Advertisements
Feeds:
Posts
Comments

Archive for the ‘Atherogenic Processes & Pathology’ Category


UPDATED on 2/25/2019

https://www.medpagetoday.com/cardiology/prevention/78202?xid=nl_mpt_SRCardiology_2019-02 25&eun=g99985d0r&utm_source=Sailthru&utm_medium=email&utm_campaign=CardioUpdate_022519&utm_term=NL_Spec_Cardiology_Update_Active

 

ICER announced plans to look at icosapent ethyl (Vascepa) and rivaroxaban (Xarelto) as add-on therapies in cardiovascular disease.

Heart attack risk is rising among young women. But NHANES data show women are still ahead of men on control of hypertension, diabetes, and cholesterol. (Circulation)

Two Classes of Antithrombotic Drugs: Anticoagulants and Antiplatelet drugs

Reporter: Aviva Lev-Ari, PhD, RN
These drugs are used to treat
  • strokes,
  • myocardial infarctions,
  • pulmonary embolisms,
  • disseminated intravascular coagulation (DIC) and
  • deep vein thrombosis (DVT)
— all potentially life-threatening conditions.
THERAPEUTIC STRATEGIES
• Degrade fibrinogen/fibrin (fibrinolytic agents)
GOAL: eliminate formed clots
• Inhibit clotting mechanism (anticoagulants)
GOAL: prevent progression of thrombosis
• Interfere either with platelet adhesion and/or aggregation (antiplatelet drugs)
GOAL: prevent initial clot formation
Antithrombotic therapy has had an enormous impact in several significant ways.
  • Heparin has made bypass surgery and dialysis possible by blocking clotting in external tubing.
  • Antithrombotic therapy has reduced the risk of blood clots in leg veins (also known as deep-vein thrombosis or DVT), a condition that can lead to death from pulmonary embolism (a clot that blocks an artery to the lungs) by more than 70 percent. And most importantly,
  • it has markedly reduced death from heart attacks, the risk of stroke in people with heart irregularities (atrial fibrillation), and the risk of major stroke in patients with mini-strokes.

Antithrombotic Therapy

This article was published in December 2008 as part of the special ASH anniversary brochure, 50 Years in Hematology: Research That Revolutionized Patient Care.

Normally, blood flows through our arteries and veins smoothly and efficiently, but if a clot, or thrombus, blocks the smooth flow of blood, the result – called thrombosis – can be serious and even cause death. Diseases arising from clots in blood vessels include heart attack and stroke, among others. These disorders collectively are the most common cause of death and disability in the developed world. We now have an array of drugs that can be used to prevent and treat thrombosis – and there are more on the way – but this was not always the case.

Classes of Antithrombotic Drugs

Image Source: http://www.hematology.org/About/History/50-Years/1523.aspx

The most important components of a thrombus are fibrin and platelets. Fibrin is a protein that forms a mesh that traps red blood cells, while platelets, a type of blood cell, form clumps that add to the mass of the thrombus. Both fibrin and platelets stabilize the thrombus and prevent it from falling apart. Fibrin is the more important component of clots that form in veins, and platelets are the more important component of clots that form in arteries where they can cause heart attacks and strokes by blocking the flow of blood in the heart and brain, respectively, although fibrin plays an important role in arterial thrombosis as well.

There are two classes of antithrombotic drugs: anticoagulants and antiplatelet drugs. Anticoagulants slow down clotting, thereby reducing fibrin formation and preventing clots from forming and growing. Antiplatelet agents prevent platelets from clumping and also prevent clots from forming and growing.

Anticoagulant Drugs

The anticoagulants heparin and dicumarol were discovered by chance, long before we understood how they worked. Heparin was first discovered in 1916 by a medical student at The Johns Hopkins University who was investigating a clotting product from extracts of dog liver and heart. In 1939, dicumarol (the precursor to warfarin) was extracted by a biochemist at the University of Wisconsin from moldy clover brought to him by a farmer whose prize bull had bled to death after eating the clover.

