desperately ill. They are clinically unstable. An additional PE under these circumstances can be the fatal blow. Data from the National Inpatient Sample and the International Cooperative PE Registry suggest that filters in these patients may be lifesaving.

Patients with severe PE who undergo acute surgical pulmonary embolectomy are vulnerable to recurrent PE, especially during the early postoperative period where full anticoagulation cannot be immediately implemented. I have had personal experience managing this type of patient where the embolectomy is successful but the patient dies of recurrent PE.19

Table 1. Generally Accepted Consensus Recommendations for IVC Filter Insertion in Patients With VTE

  • Major bleeding on full-dose anticoagulation
  • Major contraindication to full-dose anticoagulation
  • New-onset acute PE (especially recurrent PE) despite well-documented fulldose anticoagulation for an existing VTE

IVC indicates inferior vena caval; PE, pulmonary embolism; and VTE, venous thromboembolism.

 

Table 2. Special Populations Where Benefits of IVC Filter Insertion May Outweigh Risks

  • Massive PE or high-risk submassive PE
  • Surgical pulmonary embolectomy
  • Cancer patients with VTE or at high risk of VTE with concomitant high risk of bleeding if anticoagulated
  • Surgical patients (especially during preoperative evaluation) at high risk of VTE with concomitant high risk of bleeding if anticoagulated

IVC indicates inferior vena caval; PE, pulmonary embolism; and VTE, venous thromboembolism.

http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022730

References

1. Stein PD, Matta F, Hull RD. Increasing use of vena cava filters for prevention of pulmonary embolism. Am J Med. 2011;124:655–661. doi:10.1016/j.amjmed.2011.02.021.

2. Jia Z, Wu A, Tam M, Spain J, McKinney JM, Wang W. Caval penetration by inferior vena cava filters: a systematic literature review of clinical significance and management. Circulation. 2015;132:944–952. doi: 10.1161/ CIRCULATIONAHA.115.016468

3. Owens CA, Bui JT, Knuttinen MG, Gaba RC, Carrillo TC, Hoefling N, Layden-Almer JE. Intracardiac migration of inferior vena cava filters: review of published data. Chest. 2009;136:877–887. doi: 10.1378/ chest.09-0153.

4. Nicholson W, Nicholson WJ, Tolerico P, Taylor B, Solomon S, Schryver T, McCullum K, Goldberg H, Mills J, Schuler B, Shears L, Siddoway L, Agarwal N, Tuohy C. Prevalence of fracture and fragment embolization of Bard retrievable vena cava filters and clinical implications including cardiac perforation and tamponade. Arch Intern Med. 2010;170:1827–1831. doi: 10.1001/archinternmed.2010.316.

5. Angel LF, Tapson V, Galgon RE, Restrepo MI, Kaufman J. Systematic review of the use of retrievable inferior vena cava filters. J Vasc Interv Radiol. 2011;22:1522–1530.e3. doi: 10.1016/j.jvir.2011.08.024.

19. Aklog L, Williams CS, Byrne JG, Goldhaber SZ. Acute pulmonary embolectomy: a contemporary approach. Circulation. 2002;105:1416–1419.

Other related articles published in this Open Access Online Scientific Journal include the follwoing:

 

Xarelto (Rivaroxaban): Anticoagulant Therapy gains FDA New Indications and Risk Reduction for: (DVT) and (PE), while in use for Atrial fibrillation increase in Gastrointestinal (GI) Bleeding Reported

https://pharmaceuticalintelligence.com/2012/11/04/xarelto-rivaroxaban-anticoagulant-therapy-gains-fda-new-indications-and-risk-reduction-for-dvt-and-pe-while-in-use-for-atrial-fibrillation-increase-in-gastrointestinal-gi-bleeding-reported/

Venous Thromboembolism (VTE): Blood Clots in Leg and Lungs – No. 3 Cardiovascular Killer Globally – Is Leading Cause of Premature Death and Disability in Hospitals

https://pharmaceuticalintelligence.com/2014/10/13/venous-thromboembolism-vte-blood-clots-in-leg-and-lungs-no-3-cardiovascular-killer-globally-is-leading-cause-of-premature-death-and-disability-in-hospitals/

