Feeds:
Posts
Comments

Archive for the ‘Cardiomyopathy’ Category

Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners

Curator: Stephen J. Williams, Ph.D.

First please see the summary of LPBI efforts into development of inhibitors of Galectin-3 for cancer therapeutics

Mission 4: Use of Systems Biology for Design of inhibitor of Galectins as Cancer Therapeutic – Strategy and Software

The following paper in Cells describes the discovery of protein interactors of endoglin, which is recruited to membranes at the TGF-β receptor complex upon TGF-β signaling. Interesting a carbohydrate binding protein, galectin-3, and an E3-ligase, TRIM21, were found to be unique interactors within this complex.

Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells. 2019 Sep 13;8(9):1082. doi: 10.3390/cells8091082. PMID: 31540324; PMCID: PMC6769930.

Abstract

Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.

Source: https://www.mdpi.com/2073-4409/8/9/1082/htm

Endoglin is an auxiliary TGF-β co-receptor predominantly expressed in endothelial cells, which is involved in vascular development, repair, homeostasis, and disease [1,2,3,4]. Heterozygous mutations in the human ENDOGLIN gene (ENG) cause hereditary hemorrhagic telangiectasia (HHT) type 1, a vascular disease associated with nasal and gastrointestinal bleeds, telangiectases on skin and mucosa and arteriovenous malformations in the lung, liver, and brain [4,5,6]. The key role of endoglin in the vasculature is also illustrated by the fact that endoglin-KO mice die in utero due to defects in the vascular system [7]. Endoglin expression is markedly upregulated in proliferating endothelial cells involved in active angiogenesis, including the solid tumor neovasculature [8,9]. For this reason, endoglin has become a promising target for the antiangiogenic treatment of cancer [10,11,12]. Endoglin is also expressed in cancer cells where it can behave as both a tumor suppressor in prostate, breast, esophageal, and skin carcinomas [13,14,15,16] and a promoter of malignancy in melanoma and Ewing’s sarcoma [17]. Ectodomain shedding of membrane-bound endoglin may lead to a circulating form of the protein, also known as soluble endoglin (sEng) [18,19,20]. Increased levels of sEng have been found in several vascular-related pathologies, including preeclampsia, a disease of high prevalence in pregnant women which, if left untreated, can lead to serious and even fatal complications for both mother and baby [2,18,19,21]. Interestingly, several lines of evidence support a pathogenic role of sEng in the vascular system, including endothelial dysfunction, antiangiogenic activity, increased vascular permeability, inflammation-associated leukocyte adhesion and transmigration, and hypertension [18,22,23,24,25,26,27]. Because of its key role in vascular pathology, a large number of studies have addressed the structure and function of endoglin at the molecular level, in order to better understand its mechanism of action.

 Galectin-3 Interacts with Endoglin in Cells

Galectin-3 is a secreted member of the lectin family with the capacity to bind membrane glycoproteins like endoglin and is involved in the pathogenesis of many human diseases [52]. We confirmed the protein screen data for galectin-3, as evidenced by two-way co-immunoprecipitation of endoglin and galectin-3 upon co-transfection in CHO-K1 cells. As shown in Figure 1A, galectin-3 and endoglin were efficiently transfected, as demonstrated by Western blot analysis in total cell extracts. No background levels of endoglin were observed in control cells transfected with the empty vector (Ø). By contrast, galectin-3 could be detected in all samples but, as expected, showed an increased signal in cells transfected with the galectin-3 expression vector. Co-immunoprecipitation studies of these cell lysates showed that galectin-3 was present in endoglin immunoprecipitates (Figure 1B). Conversely, endoglin was also detected in galectin-3 immunoprecipitates (Figure 1C).

Cells 08 01082 g001 550

Figure 1. Protein–protein association between galectin-3 and endoglin. (AC). Co-immunoprecipitation of galectin-3 and endoglin. CHO-K1 cells were transiently transfected with pcEXV-Ø (Ø), pcEXV–HA–EngFL (Eng) and pcDNA3.1–Gal-3 (Gal3) expression vectors. (A) Total cell lysates (TCL) were analyzed by SDS-PAGE under reducing conditions, followed by Western blot (WB) analysis using specific antibodies to endoglin, galectin-3 and β-actin (loading control). Cell lysates were subjected to immunoprecipitation (IP) with anti-endoglin (B) or anti-galectin-3 (C) antibodies, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin or anti-galectin-3 antibodies, as indicated. Negative controls with an IgG2b (B) and IgG1 (C) were included. (D) Protein-protein interactions between galectin-3 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 7.3 µM recombinant human galectin-3/6xHis at the C-terminus (LGALS3), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.

Cells 08 01082 g002 550

Figure 2.Galectin-3 and endoglin co-localize in human endothelial cells. Human umbilical vein-derived endothelial cell (HUVEC) monolayers were fixed with paraformaldehyde, permeabilized with Triton X-100, incubated with the mouse mAb P4A4 anti-endoglin, washed, and incubated with a rabbit polyclonal anti-galectin-3 antibody (PA5-34819). Galectin-3 and endoglin were detected by immunofluorescence upon incubation with Alexa 647 goat anti-rabbit IgG (red staining) and Alexa 488 goat anti-mouse IgG (green staining) secondary antibodies, respectively. (A) Single staining of galectin-3 (red) and endoglin (green) at the indicated magnifications. (B) Merge images plus DAPI (nuclear staining in blue) show co-localization of galectin-3 and endoglin (yellow color). Representative images of five different experiments are shown.

Endoglin associates with the cullin-type E3 ligase TRIM21
Cells 08 01082 g003 550

Figure 3.Protein–protein association between TRIM21 and endoglin. (AE) Co-immunoprecipitation of TRIM21 and endoglin. A,B. HUVEC monolayers were lysed and total cell lysates (TCL) were subjected to SDS-PAGE under reducing (for TRIM21 detection) or nonreducing (for endoglin detection) conditions, followed by Western blot (WB) analysis using antibodies to endoglin, TRIM21 or β-actin (A). HUVECs lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or negative control antibodies, followed by WB analysis with anti-endoglin (B). C,D. CHO-K1 cells were transiently transfected with pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (E) or pcDNA3.1–HA–hTRIM21 (T) expression vectors, as indicated. Total cell lysates (TCL) were subjected to SDS-PAGE under nonreducing conditions and WB analysis using specific antibodies to endoglin, TRIM21, and β-actin (C). Cell lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or anti-endoglin antibodies, followed by SDS-PAGE under reducing (upper panel) or nonreducing (lower panel) conditions and WB analysis with anti-TRIM21 or anti-endoglin antibodies. Negative controls of appropriate IgG were included (D). E. CHO-K1 cells were transiently transfected with pcDNA3.1–HA–hTRIM21 and pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (FL; full-length), pDisplay–HA–EngEC (EC; cytoplasmic-less) or pDisplay–HA–EngTMEC (TMEC; cytoplasmic-less) expression vectors, as indicated. Cell lysates were subjected to immunoprecipitation with anti-TRIM21, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin antibodies, as indicated. The asterisk indicates the presence of a nonspecific band. Mr, molecular reference; Eng, endoglin; TRIM, TRIM21. (F) Protein–protein interactions between TRIM21 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 5.4 µM recombinant human TRIM21/6xHis at the N-terminus (R052), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.

Table 1. Human protein-array analysis of endoglin interactors1.

Accession #Protein NameCellular Compartment
NM_172160.1Potassium voltage-gated channel, shaker-related subfamily, beta member 1 (KCNAB1), transcript variant 1Plasma membrane
Q14722
NM_138565.1Cortactin (CTTN), transcript variant 2Plasma membrane
Q14247
BC036123.1Stromal membrane-associated protein 1 (SMAP1)Plasma membrane
Q8IYB5
NM_173822.1Family with sequence similarity 126, member B (FAM126B)Plasma membrane, cytosol
Q8IXS8
BC047536.1Sciellin (SCEL)Plasma membrane, extracellular or secreted
O95171
BC068068.1Galectin-3Plasma membrane, mitochondrion, nucleus, extracellular or secreted
P17931
BC001247.1Actin-binding LIM protein 1 (ABLIM1)Cytoskeleton
O14639
NM_198943.1Family with sequence similarity 39, member B (FAM39B)Endosome, cytoskeleton
Q6VEQ5
NM_005898.4Cell cycle associated protein 1 (CAPRIN1), transcript variant 1Cytosol
Q14444
BC002559.1YTH domain family, member 2 (YTHDF2)Nucleus, cytosol
Q9Y5A9
NM_003141.2Tripartite motif-containing 21 (TRIM21)Nucleus, cytosol
P19474
BC025279.1Scaffold attachment factor B2 (SAFB2)Nucleus
Q14151
BC031650.1Putative E3 ubiquitin-protein ligase SH3RF2Nucleus
Q8TEC5
BC034488.2ATP-binding cassette, sub-family F (GCN20), member 1 (ABCF1)Nucleus
Q8NE71
BC040946.1Spliceosome-associated protein CWC15 homolog (HSPC148)Nucleus
Q9P013
NM_003609.2HIRA interacting protein 3 (HIRIP3)Nucleus
Q9BW71
NM_005572.1Lamin A/C (LMNA), transcript variant 2Nucleus
P02545
NM_006479.2RAD51 associated protein 1 (RAD51AP1)Nucleus
Q96B01
NM_014321.2Origin recognition complex, subunit 6 like (yeast) (ORC6L)Nucleus
Q9Y5N6
NM_015138.2RNA polymerase-associated protein RTF1 homolog (RTF1)Nucleus
Q92541
NM_032141.1Coiled-coil domain containing 55 (CCDC55), transcript variant 1Nucleus
Q9H0G5
BC012289.1Protein PRRC2B, KIAA0515Data not available
Q5JSZ5

1 Microarrays containing over 9000 unique human proteins were screened using recombinant sEng as a probe. Protein interactors showing the highest scores (Z-score ≥2.0) are listed. GeneBank (https://www.ncbi.nlm.nih.gov/genbank/) and UniProtKB (https://www.uniprot.org/help/uniprotkb) accession numbers are indicated with a yellow or green background, respectively. The cellular compartment of each protein was obtained from the UniProtKB webpage. Proteins selected for further studies (TRIM21 and galectin-3) are indicated in bold type with blue background.

Note: the following are from NCBI Genbank and Genecards on TRIM21

 From Genbank: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=6737

TRIM21 tripartite motif containing 21 [ Homo sapiens (human) ]

Gene ID: 6737, updated on 6-Sep-2022

Summary

Official Symbol TRIM21provided by HGNC Official Full Name tripartite motif containing 21provided by HGNC Primary source HGNC:HGNC:11312 See related Ensembl:ENSG00000132109MIM:109092;AllianceGenome:HGNC:11312 Gene type protein coding RefSeq status REVIEWED Organism Homo sapiens Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo Also known as SSA; RO52; SSA1; RNF81; Ro/SSA Summary This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008] Expression Ubiquitous expression in spleen (RPKM 15.5), appendix (RPKM 13.2) and 24 other tissues See more Orthologs mouseall NEW Try the new Gene table
Try the new Transcript table

Genomic context

See TRIM21 in Genome Data Viewer Location:   11p15.4 Exon count:   7

Annotation releaseStatusAssemblyChrLocation
110currentGRCh38.p14 (GCF_000001405.40)11NC_000011.10 (4384897..4393702, complement)
110currentT2T-CHM13v2.0 (GCF_009914755.1)11NC_060935.1 (4449988..4458819, complement)
105.20220307previous assemblyGRCh37.p13 (GCF_000001405.25)11NC_000011.9 (4406127..4414932, complement)

Chromosome 11 – NC_000011.10Genomic Context describing neighboring genes

Bibliography

Related articles in PubMed

  1. TRIM21 inhibits the osteogenic differentiation of mesenchymal stem cells by facilitating K48 ubiquitination-mediated degradation of Akt.Xian J, et al. Exp Cell Res, 2022 Mar 15. PMID 35051432
  2. A Promising Intracellular Protein-Degradation Strategy: TRIMbody-Away Technique Based on Nanobody Fragment.Chen G, et al. Biomolecules, 2021 Oct 14. PMID 34680146, Free PMC Article
  3. Induced TRIM21 ISGylation by IFN-β enhances p62 ubiquitination to prevent its autophagosome targeting.Jin J, et al. Cell Death Dis, 2021 Jul 13. PMID 34257278, Free PMC Article
  4. TRIM21 Polymorphisms are associated with Susceptibility and Clinical Status of Oral Squamous Cell Carcinoma patients.Chuang CY, et al. Int J Med Sci, 2021. PMID 34220328, Free PMC Article
  5. TRIM21 inhibits porcine epidemic diarrhea virus proliferation by proteasomal degradation of the nucleocapsid protein.Wang H, et al. Arch Virol, 2021 Jul. PMID 33900472, Free PMC Article

From GeneCard:https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRIM21

Entrez Gene Summary for TRIM21 Gene

  • This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]

GeneCards Summary for TRIM21 Gene

TRIM21 (Tripartite Motif Containing 21) is a Protein Coding gene. Diseases associated with TRIM21 include Heart Block, Congenital and Sjogren Syndrome. Among its related pathways are Cytosolic sensors of pathogen-associated DNA and KEAP1-NFE2L2 pathway. Gene Ontology (GO) annotations related to this gene include identical protein binding and ligase activity. An important paralog of this gene is TRIM6.

UniProtKB/Swiss-Prot Summary for TRIM21 Gene

E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2. Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination. Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes. A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome. Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling. Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway. Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages. Plays a role in the regulation of the cell cycle progression. Enhances the decapping activity of DCP2. Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules. At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO/SSA proteins have been identified. The common feature of these proteins is their ability to bind HY RNAs.2. Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma. Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy. Acts as an autophagy receptor for the degradation of IRF3, hence attenuating type I interferon (IFN)-dependent immune responses (PubMed:26347139162978621631662716472766168805111802269418361920186413151884514219675099). Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through ‘Lys-63’-linked ubiquitination of NMI (PubMed:26342464). ( RO52_HUMAN,P19474 )

Molecular function for TRIM21 Gene according to UniProtKB/Swiss-Prot

Function:

  • E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2.
    Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination.
    Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes.
    A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome.
    Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling.
    Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.
    Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway.
    Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages.
    Plays a role in the regulation of the cell cycle progression.

Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners

Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells. 2019 Sep 13;8(9):1082. doi: 10.3390/cells8091082. PMID: 31540324; PMCID: PMC6769930.

Abstract

Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.
 
 
Endoglin is an auxiliary TGF-β co-receptor predominantly expressed in endothelial cells, which is involved in vascular development, repair, homeostasis, and disease [1,2,3,4]. Heterozygous mutations in the human ENDOGLIN gene (ENG) cause hereditary hemorrhagic telangiectasia (HHT) type 1, a vascular disease associated with nasal and gastrointestinal bleeds, telangiectases on skin and mucosa and arteriovenous malformations in the lung, liver, and brain [4,5,6]. The key role of endoglin in the vasculature is also illustrated by the fact that endoglin-KO mice die in utero due to defects in the vascular system [7]. Endoglin expression is markedly upregulated in proliferating endothelial cells involved in active angiogenesis, including the solid tumor neovasculature [8,9]. For this reason, endoglin has become a promising target for the antiangiogenic treatment of cancer [10,11,12]. Endoglin is also expressed in cancer cells where it can behave as both a tumor suppressor in prostate, breast, esophageal, and skin carcinomas [13,14,15,16] and a promoter of malignancy in melanoma and Ewing’s sarcoma [17]. Ectodomain shedding of membrane-bound endoglin may lead to a circulating form of the protein, also known as soluble endoglin (sEng) [18,19,20]. Increased levels of sEng have been found in several vascular-related pathologies, including preeclampsia, a disease of high prevalence in pregnant women which, if left untreated, can lead to serious and even fatal complications for both mother and baby [2,18,19,21]. Interestingly, several lines of evidence support a pathogenic role of sEng in the vascular system, including endothelial dysfunction, antiangiogenic activity, increased vascular permeability, inflammation-associated leukocyte adhesion and transmigration, and hypertension [18,22,23,24,25,26,27]. Because of its key role in vascular pathology, a large number of studies have addressed the structure and function of endoglin at the molecular level, in order to better understand its mechanism of action.
 

