Advertisements
Feeds:
Posts
Comments

Archive for the ‘Valves & Tools’ Category


Two Classes of Antithrombotic Drugs: Anticoagulants and Antiplatelet drugs

Reporter: Aviva Lev-Ari, PhD, RN
These drugs are used to treat
  • strokes,
  • myocardial infarctions,
  • pulmonary embolisms,
  • disseminated intravascular coagulation (DIC) and
  • deep vein thrombosis (DVT)
— all potentially life-threatening conditions.
THERAPEUTIC STRATEGIES
• Degrade fibrinogen/fibrin (fibrinolytic agents)
GOAL: eliminate formed clots
• Inhibit clotting mechanism (anticoagulants)
GOAL: prevent progression of thrombosis
• Interfere either with platelet adhesion and/or aggregation (antiplatelet drugs)
GOAL: prevent initial clot formation
Antithrombotic therapy has had an enormous impact in several significant ways.
  • Heparin has made bypass surgery and dialysis possible by blocking clotting in external tubing.
  • Antithrombotic therapy has reduced the risk of blood clots in leg veins (also known as deep-vein thrombosis or DVT), a condition that can lead to death from pulmonary embolism (a clot that blocks an artery to the lungs) by more than 70 percent. And most importantly,
  • it has markedly reduced death from heart attacks, the risk of stroke in people with heart irregularities (atrial fibrillation), and the risk of major stroke in patients with mini-strokes.

Antithrombotic Therapy

This article was published in December 2008 as part of the special ASH anniversary brochure, 50 Years in Hematology: Research That Revolutionized Patient Care.

Normally, blood flows through our arteries and veins smoothly and efficiently, but if a clot, or thrombus, blocks the smooth flow of blood, the result – called thrombosis – can be serious and even cause death. Diseases arising from clots in blood vessels include heart attack and stroke, among others. These disorders collectively are the most common cause of death and disability in the developed world. We now have an array of drugs that can be used to prevent and treat thrombosis – and there are more on the way – but this was not always the case.

Classes of Antithrombotic Drugs

Image Source: http://www.hematology.org/About/History/50-Years/1523.aspx

The most important components of a thrombus are fibrin and platelets. Fibrin is a protein that forms a mesh that traps red blood cells, while platelets, a type of blood cell, form clumps that add to the mass of the thrombus. Both fibrin and platelets stabilize the thrombus and prevent it from falling apart. Fibrin is the more important component of clots that form in veins, and platelets are the more important component of clots that form in arteries where they can cause heart attacks and strokes by blocking the flow of blood in the heart and brain, respectively, although fibrin plays an important role in arterial thrombosis as well.

There are two classes of antithrombotic drugs: anticoagulants and antiplatelet drugs. Anticoagulants slow down clotting, thereby reducing fibrin formation and preventing clots from forming and growing. Antiplatelet agents prevent platelets from clumping and also prevent clots from forming and growing.

Anticoagulant Drugs

The anticoagulants heparin and dicumarol were discovered by chance, long before we understood how they worked. Heparin was first discovered in 1916 by a medical student at The Johns Hopkins University who was investigating a clotting product from extracts of dog liver and heart. In 1939, dicumarol (the precursor to warfarin) was extracted by a biochemist at the University of Wisconsin from moldy clover brought to him by a farmer whose prize bull had bled to death after eating the clover.

Both of these anticoagulants have been used effectively to prevent clots since 1940. These drugs produce a highly variable anticoagulant effect in patients, requiring their effect to be measured by special blood tests and their dose adjusted according to the results. Heparin acts immediately and is given intravenously (through the veins). Warfarin is swallowed in tablet form, but its anticoagulant effect is delayed for days. Therefore, until recently, patients requiring anticoagulants who were admitted to a hospital were started on a heparin infusion and were then discharged from the hospital after five to seven days on warfarin.

In the 1970s, three different groups of researchers in Stockholm, London, and Hamilton, Ontario, began work on low-molecular-weight heparin (LMWH). LMWH is produced by chemically splitting heparin into one-third of its original size. It has fewer side effects than heparin and produces a more predictable anticoagulant response. By the mid 1980s, LMWH preparations were being tested in clinical trials, and they have now replaced heparin for most indications. Because LMWH is injected subcutaneously (under the skin) in a fixed dose without the need for anticoagulant monitoring, patients can now be treated at home instead of at the hospital.