The Relation between Coagulation and Cancer affects Supportive Treatments

https://pharmaceuticalintelligence.com/2015/10/19/the-relation-between-coagulation-and-cancer-affects-supportive-treatments/

Read Full Post »


Coronary Heart Disease Research: Sugar Industry influenced national conversation on heart disease – Adoption of Low Fat Diet vs Low Carbohydrates Diet

Public Health Outcome:

  • Uncontrolled consumption of sugar prevailed 1965 – 2005 – role of sugar in CVD was played down

while

  • Consumption of fat become the diet factor to be control and monitored in the Medical community – role of Fat was the main focus and its management by Statins

and

  • FDA Food Pyramid evolution

USDA Food Pyramid History

In January 1977, after listening to the testimony of Ancel Keys and other doctors and scientists intent on promoting the unsupported Dietary Fat-Heart hypothesis, the Committee published the “Dietary Goals for the United States” recommending that all Americans reduce their fat, saturated fat and cholesterol consumption, and increase their carbohydrate consumption to 55-60% of daily calories.

http://www.healthy-eating-politics.com/usda-food-pyramid.html

Concerns that were raised with the first dietary recommendations 30 y ago have yet to be adequately addressed. The initial Dietary Goals for Americans (1977) proposed increases in carbohydrate intake and decreases in fat, saturated fat, cholesterol, and salt consumption that are carried further in the 2010 Dietary Guidelines Advisory Committee (DGAC) Report. Important aspects of these recommendations remain unproven, yet a dietary shift in this direction has already taken place even as overweight/obesity and diabetes have increased. Although appealing to an evidence-based methodology, the DGAC Report demonstrates several critical weaknesses, including use of an incomplete body of relevant science; inaccurately representing, interpreting, or summarizing the literature; and drawing conclusions and/or making recommendations that do not reflect the limitations or controversies in the science. An objective assessment of evidence in the DGAC Report does not suggest a conclusive proscription against low-carbohydrate diets. The DGAC Report does not provide sufficient evidence to conclude that increases in whole grain and fiber and decreases in dietary saturated fat, salt, and animal protein will lead to positive health outcomes. Lack of supporting evidence limits the value of the proposed recommendations as guidance for consumers or as the basis for public health policy. It is time to reexamine how US dietary guidelines are created and ask whether the current process is still appropriate for our needs.

http://www.nutritionjrnl.com/article/S0899-9007(10)00289-3/abstract

 

Curator: Aviva Lev-Ari, PhD, RN

 

UCSF reveals how sugar industry influenced national conversation on heart disease

 

Special Communication |

Sugar Industry and Coronary Heart Disease Research – A Historical Analysis of Internal Industry Documents

Cristin E. Kearns, DDS, MBA1,2; Laura A. Schmidt, PhD, MSW, MPH1,3,4; Stanton A. Glantz, PhD1,5,6,7,8
JAMA Intern Med. Published online September 12, 2016. doi:10.1001/jamainternmed.2016.5394

Corresponding Author: Stanton A. Glantz, PhD, UCSF Center for Tobacco Control Research and Education, 530 Parnassus Ave, Ste 366, San Francisco, CA 94143-1390 (glantz@medicine.ucsf.edu).

Accepted for Publication: July 2, 2016.

Published Online: September 12, 2016. doi:10.1001/jamainternmed.2016.5394

Author Contributions: Drs Kearns and Glantz had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of data analysis.

Early warning signals of the coronary heart disease (CHD) risk of sugar (sucrose) emerged in the 1950s. We examined Sugar Research Foundation (SRF) internal documents, historical reports, and statements relevant to early debates about the dietary causes of CHD and assembled findings chronologically into a narrative case study. The SRF sponsored its first CHD research project in 1965, a literature review published in the New England Journal of Medicine, which singled out fat and cholesterol as the dietary causes of CHD and downplayed evidence that sucrose consumption was also a risk factor. The SRF set the review’s objective, contributed articles for inclusion, and received drafts. The SRF’s funding and role was not disclosed. Together with other recent analyses of sugar industry documents, our findings suggest the industry sponsored a research program in the 1960s and 1970s that successfully cast doubt about the hazards of sucrose while promoting fat as the dietary culprit in CHD. Policymaking committees should consider giving less weight to food industry–funded studies and include mechanistic and animal studies as well as studies appraising the effect of added sugars on multiple CHD biomarkers and disease development.