 Galectin-3 Interacts with Endoglin in Cells

Galectin-3 is a secreted member of the lectin family with the capacity to bind membrane glycoproteins like endoglin and is involved in the pathogenesis of many human diseases [52]. We confirmed the protein screen data for galectin-3, as evidenced by two-way co-immunoprecipitation of endoglin and galectin-3 upon co-transfection in CHO-K1 cells. As shown in Figure 1A, galectin-3 and endoglin were efficiently transfected, as demonstrated by Western blot analysis in total cell extracts. No background levels of endoglin were observed in control cells transfected with the empty vector (Ø). By contrast, galectin-3 could be detected in all samples but, as expected, showed an increased signal in cells transfected with the galectin-3 expression vector. Co-immunoprecipitation studies of these cell lysates showed that galectin-3 was present in endoglin immunoprecipitates (Figure 1B). Conversely, endoglin was also detected in galectin-3 immunoprecipitates (Figure 1C).
Figure 1. Protein–protein association between galectin-3 and endoglin. (AC). Co-immunoprecipitation of galectin-3 and endoglin. CHO-K1 cells were transiently transfected with pcEXV-Ø (Ø), pcEXV–HA–EngFL (Eng) and pcDNA3.1–Gal-3 (Gal3) expression vectors. (A) Total cell lysates (TCL) were analyzed by SDS-PAGE under reducing conditions, followed by Western blot (WB) analysis using specific antibodies to endoglin, galectin-3 and β-actin (loading control). Cell lysates were subjected to immunoprecipitation (IP) with anti-endoglin (B) or anti-galectin-3 (C) antibodies, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin or anti-galectin-3 antibodies, as indicated. Negative controls with an IgG2b (B) and IgG1 (C) were included. (D) Protein-protein interactions between galectin-3 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 7.3 µM recombinant human galectin-3/6xHis at the C-terminus (LGALS3), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.
Figure 2. Galectin-3 and endoglin co-localize in human endothelial cells. Human umbilical vein-derived endothelial cell (HUVEC) monolayers were fixed with paraformaldehyde, permeabilized with Triton X-100, incubated with the mouse mAb P4A4 anti-endoglin, washed, and incubated with a rabbit polyclonal anti-galectin-3 antibody (PA5-34819). Galectin-3 and endoglin were detected by immunofluorescence upon incubation with Alexa 647 goat anti-rabbit IgG (red staining) and Alexa 488 goat anti-mouse IgG (green staining) secondary antibodies, respectively. (A) Single staining of galectin-3 (red) and endoglin (green) at the indicated magnifications. (B) Merge images plus DAPI (nuclear staining in blue) show co-localization of galectin-3 and endoglin (yellow color). Representative images of five different experiments are shown.
  
Endoglin associates with the cullin-type E3 ligase TRIM21
 
Figure 3. Protein–protein association between TRIM21 and endoglin. (AE) Co-immunoprecipitation of TRIM21 and endoglin. A,B. HUVEC monolayers were lysed and total cell lysates (TCL) were subjected to SDS-PAGE under reducing (for TRIM21 detection) or nonreducing (for endoglin detection) conditions, followed by Western blot (WB) analysis using antibodies to endoglin, TRIM21 or β-actin (A). HUVECs lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or negative control antibodies, followed by WB analysis with anti-endoglin (B). C,D. CHO-K1 cells were transiently transfected with pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (E) or pcDNA3.1–HA–hTRIM21 (T) expression vectors, as indicated. Total cell lysates (TCL) were subjected to SDS-PAGE under nonreducing conditions and WB analysis using specific antibodies to endoglin, TRIM21, and β-actin (C). Cell lysates were subjected to immunoprecipitation (IP) with anti-TRIM21 or anti-endoglin antibodies, followed by SDS-PAGE under reducing (upper panel) or nonreducing (lower panel) conditions and WB analysis with anti-TRIM21 or anti-endoglin antibodies. Negative controls of appropriate IgG were included (D). E. CHO-K1 cells were transiently transfected with pcDNA3.1–HA–hTRIM21 and pDisplay–HA–Mock (Ø), pDisplay–HA–EngFL (FL; full-length), pDisplay–HA–EngEC (EC; cytoplasmic-less) or pDisplay–HA–EngTMEC (TMEC; cytoplasmic-less) expression vectors, as indicated. Cell lysates were subjected to immunoprecipitation with anti-TRIM21, followed by SDS-PAGE under reducing conditions and WB analysis with anti-endoglin antibodies, as indicated. The asterisk indicates the presence of a nonspecific band. Mr, molecular reference; Eng, endoglin; TRIM, TRIM21. (F) Protein–protein interactions between TRIM21 and endoglin using Bio-layer interferometry (BLItz). The Ni–NTA biosensors tips were loaded with 5.4 µM recombinant human TRIM21/6xHis at the N-terminus (R052), and protein binding was measured against 0.1% BSA in PBS (negative control) or 4.1 µM soluble endoglin (sEng). Kinetic sensorgrams were obtained using a single channel ForteBioBLItzTM instrument.
 
Table 1. Human protein-array analysis of endoglin interactors1.
Accession # Protein Name Cellular Compartment
NM_172160.1 Potassium voltage-gated channel, shaker-related subfamily, beta member 1 (KCNAB1), transcript variant 1 Plasma membrane
Q14722
NM_138565.1 Cortactin (CTTN), transcript variant 2 Plasma membrane
Q14247
BC036123.1 Stromal membrane-associated protein 1 (SMAP1) Plasma membrane
Q8IYB5
NM_173822.1 Family with sequence similarity 126, member B (FAM126B) Plasma membrane, cytosol
Q8IXS8
BC047536.1 Sciellin (SCEL) Plasma membrane, extracellular or secreted
O95171
BC068068.1 Galectin-3 Plasma membrane, mitochondrion, nucleus, extracellular or secreted
P17931
BC001247.1 Actin-binding LIM protein 1 (ABLIM1) Cytoskeleton
O14639
NM_198943.1 Family with sequence similarity 39, member B (FAM39B) Endosome, cytoskeleton
Q6VEQ5
NM_005898.4 Cell cycle associated protein 1 (CAPRIN1), transcript variant 1 Cytosol
Q14444
BC002559.1 YTH domain family, member 2 (YTHDF2) Nucleus, cytosol
Q9Y5A9
NM_003141.2 Tripartite motif-containing 21 (TRIM21) Nucleus, cytosol
P19474
BC025279.1 Scaffold attachment factor B2 (SAFB2) Nucleus
Q14151
BC031650.1 Putative E3 ubiquitin-protein ligase SH3RF2 Nucleus
Q8TEC5
BC034488.2 ATP-binding cassette, sub-family F (GCN20), member 1 (ABCF1) Nucleus
Q8NE71
BC040946.1 Spliceosome-associated protein CWC15 homolog (HSPC148) Nucleus
Q9P013
NM_003609.2 HIRA interacting protein 3 (HIRIP3) Nucleus
Q9BW71
NM_005572.1 Lamin A/C (LMNA), transcript variant 2 Nucleus
P02545
NM_006479.2 RAD51 associated protein 1 (RAD51AP1) Nucleus
Q96B01
NM_014321.2 Origin recognition complex, subunit 6 like (yeast) (ORC6L) Nucleus
Q9Y5N6
NM_015138.2 RNA polymerase-associated protein RTF1 homolog (RTF1) Nucleus
Q92541
NM_032141.1 Coiled-coil domain containing 55 (CCDC55), transcript variant 1 Nucleus
Q9H0G5
BC012289.1 Protein PRRC2B, KIAA0515 Data not available
Q5JSZ5
1 Microarrays containing over 9000 unique human proteins were screened using recombinant sEng as a probe. Protein interactors showing the highest scores (Z-score ≥2.0) are listed. GeneBank (https://www.ncbi.nlm.nih.gov/genbank/) and UniProtKB (https://www.uniprot.org/help/uniprotkb) accession numbers are indicated with a yellow or green background, respectively. The cellular compartment of each protein was obtained from the UniProtKB webpage. Proteins selected for further studies (TRIM21 and galectin-3) are indicated in bold type with blue background.
  

Note: the following are from NCBI Genbank and Genecards on TRIM21

TRIM21 tripartite motif containing 21 [ Homo sapiens (human) ]

Gene ID: 6737, updated on 6-Sep-2022

Summary
Official Symbol
TRIM21provided by HGNC
Official Full Name
tripartite motif containing 21provided by HGNC
Primary source
HGNC:HGNC:11312
See related
Ensembl:ENSG00000132109 MIM:109092; AllianceGenome:HGNC:11312
Gene type
protein coding
RefSeq status
REVIEWED
Organism
Homo sapiens
Lineage
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo
Also known as
SSA; RO52; SSA1; RNF81; Ro/SSA
Summary
This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]
Expression
Ubiquitous expression in spleen (RPKM 15.5), appendix (RPKM 13.2) and 24 other tissues See more
Orthologs
NEW
Try the new Gene table
Try the new Transcript table
Genomic context
 
See TRIM21 in Genome Data Viewer
Location:
11p15.4
Exon count:
7
Annotation release Status Assembly Chr Location
110 current GRCh38.p14 (GCF_000001405.40) 11 NC_000011.10 (4384897..4393702, complement)
110 current T2T-CHM13v2.0 (GCF_009914755.1) 11 NC_060935.1 (4449988..4458819, complement)
105.20220307 previous assembly GRCh37.p13 (GCF_000001405.25) 11 NC_000011.9 (4406127..4414932, complement)

Chromosome 11 – NC_000011.10Genomic Context describing neighboring genes

Neighboring gene olfactory receptor family 52 subfamily B member 4 Neighboring gene olfactory receptor family 52 subfamily B member 3 pseudogene Neighboring gene olfactory receptor family 51 subfamily R member 1 pseudogene Neighboring gene olfactory receptor family 52 subfamily P member 2 pseudogene

 

Entrez Gene Summary for TRIM21 Gene

  • This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The encoded protein is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus. RoSSA interacts with autoantigens in patients with Sjogren syndrome and systemic lupus erythematosus. Alternatively spliced transcript variants for this gene have been described but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]

GeneCards Summary for TRIM21 Gene

TRIM21 (Tripartite Motif Containing 21) is a Protein Coding gene. Diseases associated with TRIM21 include Heart Block, Congenital and Sjogren Syndrome. Among its related pathways are Cytosolic sensors of pathogen-associated DNA and KEAP1-NFE2L2 pathway. Gene Ontology (GO) annotations related to this gene include identical protein binding and ligase activity. An important paralog of this gene is TRIM6.

UniProtKB/Swiss-Prot Summary for TRIM21 Gene

E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2. Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination. Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes. A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome. Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling. Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway. Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages. Plays a role in the regulation of the cell cycle progression. Enhances the decapping activity of DCP2. Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules. At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO/SSA proteins have been identified. The common feature of these proteins is their ability to bind HY RNAs.2. Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma. Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy. Acts as an autophagy receptor for the degradation of IRF3, hence attenuating type I interferon (IFN)-dependent immune responses (PubMed:26347139162978621631662716472766168805111802269418361920186413151884514219675099). Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through ‘Lys-63’-linked ubiquitination of NMI (PubMed:26342464). ( RO52_HUMAN,P19474 )

Molecular function for TRIM21 Gene according to UniProtKB/Swiss-Prot

Function:
  • E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2.
    Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination.
    Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes.
    A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B (‘Thr-187’ phosphorylated-form), thereby promoting its degradation by the proteasome.
    Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling.
    Negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3.
    Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway.
    Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages.
    Plays a role in the regulation of the cell cycle progression.

Other Articles in this Open Access Scientific Journal on Galectins and Proteosome Include

Synthetic Biology Software for Drug Design in Glycobiology Internship

AI enabled Drug Discovery and Development: The Challenges and the Promise

Cell Death Pathway Insights

Ubiquitin researchers win Nobel

Read Full Post »

TricValve Transcatheter Bicaval Valves System – Interventional cardiologists at Cleveland Clinic have successfully completed the first implantation in North America

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 7/22/2022

Cardiothoracic surgeons at UC San Francisco performed the first robotically assisted mitral valve prolapse surgery in San Francisco.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2022/07/22/cardiothoracic-surgeons-at-uc-san-francisco-performed-the-first-robotically-assisted-mitral-valve-prolapse-surgery-in-san-francisco/

 

The Patient for this historic procedure:

An 82-year-old man presenting with severe symptomatic tricuspid regurgitation (TR) and right heart failure (RHF).

Expert Opinion: The Voice of Dr. Justin D. Pearlman, MD, PhD, FACC

The TricValve addresses the problem of severe ìncompetance of the tricuspid valve with a relatively simple procedure.

Instead of the challenge of replacing the defective valve, a catheter procedùre places valves at the two venous intake locations, the superior and ìnferior vena cava. A valve at the superior vena cava entrance to the right atrium occurs occasionally in nature, but is usually absent or fenestrated, covering the medial end if the crista supraventricularis.

A similar termed valve is occasionally found in nature on the inferior vena cava. These supernumerary valves can arrest back flow of pressure and volume from the right atrium to the upper and lower venous systems, and alleviate in particular congestion of the liver.

Normally the right atrial pressure is low, in which case this would offer no significant advantage for reproductive success natural selection to offset potential interference with blood flow into the right atrium that might promote thrombosis [Folia Morphology Morphology 66(4):303-6, MRuso].

However, in a setting of right heart failure, such as occurs from pulmonary hypertension, the tricuspid valve often becomes incompetent, and placement of the pair of vena cava valves can alleviate upstream consequences, albeit at the cost of risk of thrombosis and future impediment to other future procedures such as ablation of supraventricular arrhythmia.

The vena cava valves placed by catheter at the Cleveland Clinic helped an 80 year old man alleviate his pressing issue of hepatic congestion. Unlike a replacement tricuspid valve this procedure does not alleviate high pressures dilatìng the right atrium. Instead, it can worsen that problem.

The CLASP II TR trial is investigating the Edwards PASCAL transcatheter repair system [CLASP II TR, Edwards Lifesciences Corp, NIH NCT 0497145]

Survival data for surgìcal tricuspid valve replacements reported 37+-10 percent ten year survival, with average all cause survival of just 8.5 years [Z HIscan, Euro J CT Surgery 32(2) Aug 2007]. None-the‐less,  comparison of patients with vs without intervention for incompetance of the trìcuspid valve favored mechanical intervention [G Dreyfus Ann Thorac Surg 49:706-11,1990, D Adams, JACC 65:1931-8, 2015]. Time will tell which interventìon will prevail, and when these catheter alternatives to open chest surgery should be deployed.

The first implantation in North America: TricValve Transcatheter Bicaval Valves System

The structural heart procedure occurred in February 2022.

Rishi Puri, MD, PhD, an interventional cardiologist with Cleveland Clinic, and Samir Kapadia, MD, chair of cardiovascular medicine at Cleveland Clinic, performed the procedure. Puri has years of experience with the TricValve system, participating in a thorough analysis of its safety and effectiveness in 2021.

The TricValve system features two biological valves designed to be implanted via femoral vein access into the patient’s superior vena cava and inferior vena cava. This allows a therapy without impacting the patient’s native tricuspid valve. It is available in multiple sizes, allowing cardiologists to choose the best option for each individual patient.

Cleveland Clinic’s statement detailing the successful procedure notes that patients with severe TR and RHF have typically had limited treatment options. Tricuspid valve surgery is associated with significant risks, for instance, and prescribing diuretics is problematic when the patient also presents with kidney problems.

“TricValve can potentially provide an effective and low-risk solution for many patients who currently have no treatment options,” Puri said, adding that the workflow is quite similar to transcatheter aortic valve replacement.

The TricValve Transcatheter Bicaval Valves System was developed by P+F Products + Features GmbH, a healthcare technology company based out of Vienna, Austria. The solution was granted the FDA’s Breakthrough Device designation in December 2020, but it has still not gained full FDA approval.

This procedure was completed under a compassionate-use clearance from the FDA.

Image Source:

https://www.cardiovascularbusiness.com/topics/structural-heart-disease/interventional-cardiologists-complete-first-heart-procedure-its?utm_source=newsletter&utm_medium=cvb_news

Related Structural Heart Disease Content:

The latest data on mitral valve infective endocarditis after TAVR

VIDEO: TAVR durability outperforms surgical valves

How the continued rise of TAVR has impacted SAVR outcomes

VIDEO: Pascal effective in transcatheter repair of tricuspid valve regurgitation

VIDEO: MitraClip vs. surgical mitral valve replacement

Older LAAO patients, especially women, face a higher risk of complications

RELATED ARTICLES ON TAVR, STRUCTURAL HEART DISEASE, CATH LAB

SOURCE

https://www.cardiovascularbusiness.com/topics/structural-heart-disease/interventional-cardiologists-complete-first-heart-procedure-its?utm_source=newsletter&utm_medium=cvb_news

Other related articles published in this Open Access Online Scientific Journal include the following:

https://pharmaceuticalintelligence.com/?s=Valve

The LINK, above will take the e-Reader to:

  • 247 articles on HUMAN HEART VALVE-RELATED REPAIR Procedures

 

Our book on Cardiac Repair Procedures

 

https://www.amazon.com/dp/B07MKHDBHF

 

Read Full Post »

First single-course ‘curative’ CRISPR Shot by Intellia rivals Alnylam, Ionis and Pfizer

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 2/23/2023

As Novartis pulls back from legacy sickle cell program, Intellia CEO calls the market ‘wide open’

Intellia announced in its fourth-quarter earnings report that Novartis had ended development of sickle cell treatment OTQ923/HIX763. (Getty Images)

Novartis will no longer develop an ex vivo sickle cell disease program that was part of an older deal with Intellia, and the gene editing biotech’s CEO John Leonard, M.D., thinks he knows why.