Both of these anticoagulants have been used effectively to prevent clots since 1940. These drugs produce a highly variable anticoagulant effect in patients, requiring their effect to be measured by special blood tests and their dose adjusted according to the results. Heparin acts immediately and is given intravenously (through the veins). Warfarin is swallowed in tablet form, but its anticoagulant effect is delayed for days. Therefore, until recently, patients requiring anticoagulants who were admitted to a hospital were started on a heparin infusion and were then discharged from the hospital after five to seven days on warfarin.

In the 1970s, three different groups of researchers in Stockholm, London, and Hamilton, Ontario, began work on low-molecular-weight heparin (LMWH). LMWH is produced by chemically splitting heparin into one-third of its original size. It has fewer side effects than heparin and produces a more predictable anticoagulant response. By the mid 1980s, LMWH preparations were being tested in clinical trials, and they have now replaced heparin for most indications. Because LMWH is injected subcutaneously (under the skin) in a fixed dose without the need for anticoagulant monitoring, patients can now be treated at home instead of at the hospital.

With the biotechnology revolution has come genetically engineered “designer” anticoagulant molecules that target specific clotting enzymes. Anti-clotting substances and their DNA were also extracted from an array of exotic creatures (ticks, leeches, snakes, and vampire bats) and converted into drugs by chemical synthesis or genetic engineering. Structural chemists next began to fabricate small molecules designed to fit into the active component of clotting enzymes, like a key into a lock.

The first successful synthetic anticoagulants were fondaparinux and bivalirudin. Bivalirudin, a synthetic molecule based on the structure of hirudin (the anti-clotting substance found in leeches), is an effective treatment for patients with heart attacks. Fondaparinux is a small molecule whose structure is based on the active component of the much larger LMWH and heparin molecules. It has advantages over LMWH and heparin and has recently been approved by the FDA. Newer designer drugs that target single clotting factors and that can be taken by mouth are undergoing clinical testing. If successful, we will have safer and more convenient replacements for warfarin, the only oral anticoagulant available for more than 60 years.

Antiplatelet Drugs

Blood platelets are inactive until damage to blood vessels or blood coagulation causes them to explode into sticky irregular cells that clump together and form a thrombus. The first antiplatelet drug was aspirin, which has been used to relieve pain for more than 100 years. In the mid-1960s, scientists showed that aspirin prevented platelets from clumping, and subsequent clinical trials showed that it reduces the risk of stroke and heart attack. In 1980, researchers showed that aspirin in very low doses (much lower than that required to relieve a headache) blocked the production of a chemical in platelets that is required for platelet clumping. During that time, better understanding of the process of platelet clumping allowed the development of designer antiplatelet drugs directed at specific targets. We now have more potent drugs, such as clopidogrel, dipyridamole, and abciximab. These drugs are used with aspirin and effectively prevent heart attack and stroke; they also prolong the lives of patients who have already had a heart attack.

SOURCE 
Anticoagulation Drugs:
  • heparin (FONDAPARINUX HEPARIN (Calciparine, Hepathrom, Lipo-Hepin, Liquaemin, Panheprin)
  • warfarin – 4-HYDROXYCOUMARIN (Coumadin) WARFARIN (Athrombin-K, Panwarfin)
  • rivaroxaban (Xarelto)
  • dabigatran (Pradaxa)
  • apixaban (Eliquis)
  • edoxaban (Savaysa)
  • enoxaparin (Lovenox)
  • fondaparinux (Arixtra)
  • ARGATROBAN BIVALIRUDIN (Angiomax)
  • DALTEPARIN (Fragmin)
  • DROTRECOGIN ALFA (ACTIVATED PROTEIN C) (Xigris)
  • HIRUDIN (Desirudin)
  • LEPIRUDIN (Refludan)
  • XIMELAGATRAN (Exanta)

ANTIDOTES

  • PHYTONADIONE (Vitamin K1)
  • PROTAMINE SULFATE AMINOCAPROIC ACID (EACA) (generic, Amicar) (in bleeding disorders)
Antiplatelet Drugs
  • ACETYL SALICYLIC ACID (aspirin) 
  • clopidogrel (Plavix)
  • dipyridamole (Persantine)
  • abciximab (Centocor)
  • EPTIFIBATIDE (Integrilin)
  • TICLOPIDINE (Ticlid)
  • TIROFIBAN (Aggrastat)

THROMBOLYTICS

  1. ANISTREPLASE (APSAC; Eminase)
  2. STREPTOKINASE (Streptase, Kabikinase)
  3. TISSUE PLASMINOGEN ACTIVATORS (tPAs):
  • ALTEPLASE (Activase),
  • RETEPLASE (Retavase),
  • TENECTEPLASE (TNKase)
  • UROKINASE (Abbokinase)

Fibrinolytic Drugs

Fibrinolytic therapy is used in selected patients with venous thromboembolism. For example, patients with massive or submassive PE can benefit from systemic or catheter-directed fibrinolytic therapy. The latter can also be used as an adjunct to anticoagulants for treatment of patients with extensive iliofemoral-vein thrombosis.

Arterial and venous thrombi are composed of platelets and fibrin, but the proportions differ.

  • Arterial thrombi are rich in platelets because of the high shear in the injured arteries. In contrast,
  • venous thrombi, which form under low shear conditions, contain relatively few platelets and are predominantly composed of fibrin and trapped red cells.
  • Because of the predominance of platelets, arterial thrombi appear white, whereas venous thrombi are red in color, reflecting the trapped red cells.

SOURCE

Advertisements

Read Full Post »


 Cholesterol Lowering Novel PCSK9 drugs: Praluent [Sanofi and Regeneron] vs Repatha [Amgen] – which drug cuts CV risks enough to make it cost-effective?

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 1/15/2019

In the patent fight over PCSK9 inhibitors, the Supreme Court refused to hear Amgen’s appeal of a 2017 court decision allowing Sanofi and Regeneron to continue selling alirocumab (Praluent). Amgen still has a new patent trial starting in Delaware federal court next month, FiercePharma reports.

Amgen’s Repatha hits wall at SCOTUS but presses ahead—new price breaks included

Amgen has been trying since 2015 to protect its PCSK9 cholesterol drug Repatha by keeping Sanofi and Regeneron’s rival Praluent off the market, even going as far as to ask the U.S. Supreme Court to review an ongoing patent fight.

But that attempt fell short this week as SCOTUS refused to hear the company’s appeal of a 2017 court decision allowing Sanofi and Regeneron to continue selling its head-to-head rival.

Amgen isn’t giving up the fight, though. The company is prepping for a new patent trial starting in Delaware federal court next month. And it’s responding to long-standing criticism of the high cost of PCSK9 drugs, which hit the market in 2015 at list prices of about $14,000 a year.

Amgen had already brought the price of the biweekly version of Repatha down to $5,850 per year before discounts and rebates, and late Monday it said it would lower cost of the monthly injectable dose to that same level.

SOURCE

UPDATED on 11/13/2018

ODYSSEY OUTCOMES: Alirocumab Cost-effective at $6000 a Year

Marlene Busko

November 11, 2018

CHICAGO — Treatment with the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor alirocumab (Praluent, Sanofi/Regeneron) is cost-effective at $6319 a year when the willingness-to-pay threshold is the generally accepted $100,000 per quality-adjusted life-year (QALY), new research reports.

Deepak L. Bhatt, MD, MPH, Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts, presented these cost-effectiveness findings for alirocumab, based on data from the ODYSSEY OUTCOMES trial, here at the American Heart Association (AHA) 2018 Scientific Sessions

As previously reported, results from ODYSSEY OUTCOMES were presented at American College of Cardiology (ACC) 2018 Annual Scientific Session in March and the study was published November 7 in the New England Journal of Medicine.

Strengths of the current cost analysis include that it used actual trial data as opposed to modeling estimates, Bhatt pointed out to theheart.org | Medscape Cardiology.