These internal documents show that the SRF initiated CHD research in 1965 to protect market share and that its first project, a literature review, was published in NEJM in 1967 without disclosure of the sugar industry’s funding or role. The NEJM review served the sugar industry’s interests by arguing that epidemiologic, animal, and mechanistic studies associating sucrose with CHD were limited, implying they should not be included in an evidentiary assessment of the CHD risks of sucrose. Instead, the review argued that the only evidence modality needed to yield a definitive answer to the question of how to modify the American diet to prevent CHD was RCTs that exclusively used serum cholesterol level as a CHD biomarker. Randomized clinical trials using serum cholesterol level as the CHD biomarker made the high sucrose content of the American diet seem less hazardous than if the entire body of evidence had been considered.

Following the NEJM review, the sugar industry continued to fund research on CHD and other chronic diseases “as a main prop of the industry’s defense.”51 For example, in 1971, it influenced the National Institute of Dental Research’s National Caries Program to shift its emphasis to dental caries interventions other than restricting sucrose.8 The industry commissioned a review, “Sugar in the Diet of Man,” which it credited with, among other industry tactics, favorably influencing the 1976 US Food and Drug Administration evaluation of the safety of sugar.51 These findings, our analysis, and current Sugar Association criticisms of evidence linking sucrose to cardiovascular disease6,7 suggest the industry may have a long history of influencing federal policy.

This historical account of industry efforts demonstrates the importance of having reviews written by people without conflicts of interest and the need for financial disclosure. Scientific reviews shape policy debates, subsequent investigations, and the funding priorities of federal agencies.52 The NEJM has required authors to disclose all conflicts of interest since 1984,53 and conflict of interest disclosure policies have been widely implemented since the sugar industry launched its CHD research program. Whether current conflict of interest policies are adequate to withstand the economic interests of industry remains unclear.54

Many industries sponsor research to influence assessments of the risks and benefits of their products.55– 57The influence of industry sponsorship on nutrition research is receiving increased scrutiny.58 Access to documents not meant for public consumption has provided the public health community unprecedented insight into industry motives, strategies, tactics, and data designed to protect companies from litigation and regulation.59 This insight has been a major factor behind successful global tobacco control policies.60 Our analysis suggests that research using sugar industry documents has the potential to inform the health community about how to counter this industry’s strategies and tactics to control information on the adverse health effects of sucrose.

Study Limitations

The Roger Adams papers and other documents used in this research provide a narrow window into the activities of 1 sugar industry trade association; therefore, it is difficult to validate that the documents gathered are representative of the entirety of SRF internal materials related to Project 226 from the 1950s and 1960s or that the proper weight was given to each data source. There is no direct evidence that the sugar industry wrote or changed the NEJM review manuscript; the evidence that the industry shaped the review’s conclusions is circumstantial. We did not analyze the role of other organizations, nutrition leaders, or food industries that advocated that saturated fat and dietary cholesterol were the main dietary cause of CHD. We could not interview key actors involved in this historical episode because they have died.

This study suggests that the sugar industry sponsored its first CHD research project in 1965 to downplay early warning signals that sucrose consumption was a risk factor in CHD. As of 2016, sugar control policies are being promulgated in international,61 federal,62,63 state, and local venues.64 Yet CHD risk is inconsistently cited as a health consequence of added sugars consumption. Because CHD is the leading cause of death globally, the health community should ensure that CHD risk is evaluated in future risk assessments of added sugars. Policymaking committees should consider giving less weight to food industry–funded studies, and include mechanistic and animal studies as well as studies appraising the effect of added sugars on multiple CHD biomarkers and disease development.65

 

REFERENCES

Council on Foods and Nutrition (American Medical Association).  The regulation of dietary fat: a report of the council. JAMA. 1962;181(5):411-429.
Link to Article

Yudkin  J. Pure, White and Deadly: The Problem of Sugar. London, England: Davis-Poynter Ltd; 1972.