“We’ve always believed that the future lies with the in vivo approaches, and that’s been a focus of the work that we do,” Leonard said. “I’m sure they looked at the ex vivo space and may have had some of the same realizations that we had some years ago.”

Leonard, of course, said he wasn’t completely sure why Novartis opted to cut the program, but noted that the Big Pharma is undergoing a broad pipeline reorganization.

Novartis confirmed just that in an emailed statement to Fierce Biotech, saying that the program was discontinued for strategic reasons. The overall partnership with Intellia remains intact, however, the spokesperson said.

Intellia announced in its fourth-quarter earnings report Thursday that the Swiss pharma ended development of OTQ923/HIX763 this month.

The therapy uses autologous, ex vivo, CRISPR-edited hematopoietic stem cells to target fetal hemoglobin for treating sickle cell disease. Novartis initiated dosing on a phase 1/2 trial for the Intellia-partnered program in 2021.

Intellia has both types of candidate in its pipeline, but the in vivo list is longer and more advanced, with NTLA-2001 in transthyretin (ATTR) amyloidosis leading the pack.

Novartis and Intellia have had a cell therapy partnership since January 2015, which was three months after Intellia launched from Atlas Venture and Caribou Biosciences. The agreement was revised in 2018 to expand to ex vivo development of cell therapies using certain ocular stem cells. At that time, Intellia received a $10 million payment, but other financial details of the agreement have not been disclosed. Novartis gained the rights to opt in on one or more programs, while Intellia earned the right to use the pharma’s lipid nanoparticle technology for all genome editing applications in both in vivo and ex vivo settings.

 SOURCE

https://www.fiercebiotech.com/biotech/novartis-pulls-back-legacy-sickle-cell-program-intellia-ceo-calls-market-wide-open

Novartis plots Precision attack on sickle cell, paying $75M and putting up $1.4B in biobucks to form in vivo gene editing pact

Intellia, working with its partner Regeneron, has shown over the past year that CRISPR/Cas9 in vivo gene editing can cause high, seemingly durable levels of gene knockdown in humans. While questions about the Intellia data, and the concept more broadly, remain unanswered, there is now early evidence that the approach may be effective and, as importantly, safe. Precision is one of a clutch of companies barreling toward the clinic in the wake of Intellia, and the potential of its Arcus platform to provide greater precision and versatility than CRISPR/Cas9 and zinc finger nuclease has now attracted a suitor.

To add to its in vivo capabilities, Novartis is set to pay $50 million in cash to partner with Precision. The deal also features a $25 million equity investment priced at $2.01 per share, a 20% premium over the recent average for the stock, as well as up to $1.4 billion in milestones, research funding and royalties ranging from the mid-single-digit to low-double-digit percentages.

@@@@

Intellia to kick-start first single-course ‘curative’ CRISPR shot, as it hopes to beat rivals Alnylam, Ionis and Pfizer

It’s been a good year for Intellia: One of its founders, Jennifer Doudna, Ph.D., nabbed the Nobel Prize in Chemistry for her CRISPR research.

Now, the biotech she helped build is putting that to work, saying it now plans the world’s first clinical trial for a single-course therapy that “potentially halts and reverses” a condition known as hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN).

This genetic disorder occurs when a person is born with a specific DNA mutation in the TTR gene, which causes the liver to produce a protein called transthyretin (TTR) in a misfolded form and build up in the body.

hATTR can manifest as polyneuropathy (hATTR-PN), which can lead to nerve damage, or cardiomyopathy (hATTR-CM), which involves heart muscle disease that can lead to heart failure.

This disorder has seen a lot of interest in recent years, with an RNAi approach from Alnylam seeing an approval for Onpattro a few years back, specifically for hATTR in adults with damage to peripheral nerves.

Ionis Pharmaceuticals and its rival RNAi drug Tegsedi also saw an approval in 2018 for a similar indication.

They both battle with Pfizer’s older med tafamidis, which has been approved in Europe for years in polyneuropathy, and the fight could spread to the U.S. soon.

The drug, now marketed as Vyndaqel and Vyndamax, snatched up an FDA nod last May to treat both hereditary and wild-type ATTR patients with a heart condition called cardiomyopathy.

While coming into an increasingly crowed R&D area, Intellia is looking for a next-gen approach, and has been given the go-ahead by regulators ion the U.K, to start a phase 1 this year.

The idea is for Intellia’s candidate NTLA-2001, which is also partnered with Regeneron, to go beyond its rivals and be the first curative treatment for ATTR.

By applying the company’s in vivo liver knockout technology, NTLA-2001 allows for the possibility of lifelong transthyretin (TTR) protein reduction after a single course of treatment. If this works, this could in essence cure patients of the their disease.

The 38-patient is set to start by year’s end.

“Starting our global NTLA-2001 Phase 1 trial for ATTR patients is a major milestone in Intellia’s mission to develop medicines to cure severe and life-threatening diseases,” said Intellia’s president and chief John Leonard, M.D.

“Our trial is the first step toward demonstrating that our therapeutic approach could have a permanent effect, potentially halting and reversing all forms of ATTR. Once we have established safety and the optimal dose, our goal is to expand this study and rapidly move to pivotal studies, in which we aim to enroll both polyneuropathy and cardiomyopathy patients.”

SOURCE

https://www.fiercebiotech.com/biotech/intellia-to-kickstart-first-single-course-curative-crispr-shot-as-it-hopes-to-beat-rivals

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Familial transthyretin amyloid polyneuropathy

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/06/10/familial-transthyretin-amyloid-polyneuropathy/

 

Stabilizers that prevent transthyretin-mediated cardiomyocyte amyloidotic toxicity

Reporter and curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/12/02/stabilizers-that-prevent-transthyretin-mediated-cardiomyocyte-amyloidotic-toxicity/

 

Transthyretin amyloid cardiomyopathy (ATTR-CM): U.S. FDA APPROVES VYNDAQEL® AND VYNDAMAX™ for this Rare and Fatal Disease

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/10/29/transthyretin-amyloid-cardiomyopathy-attr-cm-u-s-fda-approves-vyndaqel-and-vyndamax-for-this-rare-and-fatal-disease/

 

Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic, ONPATTRO™ (patisiran) for the Treatment of the Polyneuropathy of Hereditary Transthyretin-Mediated Amyloidosis in Adults

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/08/13/alnylam-announces-first-ever-fda-approval-of-an-rnai-therapeutic-onpattro-patisiran-for-the-treatment-of-the-polyneuropathy-of-hereditary-transthyretin-mediated-amyloidosis-in-adults/

 

 

Read Full Post »

Left Ventricular Volume Reduction and Reshaping as a Treatment Option for Heart Failure

Reporter: Aviva Lev-Ari, PhD, RN

 

Left Ventricular Remodeling and Its Reversal

When the myocardium is subjected to abnormal mechanical and neurohormonal stresses, left ventricular remodeling ensues with a progression of structural, cellular, molecular, metabolic, and functional changes.

In chronic heart failure with reduced ejection fraction, this remodeling affects the left ventricle with consequences that include ventricular dilation, transition of the chamber shape from elliptical to spherical, and the shifting of papillary muscles and mitral valve apparatus into abnormal positions. Ironically, while remodeling is an outgrowth of the initial hemodynamic and metabolic insults that lead to heart failure, it is also self-propagating, contributing to the progressive loss of ventricular function over time.

In the July 20 online issue of Structural Heart, heart failure specialists at Columbia University Vagelos College of Physicians and Surgeons present a comprehensive review of treatment options that focus on restoring the normal ventricular size and preventing the remodeling process from continuing. But can preventing or limiting left ventricular remodeling following an insult or reversing it once it is present reduce cardiovascular morbidity?

Their article provides insight into this question with a view toward better understanding the impact of remodeling on ventricular dysfunction and an in-depth look at therapeutic approaches, including those that are well-established, several that are currently under investigation, as well as those that have been invalidated and no longer used. The authors focus on two fundamental therapeutic approaches – those that rely primarily on

  • biological mechanisms to induce responses in the myocardium and improve myocardial function, and
  • physical mechanisms, involving procedures where a portion of the heart is either removed or excluded and devices to reduce myocardial wall stress through ventricular constraint or reshaping.

Read more:

Left Ventricular Volume Reduction and Reshaping as a Treatment Option for Heart Failure.
https://doi.org/10.1080/24748706.2020.1777359

Other related articles published in this Open Access Online Scientific Journal, include the following:

Treatment Options for Left Ventricular Failure  –  Temporary Circulatory Support: Intra-aortic balloon pump (IABP) – Impella Recover LD/LP 5.0 and 2.5, Pump Catheters (Non-surgical) vs Bridge Therapy: Percutaneous Left Ventricular Assist Devices (pLVADs) and LVADs (Surgical) 

Author: Larry H Bernstein, MD, FCAP
and
Curator: Justin D Pearlman, MD, PhD, FACC

https://pharmaceuticalintelligence.com/2013/07/17/treatment-options-for-left-ventricular-failure-temporary-circulatory-support-intra-aortic-balloon-pump-iabp-impella-recover-ldlp-5-0-and-2-5-pump-catheters-non-surgical-vs-bridge-therapy/

Mechanical Circulatory Assist Devices as a Bridge to Heart Transplantation or as “Destination Therapy“: Options for Patients in Advanced Heart Failure

Writer and Curator: Larry H. Bernstein, MD, FCAP

and

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/06/30/advanced-heart-failure/

Read Full Post »

Transthyretin amyloid cardiomyopathy (ATTR-CM): U.S. FDA APPROVES VYNDAQEL® AND VYNDAMAX™ for this Rare and Fatal Disease

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 6/30/2021

CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis

June 26, 2021
DOI: 10.1056/NEJMoa2107454

Abstract

Background

Transthyretin amyloidosis, also called ATTR amyloidosis, is a life-threatening disease characterized by progressive accumulation of misfolded transthyretin (TTR) protein in tissues, predominantly the nerves and heart. NTLA-2001 is an in vivo gene-editing therapeutic agent that is designed to treat ATTR amyloidosis by reducing the concentration of TTR in serum. It is based on the clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease (CRISPR-Cas9) system and comprises a lipid nanoparticle encapsulating messenger RNA for Cas9 protein and a single guide RNA targeting TTR.

Methods

After conducting preclinical in vitro and in vivo studies, we evaluated the safety and pharmacodynamic effects of single escalating doses of NTLA-2001 in six patients with hereditary ATTR amyloidosis with polyneuropathy, three in each of the two initial dose groups (0.1 mg per kilogram and 0.3 mg per kilogram), within an ongoing phase 1 clinical study.

Results

Preclinical studies showed durable knockout of TTR after a single dose. Serial assessments of safety during the first 28 days after infusion in patients revealed few adverse events, and those that did occur were mild in grade. Dose-dependent pharmacodynamic effects were observed. At day 28, the mean reduction from baseline in serum TTR protein concentration was 52% (range, 47 to 56) in the group that received a dose of 0.1 mg per kilogram and was 87% (range, 80 to 96) in the group that received a dose of 0.3 mg per kilogram.

Conclusions

In a small group of patients with hereditary ATTR amyloidosis with polyneuropathy, administration of NTLA-2001 was associated with only mild adverse events and led to decreases in serum TTR protein concentrations through targeted knockout of TTR. (Funded by Intellia Therapeutics and Regeneron Pharmaceuticals; ClinicalTrials.gov number, NCT04601051.)

SOURCE

https://www.nejm.org/doi/full/10.1056/NEJMoa2107454

UPDATED on 11/22/2019

Trialists Attack $225K Heart Drug Price Tag

Cardiologists who helped run the pivotal study of Pfizer’s heart drug tafamidis (Vyndaqel/Vyndamax) are criticizing the drug’s $225,000 annual price tag, Bloomberg reports.

Mathew Maurer, MD, of Columbia University, and three other doctors involved in the trial started speaking out after seeing patients’ financial struggles after the drug’s market launch earlier this year.

For example: John Rufenacht, a 73-year-old interior designer in Kansas City, Missouri, has Medicare but his out-of-pocket cost was $6,000 for a 90-day supply of the drug, which treats cardiac transthyretin amyloidosis. Rufenacht doesn’t qualify for Pfizer’s patient assistance programs, most of which direct patients to charities to help them pay.

Maurer aired his complaints in front of colleagues at the Heart Failure Society of America meeting in September, and at the American Heart Association meeting earlier this week, where he and colleagues reported a cost-effectiveness study on the drug, showing it’s only cost-effective with a more than 90% price reduction — a cost of $16,563 a year.

Pfizer says its price is appropriate, given the small number of patients in the U.S. with the condition who will receive it — some 100,000 to 150,000, the company estimates. But Maurer and critics say that’s likely an underestimate. Diagnosis requires an invasive heart biopsy; there was little incentive to do that when no approved treatment was available.

The company promised to cut the price if more patients start taking the drug.

SOURCE

https://www.medpagetoday.com/publichealthpolicy/ethics/83459?xid=nl_badpractice_2019-11-22&eun=g99985d0r&utm_source=Sailthru&utm_medium=email&utm_campaign=BadPractice_112219&utm_term=NL_Gen_Int_Bad_Practice%20-%20Active

Click here to learn more about Pfizer’s Rare Disease portfolio and how we empower patients, engage communities in our clinical development programs, and support programs that heighten disease awareness.

U.S. FDA APPROVES VYNDAQEL® AND VYNDAMAX™ FOR USE IN PATIENTS WITH TRANSTHYRETIN AMYLOID CARDIOMYOPATHY, A RARE AND FATAL DISEASE

— First and only medicines approved for patients with either wild-type or hereditary transthyretin amyloid cardiomyopathy —

Monday, May 6, 2019 – 6:45am
EDT

NEW YORK–(BUSINESS WIRE)–Pfizer Inc. (NYSE:PFE) announced today that the U.S. Food and Drug Administration (FDA) has approved both VYNDAQEL® (tafamidis meglumine) and VYNDAMAX (tafamidis) for the treatment of the cardiomyopathy of wild-type or hereditary transthyretin-mediated amyloidosis (ATTR-CM) in adults to reduce cardiovascular mortality and cardiovascular-related hospitalization. VYNDAQEL and VYNDAMAX are two oral formulations of the first-in-class transthyretin stabilizer tafamidis, and the first and only medicines approved by the FDA to treat ATTR-CM.

Transthyretin amyloid cardiomyopathy is a rare, life-threatening disease characterized by the buildup of abnormal deposits of misfolded protein called amyloid in the heart and is defined by restrictive cardiomyopathy and progressive heart failure. Previously, there were no medicines approved to treat ATTR-CM; the only available options included symptom management, and, in rare cases, heart (or heart and liver) transplant. It is estimated that the prevalence of ATTR-CM is approximately 100,000 people in the U.S. and only one to two percent of those patients are diagnosed today.

“The approvals of VYNDAQEL and VYNDAMAX are a testament to the significant research and development investment in our innovative cardiovascular outcomes trial, ATTR-ACT. We are proud to bring these medicines to ATTR-CM patients who are in dire need of treatment,” said Brenda Cooperstone, MD, Senior Vice President and Chief Development Officer, Rare Disease, Pfizer Global Product Development. “VYNDAQEL and VYNDAMAX reduce cardiovascular mortality and the frequency of cardiovascular-related hospital stays in patients with wild-type or hereditary forms of this rare disease, giving them a chance for more time with their loved ones.”

“Pfizer’s purpose is to deliver breakthrough medicines that change patients’ lives. The approvals of VYNDAQEL and VYNDAMAX deliver on this promise for patients with ATTR-CM,” said Paul Levesque, Global President, Rare Disease. “This milestone is a gamechanger for patients, who until today had no approved medicines for this rare, debilitating and fatal disease. We will continue to focus efforts on working with the physician community to increase awareness and ultimately detection and diagnosis of this disease.”

The recommended dosage is either VYNDAQEL 80 mg orally once-daily, taken as four 20 mg capsules, or VYNDAMAX 61 mg orally once-daily, taken as a single capsule. VYNDAMAX was developed for patient convenience; VYNDAQEL and VYNDAMAX are not substitutable on a per milligram basis.