SOURCE

https://www.medscape.com/viewarticle/904744?nlid=126063_3866&src=WNL_mdplsfeat_181113_mscpedit_card&uac=93761AJ&spon=2&impID=1799507&faf=1

 

Did Amgen’s Repatha cut CV risks enough to make it cost-effective? Analysts say no

Sanofi, Regeneron’s Praluent pulls off PCSK9 coup with 29% cut to death risks in most vulnerable patients
SEE our curations on PCSK9 drugs:

Read Full Post »


ODYSSEY Outcomes trial evaluating the effects of a PCSK9 inhibitor, alirocumab, on major cardiovascular events in patients with an acute coronary syndrome to be presented at the American College of Cardiology meeting on March 10.

Reporter: Aviva Lev-Ari, PhD, RN

 

For PCSK9 inhibitors, the effect on major adverse cardiovascular events has always fallen short of expectations based on cholesterol lowering.

But cardiovascular risk reduction is complicated. There is more to the puzzle than cholesterol. Some drugs lower both cholesterol and prevent cardiovascular events, but some people think that the two effects are actually not that closely related.

Milton Packer MD

https://www.medpagetoday.com/blogs/revolutionandrevelation/71435

In a previous trial (FOURIER), another PCSK9 inhibitor had only a modest benefit on its primary endpoint, and it did not reduce cardiovascular death, although the magnitude of cholesterol lowering was striking.

In another trial (SPIRE), a third PCSK9 inhibitor, the clinical trial was terminated prematurely by Pfizer because of reduction of the effect of the drug (a humanized but not fully humanized antibody) due to development of neutralizing antibodies in some of the patients. Actually, in patients treated for more than a year who did not develop neutralizing antibodies, a beneficial effect was seen.

The ODYSSEY Outcomes trial is evaluating the effects of a PCSK9 inhibitor,alirocumab, on major cardiovascular events in patients with an acute coronary syndrome within the prior year. The drug lowers serum cholesterol dramatically, and some are hopeful that that effect will translate into an important reduction in the risk of major adverse cardiovascular events. If you believe that cholesterol reduction inevitably leads to the prevention of cardiovascular death, myocardial infarction and stroke, then you would have high expectations for the ODYSSEY trial.

ODYSSEY. The trial uses a somewhat more aggressive treatment strategy and has a longer follow-up period than its predecessors. So maybe the benefit will be large. Maybe the drug will even reduce cardiovascular death or all-cause mortality.

In order to enrich the population for cardiovascular events, the trial enrolled patients with an acute coronary syndrome within the prior year. These patients are at high risk of having a recurrence. The problem is that risk is not necessarily related to changes in cholesterol, especially the events occurring early in the trial. And in this type of trial, the analysis tends to give extra weight to early events.

Trials like ODYSSEY are often designed to stop early if the results are unbelievably impressive. The ODYSSEY trial wasn’t stopped early.

the patients entering the ODYSSEY trial are starting out with a serum LDL <100 mg/dL or even <90 mg/dL. Is cholesterol really playing an important role at that level, especially when compared with noncholesterol factors?

SOURCE

https://www.medpagetoday.com/blogs/revolutionandrevelation/71435

Read Full Post »


There may be a genetic basis to CAD and that CXCL5 may be of therapeutic interest

Reporter: Aviva Lev-Ari, PhD, RN

It may be possible to develop a drug that mimics the effects of CXCL5 or that increases the body’s natural CXCL5 production to help prevent CAD in people at high risk. The protein could even potentially be leveraged to develop a new, nonsurgical approach to help clear clogged arteries.

 

New Study Suggests Protein Could Protect Against Coronary Artery Disease

https://www.dicardiology.com/content/new-study-suggests-protein-could-protect-against-coronary-artery-disease

Read Full Post »


FDA approval on 12/1/2017 of Amgen’s evolocumb (Repatha) a PCSK9 inhibitor for the prevention of heart attacks, strokes, and coronary revascularizations in patients with established cardiovascular disease

Reporter: Aviva Lev-Ari, PhD, RN

 

Evolocumab was first FDA approved in 2015 for patients with

  • familial hypercholesterolemia and
  • others who fail to achieve LDL cholesterol lowering through diet and maximally-tolerated statin therapy.