Yudkin  J.  Diet and coronary thrombosis hypothesis and fact. Lancet. 1957;273(6987):155-162.
PubMed   |  Link to Article

Yudkin  J.  Dietary fat and dietary sugar in relation to ischaemic heart-disease and diabetes. Lancet. 1964;2(7349):4-5.
PubMed   |  Link to Article

Technical Group of Committee on Lipoproteins and Atherosclerosis and Committee on Lipoproteins and Atherosclerosis of National Advisory Heart Council.  Evaluation of serum lipoprotein and cholesterol measurements as predictors of clinical complications of atherosclerosis: report of a cooperative study of lipoproteins and atherosclerosisCirculation. 1956;14(4, pt 2):691-742.
PubMed

Albrink  MJ.  Carbohydrate metabolism in cardiovascular disease. Ann Intern Med. 1965;62(6):1330-1333.
PubMed   |  Link to Article

Taubes  G, Couzens  CK. Big sugar’s sweet little lies: how the industry kept scientists from asking, does sugar kill? 2012. http://www.motherjones.com/environment/2012/10/sugar-industry-lies-campaign Accessed October 17, 2014.

Bero  L.  Implications of the tobacco industry documents for public health and policy. Annu Rev Public Health. 2003;24:267-288.
PubMed   |  Link to Article

US Department of Health and Human Services and US Department of Agriculture. 2015-2020 Dietary Guidelines for Americans. 8th ed. Washington, DC: U.S. Government Printing Office; 2016.

US Food and Drug Administration. Changes to the nutrition facts label. 2016.http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm385663.htm. Accessed June 7, 2016.

Miller  M, Stone  NJ, Ballantyne  C,  et al; American Heart Association Clinical Lipidology, Thrombosis, and Prevention Committee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease.  Triglycerides and cardiovascular disease: a scientific statement from the American Heart AssociationCirculation. 2011;123(20):2292-2333.
PubMed   |  Link to Article

Teicholz  N. The Big Fat Surprise: Why Butter, Meat, and Cheese Belong in a Healthy Diet. New York, NY: Simon and Schuster; 2014.

 

Other related articles published in this Open Access Online Scientific Journal include the following:  

 

Metabolomics, Metabonomics and Functional Nutrition: The Next Step in Nutritional Metabolism and Biotherapeutics

Larry H. Bernstein, MD, FCAP  and Aviva Lev-Ari, PhD, RN

Reference Genes in the Human Gut Microbiome: The BGI Catalogue

Aviva Lev-Ari, PhD, RN

Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

Aviva Lev-Ari, PhD, RN

HDL-C: Target of Therapy – Steven E. Nissen, MD, MACC, Cleveland Clinic vs Peter Libby, MD, BWH

Aviva Lev-Ari, PhD, RN

 

The following articles in


Series A: e-Books on Cardiovascular Diseases

Series A Content Consultant: Justin D Pearlman, MD, PhD, FACC

VOLUME THREE

Etiologies of Cardiovascular Diseases:

Epigenetics, Genetics and Genomics

http://www.amazon.com/dp/B018PNHJ84

 

by  

Larry H Bernstein, MD, FCAP, Senior Editor, Author and Curator

and

Aviva Lev-Ari, PhD, RN, Editor and Curator

 

2.2.2: Endothelium, Angiogenesis, and Disordered Coagulation

 

2.2.2.1 What is the Role of Plasma Viscosity in Hemostasis and Vascular Disease Risk? 

Larry H Bernstein, MD, FACP and Aviva Lev-Ari, PhD, RN

 

2.2.2.2 Special Considerations in Blood Lipoproteins, Viscosity, Assessment and Treatment 

Larry H Bernstein, MD, FACP  and Aviva Lev-Ari, PhD, RN

 

2.2.2.3 Biomarkers and risk factors for cardiovascular events, endothelial dysfunction, and thromboembolic complication

Larry H Bernstein, MD, FCAP

 

2.2.2.4 A future for plasma metabolomics in cardiovascular disease assessment  

Larry H Bernstein, MD, FCAP
2.2.2.5 Nitric Oxide Function in Coagulation – Part II

Larry H Bernstein, MD, FACP

 

2.2.2.6 Nitric Oxide, Platelets, Endothelium and Hemostasis (Coagulation Part II)

Larry H Bernstein, MD, FACP

 