“ATTR-CM is not only fatal, but also significantly underdiagnosed, with some patients cycling through multiple doctors and a myriad of tests over a period of years while the disease progresses,” said Isabelle Lousada, Founder and CEO, Amyloidosis Research Consortium. “ATTR-CM is a rare disease for which more education and awareness is needed. The approval of these medicines represents an important advance for patients; however, it is equally important that we work as a community to recognize the critical importance of early diagnosis.”

The FDA approval was based on data from the pivotal Phase 3 Transthyretin Amyloidosis Cardiomyopathy Clinical Trial (ATTR-ACT), the first global, double-blind, randomized, placebo-controlled clinical study to investigate a pharmacological therapy for the treatment of this disease. In ATTR-ACT, VYNDAQEL significantly reduced the hierarchical combination of all-cause mortality and frequency of cardiovascular-related hospitalizations compared to placebo over a 30-month period (p=0.0006). Additionally, individual components of the primary analysis demonstrated a relative reduction in the risk of all-cause mortality and frequency of cardiovascular-related hospitalization of 30% (p=0.026) and 32% (p<0.0001), respectively, with VYNDAQEL versus placebo. Approximately 80% of total deaths were cardiovascular-related in both treatment groups. VYNDAQEL also had significant and consistent treatment effects compared to placebo on functional capacity and health status first observed at six months and continuing through 30 months. Specifically, VYNDAQEL reduced the decline in performance on the six-minute walk test (p<0.0001) and reduced the decline in health status as measured by the Kansas City Cardiomyopathy Questionnaire – Overall Summary score (p<0.0001). VYNDAQEL was well tolerated in this study, with an observed safety profile comparable to placebo. The frequency of adverse events in patients treated with VYNDAQEL was similar to placebo, and similar proportions of VYNDAQEL-treated patients and placebo-treated patients discontinued the study drug because of an adverse event.

Pfizer is committed to helping eligible ATTR-CM patients who have been prescribed VYNDAQEL or VYNDAMAX gain appropriate access. Pfizer supports patients by helping them understand their insurance coverage requirements and can connect eligible patients with financial assistance resources which may be available including the Pfizer Patient Assistance Program.*

About ATTR-CM
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a rare and fatal condition that is caused by destabilization of a transport protein called transthyretin, which is composed of four identical sub units (a tetramer). When unstable transthyretin tetramers dissociate, they result in misfolded proteins that aggregate into amyloid fibrils and deposit in the heart, causing the heart muscle to become stiff, eventually resulting in heart failure. There are two sub-types of ATTR-CM: hereditary, also known as variant, which is caused by a mutation in the transthyretin gene and can occur in people as early as their 50s and 60s; or with no mutation and associated with aging, known as the wild-type form, which is thought to be more common and usually affects men after age 60. Often ATTR-CM is diagnosed only after symptoms have become severe. Once diagnosed, the median life expectancy in patients with ATTR-CM, dependent on sub-type, is approximately two to 3.5 years.

About VYNDAQEL (tafamidis meglumine) and VYNDAMAX (tafamidis)
VYNDAQEL (tafamidis meglumine) and VYNDAMAX (tafamidis) are oral transthyretin stabilizers that selectively bind to transthyretin, stabilizing the tetramer of the transthyretin transport protein and slowing the formation of amyloid that causes ATTR-CM.

VYNDAMAX 61 mg is a once-daily oral capsule developed for patient convenience. VYNDAQEL and VYNDAMAX are not substitutable on a per milligram basis.

VYNDAQEL was granted Orphan Drug Designation for ATTR-CM in both the EU and U.S. in 2012 and in Japan in 2018. In June 2017 and May 2018, respectively, the FDA granted VYNDAQEL Fast Track and Breakthrough Therapy designations for ATTR-CM. In November 2018, the FDA granted Priority Review for the new drug application (NDA) for VYNDAQEL.

In March 2019, the Ministry of Labor Health and Welfare in Japan approved VYNDAQEL, under SAKIGAKE designation, for patients with wild-type and variant forms of ATTR-CM. Regulatory submissions for the use of VYNDAQEL in patients with ATTR-CM have been submitted to the European Medicines Agency (EMA) and are under review.

VYNDAQEL was first approved in 2011 in the EU for the treatment of transthyretin amyloid polyneuropathy (ATTR-PN), in adult patients with early-stage symptomatic polyneuropathy to delay peripheral neurologic impairment. ATTR-PN is a neurodegenerative form of amyloidosis that leads to sensory loss, pain and weakness in the lower limbs and impairment of the autonomic nervous system, Currently, it is approved for ATTR-PN in 40 countries, including Japan, countries in Europe, Brazil, Mexico, Argentina, Israel, Russia, and South Korea. VYNDAQEL and VYNDAMAX are not approved for the treatment of ATTR-PN in the U.S.

SOURCE

https://www.pfizer.com/news/press-release/press-release-detail/u_s_fda_approves_vyndaqel_and_vyndamax_for_use_in_patients_with_transthyretin_amyloid_cardiomyopathy_a_rare_and_fatal_disease

Read Full Post »

Lesson 3 Cell Signaling & Motility: G Proteins, Signal Transduction: Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

Updated 7/15/2019

Lesson 3 Powerpoint (click link below):

cell signaling and motility 3 finalissima sjw

Four papers to choose from for your February 11 group presentation:

Structural studies of G protein Coupled receptor

Shapiro-2009-Annals_of_the_New_York_Academy_of_Sciences

G protein as target in neurodegerative disease

fish technique

 

 

Today’s lesson 3 explains how extracellular signals are transduced (transmitted) into the cell through receptors to produce an agonist-driven event (effect).  This lesson focused on signal transduction from agonist through G proteins (GTPases), and eventually to the effectors of the signal transduction process.  Agonists such as small molecules like neurotransmitters, hormones, nitric oxide were discussed however later lectures will discuss more in detail the large growth factor signalings which occur through receptor tyrosine kinases and the Ras family of G proteins as well as mechanosignaling through Rho and Rac family of G proteins.

Transducers: The Heterotrimeric G Proteins (GTPases)

An excellent review of heterotrimeric G Proteins found in the brain is given by

Heterotrimeric G Proteins by Eric J Nestler and Ronald S Duman.

 

 

from Seven-Transmembrane receptors – Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Examples-of-heterotrimeric-G-protein-effectors_tbl1_11180073 [accessed 4 Feb, 2019] and see references within

 

 

See below for the G Protein Cycle

 

 

 

 

 

 

 

 

<a href=”https://www.researchgate.net/figure/32-The-G-protein-cycle-In-the-absence-of-agonist-A-GPCRs-are-mainly-in-the-low_fig2_47933733″><img src=”https://www.researchgate.net/profile/Veli_Pekka_Jaakola/publication/47933733/figure/fig2/AS:669499451781133@1536632516635/32-The-G-protein-cycle-In-the-absence-of-agonist-A-GPCRs-are-mainly-in-the-low.ppm&#8221; alt=”.3.2: The G protein cycle. In the absence of agonist (A), GPCRs are mainly in the low affinity state (R). After agonist binding, the receptor is activated in the high affinity state (R*), and the agonist-GPCR-G protein complex is formed. GTP replaces GDP in Gα. After that the G protein dissociates into the Gα subunit and the Gβγ heterodimer, which then activate several effector proteins. The built-in GTPase activity of the Gα subunit cleaves the terminal phosphate group of GTP, and the GDP bound Gα subunit reassociates with Gβγ heterodimer. This results in the deactivation of both Gα and Gβγ. The G protein cycle returns to the basal state. RGS, regulator of G protein signalling.”/></a>

 

From Citation: Review: A. M. Preininger, H. E. Hamm, G protein signaling: Insights from new structures. Sci. STKE2004, re3 (2004)

 

For a tutorial on G Protein coupled receptors (GPCR) see

https://www.khanacademy.org/test-prep/mcat/organ-systems/biosignaling/v/g-protein-coupled-receptors

 

 

 

cyclic AMP (cAMP) signaling to the effector Protein Kinase A (PKA)

from https://courses.washington.edu/conj/gprotein/cyclicamp.htm

Cyclic AMP is an important second messenger. It forms, as shown, when the membrane enzyme adenylyl cyclase is activated (as indicated, by the alpha subunit of a G protein).

 

The cyclic AMP then goes on the activate specific proteins. Some ion channels, for example, are gated by cyclic AMP. But an especially important protein activated by cyclic AMP is protein kinase A, which goes on the phosphorylate certain cellular proteins. The scheme below shows how cyclic AMP activates protein kinase A.

Updated 7/15/2019

Additional New Studies on Regulation of the Beta 2 Adrenergic Receptor

We had discussed regulation of the G protein coupled beta 2 adrenergic receptor by the B-AR receptor kinase (BARK)/B arrestin system which uncouples and desensitizes the receptor from its G protein system.  In an article by Xiangyu Liu in Science in 2019, the authors describe another type of allosteric modulation (this time a POSITIVE allosteric modulation) in the intracellular loop 2.  See below:

Mechanism of β2AR regulation by an intracellular positive allosteric modulator

Xiangyu Liu1,*, Ali Masoudi2,*, Alem W. Kahsai2,*, Li-Yin Huang2, Biswaranjan Pani2Dean P. Staus2, Paul J. Shim2, Kunio Hirata3,4, Rishabh K. Simhal2, Allison M. Schwalb2, Paula K. Rambarat2, Seungkirl Ahn2, Robert J. Lefkowitz2,5,6,Brian Kobilka1

Positive reinforcement in a GPCR

Many drug discovery efforts focus on G protein–coupled receptors (GPCRs), a class of receptors that regulate many physiological processes. An exemplar is the β2-adrenergic receptor (β2AR), which is targeted by both blockers and agonists to treat cardiovascular and respiratory diseases. Most GPCR drugs target the primary (orthosteric) ligand binding site, but binding at allosteric sites can modulate activation. Because such allosteric sites are less conserved, they could possibly be targeted more specifically. Liu et al. report the crystal structure of β2AR bound to both an orthosteric agonist and a positive allosteric modulator that increases receptor activity. The structure suggests why the modulator compound is selective for β2AR over the closely related β1AR. Furthermore, the structure reveals that the modulator acts by enhancing orthosteric agonist binding and stabilizing the active conformation of the receptor.

Abstract

Drugs targeting the orthosteric, primary binding site of G protein–coupled receptors are the most common therapeutics. Allosteric binding sites, elsewhere on the receptors, are less well-defined, and so less exploited clinically. We report the crystal structure of the prototypic β2-adrenergic receptor in complex with an orthosteric agonist and compound-6FA, a positive allosteric modulator of this receptor. It binds on the receptor’s inner surface in a pocket created by intracellular loop 2 and transmembrane segments 3 and 4, stabilizing the loop in an α-helical conformation required to engage the G protein. Structural comparison explains the selectivity of the compound for β2– over the β1-adrenergic receptor. Diversity in location, mechanism, and selectivity of allosteric ligands provides potential to expand the range of receptor drugs.

 

Recent structures of GPCRs bound to allosteric modulators have revealed that receptor surfaces are decorated with diverse cavities and crevices that may serve as allosteric modulatory sites (1). This substantiates the notion that GPCRs are structurally plastic and can be modulated by a variety of allosteric ligands through distinct mechanisms (2-7). Most of these structures have been solved with negative allosteric modulators (NAMs), which stabilize receptors in their inactive states (1). To date, only a single structure of an active GPCR bound to a small-molecule positive allosteric modulator (PAM) has been reported, namely, the M2 muscarinic acetylcholine receptor with LY2119620 (8). Thus, mechanisms of PAMs and their potential binding sites remain largely unexplored.

F1.large

 

Fig 1. Structure of the active state T4L-B2AR in complex with the orthosteric agonist BI-167107, nanobody 689, and compound 6FA.  (A) The chemical structure of compound-6FA (Cmpd-6FA). (B) Isoproterenol (ISO) competition binding with 125I-cyanopindolol (CYP) to the β2AR reconstituted in nanodisks in the presence of vehicle (0.32% dimethylsulfoxide; DMSO), Cmpd-6, or Cmpd-6FA at 32 μM. Values were normalized to percentages of the maximal 125I-CYP binding level obtained from a one-site competition binding–log IC50 (median inhibitory concentration) curve fit. Binding curves were generated by GraphPad Prism. Points on curves represent mean ± SEM obtained from five independent experiments performed in duplicate. (C) Analysis of Cmpd-6FA interaction with the BI-167107–bound β2AR by ITC. Representative thermogram (inset) and binding isotherm, of three independent experiments, with the best titration curve fit are shown. Summary of thermodynamic parameters obtained by ITC: binding affinity (KD = 1.2 ± 0.1 μM), stoichiometry (N = 0.9 ± 0.1 sites), enthalpy (ΔH = 5.0 ± 1.2 kcal mol−1), and entropy (ΔS =13 ± 2.0 cal mol−1 deg−1). (D) Side view of T4L-β2AR bound to the orthosteric agonist BI-167107, nanobody 6B9 (Nb6B9), and Cmpd-6FA. The gray box indicates the membrane layer as defined by the OPM database. (E) Close-up view of Cmpd-6FA binding site. Covering Cmpd-6FA is 2Fo– Fc electron density contoured at 1.0 σ (green mesh).From Science  28 Jun 2019:
Vol. 364, Issue 6447, pp. 1283-1287

 

F3.large

Fig 3. Fig. 3 Mechanism of allosteric activation of the β2AR by Cmpd-6FA.

(A) Superposition of the inactive β2AR bound to the antagonist carazolol (PDB code: 2RH1) and the active β2AR bound to the agonist BI-167107, Cmpd-6FA, and Nb6B9. Close-up view of the Cmpd-6FA binding site is shown. The residues of the inactive (yellow) and active (blue) β2AR are depicted, and the hydrogen bond formed between Asp1303.49and Tyr141ICL2 in the active state is indicated by a black dashed line. (B) Topography of Cmpd-6FA binding surface on the active β2AR (left, blue) and the corresponding surface of the inactive β2AR (right, yellow) with Cmpd-6FA (orange sticks) docked on top. Molecular surfaces are of only those residues involved in interaction with Cmpd-6FA. Steric clash between Cmpd-6FA and the surface of inactive β2AR is represented by a purple asterisk. (C) Overlay of the β2AR bound to BI-167107, Nb6B9, and Cmpd-6FA with the β2AR–Gscomplex (PDB code: 3SN6). The inset shows the position of Phe139ICL2 relative to the α subunit of Gs. (D) Superposition of the active β2AR bound to the agonist BI-167107, Nb6B9, and Cmpd-6FA (blue) with the inactive β2AR bound to carazolol (yellow) (PDB code: 2RH1) as viewed from the cytoplasm. For clarity, Nb6B9 and the orthosteric ligands are omitted. The arrows indicate shifts in the intracellular ends of the TM helices 3, 5, and 6 upon activation and their relative distances.

 

 

 

 

Allosteric sites may not face the same evolutionary pressure as do orthosteric sites, and thus are more divergent across subtypes within a receptor family (2426). Therefore, allosteric sites may provide a greater source of specificity for targeting GPCRs.