With the biotechnology revolution has come genetically engineered “designer” anticoagulant molecules that target specific clotting enzymes. Anti-clotting substances and their DNA were also extracted from an array of exotic creatures (ticks, leeches, snakes, and vampire bats) and converted into drugs by chemical synthesis or genetic engineering. Structural chemists next began to fabricate small molecules designed to fit into the active component of clotting enzymes, like a key into a lock.

The first successful synthetic anticoagulants were fondaparinux and bivalirudin. Bivalirudin, a synthetic molecule based on the structure of hirudin (the anti-clotting substance found in leeches), is an effective treatment for patients with heart attacks. Fondaparinux is a small molecule whose structure is based on the active component of the much larger LMWH and heparin molecules. It has advantages over LMWH and heparin and has recently been approved by the FDA. Newer designer drugs that target single clotting factors and that can be taken by mouth are undergoing clinical testing. If successful, we will have safer and more convenient replacements for warfarin, the only oral anticoagulant available for more than 60 years.

Antiplatelet Drugs

Blood platelets are inactive until damage to blood vessels or blood coagulation causes them to explode into sticky irregular cells that clump together and form a thrombus. The first antiplatelet drug was aspirin, which has been used to relieve pain for more than 100 years. In the mid-1960s, scientists showed that aspirin prevented platelets from clumping, and subsequent clinical trials showed that it reduces the risk of stroke and heart attack. In 1980, researchers showed that aspirin in very low doses (much lower than that required to relieve a headache) blocked the production of a chemical in platelets that is required for platelet clumping. During that time, better understanding of the process of platelet clumping allowed the development of designer antiplatelet drugs directed at specific targets. We now have more potent drugs, such as clopidogrel, dipyridamole, and abciximab. These drugs are used with aspirin and effectively prevent heart attack and stroke; they also prolong the lives of patients who have already had a heart attack.

SOURCE 
Anticoagulation Drugs:
  • heparin (FONDAPARINUX HEPARIN (Calciparine, Hepathrom, Lipo-Hepin, Liquaemin, Panheprin)
  • warfarin – 4-HYDROXYCOUMARIN (Coumadin) WARFARIN (Athrombin-K, Panwarfin)
  • rivaroxaban (Xarelto)
  • dabigatran (Pradaxa)
  • apixaban (Eliquis)
  • edoxaban (Savaysa)
  • enoxaparin (Lovenox)
  • fondaparinux (Arixtra)
  • ARGATROBAN BIVALIRUDIN (Angiomax)
  • DALTEPARIN (Fragmin)
  • DROTRECOGIN ALFA (ACTIVATED PROTEIN C) (Xigris)
  • HIRUDIN (Desirudin)
  • LEPIRUDIN (Refludan)
  • XIMELAGATRAN (Exanta)

ANTIDOTES

  • PHYTONADIONE (Vitamin K1)
  • PROTAMINE SULFATE AMINOCAPROIC ACID (EACA) (generic, Amicar) (in bleeding disorders)
Antiplatelet Drugs
  • ACETYL SALICYLIC ACID (aspirin) 
  • clopidogrel (Plavix)
  • dipyridamole (Persantine)
  • abciximab (Centocor)
  • EPTIFIBATIDE (Integrilin)
  • TICLOPIDINE (Ticlid)
  • TIROFIBAN (Aggrastat)

THROMBOLYTICS

  1. ANISTREPLASE (APSAC; Eminase)
  2. STREPTOKINASE (Streptase, Kabikinase)
  3. TISSUE PLASMINOGEN ACTIVATORS (tPAs):
  • ALTEPLASE (Activase),
  • RETEPLASE (Retavase),
  • TENECTEPLASE (TNKase)
  • UROKINASE (Abbokinase)

Fibrinolytic Drugs

Fibrinolytic therapy is used in selected patients with venous thromboembolism. For example, patients with massive or submassive PE can benefit from systemic or catheter-directed fibrinolytic therapy. The latter can also be used as an adjunct to anticoagulants for treatment of patients with extensive iliofemoral-vein thrombosis.

Arterial and venous thrombi are composed of platelets and fibrin, but the proportions differ.