2.2.2.7 Peroxisome Proliferator-Activated Receptor (PPAR-gamma) Receptors Activation: PPARγ Transrepression for Angiogenesis in Cardiovascular Disease and PPARγ Transactivation for Treatment of Diabetes 

Aviva Lev-Ari, PhD, RN

Endothelium Inflammatory Biomarkers

 

2.2.2.8 Cardiovascular Risk: C-Reactive Protein BioMarker and Plasma Fibrinogen

Aviva Lev-Ari, PhD, RN

 

2.2.2.9 Cardiovascular Risk Inflammatory Marker: Risk Assessment for Coronary Heart Disease and Ischemic Stroke ­ – Atherosclerosis

Aviva Lev-Ari, PhD, RN

 

2.2.2.10 Importance of high sensitivity C-reactive protein (hs-CRP)

Larry H Bernstein, MD, FCAP

 

See also our Series A: Cardiovascular Diseases

 

flyer-for-series-a-dot16

flyersabcd2-dot16future

metabolomics-seriesdindividualred-page2

Read Full Post »


Pathophysiology in Hypertension: Opposing Roles of Human Adaptive Immunity

Reporter: Aviva Lev-Ari, PhD, RN

T regulatory lymphocytes counteract hypertensive effects by suppressing innate and adaptive immune responses and T effector lymphocytes promote differentiation towards pro-inflammatory T helper cells

 

Dual opposing roles of adaptive immunity in hypertension

, , ,

DOI: http://dx.doi.org/10.1093/eurheartj/ehu119 1238-1244 First published online: 30 March 2014

Abstract

Hypertension involves remodelling and inflammation of the arterial wall. Interactions between vascular and inflammatory cells play a critical role in disease initiation and progression. T effector and regulatory lymphocytes, members of the adaptive immune system, play contrasting roles in hypertension. Signals from the central nervous system and the innate immune system antigen-presenting cells activate T effector lymphocytes and promote their differentiation towards pro-inflammatory T helper (Th) 1 and Th17 phenotypes. Th1 and Th17 effector cells, via production of pro-inflammatory mediators, participate in the low-grade inflammation that leads to blood pressure elevation and end-organ damage. T regulatory lymphocytes, on the other hand, counteract hypertensive effects by suppressing innate and adaptive immune responses. The present review summarizes and discusses the adaptive immune mechanisms that participate in the pathophysiology in hypertension.

  • Blood pressure
  • Adaptive immunity
  • Inflammation
  • T effector lymphocytes
  • T regulatory lymphocytes
  • Cytokines

Conclusion

Experimental and clinical evidence discussed in this review strongly suggests that adaptive immunity, represented by T effector and regulatory lymphocyte subsets, plays a dual role in hypertension (Figure 2). Increased sympathetic outflow as a consequence of stimulation of the CNS by hypertensive stimuli may result in mild blood pressure elevation, causing tissue injury and formation of neoantigens2 and/or damage-associated molecular patterns (DAMPs).80 Activation of innate APCs by DAMPs, or by pathogen-associated molecular patterns (PAMPs) generated in response to low-grade infection,80,81 and direct stimulation by CNS, may be the cause of activation of CD4+, and perhaps CD8+, T effector lymphocytes, and differentiation of CD4+ T cells towards pro-inflammatory Th1/Th17 phenotypes.41 Th1/Th17 effector lymphocytes contribute to the progression of hypertension by producing pro-inflammatory mediators, including ROS, IFN-γ, TNF-α, and IL-17, to promote low-grade inflammation.24,41,42,51,52 T regulatory lymphocytes, on the other hand, counteract hypertensive abnormalities by suppressing innate and adaptive immune responses, perhaps by secreting IL-10.6571 As such, circulating levels of Tregs or their immune-suppressive activity may be affected in hypertension.