 

 

  1. D. M. Thal, A. Glukhova, P. M. Sexton, A. Christopoulos, Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018). doi:10.1038/s41586-018-0259-zpmid:29973731CrossRefPubMedGoogle Scholar

 

  1. D. Wacker, R. C. Stevens, B. L. Roth, How Ligands Illuminate GPCR Molecular Pharmacology. Cell 170, 414–427 (2017).

doi:10.1016/j.cell.2017.07.009pmid:28753422CrossRefPubMedGoogle Scholar

 

  1. D. P. Staus, R. T. Strachan, A. Manglik, B. Pani, A. W. Kahsai, T. H. Kim, L. M. Wingler, S. Ahn, A. Chatterjee, A. Masoudi, A. C. Kruse, E. Pardon, J. Steyaert, W. I. Weis, R. S. Prosser, B. K. Kobilka, T. Costa, R. J. Lefkowitz, Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448–452 (2016). doi:10.1038/nature18636pmid:27409812CrossRefPubMedGoogle Scholar

 

  1. A. Manglik, T. H. Kim, M. Masureel, C. Altenbach, Z. Yang, D. Hilger, M. T. Lerch, T. S. Kobilka, F. S. Thian, W. L. Hubbell, R. S. Prosser, B. K. Kobilka, Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling. Cell 161, 1101–1111 (2015). doi:10.1016/j.cell.2015.04.043pmid:25981665CrossRefPubMedGoogle Scholar

 

5,   L. Ye, N. Van Eps, M. Zimmer, O. P. Ernst, R. S. Prosser, Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265–268 (2016). doi:10.1038/nature17668pmid:27144352CrossRefPubMedGoogle Scholar

 

  1. N. Van Eps, L. N. Caro, T. Morizumi, A. K. Kusnetzow, M. Szczepek, K. P. Hofmann, T. H. Bayburt, S. G. Sligar, O. P. Ernst, W. L. Hubbell, Conformational equilibria of light-activated rhodopsin in nanodiscs. Proc. Natl. Acad. Sci. U.S.A. 114, E3268–E3275 (2017). doi:10.1073/pnas.1620405114pmid:28373559Abstract/FREE Full TextGoogle Scholar

 

  1. R. O. Dror, H. F. Green, C. Valant, D. W. Borhani, J. R. Valcourt, A. C. Pan, D. H. Arlow, M. Canals, J. R. Lane, R. Rahmani, J. B. Baell, P. M. Sexton, A. Christopoulos, D. E. Shaw, Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295–299 (2013). doi:10.1038/nature12595pmid:24121438CrossRefPubMedWeb of ScienceGoogle Scholar

 

  1. A. C. Kruse, A. M. Ring, A. Manglik, J. Hu, K. Hu, K. Eitel, H. Hübner, E. Pardon, C. Valant, P. M. Sexton, A. Christopoulos, C. C. Felder, P. Gmeiner, J. Steyaert, W. I. Weis, K. C. Garcia, J. Wess, B. K. Kobilka, Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013). doi:10.1038/nature12735pmid:24256733

 

 

Additional information on Nitric Oxide as a Cellular Signal

Nitric oxide is actually a free radical and can react with other free radicals, resulting in a very short half life (only a few seconds) and so in the body is produced locally to its site of action (i.e. in endothelial cells surrounding the vascular smooth muscle, in nerve cells). In the late 1970s, Dr. Robert Furchgott observed that acetylcholine released a substance that produced vascular relaxation, but only when the endothelium was intact. This observation opened this field of research and eventually led to his receiving a Nobel prize. Initially, Furchgott called this substance endothelium-derived relaxing factor (EDRF), but by the mid-1980s he and others identified this substance as being NO.

Nitric oxide is produced from metabolism of endogenous substances like L-arginine, catalyzed by one of three isoforms of nitric oxide synthase (for link to a good article see here) or release from exogenous compounds like drugs used to treat angina pectoris like amyl nitrate or drugs used for hypertension such as sodium nitroprusside.

The following articles are a great reference to the chemistry, and physiological and pathological Roles of Nitric Oxide:

46. The Molecular Biology of Renal Disorders: Nitric Oxide – Part III

Curator and Author: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/11/26/the-molecular-biology-of-renal-disorders/

47. Nitric Oxide Function in Coagulation – Part II

Curator and Author: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-function-in-coagulation/

48. Nitric Oxide, Platelets, Endothelium and Hemostasis

Curator and Author: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/11/08/nitric-oxide-platelets-endothelium-and-hemostasis/

49. Interaction of Nitric Oxide and Prostacyclin in Vascular Endothelium

Curator and Author: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/09/14/interaction-of-nitric-oxide-and-prostacyclin-in-vascular-endothelium/

50. Nitric Oxide and Immune Responses: Part 1

Curator and Author:  Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/10/18/nitric-oxide-and-immune-responses-part-1/

51. Nitric Oxide and Immune Responses: Part 2

Curator and Author:  Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/10/28/nitric-oxide-and-immune-responses-part-2/

56. Nitric Oxide and iNOS have Key Roles in Kidney Diseases – Part II

Curator and Author: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-and-inos-have-key-roles-in-kidney-diseases/

57. New Insights on Nitric Oxide donors – Part IV

Curator and Author: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/11/26/new-insights-on-no-donors/

59. Nitric Oxide has a ubiquitous role in the regulation of glycolysis -with a concomitant influence on mitochondrial function

Curator and Author: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2012/09/16/nitric-oxide-has-a-ubiquitous-role-in-the-regulation-of-glycolysis-with-         a-concomitant-influence-on-mitochondrial-function/

Biochemistry of the Coagulation Cascade and Platelet Aggregation: Nitric Oxide: Platelets, Circulatory Disorders, and Coagulation Effects

Nitric Oxide Function in Coagulation – Part II

Nitric oxide is implicated in many pathologic processes as well.  Nitric oxide post translational modifications have been attributed to nitric oxide’s role in pathology however, although the general mechanism by which nitric oxide exerts its physiological effects is by stimulation of soluble guanylate cyclase to produce cGMP, these post translational modifications can act as a cellular signal as well.  For more information of NO pathologic effects and how NO induced post translational modifications can act as a cellular signal see the following:

Nitric Oxide Covalent Modifications: A Putative Therapeutic Target?

58. Crucial role of Nitric Oxide in Cancer

Curator and Author: Ritu Saxena, Ph.D.

https://pharmaceuticalintelligence.com/2012/10/16/crucial-role-of-nitric-oxide-in-cancer/

Note:  A more comprehensive ebook on Nitric Oxide and Disease Perspectives is found at

Cardiovascular Diseases, Volume One: Perspectives on Nitric Oxide in Disease Mechanisms

available on Kindle Store @ Amazon.com

http://www.amazon.com/dp/B00DINFFYC

Read Full Post »

Live 11:00 AM- 12:00 Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : Opening Remarks October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

11:00 Welcome

 

 

Prof. Antonio Giordano, MD, PhD.

Director and President of the Sbarro Health Research Organization, College of Science and Technology, Temple University

Welcome to this symposium on Italian lifestyle and health.  This is similar to a symposium we had organized in New York.  A year ago Bloomberg came out with a study on higher longevity of the italian population and this study was concluded that this increased longevity was due to the italian lifestyle and diet especially in the southern part of Italy, a region which is older than Rome (actually founded by Greeks and Estonians).  However this symposium will delve into the components of this healthy Italian lifestyle which contributes to this longevity effect.  Some of this work was done in collaboration with Temple University and sponsored by the Italian Consulate General in Philadelphia ( which sponsors programs in this area called Ciao Philadelphia).

Greetings: Fucsia Nissoli Fitzgerald, Deputy elected in the Foreign Circumscription – North and Central America Division

Speaking for the Consulate General is Francesca  Cardurani-Meloni.   I would like to talk briefly about the Italian cuisine and its evolution, from the influence of the North and South Italy, economic factors, and influence by other cultures.  Italian cooking is about simplicity, cooking with what is in season and freshest.  The meal is not about the food but about comfort around the table, and comparible to a cullinary heaven, about sharing with family and friends, and bringing the freshest ingredients to the table.

Consul General, Honorable Pier Attinio Forlano, General Consul of Italy in Philadelphia

 

11:30 The Impact of Environment and Life Style in Human Disease

Prof. Antonio Giordano MD, PhD.

 

 

 

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Read Full Post »

Cardiac Hypertrophy-Associated Transcript (CHAST) as a potential lncRNA candidate that influences Cardiomyocyte Hypertrophy

Reporter: Aviva Lev-Ari, PhD, RN

 

Sci Transl Med. 2016 Feb 17;8(326):326ra22. doi: 10.1126/scitranslmed.aaf1475.

Long noncoding RNA Chast promotes cardiac remodeling.

Viereck J1Kumarswamy R2Foinquinos A2Xiao K2Avramopoulos P3Kunz M4Dittrich M5Maetzig T6Zimmer K2Remke J2Just A2Fendrich J2Scherf K2Bolesani E7Schambach A6Weidemann F8Zweigerdt R7de Windt LJ9Engelhardt S3Dandekar T4Batkai S2Thum T10.

Author information

Abstract

Recent studies highlighted long noncoding RNAs (lncRNAs) to play an important role in cardiac development. However, understanding of lncRNAs in cardiac diseases is still limited. Global lncRNA expression profiling indicated that several lncRNA transcripts are deregulated during pressure overload-induced cardiac hypertrophy in mice. Using stringent selection criteria, we identified Chast (cardiac hypertrophy-associated transcript) as a potential lncRNA candidate that influences cardiomyocyte hypertrophy. Cell fractionation experiments indicated that Chast is specifically up-regulated in cardiomyocytes in vivo in transverse aortic constriction (TAC)-operated mice. In accordance, CHAST homolog in humans was significantly up-regulated in hypertrophic heart tissue from aortic stenosis patients and in human embryonic stem cell-derived cardiomyocytes upon hypertrophic stimuli. Viral-based overexpression of Chast was sufficient to induce cardiomyocyte hypertrophy in vitro and in vivo. GapmeR-mediated silencing of Chast both prevented and attenuated TAC-induced pathological cardiac remodeling with no early signs on toxicological side effects. Mechanistically, Chast negatively regulated Pleckstrin homology domain-containing protein family M member 1 (opposite strand of Chast), impeding cardiomyocyte autophagy and driving hypertrophy. These results indicate that Chast can be a potential target to prevent cardiac remodeling and highlight a general role of lncRNAs in heart diseases.

Copyright © 2016, American Association for the Advancement of Science.

PMID:26888430 DOI: 10.1126/scitranslmed.aaf1475

SOURCE

http://www.ncbi.nlm.nih.gov/pubmed/26888430?utm_source=technologynetworks&utm_medium=email&utm_content=GenSil-2016-09&utm_campaign=GapmeR

Read Full Post »

UPDATED Previously undiscerned value of hs-troponin

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

UPDATED on 5/14/2021

Downstream Cascades of Care Following High-Sensitivity Troponin Test Implementation

Original Investigations

Ishani GanguliJinghan CuiNitya Thakore, John OravJames L. JanuzziChristopher W. BaughThomas D. Sequist, and 

Jason H. Wasfy

J Am Coll Cardiol. May 03, 2021. Epublished DOI: 10.1016/j.jacc.2021.04.049

Editorial Comment: Downstream consequences of implementing high-sensitivity cardiac troponin: why indication and education matter

DOWNLOAD CITATION SHARE

Abstract

Background

Chest pain patients are often evaluated for acute myocardial infarction through troponin testing, which may prompt downstream services (cascades) of uncertain value.

Objective

Determine the association of high-sensitivity cardiac troponin (hs-cTn) assay implementation with cascade events.

Methods

Using electronic health record and billing data, we examined patient-visits to five emergency departments, April 1, 2017 – April 1, 2019. Difference-in-differences analysis compared patient-visits for chest pain (n=7,564) to patient-visits for other symptoms (n=100,415) (irrespective of troponin testing) before and after hs-cTn assay implementation. Outcomes included presence of any cascade event potentially associated with an initial hs-cTn test (primary), individual cascade events, length of stay, and spending on cardiac services.

Results

Following hs-cTn implementation, patients with chest pain had a 2.8% (95%CI 0.72, 4.9) net increase in experiencing any cascade event. They were more likely to have multiple troponin tests (10.5%, 95%CI 9.0, 12.0) and electrocardiograms (7.1 per 100 patient-visits, 95%CI 1.8, 12.4). However, they received net fewer computed tomography scans (-1.5 per 100 patient-visits, 95%CI -1.8, -1.1), stress tests (-5.9 per 100 patient-visits, 95%CI -6.5, -5.3), and cardiac catheterizations (-0.65 per 100 patient-visits, 95%CI -1.01, -0.30) and were less likely to receive cardiac medications, undergo cardiology evaluation (-3.5%, 95%CI -4.5, 2.6), or be hospitalized (-5.8%, 95%CI -7.7, -3.8). Chest pain patients had lower net mean length of stay (-0.24 days, 95%CI -0.32, -0.16) but no net change in spending.

Conclusions

Hs-cTn assay implementation was associated with more net upfront tests yet fewer net stress tests, catheterizations, cardiology evaluations, and hospital admissions in chest pain patients relative to patients with other symptoms.

Keywords

SOURCE

https://www.jacc.org/doi/10.1016/j.jacc.2021.04.049

 

UPDATED on 3/18/2020

Interference in Troponin Assays: What’s Going On?

— Heterophile antibodies, biotin, and more with Robert Christenson, PhD

https://www.medpagetoday.com/blogs/ap-cardiology/85409

 

 

UPDATED on 5/1/2019

High-Sensitivity Troponin I and Incident Coronary Events, Stroke, Heart Failure Hospitalization, and Mortality in the ARIC Study

Originally publishedhttps://doi.org/10.1161/CIRCULATIONAHA.118.038772Circulation. ;0

Background: We assessed whether plasma troponin I measured by a high-sensitivity assay (hs-TnI) is associated with incident cardiovascular disease (CVD) and mortality in a community-based sample without prior CVD.

Methods: ARIC study (Atherosclerosis Risk in Communities) participants aged 54 to 74 years without baseline CVD were included in this study (n=8121). Cox proportional hazards models were constructed to determine associations between hs-TnI and incident coronary heart disease (CHD; myocardial infarction and fatal CHD), ischemic stroke, atherosclerotic CVD (CHD and stroke), heart failure hospitalization, global CVD (atherosclerotic CVD and heart failure), and all-cause mortality. The comparative association of hs-TnI and high-sensitivity troponin T with incident CVD events was also evaluated. Risk prediction models were constructed to assess prediction improvement when hs-TnI was added to traditional risk factors used in the Pooled Cohort Equation.

Results: The median follow-up period was ≈15 years. Detectable hs-TnI levels were observed in 85% of the study population. In adjusted models, in comparison to low hs-TnI (lowest quintile, hs-TnI ≤1.3 ng/L), elevated hs-TnI (highest quintile, hs-TnI ≥3.8 ng/L) was associated with greater incident CHD (hazard ratio [HR], 2.20; 95% CI, 1.64-2.95), ischemic stroke (HR, 2.99; 95% CI, 2.01-4.46), atherosclerotic CVD (HR, 2.36; 95% CI, 1.86-3.00), heart failure hospitalization (HR, 4.20; 95% CI, 3.28-5.37), global CVD (HR, 3.01; 95% CI, 2.50-3.63), and all-cause mortality (HR, 1.83; 95% CI, 1.56-2.14). hs-TnI was observed to have a stronger association with incident global CVD events in white than in black individuals and a stronger association with incident CHD in women than in men. hs-TnI and high-sensitivity troponin T were only modestly correlated (r=0.47) and were complementary in prediction of incident CVD events, with elevation of both troponins conferring the highest risk in comparison with elevation in either one alone. The addition of hsTnI to the Pooled Cohort Equation model improved risk prediction for atherosclerotic CVD, heart failure, and global CVD.

Conclusions: Elevated hs-TnI is strongly associated with increased global CVD incidence in the general population independent of traditional risk factors. hs-TnI and high-sensitivity troponin T provide complementary rather than redundant information.

Footnotes

* Corresponding Author; email: 
 
SOURCE

 

UPDATED on 8/14/2018

Siemens Launches High-sensitivity Troponin Test for Faster Diagnosis of Heart Attacks

The new troponin I assays can detect lower levels of troponin compared to conventional testing

July 25, 2018 — The U.S. Food and Drug Administration (FDA) cleared Siemens Healthineers high-sensitivity troponin I assays (TnIH) for the Atellica IM and ADVIA Centaur XP/XPT in vitro diagnostic analyzers from Siemens Healthineers to aid in the early diagnosis of myocardial infarctions.

The new tests can shorten the time doctors need to diagnose a life-threatening heart attacks. The time to first results is 10 minutes. When a patient experiencing chest pain enters the emergency department, a physician orders a blood test to determine whether troponin is present. As blood flow to the heart is blocked, the heart muscle begins to die in as few as 30 to 60 minutes and releases troponin into the bloodstream.

The company said its high-sensitivity performance of the two new Siemens TnIH assays offers the ability to detect lower levels of troponin at significantly improved precision at the 99th percentile, and detect smaller changes in a patient’s troponin level as repeat testing occurs. This design affords clinicians greater confidence in the results with precision that provides the ability to measure slight, yet critical, changes to begin treatment.[1,2]

Chest pain is the cause of more than 8 million visits annually nationwide to emergency departments, but only 5.5 percent of those visits lead to serious diagnoses such as heart attacks.[3] Armed with data to properly triage patients sooner or to exclude myocardial infarctions, the Siemens Healthineers TnIH assays can help support testing initiatives tied to improving patient experience.

“Our emergency department is overcrowded with patients. If we can do a more efficient job at triaging patients to receive the proper level of care and to discharge the patients who do not need to stay in the emergency department, this will have a tremendous economic advantage for our healthcare system,” said Alan Wu, M.D., chief of clinical chemistry and toxicology at Zuckerberg San Francisco General Hospital and Trauma Center.

Siemens is launching the product at the 70th AACC Annual Scientific Meeting and Clinical Lab Expo taking place July 31 to Aug. 2 in Chicago.