In the Repatha cardiovascular outcomes study (FOURIER), Repatha reduced the risk of

  • heart attack by 27 percent, the risk of
  • stroke by 21 percent and the risk of
  • coronary revascularization by 22 percent.2

 

U.S. Repatha Indication

Repatha is a PCSK9 (proprotein convertase subtilisin kexin type 9) inhibitor antibody indicated:

  • to reduce the risk of myocardial infarction, stroke, and coronary revascularization in adults with established cardiovascular disease.
  • as an adjunct to diet, alone or in combination with other lipid-lowering therapies (e.g., statins, ezetimibe), for treatment of adults with primary hyperlipidemia (including heterozygous familial hypercholesterolemia [HeFH]) to reduce low-density lipoprotein cholesterol (LDL-C).
  • as an adjunct to diet and other LDL‑lowering therapies (e.g., statins, ezetimibe, LDL apheresis) in patients with homozygous familial hypercholesterolemia (HoFH) who require additional lowering of LDL‑C.

The safety and effectiveness of Repatha have not been established in pediatric patients with HoFH who are younger than 13 years old.

The safety and effectiveness of Repatha have not been established in pediatric patients with primary hyperlipidemia or HeFH.

Eligible patients with high cholesterol (LDL-C ≥70 mg/dL or non-high-density lipoprotein cholesterol [non-HDL-C] ≥100 mg/dL) and established cardiovascular disease at more than 1,300 study locations around the world were randomized to receive Repatha subcutaneous 140 mg every two weeks or 420 mg monthly plus high- or moderate-intensity effective statin dose; or placebo subcutaneous every two weeks or monthly plus high- to moderate-intensity statin dose. Statin therapy was defined in the protocol as at least atorvastatin 20 mg or equivalent daily with a recommendation for at least atorvastatin 40 mg or equivalent daily where approved. The study was event driven and continued until at least 1,630 patients experienced a key secondary endpoint.

About Repatha® (evolocumab)
Repatha® (evolocumab) is a human monoclonal antibody that inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9). Repatha binds to PCSK9 and inhibits circulating PCSK9 from binding to the low-density lipoprotein (LDL) receptor (LDLR), preventing PCSK9-mediated LDLR degradation and permitting LDLR to recycle back to the liver cell surface. By inhibiting the binding of PCSK9 to LDLR, Repatha increases the number of LDLRs available to clear LDL from the blood, thereby lowering LDL-C levels.1

About Amgen in the Cardiovascular Therapeutic Area
Building on more than three decades of experience in developing biotechnology medicines for patients with serious illnesses, Amgen is dedicated to addressing important scientific questions to advance care and improve the lives of patients with cardiovascular disease, the leading cause of morbidity and mortality worldwide.8 Amgen’s research into cardiovascular disease, and potential treatment options, is part of a growing competency at Amgen that utilizes human genetics to identify and validate certain drug targets. Through its own research and development efforts, as well as partnerships, Amgen is building a robust cardiovascular portfolio consisting of several approved and investigational molecules in an effort to address a number of today’s important unmet patient needs, such as high cholesterol and heart failure.

Homozygous Familial Hypercholesterolemia (HoFH): In 49 patients with homozygous familial hypercholesterolemia studied in a 12-week, double-blind, randomized, placebo-controlled trial, 33 patients received 420 mg of Repatha subcutaneously once monthly. The adverse reactions that occurred in at least 2 (6.1 percent) Repatha-treated patients and more frequently than in placebo-treated patients, included upper respiratory tract infection (9.1 percent versus 6.3 percent), influenza (9.1 percent versus 0 percent), gastroenteritis (6.1 percent versus 0 percent), and nasopharyngitis (6.1 percent versus 0 percent).

Immunogenicity: Repatha is a human monoclonal antibody. As with all therapeutic proteins, there is a potential for immunogenicity with Repatha.

Please contact Amgen Medinfo at 800-77-AMGEN (800-772-6436) or 844-REPATHA (844-737-2842) regarding Repatha® availability or find more information, including full Prescribing Information, at www.amgen.com and www.Repatha.com.

References

  1. Repatha® U.S. Prescribing Information. Amgen.
  2. Sabatine MS, Giugliano RP, Keech AC, et al, for the FOURIER Steering Committee and Investigators. N Engl J Med. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. 2017;376:1713-22.
  3. Cannon CP, et al. N Engl J Med. 2004;350:1495-1504.
  4. LaRosa JC, et al. N Engl J Med. 2005;352:1425-1435.
  5. Pederson TR, et al. JAMA. 2005;294:2437-2445.
  6. Search Collaborative Group Lancet 2010;376:1658–69.
  7. Cannon CP, et al. N Engl J Med. 2015;372:2387-2397.
  8. World Health Organization. Cardiovascular diseases (CVDs) fact sheet. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed October 30, 2017.

 

SOURCE: Amgen

Read Full Post »


SNP-based Study on high BMI exposure confirms CVD and DM Risks – no associations with Stroke

Reporter: Aviva Lev-Ari, PhD, RN

Genes Affirm: High BMI Carries Weighty Heart, Diabetes Risk – Mendelian randomization study adds to ‘burgeoning evidence’

by Crystal Phend, Senior Associate Editor, MedPage Today, July 05, 2017

 

The “genetically instrumented” measure of high BMI exposure — calculated based on 93 single-nucleotide polymorphisms associated with BMI in prior genome-wide association studies — was associated with the following risks (odds ratios given per standard deviation higher BMI):

  • Hypertension (OR 1.64, 95% CI 1.48-1.83)
  • Coronary heart disease (CHD; OR 1.35, 95% CI 1.09-1.69)
  • Type 2 diabetes (OR 2.53, 95% CI 2.04-3.13)
  • Systolic blood pressure (β 1.65 mm Hg, 95% CI 0.78-2.52 mm Hg)
  • Diastolic blood pressure (β 1.37 mm Hg, 95% CI 0.88-1.85 mm Hg)

However, there were no associations with stroke, Donald Lyall, PhD, of the University of Glasgow, and colleagues reported online in JAMA Cardiology.

The associations independent of age, sex, Townsend deprivation scores, alcohol intake, and smoking history were found in baseline data from 119,859 participants in the population-based U.K. Biobank who had complete medical, sociodemographic, and genetic data.

“The main advantage of an MR approach is that certain types of study bias can be minimized,” the team noted. “Because DNA is stable and randomly inherited, which helps to mitigate errors from reverse causality and confounding, genetic variation can be used as a proxy for lifetime BMI to overcome limitations such as reverse causality and confounding, a process that hampers observational analyses of obesity and its consequences.”

 

Other related articles published in this Open Access Online Scientific Journal include the following:

9 results for Kindle Store : “Aviva Lev-Ari”

Sort by 
Relevance
Featured
Price: Low to High
Price: High to Low
Avg. Customer Review
Publication Date
  • Product Details

    Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics

    Nov 28, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Perspectives on Nitric Oxide in Disease Mechanisms (Biomed e-Books Book 1)

    Jun 20, 2013 | Kindle eBook

    by Margaret Baker PhD and Tilda Barliya PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2)

    May 13, 2017 | Kindle eBook

    by Larry H. Bernstein and Demet Sag
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Metabolic Genomics & Pharmaceutics (BioMedicine – Metabolomics, Immunology, Infectious Diseases Book 1)

    Jul 21, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Prabodah Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics (Series E: Patient-Centered Medicine Book 3)

    Dec 26, 2015 | Kindle eBook

    by Larry H. Bernstein MD FACP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Genomics Orientations for Personalized Medicine (Frontiers in Genomics Research Book 1)

    Nov 22, 2015 | Kindle eBook

    by Sudipta Saha PhD and Ritu Saxena PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Biology and Genomics for Disease Diagnosis (Series C: e-Books on Cancer & Oncology Book 1)

    Aug 10, 2015 | Kindle eBook

    by Larry H Bernstein MD FCAP and Prabodh Kumar Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Regenerative and Translational Medicine: The Therapeutic Promise for Cardiovascular Diseases

    Dec 26, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation: The Art of Scientific & Medical Curation

    Nov 29, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly

 

Read Full Post »


Trends in HealthCare Economics: Average Out-of-Pocket Costs, non-Generics and Value-Based Pricing, Amgen’s Repatha and AstraZeneca’s Access to Healthcare Policies

Reporter: Aviva Lev-Ari, PhD, RN

 

1.   AstraZeneca’s access to healthcare strategy is made up of three elements:

  • Provide high-quality, effective and appropriate medicines to those who need them. Improve affordability, particularly among the growing middle class in Emerging Markets.
  • Bring down healthcare barriers, particularly in developing countries. Our strategy helps us to address affordability and other healthcare barriers, while ensuring we continue to provide high-quality medicines to those who need them.
  • Key Target exceeded Full target achieved Ongoing progress Target not achieved, some progress AstraZeneca has extensively expanded and updated their access strategy identifying those areas where they are best placed to provide support and are now well positioned for future progress.”
  • Access to Medicine Index Access to healthcare Goals Target progress Progress highlights Expand sustainable patient access to our medicines to reach 3 million patients by 2016 4.49 million patients in Emerging Markets served by patient access programmes
  • Young Health Programme After exceeding initial goal to reach 1 million people through the Young Health Programme by 2015, aim to renew in five markets and expand into three markets by 2018 Renewed in Canada, Germany, China and India and expanded into Kenya
  • Total reach in 2016 of 166,000 and 1.6 million youth since 2010
  • Proposals for expansion are in development for Brazil and Australia and for renewal in Portugal
  • Healthy Heart Africa Reach 10 million hypertensive patients across Sub-Saharan Africa by 2025 Since 2014, we have conducted over 2.7 million screenings and started treatment for over 100,000 hypertensive patients

SOURCE

https://www.astrazeneca.com/sustainability/access-to-healthcare.html

https://www.astrazeneca.com/content/dam/az/PDF/Sustainability/Access%20to%20healthcare.pdf

2.   Co-Development and Commercialization by Territory

AstraZeneca has paid $45 million and committed to up to $2.1 billion in milestones to team with Pieris Pharmaceuticals. The agreement sets Pieris up to move respiratory candidate PRS-060 into the clinic on AstraZeneca’s dime and pull in milestones as it and other pipeline prospects advance.

Tiny Pieris is due to receive the first, $12.5 million milestone when it moves moderate to severe asthma candidate PRS-060 into phase 1. AstraZeneca will fund clinical development of the interleukin-4 receptor alpha-targeting protein. If the asset reaches phase 2a, Pieris has the option to codevelop and commercialize it in the U.S., bumping up the royalties or gross margin share it receives in the process.

Pieris has a similar codevelopment option on other assets covered by the agreement. The biotech will develop four other proteins against undisclosed respiratory targets. If Pieris wants, it can sign up to codevelop and commercialize two of these programs in the U.S. Milestones and commercial payments across the deal could ultimately total $2.1 billion.

SOURCE

http://www.fiercebiotech.com/biotech/astrazeneca-pays-45m-commits-to-2b-to-team-pieris?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiT1RjMlpqWTFOakpsWVRVMyIsInQiOiI2dEgzSVFxWWZweDFiZ2JcL2EwbDk5MW1VcHJ6WnNNaGFmSEdLb2VnSTQ2QjRMUGpqcFFCQjM1dkVFT3dtNFMxaFZ4cXRhMTRQc0dxM28zVG5YM1FhM0hrQkhoS2ZDdWVickFGaWlOK2drRlwvdThzU1FcL05iY0FVSkNjXC9zMmNFSnkifQ%3D%3D

3.  Prescriptions Dispensed at Zero Patient Out-of-Pocket Cost Reached Thirty Percent in 2016

29.9% of prescriptions have been dispensed at zero patient out-of-pocket cost, including brands and generics, up 1.5% since 2015, all due to increased use of zero cost generics.
The total share of prescriptions where patients paid some amount less than $50 declined by 1.3% to 67.8% in 2016.
The proportion of claims with patient cost exposure greater than $50 increased also declined slightly from 2.5% to 2.3% in 2016.

Since 2013, Average Out-of-Pocket Costs for All Brand and Generic Prescriptions has Decreased by $1.19

Average patient out of pocket costs declined from $9.66 in 2013 to $8.47 in 2016, with 2016 brand costs declining to $28.31 from $32.36 in 2013 and generics dipping to $5.54 from a high of $6.05 in 2013.
The list prices of brands continue to be far higher than the average paid by patients, as few patients are exposed to those costs in their insurance plans.
The average list price for brands averaged 12 times higher than the average out of pocket cost for patients in 2016 compared to 3 times higher for generics.

SOURCE

http://www.imshealth.com/en/thought-leadership/quintilesims-institute/reports/medicines-use-and-spending-in-the-us-review-of-2016-outlook-to-2021#form
For Immediate Release Contact: Joan Fallon

May 2, 2017 joan_fallon@harvardpilgrim.org

617-509-7458

4.   Harvard Pilgrim Signs Second Groundbreaking Contract with Amgen For Repatha

HPHC and its members will receive full refund if a cardiac event occurs while on the drug

(WELLESLEY, MA) – Harvard Pilgrim Health Care has entered into a first-of-its-kind contract with Amgen for its LDL cholesterol lowering drug, Repatha, that guarantees the health plan and its members will receive a full refund of their costs for the drug if a member is hospitalized for a myocardial infarction or stroke after taking Repatha for six months or more and maintaining an appropriate level of compliance on the drug.

Repatha is one of a new class of biotechnology medicines known as PCSK9 inhibitors that have demonstrated a promising new approach for treating elevated LDL cholesterol in patients whose levels are not able to be controlled by current treatment options. The medication is designed to target a protein that prevents the body from removing artery-blocking LDL cholesterol from the bloodstream. Repatha works differently than statin drugs that prevent the liver from making cholesterol.

Given by injection every two or four weeks, Repatha is intended for patients who have an inherited disorder resulting in high levels of LDL cholesterol or have high-risk atherosclerotic cardiovascular disease conditions, such as heart attack or stroke, that have been resistant to treatment.

“Repatha has been shown to have a significant outcome on reducing cardiovascular morbidity for high risk individuals with elevated LDL cholesterol,” said Harvard Pilgrim Chief Medical Officer Michael Sherman. However, there have been concerns raised about the cost of this new drug relative to existing statin treatments. We hope to negotiate more contracts of this type, in which a pharmaceutical company truly has ‘skin in the game’ going forward. This agreement is the first we have signed in which there is a full refund of all costs related to the medication if the patient experiences a heart attack or stroke while taking it.”

“Cardiovascular disease is the largest public health concern in the world and for high-risk patients who have already had a cardiovascular event or whose genetics puts them at risk, it is important that these patients have access to an effective treatment shown to lower their

elevated LDL cholesterol in addition to their current lipid lowering regimen,” said Joshua J. Ofman, M.D., MSHS, senior vice president of Global Value, Access & Policy. “Amgen’s agreement with Harvard Pilgrim demonstrates our commitment to seeking innovative approaches that help break down the barriers of access to Repatha.”

This is the second patient-focused outcomes contract Harvard Pilgrim has negotiated with Amgen for Repatha. In the fall of 2015, the health plan signed an outcomes guarantee through which Amgen provided HPHC with an enhanced discount if the reduction in LDL levels for Harvard Pilgrim members is less than what was observed during Repatha’s clinical trials. In addition, the agreement provides for additional discounts if the utilization of the drug exceeds certain levels. This enables those patients who can most benefit from the drug to receive it while continuing to encourage utilization of lower cost statins for the majority of patients.

SOURCE

From: “Fallon, Joan” <joan_fallon@harvardpilgrim.org>

Date: Tuesday, May 2, 2017 at 1:09 PM

Subject: press release from Harvard Pilgrim Health Care

Read Full Post »

« Newer Posts - Older Posts »