  • Arterial thrombi are rich in platelets because of the high shear in the injured arteries. In contrast,
  • venous thrombi, which form under low shear conditions, contain relatively few platelets and are predominantly composed of fibrin and trapped red cells.
  • Because of the predominance of platelets, arterial thrombi appear white, whereas venous thrombi are red in color, reflecting the trapped red cells.

SOURCE

Advertisements

Read Full Post »


Tommy King Memorial Cardiovascular Symposium

Saturday CEUs in Boston, May 20

St. Elizabeth’s Medical Center

Boston, MA

May 20

7:30am – 3pm

PROGRAM SCHEDULE & SESSIONS

07:30am | Registration & Continental Breakfast

08:00am | Hemodynamics; Faisal Khan, MD, St. Elizabeth’s Medical Center

09:00am | Radiation Protection; Satish Nair, PhD, F.X. Masse Associates

10:00am | Break & Exhibits

10:15am | Structural Heart – TAVR Updates and Watchman

Joseph Carrozza, MD, St. Elizabeth’s Medical Center

11:15am | Road to the Cath Lab — Triggers for STEMI Activation 

Lawrence Garcia, MD, St. Elizabeth’s Medical Center

12:15pm | Lunch

01:00pm | HF Program including Cardiomems

Lana Tsao, MD & Jaclyn Mayer, NP, St. Elizabeth’s Medical Center

02:00pm | Cath Lab Pharmacology

Mirembe Reed, Pharm.D, St. Elizabeth’s Medical Center

Register now »

SOURCE

From: <acvp@getresponse.com> on behalf of “Kurt, ACVP” <kurt@acp-online.org>

Reply-To: <kurt@acp-online.org>

Date: Monday, April 24, 2017 at 2:26 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: cardiovascular symposium in Boston, May 20

Read Full Post »


First U.S. TAVR Patients Treated With Temporary Pacing Lead (Tempo Lead)

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 8/2/2017

Medtronic wins FDA nod, CE Mark for Avalus aortic valve

AUGUST 2, 2017 BY FINK DENSFORD

http://www.massdevice.com/medtronic-wins-fda-nod-ce-mark-avalus-aortic-valve/?utm_source=newsletter-170802&utm_medium=email&utm_campaign=newsletter-170802&spMailingID=11611945&spUserID=MTU0MTAzNDg3OTA5S0&spJobID=1220180538&spReportId=MTIyMDE4MDUzOAS2

 

 

BioTrace Medical, Inc., a venture backed company based in San Carlos, Calif., is dedicated to reinventing temporary pacing to improve patient outcomes and reduce hospital costs.

For more information: www.biotracemedical.com

 

FDA Clears Temporary Pacing Technology for Transcatheter Aortic Valve and EP Procedures

The BioTrace Medical Tempo temporary pacing lead is designed to reduce complications and hospital length of stay

The Tempo Lead represents the first major advance in temporary pacing since the technology was introduced decades ago,” said Susheel Kodali, M.D., director of the Heart Valve Program at the Center for Interventional Vascular Therapy at Columbia University Medical Center in New York. “As a critical component of every TAVR procedure, temporary leads are integral to successful clinical outcomes for patients. I am excited about the potential of this technology and look forward to using it in my practice.”

Results of the first-in-human study of the technology will be presented at the annual Transcatheter Cardiac Therapeutics (TCT) conference in Washington, D.C. on Sunday, Oct. 30, at 10:59 a.m. eastern time in Room 209, Level 2.

“FDA clearance is an exciting milestone for BioTrace,” said Laura Dietch, CEO of BioTrace Medical. “We are pleased to bring this important innovation to the significant and growing number of patients needing better temporary pacing options to minimize risks and life-threatening complications. We look forward to launching in select U.S. centers in the coming weeks.”

For more information: www.biotracemedical.com

SOURCE

http://www.dicardiology.com/product/fda-clears-temporary-pacing-technology-transcatheter-aortic-valve-and-ep-procedures

December 19, 2016 — BioTrace Medical Inc. announced the first commercial use of the company’s Tempo Temporary Pacing Lead since U.S. Food and Drug Administration (FDA) 510(k) clearance in October.

The first cases involved patients undergoing transcatheter aortic valve replacement (TAVR) procedures and were performed by James Harkness, M.D., interventional cardiologist, and Brian K. Whisenant, M.D., medical director of the Structural Heart Disease Program at Intermountain Medical Center in Salt Lake City, Utah, and Susheel Kodali, M.D., director of the Heart Valve Program at Columbia University Medical Center/New York Presbyterian Hospital.

BioTrace Medical’s Tempo Lead is for use in procedures in which

  • Temporary pacing is indicated, including
  • TAVR and
  • Electrophysiology (EP) procedures.

The lead is designed for secure and stable cardiac pacing with the goal of reducing complications and allowing patients to ambulate sooner after procedures.

“The Tempo Lead is designed to alleviate the risks associated with lead dislodgement and inconsistent pacing, providing a safer option for patients.”

Temporary leads are used in more than 350,000 procedures each year, a number that is growing rapidly as the population ages and TAVR becomes increasingly common. The temporary pacing lead, a small catheter with two electrodes, is placed in the right ventricle of the heart through a vein in the groin or neck. The lead is then connected to an external pacemaker allowing a physician to monitor and control a patient’s heart rate for several days.

SOURCE

http://www.dicardiology.com/content/first-us-tavr-patients-treated-temporary-pacing-lead?eid=333021707&bid=1620839

Read Full Post »


Advances and Future Directions for Transcatheter Valves – Mitral and tricuspid valve repair technologies now in development

Reporter: Aviva Lev-Ari, PhD, RN

 

Based on

http://www.dicardiology.com/article/advances-and-future-directions-transcatheter-valves

 

Read the article “First TAVR Device Receives European Approval to Treat Intermediate Risk Patients”from August 2016.

Watch the video “The Evolution of TAVR Technology.” Interview with Juan Granada, M.D., executive director and chief scientific officer of the Cardiovascular Research Foundation’s Skirball Center for Innovation, at the Transcatheter Valve Therapies 2015 meeting.

 

Watch the video “TAVR Beats Surgery — Top News From ACC.16.” Dr. Vinod Thourani, professor of surgery, Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine and a co-investigator for the PARTNER II Trial, discusses the biggest news item from ACC.16 — the Sapien 3 TAVR device performed better that surgical aortic valve replacement.

Watch the video “CoreValve Trumps Surgical Valve Replacement — TVT 2015.” Interview with Michael Reardon, M.D., professor of cardiothoracic surgery at DeBakey Heart and Vascular Center, and chairman of the patient screening committee, CoreValve U.S. pivotal trial, at the Transcatheter Valve Therapies 2015 meeting.

 

Read the article “FDA Clears Sapien XT for Valve-In-Valve Procedures.”

Read the article “FDA Expands Use of CoreValve for Aortic Valve-in-Valve Replacement.”

Transcatheter Mitral Valves are the Next Frontier

Most interventional and cardiac surgical experts say TMVR will be the next frontier in minimally invasive structural heart interventions. With the success and rapid growth of TAVR, there is an immense anticipation that TMVR will have an even greater impact in cardiology. This has translated into more than $2.5 billion being spent in the past year by vendors purchasing start-up TMVR companies, while less than 50 patients have actually been treated using these technologies, said Michael Mack, M.D., medical director, cardiovascular surgery, Baylor Health Care System and chairman of The Heart Hospital Baylor Plano Research Center.

However, the mitral valve involves much more complex anatomy than the aortic valve, so the devices, imaging for procedural planning and guidance will be much more sophisticated than what is used for TAVR. Among the challenges are: fixation of a device to the very small landing zone of the mitral annulus; avoiding the left ventricular outflow tract (LVOT); avoiding compression of the atrioventricular (AV) node; avoiding the papillary muscle and chordae tendineae; ensuring the device seals properly to avoid paravalvular regurgitation; and the device needs to be able to adapt to remodeling of the anatomy. There are more than 20 TMVR devices in development. The majority of these valves utilize a self-expanding nitinol frame that engages both sides of the native mitral valve annulus for fixation, similar to Amplatzer septal closure devices.

The companies with first-in-human TMVR implants include Tendyne, Neovasc and Edwards Lifesciences’ Fortis and Sapien XT devices. The Neovasc Tiara, Tendyne Bioprosthetic Mitral Valve and CardiAQ Valve Technologies TMVR system all have been granted FDA conditional investigational device exemption (IDE) studies.

Watch the video “Transcatheter Mitral Valve Therapies in Development.” 