For more information: http://www.siemens-healthineers.com

Watch the related VIDEO: Use of High Sensitivity Troponin Testing in the Emergency Department — Interview with James Januzzi, M.D., Massachusetts General Hospital

SOURCE

https://www.dicardiology.com/product/siemens-launches-high-sensitivity-troponin-test-faster-diagnosis-heart-attacks?eid=333021707&bid=2192216

References:

1. Eggers K, Jernberg T, Ljung L, Lindahl B. High-Sensitivity Cardiac Troponin-Based Strategies for the Assessment of Chest Pain Patients—A Review of Validation and Clinical Implementation Studies. Clin Chem. 2018;64(7). DOI: 10.1373/clinchem.2018.287342

2. Collinson P. High-sensitivity troponin measurements: challenges and opportunities for the laboratory and the clinician. Annals of Clinical Biochemistry. 2016;53(2) 191–195. DOI: 10.1177/0004563215619946

3. Hsia RY, Hale Z, Tabas JA. A National Study of the Prevalence of Life-Threatening Diagnoses in Patients With Chest Pain. JAMA Intern Med. 2016;176(7):1029–1032. DOI:10.1001/jamainternmed.2016.2498

 

 

Troponin Rise Predicts CHD, HF, Mortality in Healthy People: ARIC Analysis

Veronica Hackethal, MD

Increases in levels of cardiac troponin T by high-sensitivity assay (hs-cTnT) over time are associated with later risk of death, coronary heart disease (CHD), and especially heart failure in apparently healthy middle-aged people, according to a report published June 8, 2016 in JAMA Cardiology[1].

The novel findings, based on a cohort of >8000 participants from the Atherosclerosis Risk in Communities (ARIC) study followed up to 16 years, are the first to show “an association between temporal hs-cTnT change and incident CHD events” in asymptomatic middle-aged adults,” write the authors, led by Dr John W McEvoy (Johns Hopkins University School of Medicine, Baltimore, MD).

Individuals with the greatest troponin increases over time had the highest risk for poor cardiac outcomes. The strongest association was for risk of heart failure, which reached almost 800% for those with the sharpest hs-cTnT rises.

Intriguingly, those in whom troponin levels fell at least 50% had a reduced mortality risk and may have had a slightly decreased risk of later HF or CHD.

“Serial testing over time with high-sensitivity cardiac troponins provided additional prognostic information over and above the usual clinical risk factors, [natriuretic peptide] levels, and a single troponin measurement. Two measurements appear better than one when it comes to informing risk for future coronary heart disease, heart failure, and death,” McEvoy told heartwire from Medscape.

He cautioned, though, that the conclusion is based on observational data and would need to be confirmed in clinical trials. Moreover, high-sensitivity cardiac troponin assays are widely used in Europe but are not approved in the US.

An important next step after this study, according to an accompanying editorial from Dr James Januzzi (Massachusetts General Hospital, Boston, MA), would be to evaluate whether the combination of hs-troponin and natriuretic peptides improves predictive value in this population[2].

“To the extent prevention is ultimately the holy grail for defeating the global pandemic of CHD, stroke, and HF, the main reason to do a biomarker study such as this would be to set the stage for a biomarker-guided strategy to improve the medical care for those patients at highest risk, as has been recently done with [natriuretic peptides],” he wrote.

The ARIC prospective cohort study entered and followed 8838 participants (mean age 56, 59% female, 21.4% black) in North Carolina, Mississippi, Minneapolis, and Maryland from January 1990 to December 2011. At baseline, participants had no clinical signs of CHD or heart failure.

Levels of hs-cTnT, obtained 6 years apart, were categorized as undetectable (<0.005 ng/mL), detectable (≥0.005 ng/mL to <0.014 ng/mL), and elevated (>0.014 ng/mL).

Troponin increases from <0.005 ng/mL to 0.005 ng/mL or higher independently predicted development of CHD (HR 1.41; 95% CI 1.16–1.63), HF (HR 1.96; 95% CI 1.62–2.37), and death (HR 1.50; 95% CI 1.31–1.72), compared with undetectable levels at both measurements.

Hazard ratios were adjusted for age, sex, race, body-mass index, C-reactive protein, smoking status, alcohol-intake history, systolic blood pressure, current antihypertensive therapy, diabetes, serum lipid and cholesterol levels, lipid-modifying therapy, estimated glomerular filtration rate, and left ventricular hypertrophy.

Subjects with >50% increase in hs-cTnT had a significantly increased risk of CHD (HR 1.28; 95% CI 1.09–1.52), HF (HR 1.60; 95% CI 1.35–1.91), and death (HR 1.39; 95% CI 1.22–1.59).

 

Risks for those end points fell somewhat for those with a >50% decrease in hs-cTnT (CHD: HR 0.47; 95% CI 0.22–1.03; HF: HR 0.49 95% CI 0.23–1.01; death: HR 0.57 95% CI 0.33–0.99).

Among participants with an adjudicated HF hospitalization, the group writes, associations of hs-cTnT changes with outcomes were of similar magnitude for those with HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF).

Few biomarkers have been linked to increased risk for HFpEF, and few effective therapies exist for it. That may be due to problems identifying and enrolling patients with HFpEF in clinical trials, Dr McEvoy pointed out.

 

“We think the increased troponin over time reflects progressive myocardial injury or progressive myocardial damage,” Dr McEvoy said. “This is a window into future risk, particularly with respect to heart failure but other outcomes as well. It may suggest high-sensitivity troponins as a marker of myocardial health and help guide interventions targeting the myocardium.”

Moreover, he said, “We think that high-sensitivity troponin may also be a useful biomarker along with [natriuretic peptides] for emerging trials of HFpEF therapy.”

But whether hs-troponin has the potential for use as a screening tool is a question for future studies, according to McEvoy.

 

In his editorial, Januzzi pointed out several implications of the study, including the possibility for lowering cardiac risk in those with measurable hs-troponin, and that HF may be the most obvious outcome to target. Also, optimizing treatment and using cardioprotective therapies may reduce risk linked to increases in hs-troponin. Finally, long-term, large clinical trials on this issue will require a multidisciplinary team effort from various sectors.

“What is needed now are efforts toward developing strategies to upwardly bend the survival curves of those with a biomarker signature of risk, leveraging the knowledge gained from studies such as the report by McEvoy et al to improve public health,” he concluded.

 

Read Full Post »

Familial transthyretin amyloid polyneuropathy

Curator: Larry H. Bernstein, MD, FCAP

 

UPDATED on 6/3/2020

Treatment of Cardiac Transthyretin Amyloidosis

Authors:
Emdin M, Aimo A, Rapezzi C, et al.
Citation:
Treatment of Cardiac Transthyretin Amyloidosis: An Update. Eur Heart J 2019;40:3699-3706.

The following are key points to remember from this update on the treatment of cardiac transthyretin amyloidosis:

  1. Transthyretin (TTR) is a highly conserved protein involved in transportation of thyroxine (T4) and retinol-binding protein. TTR is synthesized mostly by the liver and is rich in beta strands with an intrinsic propensity to aggregate into insoluble amyloid fibers, which deposit within tissue leading to the development of TTR-related amyloidosis (ATTR). ATTR can follow the deposition of either variant TTR (ATTRv, previously known as mutant ATTR) or wild type TTR (ATTRwt).
  2. Cardiac ATTR has a favorable survival rate compared to light chain (AL) amyloidosis, with a median survival of 75 versus 11 months. However, ATTR cardiomyopathy is a progressive disorder but newer therapeutic options include tafamidis (positive phase 3 clinical trial), and possibly patisiran and inotersen.

Inhibition of the Synthesis of Mutated Transthyretin

  1. Liver transplantation removes the source of mutated TTR molecules and prolongs survival, with a 20-year survival of 55.3%. However, tissue accumulation of TTR can continue after liver transplantation because TTR amyloid fibers promote subsequent deposition of ATTRwt. Combined liver–heart transplantation is feasible in younger patients with ATTRv cardiomyopathy and a small series suggests better prognosis than cardiac transplantation.
  2. Inhibition of TTR gene expression: Patisiran is a small interfering RNA blocking the expression of both variant and wt TTR. On the basis of the APOLLO trial, it was approved for therapy of adults with ATTRv-related polyneuropathy both in the United States and European Union. In this trial, patisiran promoted favorable myocardial remodeling based on echocardiographic and N-terminal B-type natriuretic peptide (NT-BNP) changes (this effect was not demonstrated for inotersen) and is still under investigation for tafamidis.
  3. Antisense oligonucleotides inotersen inhibits the production of both variant and wt TTR. Based on the findings of the NEURO-TTR trial, the Food and Drug Administration (FDA) approved this agent for patients with ATTRv-related polyneuropathy. In the NEURO-TTR trial, cardiomyopathy was present in 63%, but the study was not powered to measure effects of inotersen on heart disease. Inotersen can cause thrombocytopenia and must be used cautiously with bleeding risk.

Tetramer Stabilization

  1. Selective stabilizers include tafamidis and AG10. Tafamidis is a benzoxazole and a small molecule that inhibits the dissociation of TTR tetramers by binding the T4-binding sites. The phase ATTR-ACT study showed that when comparing the pooled tafamidis arms (80 and 20 mg) with the placebo arm, tafamidis was associated with lower all-cause mortality than placebo (78 of 264 [29.5%] vs. 76 of 177 [42.9%]; hazard ratio, 0.70; 95% confidence interval, 0.51-0.96) and a lower rate of cardiovascular hospitalizations. Based on the results of the ATTR-ACT trial, it has received Breakthrough Therapy designation from the FDA for treatment of ATTR cardiomyopathy.
  2. Nonselective agents: Diflunisal, a nonsteroidal anti-inflammatory drug, is reported to stabilize TTR tetramers. More studies are needed to confirm its clinical efficacy.

Inhibition of Oligomer Aggregation and Oligomer Disruption

  1. Epigallocatechin gallate is the most abundant catechin in green tea. One single-center open-label 12-month study did not show survival benefits or any change in echocardiographic parameters or NT-BNP compared to baseline.

Degradation and Reabsorption of Amyloid Fibers

  1. Doxycycline-taurosodeoxycholic acid (TUDCA) has been evaluated in two small studies and the results appear to be modest. More data are needed to confirm its efficacy.
  2. Antibodies targeting serum amyloid P protein or amyloid fibrils: Patient enrollment for miridesap followed by anti-SAP antibodies was suspended, and this approach is not being evaluated currently. However, a monoclonal antibody designed to specifically target TTR amyloid deposits (PRX004) has entered clinical evaluation, with an ongoing phase 1 study on ATTRv.

Supportive Treatment of Cardiac Involvement

  1. Drug therapies: Although angiotensin-converting enzyme (ACE) inhibitors/angiotensin-receptor blockers (ARBs) and beta-blockers may have been poorly tolerated in the ATTR-ACT trial, 30% of the patients were on ACE inhibitors/ARBs. There are no data with digoxin in TTR amyloid, and non-dihydropyridine calcium channel blockers are contraindicated due to negative inotropy.
  2. Implantable cardioverter-defibrillators (ICDs): In one study, which included 53 patients with amyloid, ICD shocks occurred exclusively in the AL amyloid group and none in the TTR amyloid patients. Higher defibrillation thresholds and complication rates are of concern.
  3. Cardiac pacing: In a large series of ATTRv-related polyneuropathy (n = 262), a pacemaker was implanted in 110 patients with His ventricular interval >700 ms. The authors recommend that any conduction disturbance on 12-lead electrocardiogram (ECG) warrants further investigation with Holter monitoring to determine candidacy for a pacemaker.
  4. Left ventricular assist device (LVAD): Although an LVAD is technically feasible, it is associated with high short-term mortality and worse outcomes than in dilated cardiomyopathy.
  5. Cardiac transplantation: This is a valuable option for patients with end-stage heart failure when significant extracardiac disease is excluded. In one study with 10 patients, only episodes of amyloid recurrence occurred.

This is an outstanding overview of this topic and recommended reading for anyone who cares for patients with cardiac transthyretin amyloid.

 

First-Ever Evidence that Patisiran Reduces Pathogenic, Misfolded TTR Monomers and Oligomers in FAP Patients

We reported data from our ongoing Phase 2 open-label extension (OLE) study of patisiran, an investigational RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR amyloidosis) patients with familial amyloidotic polyneuropathy (FAP). Alnylam scientists and collaborators from The Scripps Research Institute and Misfolding Diagnostics, Inc. were able to measure the effects of patisiran on pathogenic, misfolded TTR monomers and oligomers in FAP patients. Results showed a rapid and sustained reduction in serum non-native conformations of TTR (NNTTR) of approximately 90%. Since NNTTR is pathogenic in ATTR amyloidosis and the level of NNTTR reduction correlated with total TTR knockdown, these results provide direct mechanistic evidence supporting the therapeutic hypothesis that TTR knockdown has the potential to result in clinical benefit. Furthermore, complete 12-month data from all 27 patients that enrolled in the patisiran Phase 2 OLE study showed sustained mean maximum reductions in total serum TTR of 91% for over 18 months and a mean 3.1-point decrease in mNIS+7 at 12 months, which compares favorably to an estimated increase in mNIS+7 of 13 to 18 points at 12 months based upon analysis of historical data sets in untreated FAP patients with similar baseline characteristics. Importantly, patisiran administration continues to be generally well tolerated out to 21 months of treatment.

Read our press release

View the non-native TTR poster (480 KB PDF)

View the complete 12-month patisiran Phase 2 OLE data presentation (620 KB PDF)

We are encouraged by these new data that provide continued support for our hypothesis that patisiran has the potential to halt neuropathy progression in patients with FAP. If these results are replicated in a randomized, double-blind, placebo-controlled study, we believe that patisiran could emerge as an important treatment option for patients suffering from this debilitating, progressive and life-threatening disease.

 

Hereditary ATTR Amyloidosis with Polyneuropathy (hATTR-PN)

ATTR amyloidosis is a progressive, life-threatening disease caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in multiple organs, but primarily in the peripheral nerves and heart. ATTR amyloidosis can lead to significant morbidity, disability, and mortality. The TTR protein is produced primarily in the liver and is normally a carrier for retinol binding protein – one of the vehicles used to transport vitamin A around the body.  Mutations in the TTR gene cause misfolding of the protein and the formation of amyloid fibrils that typically contain both mutant and wild-type TTR that deposit in tissues such as the peripheral nerves and heart, resulting in intractable peripheral sensory neuropathy, autonomic neuropathy, and/or cardiomyopathy.

Click to Enlarge

 

ATTR represents a major unmet medical need with significant morbidity and mortality. There are over 100 reported TTR mutations; the particular TTR mutation and the site of amyloid deposition determine the clinical manifestations of the disease whether it is predominantly symptoms of neuropathy or cardiomyopathy.

Specifically, hereditary ATTR amyloidosis with polyneuropathy (hATTR-PN), also known as familial amyloidotic polyneuropathy (FAP), is an inherited, progressive disease leading to death within 5 to 15 years. It is due to a mutation in the transthyretin (TTR) gene, which causes misfolded TTR proteins to accumulate as amyloid fibrils predominantly in peripheral nerves and other organs. hATTR-PN can cause sensory, motor, and autonomic dysfunction, resulting in significant disability and death.

It is estimated that hATTR-PN, also known as FAP, affects approximately 10,000 people worldwide.  Patients have a life expectancy of 5 to 15 years from symptom onset, and the only treatment options for early stage disease are liver transplantation and TTR stabilizers such as tafamidis (approved in Europe) and diflunisal.  Unfortunately liver transplantation has limitations, including limited organ availability as well as substantial morbidity and mortality. Furthermore, transplantation eliminates the production of mutant TTR but does not affect wild-type TTR, which can further deposit after transplantation, leading to cardiomyopathy and worsening of neuropathy. There is a significant need for novel therapeutics to treat patients who have inherited mutations in the TTR gene.

Our ATTR program is the lead effort in our Genetic Medicine Strategic Therapeutic Area (STAr) product development and commercialization strategy, which is focused on advancing innovative RNAi therapeutics toward genetically defined targets for the treatment of rare diseases with high unmet medical need.  We are developing patisiran (ALN-TTR02), an intravenously administered RNAi therapeutic, to treat the hATTR-PN form of the disease.

Patisiran for the Treatment hATTR-PN

APOLLO Phase 3 Trial

In 2012, Alnylam entered into an exclusive alliance with Genzyme, a Sanofi company, to develop and commercialize RNAi therapeutics, including patisiran and revusiran, for the treatment of ATTR amyloidosis in Japan and the broader Asian-Pacific region. In early 2014, this relationship was extended as a significantly broader alliance to advance RNAi therapeutics as genetic medicines. Under this new agreement, Alnylam will lead development and commercialization of patisiran in North America and Europe while Genzyme will develop and commercialize the product in the rest of world.