 SOURCE

http://eurheartj.oxfordjournals.org/content/35/19/1238

Idris-Khodja et al. (2014) Dual opposing roles of adaptive immunity in hypertension. European Heart Journal (doi: 10.1093/eurheartj/ehu119)

 

Adaptive Immunity

Figure 1

Differentiation of naïve T lymphocytes into various subsets in a normal immune response. Antigen-presenting cells (dendritic cells and monocyte/macrophages) present antigens on major histocompatibility complex (MHC)-II to naïve T cells (Th0) in secondary lymphoid tissues, leading to T-cell clonal expansion and differentiation into effector T cells, such as T helper (Th)1, Th2, and Th17 or T regulatory (Treg) cells according to combined stimulation by different cytokines. Th effector lymphocytes and Tregs migrate into tissues such as the vasculature, particularly at the level of the adventitia and perivascular fat. The effector lymphocytes (Th1 and Th17) cells activate other immune cells and participate in inflammation by producing pro-inflammatory cytokines such as interferon-γ, interleukin (IL)-6, and IL-17. T regulatory lymphocytes suppress innate and adaptive responses via production of anti-inflammatory cytokines IL-10 and transforming growth factor-β. CD, cluster of differentiation; DC, dendritic cell; MΦ, macrophage; NK cell, natural killer cell; Tc, cytotoxic T cell; TCR, T-cell receptor.

IMAGE SOURCE

http://eurheartj.oxfordjournals.org/content/35/19/1238

 

Hypertention

 

IMAGE SOURCE

http://eurheartj.oxfordjournals.org/content/35/19/1238

Figure 2

Proposed role of T effector and regulatory lymphocytes in hypertension. Slight elevation in blood pressure (BP) in response to hypertensive stimuli (angiotensin II, aldosterone, endothelin-1, salt and genetic susceptibility) occurs due to increased central signalling, perhaps causing mild tissue injury and formation of damage-associated molecular patterns (DAMPs) and neoantigens. This may lead to activation of innate antigen-presenting cells (APCs) and, subsequently, activation and polarization of naïve CD4+ T effector lymphocytes (Th0) towards pro-inflammatory T helper (Th)1/Th17 phenotypes. Th1/Th17 may contribute to vascular and kidney damage via production of reactive oxygen species (ROS), interferon (IFN)-γ and interleukin (IL)-17 and lead to maintenance of hypertension and progression of end-organ damage. T regulatory lymphocytes counteract hypertension and associated injury by producing IL-10 or by other mechanisms, and suppression of innate and adaptive immune responses. CD, cluster of differentiation; CNS, central nervous system; MHC-II, major histocompatibility complex-II; PAMPs, pathogen-associated molecular patterns; TCR, T-cell receptor.

Read Full Post »


PCSK9 inhibitors: Reducing annual drug prices from more than $14 000 to $4536 would be necessary to meet a $100 000 per QALY threshold per JAMA

Curator: Aviva Lev-Ari, PhD, RN

 

Our team has researched PCSK9 inhibitors as a class of drugs in the following articles:

 

Efficacy and Tolerability of PCSK9 Inhibitors by Patients with Muscle-related Statin Intolerance – New Cleveland Clinic study published in JAMA 4/2016

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/04/03/efficacy-and-tolerability-of-pcsk9-inhibitors-by-patients-with-muscle-related-statin-intolerance-new-cleveland-clinic-study-published-in-jama-42016/

 

FDA ask Regeneron and Sanofi to assess potential Neurocognitive Side Effects of Alirocumab, PCSK9 inhibitors Class Designed to Block a Protein causing Persistence of “bad” LDL Cholesterol in the Bloodstream

Reporter & Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/03/07/fda-ask-regeneron-and-sanofi-to-assess-potential-neurocognitive-side-effects-of-alirocumab-pcsk9-inhibitors-class-designed-to-block-a-protein-causing-persistence-of-bad-ldl-cholesterol-in-the-blo/

 

SNPs in apoE are found to influence statin response significantly. Less frequent variants in PCSK9 and smaller effect sizes in SNPs in HMGCR

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/02/snps-in-apoe-are-found-to-influence-statin-response-significantly-less-frequent-variants-in-pcsk9-and-smaller-effect-sizes-in-snps-in-hmgcr/

 

Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/15/two-mutations-in-a-pcsk9-gene-eliminates-a-protein-involve-in-controlling-ldl-cholesterol/

 

Targeting Cardio-Metabolic Diseases and Metabolomics in Drug Discovery – CHI’s 14th Annual Discovery On Target September 19-22, 2016 | Westin Boston Waterfront — Boston, MA

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/06/13/targeting-cardio-metabolic-diseases-and-metabolomics-in-drug-discovery-chis-14th-annual-discovery-on-target-september-19-22-2016-westin-boston-waterfront-boston-ma/

Triglycerides: Is it a Risk Factor or a Risk Marker for Atherosclerosis and Cardiovascular Disease ? The Impact of Genetic Mutations on (ANGPTL4) Gene, encoder of (angiopoietin-like 4) Protein, inhibitor of Lipoprotein Lipase

Reporters, Curators and Authors: Aviva Lev-Ari, PhD, RN and Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/13/triglycerides-is-it-a-risk-factor-or-a-risk-marker-for-atherosclerosis-and-cardiovascular-disease-the-impact-of-genetic-mutations-on-angptl4-gene-encoder-of-angiopoietin-like-4-protein-that-in/

 

New study in JAMA demonstrates lack of cost effectiveness and extra burden on Health Care Costs associated with PCSK9 Inhibitor Therapy

 

Original Investigation |

Cost-effectiveness of PCSK9 Inhibitor Therapy in Patients With Heterozygous Familial Hypercholesterolemia or Atherosclerotic Cardiovascular Disease

Dhruv S. Kazi, MD, MSc, MS1,2,3,4,5; Andrew E. Moran, MD, MPH6,7; Pamela G. Coxson, PhD1,2,8; Joanne Penko, MS, MPH1,2; Daniel A. Ollendorf, PhD9; Steven D. Pearson, MD, MSc9; Jeffrey A. Tice, MD2; David Guzman, MSPH1; Kirsten Bibbins-Domingo, PhD, MD, MAS1,2,3,8
ABSTRACT

Importance  Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors were recently approved for lowering low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia (FH) or atherosclerotic cardiovascular disease (ASCVD) and have potential for broad ASCVD prevention. Their long-term cost-effectiveness and effect on total health care spending are uncertain.

Objective  To estimate the cost-effectiveness of PCSK9 inhibitors and their potential effect on US health care spending.

Design, Setting, and Participants  The Cardiovascular Disease Policy Model, a simulation model of US adults aged 35 to 94 years, was used to evaluate cost-effectiveness of PCSK9 inhibitors or ezetimibe in heterozygous FH or ASCVD. The model incorporated 2015 annual PCSK9 inhibitor costs of $14 350 (based on mean wholesale acquisition costs of evolocumab and alirocumab); adopted a health-system perspective, lifetime horizon; and included probabilistic sensitivity analyses to explore uncertainty.

Exposures  Statin therapy compared with addition of ezetimibe or PCSK9 inhibitors.

Main Outcomes and Measures  Lifetime major adverse cardiovascular events (MACE: cardiovascular death, nonfatal myocardial infarction, or stroke), incremental cost per quality-adjusted life-year (QALY), and total effect on US health care spending over 5 years.

Results  Adding PCSK9 inhibitors to statins in heterozygous FH was estimated to prevent 316 300 MACE at a cost of $503 000 per QALY gained compared with adding ezetimibe to statins (80% uncertainty interval [UI], $493 000-$1 737 000). In ASCVD, adding PCSK9 inhibitors to statins was estimated to prevent 4.3 million MACE compared with adding ezetimibe at $414 000 per QALY (80% UI, $277 000-$1 539 000). Reducing annual drug costs to $4536 per patient or less would be needed for PCSK9 inhibitors to be cost-effective at less than $100 000 per QALY. At 2015 prices, PCSK9 inhibitor use in all eligible patients was estimated to reduce cardiovascular care costs by $29 billion over 5 years, but drug costs increased by an estimated $592 billion (a 38% increase over 2015 prescription drug expenditures). In contrast, initiating statins in these high-risk populations in all statin-tolerant individuals who are not currently using statins was estimated to save $12 billion.

Conclusions and Relevance  Assuming 2015 prices, PCSK9 inhibitor use in patients with heterozygous FH or ASCVD did not meet generally acceptable incremental cost-effectiveness thresholds and was estimated to increase US health care costs substantially. Reducing annual drug prices from more than $14 000 to $4536 would be necessary to meet a $100 000 per QALY threshold.

Read Full Post »

Older Posts »