Watch the video “Transcatheter Mitral Valve Repair Technologies.” An interview with Ted Feldman, M.D., FACC, MSCAI, FESC, cardiac cath lab director, Evanston Hospital, North Shore Health System, and principle investigator, Everest II MitraClip U.S. pivotal trial, at the Transcatheter Valve Therapies 2015 meeting.

 

Advancements in TAVR and TMVR Technologies at TCT 2016 

Watch the video VIDEO “Transcatheter Valve Technology Advancements at TCT 2016.” This is an interview Torsten Vahl, M.D., about advancements in transcatheter valve repair technology, including new devices for the aortic, mitral and tricuspid valves. Vahl is director of experimental and translational research and assistant professor of medicine, Columbia University Medical Center, Center for Interventional Vascular Therapy.

Watch the video “VIDEO: Transcatheter Mitral Valve Technology, Anatomical Challenges.” A discussion with Juan Granada, M.D., about transcatheter mitral valve advancements and device challenges at the Transcatheter Cardiovascular Therapeutics (TCT) 2016 annual meeting. Granada is executive director and chief scientific officer of the Cardiovascular Research Foundation’s Skirball Center for Innovation.

SOURCE

FEATURE | HEART VALVE TECHNOLOGY | NOVEMBER 12, 2015| DAVE FORNELL

Advances and Future Directions for Transcatheter Valves – Mitral and tricuspid valve repair technologies now in development

http://www.dicardiology.com/article/advances-and-future-directions-transcatheter-valves

 

Other related articles published in this Open Access Online Journal include the following:

 

Mitral Valve Repair: Who is a Patient Candidate for a Non-Ablative Fully Non-Invasive Procedure?

Justin Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/11/04/mitral-valve-repair-who-is-a-candidate-for-a-non-ablative-fully-non-invasive-procedure/

 

Read Full Post »


The presence of any Valvular Heart Disease (VHD) did not influence the comparison of Dabigatran [Pradaxa, Boehringer Ingelheim] with Warfarin

Reporter: Aviva Lev-Ari, PhD, RN

 

Event Rate and Outcome Risk, With vs Without Valvular Heart Disease

Outcome Valvular heart disease, event rate/y, % No valvular heart disease, event rate/y, % HR (95% CI)* P
Stroke, systemic embolic event 1.61 1.41 1.09 (0.88–1.33) 0.43
Major bleeding 4.36 2.84 1.32 (1.16–1.33) <0.001
Intracranial hemorrhage 0.51 0.41 1.20 (0.83–1.74) 0.32
All-cause mortality 4.45 3.67 1.09 (0.96–1.23) 0.18
*Adjusted using propensity scores

ORIGINAL RESEARCH ARTICLE

Comparison of Dabigatran versus Warfarin in Patients with Atrial Fibrillation and Valvular Heart Disease: The RE-LY Trial

Michael D. Ezekowitz, Rangadham Nagarakanti, Herbert Noack, Martina Brueckmann, Claire Litherland, Mark Jacobs, Andreas Clemens,Paul A. Reilly, Stuart J. Connolly, Salim Yusuf and Lars Wallentin

 http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020950

 

Results—There were 3950 patients with any VHD:

  • 3101 had mitral regurgitation,
  • 1179 tricuspid regurgitation,
  • 817 aortic regurgitations,
  • 471 aortic stenosis and
  • 193 mild mitral stenosis.

At baseline patients with any VHD had more

  • heart failure,
  • coronary disease,
  • renal impairment and
  • persistent atrial fibrillation.

Patients with any VHD had higher rates of

  • major bleeds (HR 1.32; 95% CI 1.16-1.5)

but similar

  • stroke or systemic embolism (SEE) rates (HR 1.09; 95% CI 0.88-1.33).

For D110 patients, major bleed rates were lower than warfarin (HR 0.73; 95% CI 0.56-0.95 with and HR 0.84; 95% CI 0.71-0.99 without VHD) and

For D150 similar to warfarin in patients with (HR 0.82; 95% CI 0.64-1.06) or without VHD (HR 0.98; 95% CI 0.83-1.15).

For D150 patients stroke/SEE rates were lower versus warfarin with (HR 0.59; 95% CI 0.37-0.93) and without VHD (HR 0.67; 95% CI 0.52-0.86) and similar to warfarin for D110 irrespective of presence of VHD (HR 0.97 CI 0.65-1.45 and 0.85 CI 0.70-1.10).

For intracranial bleeds and death rates for D150 and D110 were lower vs warfarin independent of presence of VHD.

Conclusions—The presence of any VHD did not influence the comparison of dabigatran with warfarin.

Clinical Trial Registration—URL: http://clinicaltrials.gov. Unique Identifier: NCT00262600.

SOURCES

http://circ.ahajournals.org/content/early/2016/08/05/CIRCULATIONAHA.115.020950

http://www.medscape.com/viewarticle/867482?nlid=108872_3866&src=WNL_mdplsfeat_160816_mscpedit_card&uac=93761AJ&spon=2&impID=1179558&faf=1

 

Read Full Post »


SAPIEN 3 Transcatheter Aortic Valve Replacement in High-Risk and Inoperable Patients with Severe Aortic Stenosis: One-Year Clinical Outcomes

Reporter: Aviva Lev-Ari, PhD, RN

Circulation

 

 

The registry study — the preliminary results of which were presented at the Transcatheter Cardiovascular Therapeutics meeting in 2015 — included 583 high-risk (65%) or inoperable patients (35%) who got TAVR with the Sapien 3 device between 2013 and 2014. Procedures were performed via the transfemoral (84%) or transapical/transaortic routes (16%).

On multivariable adjustment, the predictors of 1-year mortality were

  • alternative access (hazard ratio [HR] 2.06, 95% CI 1.26-3.36),
  • moderate paravalvular leak (HR 3.75, 95% CI 1.57-8.96), and
  • disabling stroke (HR 10.33, 95% CI 4.62-233.09).

“Even with the low rate of moderate paravalvular leak rate, they found an association with 1 year mortality,” commented Kappetein. “Moderate paravalvular leak is bad for a patient!”

Within 30 days, overall stroke and disabling stroke occurred at frequencies of 1.4% and 0.9%, respectively. Between 1 month and 1 year, these rates were 4.3% and 2.4%.

Généreux appeared to be at ease with the 1-year stroke rate, adding that “this reflects it being a high-risk population.”

In order to bring mortality and stroke rates even lower, he suggested that clinicians “focus on other strategies such as anticoagulation and other medical or device therapies like left atrial appendage closure.”

Nearly all patients improved enough to move out of New York Heart Association class three and four after the procedure (90.1% at baseline versus 7.7% at 1 year, P<0.0001). Self-reported quality of life similarly improved on the Kansas City Cardiomyopathy Questionnaire, with average scores rising from 46.9 to 72.4 at 1 year (P<0.0001).

“A high-risk population is difficult because patients may have mortality related to a comorbidity such as infection and heart failure. That being said, there is still room for improvement in the care of patients beyond the device choice,” Généreux said, suggesting that appropriate anticoagulation is key.

For now, “the combination of new design features of Sapien 3, procedural improvements, operator experience and improved patient selection have all contributed to a low rate of important adverse events (including stroke) and a high rate of 1-year survival in high-risk and inoperable patients with severe aortic stenosis,” Herrmann and colleagues concluded.

SOURCE

One-Year Clinical Outcomes With SAPIEN 3 Transcatheter Aortic Valve Replacement in High-Risk and Inoperable Patients With Severe Aortic Stenosis

Howard C. Herrmann, Vinod H. Thourani, Susheel K. Kodali, Raj R. Makkar, Wilson Y. Szeto, Saif Anwaruddin, Nimesh Desai, Scott Lim, S. Chris Malaisrie, Dean J. Kereiakes, Steven Ramee, Kevin L. Greason, Samir Kapadia, Vasilis Babaliaros, Rebecca T. Hahn, Philippe Pibarot,Neil J. Weissman, Jonathon Leipsic, Brian K. Whisenant, John G. Webb, Michael J. Mack and Martin B. Leon and For the PARTNER Investigators

Abstract

Background: In the initial PARTNER trial (Placement of Aortic Transcatheter Valves) of transcatheter aortic valve replacement for high-risk (HR) and inoperable patients, mortality at 1 year was 24% in HR and 31% in inoperable patients. A recent report of the 30-day outcomes with the low-profile SAPIEN 3 transcatheter aortic valve replacement system demonstrated very low rates of adverse events, but little is known about the longer-term outcomes with this device.

Methods: Between October 2013 and September 2014, 583 HR (65%) or inoperable (35%) patients were treated via the transfemoral (84%) or transapical/transaortic (16%) access route at 29 US sites. Major clinical events at 1 year were adjudicated by an independent clinical events committee, and echocardiographic results were analyzed by a core laboratory.

Results: Baseline characteristics included age of 83 years, 42% female, and median Society of Thoracic Surgeons score of 8.4%. At the 1-year follow-up, survival (all-cause) was 85.6% for all patients, 87.3% in the HR subgroup, and 82.3% in the inoperable subgroup. Survival free of all-cause and cardiovascular mortality in the transfemoral patients from the HR cohort was 87.7% and 93.3%, respectively. There was no severe paravalvular leak. Moderate paravalvular leak (2.7%) was associated with an increase in mortality at 1 year, whereas mild paravalvular leak had no significant association with mortality. Symptomatic improvement as assessed by the percentage of patients in New York Heart Association class III and IV (90.1% to 7.7% at 1 year; P<0.0001) and by Kansas City Cardiomyopathy Questionnaire overall summary score (improved from 46.9 to 72.4;P<0.0001) was marked. Multivariable predictors of 1-year mortality included alternative access, Society of Thoracic Surgeons score, and disabling stroke.

Conclusions: In this large, adjudicated registry of SAPIEN 3 HR and inoperable patients, the very low rates of important complications resulted in a strikingly low mortality rate at 1 year. Between 30 and 365 days, the incidence of moderate paravalvular aortic regurgitation did not increase, and no association between mild paravalvular leak and 1-year mortality was observed, although a small increase in disabling stroke occurred. These results, which likely reflect device iteration and procedural evolution, support the use of transcatheter aortic valve replacement as the preferred therapy in HR and inoperable patients with aortic stenosis.

Clinical Trial Registration : URL: http://www.clinicaltrials.gov. Unique identifier:NCT01314313.

SOURCE

http://circ.ahajournals.org/content/134/2/130.full

Read Full Post »


AGENDA – ICI Conference – Innovation in Cardiovascular Interventions – December 14-16, at the David InterContinental Hotel, Tel Aviv, Israel

Reporter: Aviva Lev-Ari, PhD, RN

 

1. ICI Scientific Program

ICI2014 speakers are some of the leading figures in the field. The preliminary list can be viewed at the ICI website.

ICI2014 will hold for the second time the “Wall to Wall Session – From the Great Wall of China to the Jerusalem Wall”. Click here for a glance at the 2013 program endorsed by Yanping Gao, the Chinese Ambassador in Israel.

Attendees will:

 Be exposed to promising research and new therapies in various phases of development.

 Learn from live case presentations on the impact of emerging technologies on current and future therapies.

 Gain insights from international experts speaking on important clinical topics—with an emphasis on future perspectives.

2. ICI Exhibition

The heart of the ICI Meeting is the strong International collaboration between Medicine and Industry. With an emphasis on technological developments, novel knowledge-rich technologies, and the diligent pursuit of solutions to yet unsolved problems in heart, brain and cardiovascular medicine, the ICI meeting features a State-of-the-Art Exhibition and Innovative Technology Parade.

Since 1995, the ICI exhibition is rapidly growing with more than 90 international exhibitors and sponsors, including the strongest players in the market alongside cutting edge innovative startups. ICI Exhibition is the perfect opportunity to connect and interact with the people that can affect the future of this field.

3. ICI Technology Parade

Focused on innovation, ICI provides an extensive platform for startup companies presenting their latest technologies. The Technology Parade can be a springboard for new companies with bright and creative new ideas. This is the perfect opportunity to help your business move “from idea to reality”. The Technology Parade Sessions enjoy a tremendous success in every meeting, attracting a wide variety of leading clinicians, scientists and corporate representatives. The wide spectrum of investors who will be in attendance will find the ICI Meeting a valuable forum for exposure to the development and advancement of innovative ideas in cardiology.

The ICI meeting is a tremendous opportunity to review the most innovative startups in the field of medical devices and meet in person at the B2B area. This event can be your chance to look into the latest most prominent investments opportunity. 

SOURCE

http://2014.icimeeting.com/

Conference PROGRAM

http://2014.icimeeting.com/ici-2014-program/

Read Full Post »

Older Posts »