 

Hereditary ATTR Amyloidosis with Cardiomyopathy (hATTR-CM)

ATTR amyloidosis is a progressive, life-threatening disease caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in multiple organs, but primarily in the peripheral nerves and heart. ATTR amyloidosis can lead to significant morbidity, disability, and mortality. The TTR protein is produced primarily in the liver and is normally a carrier for retinol binding protein – one of the vehicles used to transport vitamin A around the body.  Mutations in the TTR gene cause misfolding of the protein and the formation of amyloid fibrils that typically contain both mutant and wild-type TTR that deposit in tissues such as the peripheral nerves and heart, resulting in intractable peripheral sensory neuropathy, autonomic neuropathy, and/or cardiomyopathy.

Click to Enlarge                            http://www.alnylam.com/web/assets/tetramer.jpg

ATTR represents a major unmet medical need with significant morbidity and mortality. There are over 100 reported TTR mutations; the particular TTR mutation and the site of amyloid deposition determine the clinical manifestations of the disease, whether it is predominantly symptoms of neuropathy or cardiomyopathy.

Specifically, hereditary ATTR amyloidosis with cardiomyopathy (hATTR-CM), also known as familial amyloidotic cardiomyopathy (FAC), is an inherited, progressive disease leading to death within 2 to 5 years. It is due to a mutation in the transthyretin (TTR) gene, which causes misfolded TTR proteins to accumulate as amyloid fibrils primarily in the heart. Hereditary ATTR amyloidosis with cardiomyopathy can result in heart failure and death.

While the exact numbers are not known, it is estimated hATTR-CM, also known as FAC affects at least 40,000 people worldwide.  hATTR-CM is fatal within 2 to 5 years of diagnosis and treatment is currently limited to supportive care.  Wild-type ATTR amyloidosis (wtATTR amyloidosis), also known as senile systemic amyloidosis, is a nonhereditary, progressive disease leading to death within 2 to 5 years. It is caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in the heart. Wild-type ATTR amyloidosis can cause cardiomyopathy and result in heart failure and death. There are no approved therapies for the treatment of hATTR-CM or SSA; hence there is a significant unmet need for novel therapeutics to treat these patients.

Our ATTR program is the lead effort in our Genetic Medicine Strategic Therapeutic Area (STAr) product development and commercialization strategy, which is focused on advancing innovative RNAi therapeutics toward genetically defined targets for the treatment of rare diseases with high unmet medical need.  We are developing revusiran (ALN-TTRsc), a subcutaneously administered RNAi therapeutic for the treatment of hATTR-CM.

Revusiran for the Treatment of hATTR-CM

ENDEAVOUR Phase 3 Trial

In 2012, Alnylam entered into an exclusive alliance with Genzyme, a Sanofi company, to develop and commercialize RNAi therapeutics, including patisiran and revusiran, for the treatment of ATTR amyloidosis in Japan and the broader Asian-Pacific region. In early 2014, this relationship was extended as a broader alliance to advance RNAi therapeutics as genetic medicines. Under this new agreement, Alnylam and Genzyme have agreed to co-develop and co-commercialize revusiran in North America and Europe, with Genzyme developing and commercializing the product in the rest of world. This broadened relationship on revusiran is aimed at expanding and accelerating the product’s global value.

Pre-Clinical Data and Advancement of ALN-TTRsc02 for Transthyretin-Mediated Amyloidosis

We presented pre-clinical data with ALN-TTRsc02, an investigational RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR amyloidosis).  In pre-clinical studies, including those in non-human primates (NHPs), ALN-TTRsc02 achieved potent and highly durable knockdown of serum TTR of up to 99% with multi-month durability achieved after just a single dose, supportive of a potentially once quarterly dose regimen. Results from studies comparing TTR knockdown activity of ALN-TTRsc02 to that of revusiran showed that ALN-TTRsc02 has a markedly superior TTR knockdown profile.  Further, in initial rat toxicology studies, ALN-TTRsc02 was found to be generally well tolerated with no significant adverse events at doses as high as 100 mg/kg.

Read our press release

View the presentation

http://www.alnylam.com/product-pipeline/hereditary-attr-amyloidosis-with-cardiomyopathy/

 

Emerging Therapies for Transthyretin Cardiac Amyloidosis Could Herald a New Era for the Treatment of HFPEF

Oct 14, 2015   |  Adam Castano, MDDavid Narotsky, MDMathew S. Maurer, MD, FACC

http://www.acc.org/latest-in-cardiology/articles/2015/10/13/08/35/emerging-therapies-for-transthyretin-cardiac-amyloidosis#sthash.9xzc0rIe.dpuf

Heart failure with a preserved ejection fraction (HFPEF) is a clinical syndrome that has no pharmacologic therapies approved for this use to date. In light of failed medicines, cardiologists have refocused treatment strategies based on the theory that HFPEF is a heterogeneous clinical syndrome with different etiologies. Classification of HFPEF according to etiologic subtype may, therefore, identify cohorts with treatable pathophysiologic mechanisms and may ultimately pave the way forward for developing meaningful HFPEF therapies.1

A wealth of data now indicates that amyloid infiltration is an important mechanism underlying HFPEF. Inherited mutations in transthyretin cardiac amyloidosis (ATTRm) or the aging process in wild-type disease (ATTRwt) cause destabilization of the transthyretin (TTR) protein into monomers or oligomers, which aggregate into amyloid fibrils. These insoluble fibrils accumulate in the myocardium and result in diastolic dysfunction, restrictive cardiomyopathy, and eventual congestive heart failure (Figure 1). In an autopsy study of HFPEF patients, almost 20% without antemortem suspicion of amyloid had left ventricular (LV) TTR amyloid deposition.2 Even more resounding evidence for the contribution of TTR amyloid to HFPEF was a study in which 120 hospitalized HFPEF patients with LV wall thickness ≥12 mm underwent technetium-99m 3,3-diphosphono-1,2-propranodicarboxylic acid (99mTc-DPD) cardiac imaging,3,4 a bone isotope known to have high sensitivity and specificity for diagnosing TTR cardiac amyloidosis.5,6 Moderate-to-severe myocardial uptake indicative of TTR cardiac amyloid deposition was detected in 13.3% of HFPEF patients who did not have TTR gene mutations. Therefore, TTR cardiac amyloid deposition, especially in older adults, is not rare, can be easily identified, and may contribute to the underlying pathophysiology of HFPEF.

Figure 1

As no U.S. Food and Drug Administration-approved drugs are currently available for the treatment of HFPEF or TTR cardiac amyloidosis, the development of medications that attenuate or prevent TTR-mediated organ toxicity has emerged as an important therapeutic goal. Over the past decade, a host of therapies and therapeutic drug classes have emerged in clinical trials (Table 1), and these may herald a new direction for treating HFPEF secondary to TTR amyloid.

Table 1

TTR Silencers (siRNA and Antisense Oligonucleotides)

siRNA

Ribonucleic acid interference (RNAi) has surfaced as an endogenous cellular mechanism for controlling gene expression. Small interfering RNAs (siRNAs) delivered into cells can disrupt the production of target proteins.7,8 A formulation of lipid nanoparticle and triantennary N-acetylgalactosamine (GalNAc) conjugate that delivers siRNAs to hepatocytes is currently in clinical trials.9 Prior research demonstrated these GalNAc-siRNA conjugates result in robust and durable knockdown of a variety of hepatocyte targets across multiple species and appear to be well suited for suppression of TTR gene expression and subsequent TTR protein production.

The TTR siRNA conjugated to GalNAc, ALN-TTRSc, is now under active investigation as a subcutaneous injection in phase 3 clinical trials in patients with TTR cardiac amyloidosis.10 Prior phase 2 results demonstrated that ALN-TTRSc was generally well tolerated in patients with significant TTR disease burden and that it reduced both wild-type and mutant TTR gene expression by a mean of 87%. Harnessing RNAi technology appears to hold great promise for treating patients with TTR cardiac amyloidosis. The ability of ALN-TTRSc to lower both wild-type and mutant proteins may provide a major advantage over liver transplantation, which affects the production of only mutant protein and is further limited by donor shortage, cost, and need for immunosuppression.

Antisense Oligonucleotides

Antisense oligonucleotides (ASOs) are under clinical investigation for their ability to inhibit hepatic expression of amyloidogenic TTR protein. Currently, the ASO compound, ISIS-TTRRx, is under investigation in a phase 3 multicenter, randomized, double-blind, placebo-controlled clinical trial in patients with familial amyloid polyneuropathy (FAP).11 The primary objective is to evaluate its efficacy as measured by change in neuropathy from baseline relative to placebo. Secondary measures will evaluate quality of life (QOL), modified body mass index (mBMI) by albumin, and pharmacodynamic effects on retinol binding protein. Exploratory objectives in a subset of patients with LV wall thickness ≥13 mm without a history of persistent hypertension will examine echocardiographic parameters, N-terminal pro–B-type natriuretic peptide (NT-proBNP), and polyneuropathy disability score relative to placebo. These data will facilitate analysis of the effect of antisense oligonucleotide-mediated TTR suppression on the TTR cardiac phenotype with a phase 3 trial anticipated to begin enrollment in 2016.

TTR Stabilizers (Diflunisal, Tafamidis)

Diflunisal

Several TTR-stabilizing agents are in various stages of clinical trials. Diflunisal, a traditionally used and generically available nonsteroidal anti-inflammatory drug (NSAID), binds and stabilizes familial TTR variants against acid-mediated fibril formation in vitro and is now in human clinical trials.12,13 The use of diflunisal in patients with TTR cardiac amyloidosis is controversial given complication of chronic inhibition of cyclooxygenase (COX) enzymes, including gastrointestinal bleeding, renal dysfunction, fluid retention, and hypertension that may precipitate or exacerbate heart failure in vulnerable individuals.14-17 In TTR cardiac amyloidosis, an open-label cohort study suggested that low-dose diflunisal with careful monitoring along with a prophylactic proton pump inhibitor could be safely administered to compensated patients.18 An association was observed, however, between chronic diflunisal use and adverse changes in renal function suggesting that advanced kidney disease may be prohibitive in diflunisal therapy.In FAP patients with peripheral or autonomic neuropathy randomized to diflunisal or placebo, diflunisal slowed progression of neurologic impairment and preserved QOL over two years of follow-up.19 Echocardiography demonstrated cardiac involvement in approximately 50% of patients.20 Longer-term safety and efficacy data over an average 38 ± 31 months in 40 Japanese patients with hereditary ATTR amyloidosis who were not candidates for liver transplantation showed that diflunisal was mostly well tolerated.12 The authors cautioned the need for attentive monitoring of renal function and blood cell counts. Larger multicenter collaborations are needed to determine diflunisal’s true efficacy in HFPEF patients with TTR cardiac amyloidosis.

Tafamidis

Tafamidis is under active investigation as a novel compound that binds to the thyroxine-binding sites of the TTR tetramer, inhibiting its dissociation into monomers and blocking the rate-limiting step in the TTR amyloidogenesis cascade.21 The TTR compound was shown in an 18-month double-blind, placebo-controlled trial to slow progression of neurologic symptoms in patients with early-stage ATTRm due to the V30M mutation.22 When focusing on cardiomyopathy in a phase 2, open-label trial, tafamidis also appeared to effectively stabilize TTR tetramers in non-V30M variants, wild-type and V122I, as well as biochemical and echocardiographic parameters.23,24 Preliminary data suggests that clinically stabilized patients had shorter disease duration, lower cardiac biomarkers, less myocardial thickening, and higher EF than those who were not stabilized, suggesting early institution of therapy may be beneficial. A phase 3 trial has completed enrollment and will evaluate the efficacy, safety, and tolerability of tafamidis 20 or 80 mg orally vs. placebo.25 This will contribute to long-term safety and efficacy data needed to determine the therapeutic effects of tafamidis among ATTRm variants.

Amyloid Degraders (Doxycycline/TUDCA and Anti-SAP Antibodies)

Doxycycline/TUDCA

While silencer and stabilizer drugs are aimed at lowering amyloidogenic precursor protein production, they cannot remove already deposited fibrils in an infiltrated heart. Removal of already deposited fibrils by amyloid degraders would be an important therapeutic strategy, particularly in older adults with heavily infiltrated hearts reflected by thick walls, HFPEF, systolic heart failure, and restrictive cardiomyopathy. Combined doxycycline and tauroursodeoxycholic acid (TUDCA) disrupt TTR amyloid fibrils and appeared to have an acceptable safety profile in a small phase 2 open-label study among 20 TTR patients. No serious adverse reactions or clinical progression of cardiac or neuropathic involvement was observed over one year.26 An active phase 2, single-center, open-label, 12-month study will assess primary outcome measures including mBMI, neurologic impairment score, and NT-proBNP.27 Another phase 2 study is examining the tolerability and efficacy of doxycycline/TUDCA over an 18-month period in patients with TTR amyloid cardiomyopathy.28 Additionally, a study in patients with TTR amyloidosis is ongoing to determine the effect of doxycycline alone on neurologic function, cardiac biomarkers, echocardiographic parameters, modified body mass index, and autonomic neuropathy.29

Anti-SAP Antibodies

In order to safely clear established amyloid deposits, the role of the normal, nonfibrillar plasma glycoprotein present in all human amyloid deposits, serum amyloid P component (SAP), needs to be more clearly understood.30 In mice with amyloid AA type deposits, administration of antihuman SAP antibody triggered a potent giant cell reaction that removed massive visceral amyloid deposits without adverse effects.31 In humans with TTR cardiac amyloidosis, anti-SAP antibody treatments could be feasible because the bis-D proline compound, CPHPC, is capable of clearing circulating human SAP, which allow anti-SAP antibodies to reach residual deposited SAP. In a small, open-label, single-dose-escalation, phase 1 trial involving 15 patients with systemic amyloidosis, none of whom had clinical evidence of cardiac amyloidosis, were treated with CPHPC followed by human monoclonal IgG1 anti-SAP antibody.32 No serious adverse events were reported and amyloid deposits were cleared from the liver, kidney, and lymph node. Anti-SAP antibodies hold promise as a potential amyloid therapy because of their potential to target all forms of amyloid deposits across multiple tissue types.

Mutant or wild-type TTR cardiac amyloidoses are increasingly recognized as a cause of HFPEF. Clinicians need to be aware of this important HFPEF etiology because the diverse array of emerging disease-modifying agents for TTR cardiac amyloidosis in human clinical trials has the potential to herald a new era for the treatment of HFPEF.

References

  1. Maurer MS, Mancini D. HFpEF: is splitting into distinct phenotypes by comorbidities the pathway forward? J Am Coll Cardiol 2014;64:550-2.
  2. Mohammed SF, Mirzoyev SA, Edwards WD, et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail 2014;2:113-22.
  3. González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015.
  4. Castano A, Bokhari S, Maurer MS. Unveiling wild-type transthyretin cardiac amyloidosis as a significant and potentially modifiable cause of heart failure with preserved ejection fraction. Eur Heart J 2015 Jul 28. [Epub ahead of print]
  5. Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 2009;120:1203-12.
  6. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195-201.
  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
  8. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8.
  9. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nature Mater 2013;12:967-77.
  10. U.S. National Institutes of Health. Phase 2 Study to Evaluate ALN-TTRSC in Patients With Transthyretin (TTR) Cardiac Amyloidosis (ClinicalTrials.gov website). 2014. Available at: https://www.clinicaltrials.gov/ct2/show/NCT01981837. Accessed 8/19/2015.
  11. U.S. National Institutes of Health. Efficacy and Safety of ISIS-TTRRx in Familial Amyloid Polyneuropathy (Clinical Trials.gov Website. 2013. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01737398. Accessed 8/19/2015.
  12. Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 2006;13:236-49.
  13. Tojo K, Sekijima Y, Kelly JW, Ikeda S. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res 2006;56:441-9.
  14. Epstein M. Non-steroidal anti-inflammatory drugs and the continuum of renal dysfunction. J Hypertens Suppl 2002;20:S17-23.
  15. Wallace JL. Pathogenesis of NSAID-induced gastroduodenal mucosal injury. Best Pract Res Clin Gastroenterol 2001;15:691-703.
  16. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001;286:954-9.
  17. Page J, Henry D. Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an underrecognized public health problem. Arch Intern Med 2000;160:777-84.
  18. Castano A, Helmke S, Alvarez J, Delisle S, Maurer MS. Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail 2012;18:315-9.
  19. Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 2013;310:2658-67.
  20. Quarta CCF, Solomon RH Suhr SD, et al. The prevalence of cardiac amyloidosis in familial amyloidotic polyneuropathy with predominant neuropathy: The Diflunisal Trial. International Symposium on Amyloidosis 2014:88-9.
  21. Hammarstrom P, Jiang X, Hurshman AR, Powers ET, Kelly JW. Sequence-dependent denaturation energetics: A major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A 2002;99 Suppl 4:16427-32.
  22. Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 2012;79:785-92.
  23. Merlini G, Plante-Bordeneuve V, Judge DP, et al. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J Cardiovasc Transl Res 2013;6:1011-20.
  24. Maurer MS, Grogan DR, Judge DP, et al. Tafamidis in transthyretin amyloid cardiomyopathy: effects on transthyretin stabilization and clinical outcomes. Circ Heart Fail 2015;8:519-26.
  25. U.S. National Institutes of Health. Safety and Efficacy of Tafamidis in Patients With Transthyretin Cardiomyopathy (ATTR-ACT) (ClinicalTrials.gov website). 2014. Available at: http://www.clinicaltrials.gov/show/NCT01994889. Accessed 8/19/2015.
  26. Obici L, Cortese A, Lozza A, et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid 2012;19 Suppl 1:34-6.
  27. U.S. National Institutes of Health. Safety, Efficacy and Pharmacokinetics of Doxycycline Plus Tauroursodeoxycholic Acid in Transthyretin Amyloidosis (ClinicalTrials.gov website). 2011. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01171859. Accessed 8/19/2015.
  28. U.S. National Institutes of Health. Tolerability and Efficacy of a Combination of Doxycycline and TUDCA in Patients With Transthyretin Amyloid Cardiomyopathy (ClinicalTrials.gov website). 2013. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01855360. Accessed 8/19/2015.
  29. U.S. National Institutes of Health. Safety and Effect of Doxycycline in Patients With Amyloidosis (ClinicalTrials.gov website).2015. Available at: https://clinicaltrials.gov/ct2/show/NCT01677286. Accessed 8/19/2015.
  30. Pepys MB, Dash AC. Isolation of amyloid P component (protein AP) from normal serum as a calcium-dependent binding protein. Lancet 1977;1:1029-31.
  31. Bodin K, Ellmerich S, Kahan MC, et al. Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature 2010;468:93-7.
  32. Richards DB, Cookson LM, Berges AC, et al. Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component. N Engl J Med 2015;373:1106-14.

 

The Acid-Mediated Denaturation Pathway of Transthyretin Yields a Conformational Intermediate That Can Self-Assemble into Amyloid

Zhihong Lai , Wilfredo Colón , and Jeffery W. Kelly *
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
Biochemistry199635 (20), pp 6470–6482   http://dx.doi.org:/10.1021/bi952501g
Publication Date (Web): May 21, 1996  Copyright © 1996 American Chemical Society

Transthyretin (TTR) amyloid fibril formation is observed during partial acid denaturation and while refolding acid-denatured TTR, implying that amyloid fibril formation results from the self-assembly of a conformational intermediate. The acid denaturation pathway of TTR has been studied in detail herein employing a variety of biophysical methods to characterize the intermediate(s) capable of amyloid fibril formation. At physiological concentrations, tetrameric TTR remains associated from pH 7 to pH 5 and is incapable of amyloid fibril formation. Tetrameric TTR dissociates to a monomer in a process that is dependent on both pH and protein concentration below pH 5. The extent of amyloid fibril formation correlates with the concentration of the TTR monomer having an altered, but defined, tertiary structure over the pH range of 5.0−3.9. The inherent Trp fluorescence-monitored denaturation curve of TTR exhibits a plateau over the pH range where amyloid fibril formation is observed (albeit at a higher concentration), implying that a steady-state concentration of the amyloidogenic intermediate with an altered tertiary structure is being detected. Interestingly, 1-anilino-8-naphthalenesulfonate fluorescence is at a minimum at the pH associated with maximal amyloid fibril formation (pH 4.4), implying that the amyloidogenic intermediate does not have a high extent of hydrophobic surface area exposed, consistent with a defined tertiary structure. Transthyretin has two Trp residues in its primary structure, Trp-41 and Trp-79, which are conveniently located far apart in the tertiary structure of TTR. Replacement of each Trp with Phe affords two single Trp containing variants which were used to probe local pH-dependent tertiary structural changes proximal to these chromophores. The pH-dependent fluorescence behavior of the Trp-79-Phe mutant strongly suggests that Trp-41 is located near the site of the tertiary structural rearrangement that occurs in the formation of the monomeric amyloidogenic intermediate, likely involving the C-strand−loop−D-strand region. Upon further acidification of TTR (below pH 4.4), the structurally defined monomeric amyloidogenic intermediate begins to adopt alternative conformations that are not amyloidogenic, ultimately forming an A-state conformation below pH 3 which is also not amyloidogenic. In summary, analytical equilibrium ultracentrifugation, SDS−PAGE, far- and near-UV CD, fluorescence, and light scattering studies suggest that the amyloidogenic intermediate is a monomeric predominantly β-sheet structure having a well-defined tertiary structure.

 

Prevention of Transthyretin Amyloid Disease by Changing Protein Misfolding Energetics

Per Hammarström*, R. Luke Wiseman*, Evan T. Powers, Jeffery W. Kelly   + Author Affiliations

Science  31 Jan 2003; 299(5607):713-716   http://dx.doi.org:/10.1126/science.1079589

Genetic evidence suggests that inhibition of amyloid fibril formation by small molecules should be effective against amyloid diseases. Known amyloid inhibitors appear to function by shifting the aggregation equilibrium away from the amyloid state. Here, we describe a series of transthyretin amyloidosis inhibitors that functioned by increasing the kinetic barrier associated with misfolding, preventing amyloidogenesis by stabilizing the native state. The trans-suppressor mutation, threonine 119 → methionine 119, which is known to ameliorate familial amyloid disease, also functioned through kinetic stabilization, implying that this small-molecule strategy should be effective in treating amyloid diseases.

 

Rational design of potent human transthyretin amyloid disease inhibitors

Thomas Klabunde1,2, H. Michael Petrassi3, Vibha B. Oza3, Prakash Raman3, Jeffery W. Kelly3 & James C. Sacchettini1

Nature Structural & Molecular Biology 2000; 7: 312 – 321.                http://dx.doi.org:/10.1038/74082

The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein–drug complexes have been determined to allow detailed analyses of the protein–drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4,6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.

 

First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy

Adams, Davida; Suhr, Ole B.b; Hund, Ernstc; Obici, Laurad; Tournev, Ivailoe,f; Campistol, Josep M.g; Slama, Michel S.h; Hazenberg, Bouke P.i; Coelho, Teresaj; from the European Network for TTR-FAP (ATTReuNET)

Current Opin Neurol: Feb 2016; 29 – Issue – p S14–S26      http://dx.doi.org:/10.1097/WCO.0000000000000289

Purpose of review: Early and accurate diagnosis of transthyretin familial amyloid polyneuropathy (TTR-FAP) represents one of the major challenges faced by physicians when caring for patients with idiopathic progressive neuropathy. There is little consensus in diagnostic and management approaches across Europe.

Recent findings: The low prevalence of TTR-FAP across Europe and the high variation in both genotype and phenotypic expression of the disease means that recognizing symptoms can be difficult outside of a specialized diagnostic environment. The resulting delay in diagnosis and the possibility of misdiagnosis can misguide clinical decision-making and negatively impact subsequent treatment approaches and outcomes.

Summary: This review summarizes the findings from two meetings of the European Network for TTR-FAP (ATTReuNET). This is an emerging group comprising representatives from 10 European countries with expertise in the diagnosis and management of TTR-FAP, including nine National Reference Centres. The current review presents management strategies and a consensus on the gold standard for diagnosis of TTR-FAP as well as a structured approach to ongoing multidisciplinary care for the patient. Greater communication, not just between members of an individual patient’s treatment team, but also between regional and national centres of expertise, is the key to the effective management of TTR-FAP.

http://images.journals.lww.com/co-neurology/Original.00019052-201602001-00003.FF1.jpeg

Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a highly debilitating and irreversible neurological disorder presenting symptoms of progressive sensorimotor and autonomic neuropathy [1▪,2▪,3]. TTR-FAP is caused by misfolding of the transthyretin (TTR) protein leading to protein aggregation and the formation of amyloid fibrils and, ultimately, to amyloidosis (commonly in the peripheral and autonomic nervous system and the heart) [4,5]. TTR-FAP usually proves fatal within 7–12 years from the onset of symptoms, most often due to cardiac dysfunction, infection, or cachexia [6,7▪▪].

The prevalence and disease presentation of TTR-FAP vary widely within Europe. In endemic regions (northern Portugal, Sweden, Cyprus, and Majorca), patients tend to present with a distinct genotype in large concentrations, predominantly a Val30Met substitution in the TTR gene [8–10]. In other areas of Europe, the genetic footprint of TTR-FAP is more varied, with less typical phenotypic expression [6,11]. For these sporadic or scattered cases, a lack of awareness among physicians of variable clinical features and limited access to diagnostic tools (i.e., pathological studies and genetic screening) can contribute to high rates of misdiagnosis and poorer patient outcomes [1▪,11]. In general, early and late-onset variants of TTR-FAP, found within endemic and nonendemic regions, present several additional diagnostic challenges [11,12,13▪,14].

Delay in the time to diagnosis is a major obstacle to the optimal management of TTR-FAP. With the exception of those with a clearly diagnosed familial history of FAP, patients still invariably wait several years between the emergence of first clinical signs and accurate diagnosis [6,11,14]. The timely initiation of appropriate treatment is particularly pertinent, given the rapidity and irreversibility with which TTR-FAP can progress if left unchecked, as well as the limited effectiveness of available treatments during the later stages of the disease [14]. This review aims to consolidate the existing literature and present an update of the best practices in the management of TTR-FAP in Europe. A summary of the methods used to achieve a TTR-FAP diagnosis is presented, as well as a review of available treatments and recommendations for treatment according to disease status.

Patients with TTR-FAP can present with a range of symptoms [11], and care should be taken to acquire a thorough clinical history of the patient as well as a family history of genetic disease. Delay in diagnosis is most pronounced in areas where TTR-FAP is not endemic or when there is no positive family history [1▪]. TTR-FAP and TTR-familial amyloid cardiomyopathy (TTR-FAC) are the two prototypic clinical disease manifestations of a broader disease spectrum caused by an underlying hereditary ATTR amyloidosis [19]. In TTR-FAP, the disease manifestation of neuropathy is most prominent and definitive for diagnosis, whereas cardiomyopathy often suggests TTR-FAC. However, this distinction is often superficial because cardiomyopathy, autonomic neuropathy, vitreous opacities, kidney disease, and meningeal involvement all may be present with varying severity for each patient with TTR-FAP.

Among early onset TTR-FAP with usually positive family history, symptoms of polyneuropathy present early in the disease process and usually predominate throughout the progression of the disease, making neurological testing an important diagnostic aid [14]. Careful clinical examination (e.g., electromyography with nerve conduction studies and sympathetic skin response, quantitative sensation test, quantitative autonomic test) can be used to detect, characterize, and scale the severity of neuropathic abnormalities involving small and large nerve fibres [10]. Although a patient cannot be diagnosed definitively with TTR-FAP on the basis of clinical presentation alone, symptoms suggesting the early signs of peripheral neuropathy, autonomic dysfunction, and cardiac conduction disorders or infiltrative cardiomyopathy are all indicators that further TTR-FAP diagnostic investigation is warranted. Late-onset TTR-FAP often presents as sporadic cases with distinct clinical features (e.g., milder autonomic dysfunction) and can be more difficult to diagnose than early-onset TTR-FAP (Table 2) [1▪,11,12,13▪,14,20].

http://images.journals.lww.com/co-neurology/LargeThumb.00019052-201602001-00003.TT2.jpeg

Genetic testing is carried out to allow detection of specific amyloidogenic TTR mutations (Table 1), using varied techniques depending on the expertise and facilities available in each country (Table S2, http://links.lww.com/CONR/A39). A targeted approach to detect a specific mutation can be used for cases belonging to families with previous diagnosis. In index cases of either endemic and nonendemic regions that do not have a family history of disease, are difficult to confirm, and have atypical symptoms, TTR gene sequencing is required for the detection of both predicted and new amyloidogenic mutations [26,27].

Following diagnosis, the neuropathy stage and systemic extension of the disease should be determined in order to guide the next course of treatment (Table 4) [3,30,31]. The three stages of TTR-FAP severity are graded according to a patient’s walking disability and degree of assistance required [30]. Systemic assessment, especially of the heart, eyes, and kidney, is also essential to ensure all aspects of potential impact of the disease can be detected [10].

Table 4

http://images.journals.lww.com/co-neurology/LargeThumb.00019052-201602001-00003.TT4.jpeg

Image Tools

The goals of cardiac investigations are to detect serious conduction disorders with the risk of sudden death and infiltrative cardiomyopathy. Electrocardiograms (ECG), Holter-ECG, and intracardiac electrophysiology study are helpful to detect conduction disorders. Echocardiograms, cardiac magnetic resonance imaging, scintigraphy with bone tracers, and biomarkers (e.g., brain natriuretic peptide, troponin) can all help to diagnose infiltrative cardiomyopathy[10]. An early detection of cardiac abnormalities has obvious benefits to the patient, given that the prophylactic implantation of pacemakers was found to prevent 25% of major cardiac events in TTR-FAP patients followed up over an average of 4 years [32▪▪]. Assessment of cardiac denervation with 123-iodine meta-iodobenzylguanidine is a powerful prognostic marker in patients diagnosed with FAP [33].

…..

Tafamidis

Tafamidis is a first-in-class therapy that slows the progression of TTR amyloidogenesis by stabilizing the mutant TTR tetramer, thereby preventing its dissociation into monomers and amyloidogenic and toxic intermediates [55,56]. Tafamidis is currently indicated in Europe for the treatment of TTR amyloidosis in adult patients with stage I symptomatic polyneuropathy to delay peripheral neurological impairment [57].

In an 18-month, double-blind, placebo-controlled study of patients with early-onset Val30Met TTR-FAP, tafamidis was associated with a 52% lower reduction in neurological deterioration (P = 0.027), a preservation of nerve function, and TTR stabilization versus placebo [58▪▪]. However, only numerical differences were found for the coprimary endpoints of neuropathy impairment [neuropathy impairment score in the lower limb (NIS-LL) responder rates of 45.3% tafamidis vs 29.5% placebo; P = 0.068] and quality of life scores [58▪▪]. A 12-month, open-label extension study showed that the reduced rates of neurological deterioration associated with tafamidis were sustained over 30 months, with earlier initiation of tafamidis linking to better patient outcomes (P = 0.0435) [59▪]. The disease-slowing effects of tafamidis may be dependent on the early initiation of treatment. In an open-label study with Val30Met TTR-FAP patients with late-onset and advanced disease (NIS-LL score >10, mean age 56.4 years), NIS-LL and disability scores showed disease progression despite 12 months of treatment with tafamidis, marked by a worsening of neuropathy stage in 20% and the onset of orthostatic hypotension in 22% of patients at follow-up [60▪].

Tafamidis is not only effective in patients exhibiting the Val30Met mutation; it also has proven efficacy, in terms of TTR stabilization, in non-Val30Met patients over 12 months [61]. Although tafamidis has demonstrated safe use in patients with TTR-FAP, care should be exercised when prescribing to those with existing digestive problems (e.g., diarrhoea, faecal incontinence) [60▪].

Back to Top | Article Outline

Diflunisal

Diflunisal is a nonsteroidal anti-inflammatory drug (NSAID) that, similar to tafamidis, slows the rate of amyloidogenesis by preventing the dissociation, misfolding, and misassembly of the mutated TTR tetramer [62,63]. Off-label use has been reported for patients with stage I and II disease, although diflunisal is not currently licensed for the treatment of TTR-FAP.

Evidence for the clinical effectiveness of diflunisal in TTR-FAP derives from a placebo-controlled, double-blind, 24-month study in 130 patients with clinically detectable peripheral or autonomic neuropathy[64▪]. The deterioration in NIS scores was significantly more pronounced in patients receiving placebo compared with those taking diflunisal (P = 0.001), and physical quality of life measures showed significant improvement among diflunisal-treated patients (P = 0.001). Notable during this study was the high rate of attrition in the placebo group, with 50% more placebo-treated patients dropping out of this 2-year study as a result of disease progression, advanced stage of the disease, and varied mutations.

One retrospective analysis of off-label use of diflunisal in patients with TTR-FAP reported treatment discontinuation in 57% of patients because of adverse events that were largely gastrointestinal [65]. Conclusions on the safety of diflunisal in TTR-FAP will depend on further investigations on the impact of known cardiovascular and renal side-effects associated with the NSAID drug class [66,67].

 

 

 

 

Read Full Post »

Older Posts »

%d bloggers like this: