Feeds:
Posts
Comments

Posts Tagged ‘Amyloid’

Familial transthyretin amyloid polyneuropathy

Curator: Larry H. Bernstein, MD, FCAP

 

UPDATED on 6/3/2020

Treatment of Cardiac Transthyretin Amyloidosis

Authors:
Emdin M, Aimo A, Rapezzi C, et al.
Citation:
Treatment of Cardiac Transthyretin Amyloidosis: An Update. Eur Heart J 2019;40:3699-3706.

The following are key points to remember from this update on the treatment of cardiac transthyretin amyloidosis:

  1. Transthyretin (TTR) is a highly conserved protein involved in transportation of thyroxine (T4) and retinol-binding protein. TTR is synthesized mostly by the liver and is rich in beta strands with an intrinsic propensity to aggregate into insoluble amyloid fibers, which deposit within tissue leading to the development of TTR-related amyloidosis (ATTR). ATTR can follow the deposition of either variant TTR (ATTRv, previously known as mutant ATTR) or wild type TTR (ATTRwt).
  2. Cardiac ATTR has a favorable survival rate compared to light chain (AL) amyloidosis, with a median survival of 75 versus 11 months. However, ATTR cardiomyopathy is a progressive disorder but newer therapeutic options include tafamidis (positive phase 3 clinical trial), and possibly patisiran and inotersen.

Inhibition of the Synthesis of Mutated Transthyretin

  1. Liver transplantation removes the source of mutated TTR molecules and prolongs survival, with a 20-year survival of 55.3%. However, tissue accumulation of TTR can continue after liver transplantation because TTR amyloid fibers promote subsequent deposition of ATTRwt. Combined liver–heart transplantation is feasible in younger patients with ATTRv cardiomyopathy and a small series suggests better prognosis than cardiac transplantation.
  2. Inhibition of TTR gene expression: Patisiran is a small interfering RNA blocking the expression of both variant and wt TTR. On the basis of the APOLLO trial, it was approved for therapy of adults with ATTRv-related polyneuropathy both in the United States and European Union. In this trial, patisiran promoted favorable myocardial remodeling based on echocardiographic and N-terminal B-type natriuretic peptide (NT-BNP) changes (this effect was not demonstrated for inotersen) and is still under investigation for tafamidis.
  3. Antisense oligonucleotides inotersen inhibits the production of both variant and wt TTR. Based on the findings of the NEURO-TTR trial, the Food and Drug Administration (FDA) approved this agent for patients with ATTRv-related polyneuropathy. In the NEURO-TTR trial, cardiomyopathy was present in 63%, but the study was not powered to measure effects of inotersen on heart disease. Inotersen can cause thrombocytopenia and must be used cautiously with bleeding risk.

Tetramer Stabilization

  1. Selective stabilizers include tafamidis and AG10. Tafamidis is a benzoxazole and a small molecule that inhibits the dissociation of TTR tetramers by binding the T4-binding sites. The phase ATTR-ACT study showed that when comparing the pooled tafamidis arms (80 and 20 mg) with the placebo arm, tafamidis was associated with lower all-cause mortality than placebo (78 of 264 [29.5%] vs. 76 of 177 [42.9%]; hazard ratio, 0.70; 95% confidence interval, 0.51-0.96) and a lower rate of cardiovascular hospitalizations. Based on the results of the ATTR-ACT trial, it has received Breakthrough Therapy designation from the FDA for treatment of ATTR cardiomyopathy.
  2. Nonselective agents: Diflunisal, a nonsteroidal anti-inflammatory drug, is reported to stabilize TTR tetramers. More studies are needed to confirm its clinical efficacy.

Inhibition of Oligomer Aggregation and Oligomer Disruption

  1. Epigallocatechin gallate is the most abundant catechin in green tea. One single-center open-label 12-month study did not show survival benefits or any change in echocardiographic parameters or NT-BNP compared to baseline.

Degradation and Reabsorption of Amyloid Fibers

  1. Doxycycline-taurosodeoxycholic acid (TUDCA) has been evaluated in two small studies and the results appear to be modest. More data are needed to confirm its efficacy.
  2. Antibodies targeting serum amyloid P protein or amyloid fibrils: Patient enrollment for miridesap followed by anti-SAP antibodies was suspended, and this approach is not being evaluated currently. However, a monoclonal antibody designed to specifically target TTR amyloid deposits (PRX004) has entered clinical evaluation, with an ongoing phase 1 study on ATTRv.

Supportive Treatment of Cardiac Involvement

  1. Drug therapies: Although angiotensin-converting enzyme (ACE) inhibitors/angiotensin-receptor blockers (ARBs) and beta-blockers may have been poorly tolerated in the ATTR-ACT trial, 30% of the patients were on ACE inhibitors/ARBs. There are no data with digoxin in TTR amyloid, and non-dihydropyridine calcium channel blockers are contraindicated due to negative inotropy.
  2. Implantable cardioverter-defibrillators (ICDs): In one study, which included 53 patients with amyloid, ICD shocks occurred exclusively in the AL amyloid group and none in the TTR amyloid patients. Higher defibrillation thresholds and complication rates are of concern.
  3. Cardiac pacing: In a large series of ATTRv-related polyneuropathy (n = 262), a pacemaker was implanted in 110 patients with His ventricular interval >700 ms. The authors recommend that any conduction disturbance on 12-lead electrocardiogram (ECG) warrants further investigation with Holter monitoring to determine candidacy for a pacemaker.
  4. Left ventricular assist device (LVAD): Although an LVAD is technically feasible, it is associated with high short-term mortality and worse outcomes than in dilated cardiomyopathy.
  5. Cardiac transplantation: This is a valuable option for patients with end-stage heart failure when significant extracardiac disease is excluded. In one study with 10 patients, only episodes of amyloid recurrence occurred.

This is an outstanding overview of this topic and recommended reading for anyone who cares for patients with cardiac transthyretin amyloid.

 

First-Ever Evidence that Patisiran Reduces Pathogenic, Misfolded TTR Monomers and Oligomers in FAP Patients

We reported data from our ongoing Phase 2 open-label extension (OLE) study of patisiran, an investigational RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR amyloidosis) patients with familial amyloidotic polyneuropathy (FAP). Alnylam scientists and collaborators from The Scripps Research Institute and Misfolding Diagnostics, Inc. were able to measure the effects of patisiran on pathogenic, misfolded TTR monomers and oligomers in FAP patients. Results showed a rapid and sustained reduction in serum non-native conformations of TTR (NNTTR) of approximately 90%. Since NNTTR is pathogenic in ATTR amyloidosis and the level of NNTTR reduction correlated with total TTR knockdown, these results provide direct mechanistic evidence supporting the therapeutic hypothesis that TTR knockdown has the potential to result in clinical benefit. Furthermore, complete 12-month data from all 27 patients that enrolled in the patisiran Phase 2 OLE study showed sustained mean maximum reductions in total serum TTR of 91% for over 18 months and a mean 3.1-point decrease in mNIS+7 at 12 months, which compares favorably to an estimated increase in mNIS+7 of 13 to 18 points at 12 months based upon analysis of historical data sets in untreated FAP patients with similar baseline characteristics. Importantly, patisiran administration continues to be generally well tolerated out to 21 months of treatment.

Read our press release

View the non-native TTR poster (480 KB PDF)

View the complete 12-month patisiran Phase 2 OLE data presentation (620 KB PDF)

We are encouraged by these new data that provide continued support for our hypothesis that patisiran has the potential to halt neuropathy progression in patients with FAP. If these results are replicated in a randomized, double-blind, placebo-controlled study, we believe that patisiran could emerge as an important treatment option for patients suffering from this debilitating, progressive and life-threatening disease.

 

Hereditary ATTR Amyloidosis with Polyneuropathy (hATTR-PN)

ATTR amyloidosis is a progressive, life-threatening disease caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in multiple organs, but primarily in the peripheral nerves and heart. ATTR amyloidosis can lead to significant morbidity, disability, and mortality. The TTR protein is produced primarily in the liver and is normally a carrier for retinol binding protein – one of the vehicles used to transport vitamin A around the body.  Mutations in the TTR gene cause misfolding of the protein and the formation of amyloid fibrils that typically contain both mutant and wild-type TTR that deposit in tissues such as the peripheral nerves and heart, resulting in intractable peripheral sensory neuropathy, autonomic neuropathy, and/or cardiomyopathy.

Click to Enlarge

 

ATTR represents a major unmet medical need with significant morbidity and mortality. There are over 100 reported TTR mutations; the particular TTR mutation and the site of amyloid deposition determine the clinical manifestations of the disease whether it is predominantly symptoms of neuropathy or cardiomyopathy.

Specifically, hereditary ATTR amyloidosis with polyneuropathy (hATTR-PN), also known as familial amyloidotic polyneuropathy (FAP), is an inherited, progressive disease leading to death within 5 to 15 years. It is due to a mutation in the transthyretin (TTR) gene, which causes misfolded TTR proteins to accumulate as amyloid fibrils predominantly in peripheral nerves and other organs. hATTR-PN can cause sensory, motor, and autonomic dysfunction, resulting in significant disability and death.

It is estimated that hATTR-PN, also known as FAP, affects approximately 10,000 people worldwide.  Patients have a life expectancy of 5 to 15 years from symptom onset, and the only treatment options for early stage disease are liver transplantation and TTR stabilizers such as tafamidis (approved in Europe) and diflunisal.  Unfortunately liver transplantation has limitations, including limited organ availability as well as substantial morbidity and mortality. Furthermore, transplantation eliminates the production of mutant TTR but does not affect wild-type TTR, which can further deposit after transplantation, leading to cardiomyopathy and worsening of neuropathy. There is a significant need for novel therapeutics to treat patients who have inherited mutations in the TTR gene.

Our ATTR program is the lead effort in our Genetic Medicine Strategic Therapeutic Area (STAr) product development and commercialization strategy, which is focused on advancing innovative RNAi therapeutics toward genetically defined targets for the treatment of rare diseases with high unmet medical need.  We are developing patisiran (ALN-TTR02), an intravenously administered RNAi therapeutic, to treat the hATTR-PN form of the disease.

Patisiran for the Treatment hATTR-PN

APOLLO Phase 3 Trial

In 2012, Alnylam entered into an exclusive alliance with Genzyme, a Sanofi company, to develop and commercialize RNAi therapeutics, including patisiran and revusiran, for the treatment of ATTR amyloidosis in Japan and the broader Asian-Pacific region. In early 2014, this relationship was extended as a significantly broader alliance to advance RNAi therapeutics as genetic medicines. Under this new agreement, Alnylam will lead development and commercialization of patisiran in North America and Europe while Genzyme will develop and commercialize the product in the rest of world.

 

Hereditary ATTR Amyloidosis with Cardiomyopathy (hATTR-CM)

ATTR amyloidosis is a progressive, life-threatening disease caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in multiple organs, but primarily in the peripheral nerves and heart. ATTR amyloidosis can lead to significant morbidity, disability, and mortality. The TTR protein is produced primarily in the liver and is normally a carrier for retinol binding protein – one of the vehicles used to transport vitamin A around the body.  Mutations in the TTR gene cause misfolding of the protein and the formation of amyloid fibrils that typically contain both mutant and wild-type TTR that deposit in tissues such as the peripheral nerves and heart, resulting in intractable peripheral sensory neuropathy, autonomic neuropathy, and/or cardiomyopathy.

Click to Enlarge                            http://www.alnylam.com/web/assets/tetramer.jpg

ATTR represents a major unmet medical need with significant morbidity and mortality. There are over 100 reported TTR mutations; the particular TTR mutation and the site of amyloid deposition determine the clinical manifestations of the disease, whether it is predominantly symptoms of neuropathy or cardiomyopathy.

Specifically, hereditary ATTR amyloidosis with cardiomyopathy (hATTR-CM), also known as familial amyloidotic cardiomyopathy (FAC), is an inherited, progressive disease leading to death within 2 to 5 years. It is due to a mutation in the transthyretin (TTR) gene, which causes misfolded TTR proteins to accumulate as amyloid fibrils primarily in the heart. Hereditary ATTR amyloidosis with cardiomyopathy can result in heart failure and death.

While the exact numbers are not known, it is estimated hATTR-CM, also known as FAC affects at least 40,000 people worldwide.  hATTR-CM is fatal within 2 to 5 years of diagnosis and treatment is currently limited to supportive care.  Wild-type ATTR amyloidosis (wtATTR amyloidosis), also known as senile systemic amyloidosis, is a nonhereditary, progressive disease leading to death within 2 to 5 years. It is caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in the heart. Wild-type ATTR amyloidosis can cause cardiomyopathy and result in heart failure and death. There are no approved therapies for the treatment of hATTR-CM or SSA; hence there is a significant unmet need for novel therapeutics to treat these patients.

Our ATTR program is the lead effort in our Genetic Medicine Strategic Therapeutic Area (STAr) product development and commercialization strategy, which is focused on advancing innovative RNAi therapeutics toward genetically defined targets for the treatment of rare diseases with high unmet medical need.  We are developing revusiran (ALN-TTRsc), a subcutaneously administered RNAi therapeutic for the treatment of hATTR-CM.

Revusiran for the Treatment of hATTR-CM

ENDEAVOUR Phase 3 Trial

In 2012, Alnylam entered into an exclusive alliance with Genzyme, a Sanofi company, to develop and commercialize RNAi therapeutics, including patisiran and revusiran, for the treatment of ATTR amyloidosis in Japan and the broader Asian-Pacific region. In early 2014, this relationship was extended as a broader alliance to advance RNAi therapeutics as genetic medicines. Under this new agreement, Alnylam and Genzyme have agreed to co-develop and co-commercialize revusiran in North America and Europe, with Genzyme developing and commercializing the product in the rest of world. This broadened relationship on revusiran is aimed at expanding and accelerating the product’s global value.

Pre-Clinical Data and Advancement of ALN-TTRsc02 for Transthyretin-Mediated Amyloidosis

We presented pre-clinical data with ALN-TTRsc02, an investigational RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR amyloidosis).  In pre-clinical studies, including those in non-human primates (NHPs), ALN-TTRsc02 achieved potent and highly durable knockdown of serum TTR of up to 99% with multi-month durability achieved after just a single dose, supportive of a potentially once quarterly dose regimen. Results from studies comparing TTR knockdown activity of ALN-TTRsc02 to that of revusiran showed that ALN-TTRsc02 has a markedly superior TTR knockdown profile.  Further, in initial rat toxicology studies, ALN-TTRsc02 was found to be generally well tolerated with no significant adverse events at doses as high as 100 mg/kg.

Read our press release

View the presentation

http://www.alnylam.com/product-pipeline/hereditary-attr-amyloidosis-with-cardiomyopathy/

 

Emerging Therapies for Transthyretin Cardiac Amyloidosis Could Herald a New Era for the Treatment of HFPEF

Oct 14, 2015   |  Adam Castano, MDDavid Narotsky, MDMathew S. Maurer, MD, FACC

http://www.acc.org/latest-in-cardiology/articles/2015/10/13/08/35/emerging-therapies-for-transthyretin-cardiac-amyloidosis#sthash.9xzc0rIe.dpuf

Heart failure with a preserved ejection fraction (HFPEF) is a clinical syndrome that has no pharmacologic therapies approved for this use to date. In light of failed medicines, cardiologists have refocused treatment strategies based on the theory that HFPEF is a heterogeneous clinical syndrome with different etiologies. Classification of HFPEF according to etiologic subtype may, therefore, identify cohorts with treatable pathophysiologic mechanisms and may ultimately pave the way forward for developing meaningful HFPEF therapies.1

A wealth of data now indicates that amyloid infiltration is an important mechanism underlying HFPEF. Inherited mutations in transthyretin cardiac amyloidosis (ATTRm) or the aging process in wild-type disease (ATTRwt) cause destabilization of the transthyretin (TTR) protein into monomers or oligomers, which aggregate into amyloid fibrils. These insoluble fibrils accumulate in the myocardium and result in diastolic dysfunction, restrictive cardiomyopathy, and eventual congestive heart failure (Figure 1). In an autopsy study of HFPEF patients, almost 20% without antemortem suspicion of amyloid had left ventricular (LV) TTR amyloid deposition.2 Even more resounding evidence for the contribution of TTR amyloid to HFPEF was a study in which 120 hospitalized HFPEF patients with LV wall thickness ≥12 mm underwent technetium-99m 3,3-diphosphono-1,2-propranodicarboxylic acid (99mTc-DPD) cardiac imaging,3,4 a bone isotope known to have high sensitivity and specificity for diagnosing TTR cardiac amyloidosis.5,6 Moderate-to-severe myocardial uptake indicative of TTR cardiac amyloid deposition was detected in 13.3% of HFPEF patients who did not have TTR gene mutations. Therefore, TTR cardiac amyloid deposition, especially in older adults, is not rare, can be easily identified, and may contribute to the underlying pathophysiology of HFPEF.

Figure 1

As no U.S. Food and Drug Administration-approved drugs are currently available for the treatment of HFPEF or TTR cardiac amyloidosis, the development of medications that attenuate or prevent TTR-mediated organ toxicity has emerged as an important therapeutic goal. Over the past decade, a host of therapies and therapeutic drug classes have emerged in clinical trials (Table 1), and these may herald a new direction for treating HFPEF secondary to TTR amyloid.

Table 1

TTR Silencers (siRNA and Antisense Oligonucleotides)

siRNA

Ribonucleic acid interference (RNAi) has surfaced as an endogenous cellular mechanism for controlling gene expression. Small interfering RNAs (siRNAs) delivered into cells can disrupt the production of target proteins.7,8 A formulation of lipid nanoparticle and triantennary N-acetylgalactosamine (GalNAc) conjugate that delivers siRNAs to hepatocytes is currently in clinical trials.9 Prior research demonstrated these GalNAc-siRNA conjugates result in robust and durable knockdown of a variety of hepatocyte targets across multiple species and appear to be well suited for suppression of TTR gene expression and subsequent TTR protein production.

The TTR siRNA conjugated to GalNAc, ALN-TTRSc, is now under active investigation as a subcutaneous injection in phase 3 clinical trials in patients with TTR cardiac amyloidosis.10 Prior phase 2 results demonstrated that ALN-TTRSc was generally well tolerated in patients with significant TTR disease burden and that it reduced both wild-type and mutant TTR gene expression by a mean of 87%. Harnessing RNAi technology appears to hold great promise for treating patients with TTR cardiac amyloidosis. The ability of ALN-TTRSc to lower both wild-type and mutant proteins may provide a major advantage over liver transplantation, which affects the production of only mutant protein and is further limited by donor shortage, cost, and need for immunosuppression.

Antisense Oligonucleotides

Antisense oligonucleotides (ASOs) are under clinical investigation for their ability to inhibit hepatic expression of amyloidogenic TTR protein. Currently, the ASO compound, ISIS-TTRRx, is under investigation in a phase 3 multicenter, randomized, double-blind, placebo-controlled clinical trial in patients with familial amyloid polyneuropathy (FAP).11 The primary objective is to evaluate its efficacy as measured by change in neuropathy from baseline relative to placebo. Secondary measures will evaluate quality of life (QOL), modified body mass index (mBMI) by albumin, and pharmacodynamic effects on retinol binding protein. Exploratory objectives in a subset of patients with LV wall thickness ≥13 mm without a history of persistent hypertension will examine echocardiographic parameters, N-terminal pro–B-type natriuretic peptide (NT-proBNP), and polyneuropathy disability score relative to placebo. These data will facilitate analysis of the effect of antisense oligonucleotide-mediated TTR suppression on the TTR cardiac phenotype with a phase 3 trial anticipated to begin enrollment in 2016.

TTR Stabilizers (Diflunisal, Tafamidis)

Diflunisal

Several TTR-stabilizing agents are in various stages of clinical trials. Diflunisal, a traditionally used and generically available nonsteroidal anti-inflammatory drug (NSAID), binds and stabilizes familial TTR variants against acid-mediated fibril formation in vitro and is now in human clinical trials.12,13 The use of diflunisal in patients with TTR cardiac amyloidosis is controversial given complication of chronic inhibition of cyclooxygenase (COX) enzymes, including gastrointestinal bleeding, renal dysfunction, fluid retention, and hypertension that may precipitate or exacerbate heart failure in vulnerable individuals.14-17 In TTR cardiac amyloidosis, an open-label cohort study suggested that low-dose diflunisal with careful monitoring along with a prophylactic proton pump inhibitor could be safely administered to compensated patients.18 An association was observed, however, between chronic diflunisal use and adverse changes in renal function suggesting that advanced kidney disease may be prohibitive in diflunisal therapy.In FAP patients with peripheral or autonomic neuropathy randomized to diflunisal or placebo, diflunisal slowed progression of neurologic impairment and preserved QOL over two years of follow-up.19 Echocardiography demonstrated cardiac involvement in approximately 50% of patients.20 Longer-term safety and efficacy data over an average 38 ± 31 months in 40 Japanese patients with hereditary ATTR amyloidosis who were not candidates for liver transplantation showed that diflunisal was mostly well tolerated.12 The authors cautioned the need for attentive monitoring of renal function and blood cell counts. Larger multicenter collaborations are needed to determine diflunisal’s true efficacy in HFPEF patients with TTR cardiac amyloidosis.

Tafamidis

Tafamidis is under active investigation as a novel compound that binds to the thyroxine-binding sites of the TTR tetramer, inhibiting its dissociation into monomers and blocking the rate-limiting step in the TTR amyloidogenesis cascade.21 The TTR compound was shown in an 18-month double-blind, placebo-controlled trial to slow progression of neurologic symptoms in patients with early-stage ATTRm due to the V30M mutation.22 When focusing on cardiomyopathy in a phase 2, open-label trial, tafamidis also appeared to effectively stabilize TTR tetramers in non-V30M variants, wild-type and V122I, as well as biochemical and echocardiographic parameters.23,24 Preliminary data suggests that clinically stabilized patients had shorter disease duration, lower cardiac biomarkers, less myocardial thickening, and higher EF than those who were not stabilized, suggesting early institution of therapy may be beneficial. A phase 3 trial has completed enrollment and will evaluate the efficacy, safety, and tolerability of tafamidis 20 or 80 mg orally vs. placebo.25 This will contribute to long-term safety and efficacy data needed to determine the therapeutic effects of tafamidis among ATTRm variants.

Amyloid Degraders (Doxycycline/TUDCA and Anti-SAP Antibodies)

Doxycycline/TUDCA

While silencer and stabilizer drugs are aimed at lowering amyloidogenic precursor protein production, they cannot remove already deposited fibrils in an infiltrated heart. Removal of already deposited fibrils by amyloid degraders would be an important therapeutic strategy, particularly in older adults with heavily infiltrated hearts reflected by thick walls, HFPEF, systolic heart failure, and restrictive cardiomyopathy. Combined doxycycline and tauroursodeoxycholic acid (TUDCA) disrupt TTR amyloid fibrils and appeared to have an acceptable safety profile in a small phase 2 open-label study among 20 TTR patients. No serious adverse reactions or clinical progression of cardiac or neuropathic involvement was observed over one year.26 An active phase 2, single-center, open-label, 12-month study will assess primary outcome measures including mBMI, neurologic impairment score, and NT-proBNP.27 Another phase 2 study is examining the tolerability and efficacy of doxycycline/TUDCA over an 18-month period in patients with TTR amyloid cardiomyopathy.28 Additionally, a study in patients with TTR amyloidosis is ongoing to determine the effect of doxycycline alone on neurologic function, cardiac biomarkers, echocardiographic parameters, modified body mass index, and autonomic neuropathy.29

Anti-SAP Antibodies

In order to safely clear established amyloid deposits, the role of the normal, nonfibrillar plasma glycoprotein present in all human amyloid deposits, serum amyloid P component (SAP), needs to be more clearly understood.30 In mice with amyloid AA type deposits, administration of antihuman SAP antibody triggered a potent giant cell reaction that removed massive visceral amyloid deposits without adverse effects.31 In humans with TTR cardiac amyloidosis, anti-SAP antibody treatments could be feasible because the bis-D proline compound, CPHPC, is capable of clearing circulating human SAP, which allow anti-SAP antibodies to reach residual deposited SAP. In a small, open-label, single-dose-escalation, phase 1 trial involving 15 patients with systemic amyloidosis, none of whom had clinical evidence of cardiac amyloidosis, were treated with CPHPC followed by human monoclonal IgG1 anti-SAP antibody.32 No serious adverse events were reported and amyloid deposits were cleared from the liver, kidney, and lymph node. Anti-SAP antibodies hold promise as a potential amyloid therapy because of their potential to target all forms of amyloid deposits across multiple tissue types.

Mutant or wild-type TTR cardiac amyloidoses are increasingly recognized as a cause of HFPEF. Clinicians need to be aware of this important HFPEF etiology because the diverse array of emerging disease-modifying agents for TTR cardiac amyloidosis in human clinical trials has the potential to herald a new era for the treatment of HFPEF.

References

  1. Maurer MS, Mancini D. HFpEF: is splitting into distinct phenotypes by comorbidities the pathway forward? J Am Coll Cardiol 2014;64:550-2.
  2. Mohammed SF, Mirzoyev SA, Edwards WD, et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail 2014;2:113-22.
  3. González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015.
  4. Castano A, Bokhari S, Maurer MS. Unveiling wild-type transthyretin cardiac amyloidosis as a significant and potentially modifiable cause of heart failure with preserved ejection fraction. Eur Heart J 2015 Jul 28. [Epub ahead of print]
  5. Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 2009;120:1203-12.
  6. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195-201.
  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
  8. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8.
  9. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nature Mater 2013;12:967-77.
  10. U.S. National Institutes of Health. Phase 2 Study to Evaluate ALN-TTRSC in Patients With Transthyretin (TTR) Cardiac Amyloidosis (ClinicalTrials.gov website). 2014. Available at: https://www.clinicaltrials.gov/ct2/show/NCT01981837. Accessed 8/19/2015.
  11. U.S. National Institutes of Health. Efficacy and Safety of ISIS-TTRRx in Familial Amyloid Polyneuropathy (Clinical Trials.gov Website. 2013. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01737398. Accessed 8/19/2015.
  12. Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 2006;13:236-49.
  13. Tojo K, Sekijima Y, Kelly JW, Ikeda S. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res 2006;56:441-9.
  14. Epstein M. Non-steroidal anti-inflammatory drugs and the continuum of renal dysfunction. J Hypertens Suppl 2002;20:S17-23.
  15. Wallace JL. Pathogenesis of NSAID-induced gastroduodenal mucosal injury. Best Pract Res Clin Gastroenterol 2001;15:691-703.
  16. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001;286:954-9.
  17. Page J, Henry D. Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an underrecognized public health problem. Arch Intern Med 2000;160:777-84.
  18. Castano A, Helmke S, Alvarez J, Delisle S, Maurer MS. Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail 2012;18:315-9.
  19. Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 2013;310:2658-67.
  20. Quarta CCF, Solomon RH Suhr SD, et al. The prevalence of cardiac amyloidosis in familial amyloidotic polyneuropathy with predominant neuropathy: The Diflunisal Trial. International Symposium on Amyloidosis 2014:88-9.
  21. Hammarstrom P, Jiang X, Hurshman AR, Powers ET, Kelly JW. Sequence-dependent denaturation energetics: A major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A 2002;99 Suppl 4:16427-32.
  22. Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 2012;79:785-92.
  23. Merlini G, Plante-Bordeneuve V, Judge DP, et al. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J Cardiovasc Transl Res 2013;6:1011-20.
  24. Maurer MS, Grogan DR, Judge DP, et al. Tafamidis in transthyretin amyloid cardiomyopathy: effects on transthyretin stabilization and clinical outcomes. Circ Heart Fail 2015;8:519-26.
  25. U.S. National Institutes of Health. Safety and Efficacy of Tafamidis in Patients With Transthyretin Cardiomyopathy (ATTR-ACT) (ClinicalTrials.gov website). 2014. Available at: http://www.clinicaltrials.gov/show/NCT01994889. Accessed 8/19/2015.
  26. Obici L, Cortese A, Lozza A, et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid 2012;19 Suppl 1:34-6.
  27. U.S. National Institutes of Health. Safety, Efficacy and Pharmacokinetics of Doxycycline Plus Tauroursodeoxycholic Acid in Transthyretin Amyloidosis (ClinicalTrials.gov website). 2011. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01171859. Accessed 8/19/2015.
  28. U.S. National Institutes of Health. Tolerability and Efficacy of a Combination of Doxycycline and TUDCA in Patients With Transthyretin Amyloid Cardiomyopathy (ClinicalTrials.gov website). 2013. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01855360. Accessed 8/19/2015.
  29. U.S. National Institutes of Health. Safety and Effect of Doxycycline in Patients With Amyloidosis (ClinicalTrials.gov website).2015. Available at: https://clinicaltrials.gov/ct2/show/NCT01677286. Accessed 8/19/2015.
  30. Pepys MB, Dash AC. Isolation of amyloid P component (protein AP) from normal serum as a calcium-dependent binding protein. Lancet 1977;1:1029-31.
  31. Bodin K, Ellmerich S, Kahan MC, et al. Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature 2010;468:93-7.
  32. Richards DB, Cookson LM, Berges AC, et al. Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component. N Engl J Med 2015;373:1106-14.

 

The Acid-Mediated Denaturation Pathway of Transthyretin Yields a Conformational Intermediate That Can Self-Assemble into Amyloid

Zhihong Lai , Wilfredo Colón , and Jeffery W. Kelly *
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
Biochemistry199635 (20), pp 6470–6482   http://dx.doi.org:/10.1021/bi952501g
Publication Date (Web): May 21, 1996  Copyright © 1996 American Chemical Society

Transthyretin (TTR) amyloid fibril formation is observed during partial acid denaturation and while refolding acid-denatured TTR, implying that amyloid fibril formation results from the self-assembly of a conformational intermediate. The acid denaturation pathway of TTR has been studied in detail herein employing a variety of biophysical methods to characterize the intermediate(s) capable of amyloid fibril formation. At physiological concentrations, tetrameric TTR remains associated from pH 7 to pH 5 and is incapable of amyloid fibril formation. Tetrameric TTR dissociates to a monomer in a process that is dependent on both pH and protein concentration below pH 5. The extent of amyloid fibril formation correlates with the concentration of the TTR monomer having an altered, but defined, tertiary structure over the pH range of 5.0−3.9. The inherent Trp fluorescence-monitored denaturation curve of TTR exhibits a plateau over the pH range where amyloid fibril formation is observed (albeit at a higher concentration), implying that a steady-state concentration of the amyloidogenic intermediate with an altered tertiary structure is being detected. Interestingly, 1-anilino-8-naphthalenesulfonate fluorescence is at a minimum at the pH associated with maximal amyloid fibril formation (pH 4.4), implying that the amyloidogenic intermediate does not have a high extent of hydrophobic surface area exposed, consistent with a defined tertiary structure. Transthyretin has two Trp residues in its primary structure, Trp-41 and Trp-79, which are conveniently located far apart in the tertiary structure of TTR. Replacement of each Trp with Phe affords two single Trp containing variants which were used to probe local pH-dependent tertiary structural changes proximal to these chromophores. The pH-dependent fluorescence behavior of the Trp-79-Phe mutant strongly suggests that Trp-41 is located near the site of the tertiary structural rearrangement that occurs in the formation of the monomeric amyloidogenic intermediate, likely involving the C-strand−loop−D-strand region. Upon further acidification of TTR (below pH 4.4), the structurally defined monomeric amyloidogenic intermediate begins to adopt alternative conformations that are not amyloidogenic, ultimately forming an A-state conformation below pH 3 which is also not amyloidogenic. In summary, analytical equilibrium ultracentrifugation, SDS−PAGE, far- and near-UV CD, fluorescence, and light scattering studies suggest that the amyloidogenic intermediate is a monomeric predominantly β-sheet structure having a well-defined tertiary structure.

 

Prevention of Transthyretin Amyloid Disease by Changing Protein Misfolding Energetics

Per Hammarström*, R. Luke Wiseman*, Evan T. Powers, Jeffery W. Kelly   + Author Affiliations

Science  31 Jan 2003; 299(5607):713-716   http://dx.doi.org:/10.1126/science.1079589

Genetic evidence suggests that inhibition of amyloid fibril formation by small molecules should be effective against amyloid diseases. Known amyloid inhibitors appear to function by shifting the aggregation equilibrium away from the amyloid state. Here, we describe a series of transthyretin amyloidosis inhibitors that functioned by increasing the kinetic barrier associated with misfolding, preventing amyloidogenesis by stabilizing the native state. The trans-suppressor mutation, threonine 119 → methionine 119, which is known to ameliorate familial amyloid disease, also functioned through kinetic stabilization, implying that this small-molecule strategy should be effective in treating amyloid diseases.

 

Rational design of potent human transthyretin amyloid disease inhibitors

Thomas Klabunde1,2, H. Michael Petrassi3, Vibha B. Oza3, Prakash Raman3, Jeffery W. Kelly3 & James C. Sacchettini1

Nature Structural & Molecular Biology 2000; 7: 312 – 321.                http://dx.doi.org:/10.1038/74082

The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein–drug complexes have been determined to allow detailed analyses of the protein–drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4,6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.

 

First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy

Adams, Davida; Suhr, Ole B.b; Hund, Ernstc; Obici, Laurad; Tournev, Ivailoe,f; Campistol, Josep M.g; Slama, Michel S.h; Hazenberg, Bouke P.i; Coelho, Teresaj; from the European Network for TTR-FAP (ATTReuNET)

Current Opin Neurol: Feb 2016; 29 – Issue – p S14–S26      http://dx.doi.org:/10.1097/WCO.0000000000000289

Purpose of review: Early and accurate diagnosis of transthyretin familial amyloid polyneuropathy (TTR-FAP) represents one of the major challenges faced by physicians when caring for patients with idiopathic progressive neuropathy. There is little consensus in diagnostic and management approaches across Europe.

Recent findings: The low prevalence of TTR-FAP across Europe and the high variation in both genotype and phenotypic expression of the disease means that recognizing symptoms can be difficult outside of a specialized diagnostic environment. The resulting delay in diagnosis and the possibility of misdiagnosis can misguide clinical decision-making and negatively impact subsequent treatment approaches and outcomes.

Summary: This review summarizes the findings from two meetings of the European Network for TTR-FAP (ATTReuNET). This is an emerging group comprising representatives from 10 European countries with expertise in the diagnosis and management of TTR-FAP, including nine National Reference Centres. The current review presents management strategies and a consensus on the gold standard for diagnosis of TTR-FAP as well as a structured approach to ongoing multidisciplinary care for the patient. Greater communication, not just between members of an individual patient’s treatment team, but also between regional and national centres of expertise, is the key to the effective management of TTR-FAP.

http://images.journals.lww.com/co-neurology/Original.00019052-201602001-00003.FF1.jpeg

Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a highly debilitating and irreversible neurological disorder presenting symptoms of progressive sensorimotor and autonomic neuropathy [1▪,2▪,3]. TTR-FAP is caused by misfolding of the transthyretin (TTR) protein leading to protein aggregation and the formation of amyloid fibrils and, ultimately, to amyloidosis (commonly in the peripheral and autonomic nervous system and the heart) [4,5]. TTR-FAP usually proves fatal within 7–12 years from the onset of symptoms, most often due to cardiac dysfunction, infection, or cachexia [6,7▪▪].

The prevalence and disease presentation of TTR-FAP vary widely within Europe. In endemic regions (northern Portugal, Sweden, Cyprus, and Majorca), patients tend to present with a distinct genotype in large concentrations, predominantly a Val30Met substitution in the TTR gene [8–10]. In other areas of Europe, the genetic footprint of TTR-FAP is more varied, with less typical phenotypic expression [6,11]. For these sporadic or scattered cases, a lack of awareness among physicians of variable clinical features and limited access to diagnostic tools (i.e., pathological studies and genetic screening) can contribute to high rates of misdiagnosis and poorer patient outcomes [1▪,11]. In general, early and late-onset variants of TTR-FAP, found within endemic and nonendemic regions, present several additional diagnostic challenges [11,12,13▪,14].

Delay in the time to diagnosis is a major obstacle to the optimal management of TTR-FAP. With the exception of those with a clearly diagnosed familial history of FAP, patients still invariably wait several years between the emergence of first clinical signs and accurate diagnosis [6,11,14]. The timely initiation of appropriate treatment is particularly pertinent, given the rapidity and irreversibility with which TTR-FAP can progress if left unchecked, as well as the limited effectiveness of available treatments during the later stages of the disease [14]. This review aims to consolidate the existing literature and present an update of the best practices in the management of TTR-FAP in Europe. A summary of the methods used to achieve a TTR-FAP diagnosis is presented, as well as a review of available treatments and recommendations for treatment according to disease status.

Patients with TTR-FAP can present with a range of symptoms [11], and care should be taken to acquire a thorough clinical history of the patient as well as a family history of genetic disease. Delay in diagnosis is most pronounced in areas where TTR-FAP is not endemic or when there is no positive family history [1▪]. TTR-FAP and TTR-familial amyloid cardiomyopathy (TTR-FAC) are the two prototypic clinical disease manifestations of a broader disease spectrum caused by an underlying hereditary ATTR amyloidosis [19]. In TTR-FAP, the disease manifestation of neuropathy is most prominent and definitive for diagnosis, whereas cardiomyopathy often suggests TTR-FAC. However, this distinction is often superficial because cardiomyopathy, autonomic neuropathy, vitreous opacities, kidney disease, and meningeal involvement all may be present with varying severity for each patient with TTR-FAP.

Among early onset TTR-FAP with usually positive family history, symptoms of polyneuropathy present early in the disease process and usually predominate throughout the progression of the disease, making neurological testing an important diagnostic aid [14]. Careful clinical examination (e.g., electromyography with nerve conduction studies and sympathetic skin response, quantitative sensation test, quantitative autonomic test) can be used to detect, characterize, and scale the severity of neuropathic abnormalities involving small and large nerve fibres [10]. Although a patient cannot be diagnosed definitively with TTR-FAP on the basis of clinical presentation alone, symptoms suggesting the early signs of peripheral neuropathy, autonomic dysfunction, and cardiac conduction disorders or infiltrative cardiomyopathy are all indicators that further TTR-FAP diagnostic investigation is warranted. Late-onset TTR-FAP often presents as sporadic cases with distinct clinical features (e.g., milder autonomic dysfunction) and can be more difficult to diagnose than early-onset TTR-FAP (Table 2) [1▪,11,12,13▪,14,20].

http://images.journals.lww.com/co-neurology/LargeThumb.00019052-201602001-00003.TT2.jpeg

Genetic testing is carried out to allow detection of specific amyloidogenic TTR mutations (Table 1), using varied techniques depending on the expertise and facilities available in each country (Table S2, http://links.lww.com/CONR/A39). A targeted approach to detect a specific mutation can be used for cases belonging to families with previous diagnosis. In index cases of either endemic and nonendemic regions that do not have a family history of disease, are difficult to confirm, and have atypical symptoms, TTR gene sequencing is required for the detection of both predicted and new amyloidogenic mutations [26,27].

Following diagnosis, the neuropathy stage and systemic extension of the disease should be determined in order to guide the next course of treatment (Table 4) [3,30,31]. The three stages of TTR-FAP severity are graded according to a patient’s walking disability and degree of assistance required [30]. Systemic assessment, especially of the heart, eyes, and kidney, is also essential to ensure all aspects of potential impact of the disease can be detected [10].

Table 4

http://images.journals.lww.com/co-neurology/LargeThumb.00019052-201602001-00003.TT4.jpeg

Image Tools

The goals of cardiac investigations are to detect serious conduction disorders with the risk of sudden death and infiltrative cardiomyopathy. Electrocardiograms (ECG), Holter-ECG, and intracardiac electrophysiology study are helpful to detect conduction disorders. Echocardiograms, cardiac magnetic resonance imaging, scintigraphy with bone tracers, and biomarkers (e.g., brain natriuretic peptide, troponin) can all help to diagnose infiltrative cardiomyopathy[10]. An early detection of cardiac abnormalities has obvious benefits to the patient, given that the prophylactic implantation of pacemakers was found to prevent 25% of major cardiac events in TTR-FAP patients followed up over an average of 4 years [32▪▪]. Assessment of cardiac denervation with 123-iodine meta-iodobenzylguanidine is a powerful prognostic marker in patients diagnosed with FAP [33].

…..

Tafamidis

Tafamidis is a first-in-class therapy that slows the progression of TTR amyloidogenesis by stabilizing the mutant TTR tetramer, thereby preventing its dissociation into monomers and amyloidogenic and toxic intermediates [55,56]. Tafamidis is currently indicated in Europe for the treatment of TTR amyloidosis in adult patients with stage I symptomatic polyneuropathy to delay peripheral neurological impairment [57].

In an 18-month, double-blind, placebo-controlled study of patients with early-onset Val30Met TTR-FAP, tafamidis was associated with a 52% lower reduction in neurological deterioration (P = 0.027), a preservation of nerve function, and TTR stabilization versus placebo [58▪▪]. However, only numerical differences were found for the coprimary endpoints of neuropathy impairment [neuropathy impairment score in the lower limb (NIS-LL) responder rates of 45.3% tafamidis vs 29.5% placebo; P = 0.068] and quality of life scores [58▪▪]. A 12-month, open-label extension study showed that the reduced rates of neurological deterioration associated with tafamidis were sustained over 30 months, with earlier initiation of tafamidis linking to better patient outcomes (P = 0.0435) [59▪]. The disease-slowing effects of tafamidis may be dependent on the early initiation of treatment. In an open-label study with Val30Met TTR-FAP patients with late-onset and advanced disease (NIS-LL score >10, mean age 56.4 years), NIS-LL and disability scores showed disease progression despite 12 months of treatment with tafamidis, marked by a worsening of neuropathy stage in 20% and the onset of orthostatic hypotension in 22% of patients at follow-up [60▪].

Tafamidis is not only effective in patients exhibiting the Val30Met mutation; it also has proven efficacy, in terms of TTR stabilization, in non-Val30Met patients over 12 months [61]. Although tafamidis has demonstrated safe use in patients with TTR-FAP, care should be exercised when prescribing to those with existing digestive problems (e.g., diarrhoea, faecal incontinence) [60▪].

Back to Top | Article Outline

Diflunisal

Diflunisal is a nonsteroidal anti-inflammatory drug (NSAID) that, similar to tafamidis, slows the rate of amyloidogenesis by preventing the dissociation, misfolding, and misassembly of the mutated TTR tetramer [62,63]. Off-label use has been reported for patients with stage I and II disease, although diflunisal is not currently licensed for the treatment of TTR-FAP.

Evidence for the clinical effectiveness of diflunisal in TTR-FAP derives from a placebo-controlled, double-blind, 24-month study in 130 patients with clinically detectable peripheral or autonomic neuropathy[64▪]. The deterioration in NIS scores was significantly more pronounced in patients receiving placebo compared with those taking diflunisal (P = 0.001), and physical quality of life measures showed significant improvement among diflunisal-treated patients (P = 0.001). Notable during this study was the high rate of attrition in the placebo group, with 50% more placebo-treated patients dropping out of this 2-year study as a result of disease progression, advanced stage of the disease, and varied mutations.

One retrospective analysis of off-label use of diflunisal in patients with TTR-FAP reported treatment discontinuation in 57% of patients because of adverse events that were largely gastrointestinal [65]. Conclusions on the safety of diflunisal in TTR-FAP will depend on further investigations on the impact of known cardiovascular and renal side-effects associated with the NSAID drug class [66,67].

 

 

 

 

Read Full Post »

Notable Awards – 2015

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Breakthrough Prizes Give Top Scientists the Rock Star Treatment

“By challenging conventional thinking and expanding knowledge over the long term, scientists can solve the biggest problems of our time,” Mr. Zuckerberg said in a statement. “The Breakthrough Prize honors achievements in science and math so we can encourage more pioneering research and celebrate scientists as the heroes they truly are.”

Left, Karl Deisseroth, Stanford School of Medicine; Edward S. Boyden of the McGovern Institute for Brain Research at M.I.T.CreditLeft, Winni Wintermeyer for The New York Times; Dominick Reuter/M.I.T. News

http://i1.nyt.com/images/2015/11/08/science/08breakthrough_comp_1/08breakthrough_comp_1-tmagArticle.jpg

Karl Deisseroth and Edward S. Boyden
Optogenetics

Karl Deisseroth, a professor at Stanford University and a Howard Hughes Medical Institute investigator, and Edward S. Boyden, a professor at the Massachusetts Institute of Technology, each received $3 million for their roles in the development of optogenetics, a technique that allows scientists to use light to turn neurons and groups of neurons on and off.

The technique is transforming the study of the brain because it allows scientists to test ideas about how the brain works. It has already been used to turn a kind of aggression on and off in flies, and thirst on and off in mice, pinpointing the brain cells involved.

The technique is universally praised, but the question of who will be recognized for its development is an issue for any prize committee. Dr. Boyden, Dr. Deisseroth and three other scientists published a paper in 2005that is recognized as a breakthrough. They demonstrated how to reliably control mammalian neurons with light, making widespread use of the technique inevitable.

Their paper built on earlier work, as much of science does. Opsins, light-sensitive chemicals that are crucial to optogenetics, have been studied since the 1970s. And the fact that optogenetics could be done was demonstrated in 2002.

In 2013, the European Brain Prize recognized six scientists for work on optogenetics, including Dr. Boyden and Dr. Deisseroth.

JAMES GORMAN

 

http://i1.nyt.com/images/2015/11/08/science/08Breakthrough4/08Breakthrough4-tmagArticle.jpg

John Hardy
Alzheimer’s research

Alzheimer’s disease was a complete mystery in the late 1980s. In autopsies, pathologists could see the ravages left in patients’ brains, but how and why did the process start? There were rare families in which the disease seemed to be inherited, though, and perhaps there was a gene mutation that might provide a clue to what goes awry. The problem was finding those families.

In the late 1980s, a woman who lived in Nottingham, England, contacted John Hardy at University College London and asked if he and his team wanted to study her family. Her father was one of 10 siblings, five of whom had developed Alzheimer’s disease, and she could trace the disease back for three generations. Their investigation led to the discovery of a gene mutation that, if inherited, always caused the disease. The gene was presenilin, and its protein was the amyloid precursor protein, or APP. Every person in that family who inherited the gene overproduced amyloid and got the disease. For the first time, scientists had a clue to what starts the horrendous destruction of brain cells in Alzheimer’s disease. And for the first time, by putting that gene mutation in mice, they could study Alzheimer’s in a lab animal, look for drugs to block the gene’s effects and finally use the tools of science to look for a cure.

GINA KOLATA

http://i1.nyt.com/images/2015/11/08/science/08Breakthrough-Hobbs/08Breakthrough-Hobbs-tmagArticle.jpg

Helen Hobbs
Cholesterol research

Helen Hobbs, a professor at the University of Texas Southwestern Medical Center and a Howard Hughes Medical Institute investigator, and her colleague Jonathan Cohen were intrigued when they read a short paper describing a French family with stunningly high levels of LDL cholesterol, the dangerous kind, and early deaths from heart attacks and strokes. The family members turned out to have a mutation in a gene, PCSK9, whose function was unknown. Dr. Hobbs and Dr. Cohen began to wonder: If too much PCSK9 caused heart disease, would people who made too little be protected? They scrutinized genetic data from a federal study and found that about 2.5 percent of blacks had a mutation that destroyed one copy of the gene; 3.2 percent of whites had a mutation that hobbled a copy of the gene but did not destroy it. In both cases, less PCSK9 was made and LDL levels were low. The people with the mutations seemed almost immune to heart disease, even if they had other risk factors like high blood pressure, smoking or diabetes.

What would happen if someone had both copies of PCSK9 destroyed? Dr. Hobbs found one young woman, an aerobics instructor, without PCSK9. She was healthy and fertile even though her LDL level was 14, lower than seemed possible (the average is 100). That discovery led to a race among drug companies to make cholesterol-lowering drugs that mimicked the effects of the PCSK9 mutations. The result is drugs that can make LDL levels plunge to the 30s, the 20s, even the teens. The first two such PCSK9 inhibitors were approved this year for people with high cholesterol levels who cannot get them down with statins and are at high risk of heart disease.

GINA KOLATA

 

TED Prize Goes to Archaeologist Who Combats Looting With Satellite Technology
http://static01.nyt.com/images/2015/11/09/arts/09SPACE/09SPACE-master675.jpg
http://www.nytimes.com/2015/11/09/arts/international/ted-grant-goes-to-archaeologist-who-combats-looting-with-satellite-technology.html

 

Read Full Post »

More Complexity in Protein Evolution

Author and Curator: Larry H. Bernstein, MD, FCAP 

Lactate dehydrogenase like crystallin: a potentially protective shield for Indian spiny-tailed lizard (Uromastix ltardwickit) lens against environmental stress?
A Atta, A Ilyas, Z Hashim, A Ahmed and S Zarina
The Protein Journal 2014; 33(2), p. 128-34.
http://dx.doi.org/10.1007/s10930-014-9543-4

Taxon specific lens crystallins in ve1iebrates are either similar or identical with various metabolic enzymes. These bifunctional crystallins serve as structural protein in lens along with their catalytic role. In the present study, we have partially purified and characterized lens crystallin from Indian spiny-tailed lizard (Uroma stix hardwickii). We have found lactate dehydrogenase (LDH) activity in lens indicating presence of an enzyme crystallin with dual functions. Taxon specific lens crystallins are product of gene sharing or gene duplication phenomenon where a pre-existing enzyme is recruited as lens crystallin in addition to structural role. In lens, same gene adopts refractive role in lens without modification or loss of pre-existing function during gene sharing phenomenon. Apart from conventional role of structural protein, LDH activity containing crystallin in Uromastix hardwickii lens is likely to have adaptive characteristics to offer protection against toxic effects of oxidative stress and ultraviolet light, hence justifying its recruitment. Taxon specific crystallins may serve as good models to understand structure-function relationship of these proteins.

αB-Crystallin and 27-kd Heat Shock Protein Are Regulated by Stress Conditions in the Central Nervous System and Accumulate in Rosenthal Fibers
T Iwaki, A Iwaki, J Tateishi, Y Sakaki, and JE Goldmant
Ameri J Pathol  1993; 143(2):487-495.

To understand the significance of the accumulation of αB-crystallin in Rosenthal fibers within astrocytes, the expression and metabolism of αB-crystallin in glioma cell lines were examined under the conditions of heat and oxidative stress. αB-crystallin mRNA was increased after both stresses, and αB-crystallin protein moved from a detergent-soluble to a detergent-insoluble form. In addition, Western blotting of Alexander’s  disease brain homogenates revealed that the 27-kd heat shock protein (HSP27), which is related to αB-crystallin, accumulates along with αB-crystallin. The presence of HSP27 in Rosenthal fibers was directly demonstrated by immunohistochemistry. Our results suggest that astrocytes in Alexander’s disease may be involved in an as yet unknown kind of stress reaction that causes the accumulation of αB-ccystallin and HSP27 and results in Rosenthal fiber formation.

α-Crystallin can function as a molecular chaperone
Joseph Horwitz
Proc. Nadl. Acad. Sci. USA Nov 1992; 89: 10449-10453. Biochemistry

The α-crystallins (αA and αB) are major lens structural proteins of the vertebrate eye that are related to the small heat shock protein family. In addition, crystallins (especially αB) are found in many cells organs outside the lens, and aα is overexpressed in several neurological disorders and in cell lines under stress conditions. Here I show that α-crystallin can function as a molecular chaperone. Stoichiometric amounts of αA and αB suppress thermally induced aggregation of various enzymes. In particular, α-crystalln is very efficient in suppressing the thermally induced aggregation of β- and y-crystallins, the two other major mammalian stuctural lens proteins. α-Crystallin was also effective in preventing aggregation and in refolding guanidine hydrochloride-denatured y-crystallin, as judged by circular dichroism spectroscopy. My results thus indicate that α-crystallin refracts light and protects proteins from aggregation in the transparent eye lens and that in nonlens cells α-crystallin may have other functions in addition to its capacity to suppress aggregation of proteins.

Gene sharing by δ-crystallin and argininosuccinate Iyase
J Piatigorsky, WE O’Brient, BL Norman, K Kalumuckt, GJ Wistow, T Borras, et al.
Proc. Natl. Acad. Sci. USA  May 1988; 85: 3479-3483. Evolution.

The lens structural protein δ-crystallin and the metabolic enzyme argininosuccinate lyase (ASL; Largininosuccinate argine-lyase, EC 4.3.2.1) have striking sequence similarity. We have demonstrated that duck δ-crystallin has enormously high ASL activity, while chicken δ-crystallin has lower but significant activity. The lenses of these birds had much greater ASL activity than other tissues, suggesting that ASL is being expressed at unusually high levels as a structural component. In Southern blots of human genomic DNA, chicken δ1-crystallin cDNA hybridized only to the human ASL gene; moreover, the two chicken δ-crystallin genes accounted for all the sequences in the chicken genome able to cross-hybridize with a human ASL cDNA, with preferential hybridization to the δ2 gene. Correlations of enzymatic activity and recent data on mRNA levels in the chicken lens suggest that ASL activity depends on expression of the δ2-crystallin gene. The data indicate that the same gene, at least in ducks, encodes two different functions, an enzyme (ASL) and a structural protein (δ-crystallin), although in chickens specialization and separation of functions may have occurred.

Gecko i-crystallin: How cellular retinol-binding protein became an eye lens ultraviolet filter
PJ L Werten, Beate Roll, DMF van Aalten, and WW de Jong
PNAS Mar 2000; 97(7): 3282–3287 http://pnas.org/cgi/doi/10.1073ypnas.050500597

Eye lenses of various diurnal geckos contain up to 12% i-crystallin. This protein is related to cellular retinol-binding protein type I (CRBP I) but has 3,4-didehydroretinol, rather than retinol, as a ligand. The 3,4-didehydroretinol gives the lens a yellow color, thus protecting the retina by absorbing short-wave radiation. i-Crystallin could be either the gecko’s housekeeping CRBP I, recruited for an additional function in the lens, or the specialized product of a duplicated CRBP I gene. The finding of the same CRBP I-like sequence in lens and liver cDNA of the gecko Lygodactylus picturatus now supports the former option. Comparison with i-crystallin of a distantly related gecko, Gonatodes vittatus, and with mammalian CRBP I, suggests that acquiring the additional lens function is associated with increased amino acid changes. Compared with the rat CRBP I structure, the i-crystallin model shows reduced negative surface charge, which might facilitate the required tight protein packing in the lens. Other changes may provide increased stability, advantageous for a long-living lens protein, without frustrating its role as retinol transporter outside the lens. Despite a number of replacements in the ligand pocket, recombinant i-crystallin binds 3,4-didehydroretinol and retinol with similar and high affinity (1.6 nM). Availability of ligand thus determines whether it binds 3,4-didehydroretinol, as in the lens, or retinol, in other tissues. i-Crystallin presents a striking example of exploiting the potential of an existing gene without prior duplication.

Expression of βA3/A1-crystallin in the developing and adult rat eye
G Parthasarathy, Bo Ma, C Zhang, C Gongora, JS Zigler, MK Duncan, D Sinha
J Molec Histol 2011; 42(1): 59-69. http://dx.doi.org:/10.1007/s10735-010-9307-1

Crystallins are very abundant structural proteins of the lens and are also expressed in other tissues. We have previously reported a spontaneous mutation in the rat βA3/A1-crystallin gene, termed Nuc1, which has a novel, complex, ocular phenotype. The current study was undertaken to compare the expression pattern of this gene during eye development in wild type and Nuc1 rats by in situ hybridization (ISH) and immunohistochemistry (IHC).
βA3/A1-crystallin expression was first detected in the eyes of both wild type and Nuc1 rats at embryonic (E) day 12.5 in the posterior portion of the lens vesicle, and remained limited to the lens fibers throughout fetal life.
After birth, βA3/A1-crystallin expression was also detected in the neural retina (specifically in the astrocytes and ganglion cells) and in the retinal pigmented epithelium (RPE).
This suggested that βA3/A1-crystallin is not only a structural protein of the lens, but has cellular function(s) in other ocular tissues.
In summary, expression of βA3/A1-crystallin is controlled differentially in various eye tissues with lens being the site of greatest expression.
Similar staining patterns, detected by ISH and IHC, in wild type and Nuc1 animals suggest that functional differences in the protein, rather than changes in mRNA/protein level of expression likely account for developmental abnormalities in Nuc1.

βA3/A1Crystallin controls anoikis-mediated cell death in astrocytes by modulating PI3K/AKT/mTOR and ERK survival pathways through the PKD/Bit1-signaling axis
B Ma, T Sen, L Asnaghi, M Valapala, F Yang, S Hose, D S McLeod, Y Lu, et la.
Cell Death and Disease 2011; 2(10). http://dx.doi.org:/10.1038/cddis.2011.100

During eye development, apoptosis is vital to the maturation of highly specialized structures such as the lens and retina. Several forms of apoptosis have been described, including anoikis, a form of apoptosis triggered by inadequate or inappropriate cell–matrix contacts. The anoikis regulators, Bit1 (Bcl-2 inhibitor of transcription-1) and protein kinase-D (PKD), are expressed in developing lens when the organelles are present in lens fibers, but are downregulated as active denucleation is initiated.
We have previously shown that in rats with a spontaneous mutation in the Cryba1 gene, coding for βA3/A1-crystallin, normal denucleation of lens fibers is inhibited. In rats with this mutation (Nuc1), both Bit1 and PKD remain abnormally high in lens fiber cells. To determine whether βA3/A1-crystallin has a role in anoikis, we induced anoikis in vitro and conducted mechanistic studies on astrocytes, cells known to express βA3/A1-crystallin.
The expression pattern of Bit1 in retina correlates temporally with the development of astrocytes. Our data also indicate that loss of βA3/A1-crystallin in astrocytes results in a failure of Bit1 to be trafficked to the Golgi, thereby suppressing anoikis. This loss of βA3/A1-crystallin also induces insulin-like growth factor-II, which increases cell survival and growth by modulating the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR and extracellular signal-regulated kinase pathways. We propose that βA3/A1-crystallin is a novel regulator of both life and death decisions in ocular astrocytes.

βA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development
D Sinha, A Klise, Y Sergeev, S Hose, IA Bhutto, L Hackler Jr., T Malpic-llanos, et al.
Molec Cell Neurosci 2008; 37(1): 85-95.

http://dx.doi.org:/10.1016/j.mcn.2007.08.016

Vascular remodeling is a complex process critical to development of the mature vascular system. Astrocytes are known to be indispensable for initial formation of the retinal vasculature; our studies with the Nuc1 rat provide novel evidence that these cells are also essential in the retinal vascular remodeling process.
Nuc1 is a spontaneous mutation in the Sprague–Dawley rat originally characterized by nuclear cataracts in the heterozygote and microphthalmia in the homozygote. We report here that the Nuc1 allele results from mutation of the βA3/A1-crystallin gene, which in the neural retina is expressed only in astrocytes. We demonstrate striking structural abnormalities in Nuc1 astrocytes with profound effects on the organization of intermediate filaments. While vessels form in the Nuc1 retina, the subsequent remodeling process required to provide a mature vascular network is deficient. Our data implicate βA3/A1-crystallin as an important regulatory factor mediating vascular patterning and remodeling in the retina.

A developmental defect in astrocytes inhibits programmed regression of the hyaloid vasculature in the mammalian eye
C Zhang, L Asnaghi, C Gongora, B Patek, S Hose, Bo Ma, MA Fard, L Brako, et al.
Eur J Cell Biol 2011; 90(5): 440-448.
http://dx.doi.org:/10.1016/j.ejcb.2011.01.003

Previously we reported the novel observation that astrocytes ensheath the persistent hyaloid artery, both in the Nuc1 spontaneous mutant rat, and in human PFV (persistent fetal vasculature) disease (Developmental Dynamics 234:36–47, 2005). We now show that astrocytes isolated from both the optic nerve and retina of Nuc1 rats migrate faster than wild type astrocytes. Aquaporin 4 (AQP4), the major water channel in astrocytes, has been shown to be important in astrocyte migration. We demonstrate that AQP4 expression is elevated in the astrocytes in PFV conditions, and we hypothesize that this causes the cells to migrate abnormally into the vitreous where they ensheath the hyaloid artery. This abnormal association of astrocytes with the hyaloid artery may impede the normal macrophage-mediated remodeling and regression of the hyaloid system.

βA3/A1-crystallin is required for proper astrocyte template formation and vascular remodeling in the retina.
D Sinha; WJ Stark; M Valapala; IA Bhutto; M Cano; S Hose; GA Lutty; et al.  Transgenic research 2012; 21(5):1033-42.

Nuc1 is a spontaneous rat mutant resulting from a mutation in the Cryba1 gene, coding for βA3/A1-crystallin. Our earlier studies with Nuc1 provided novel evidence that astrocytes, which express βA3/A1-crystallin, have a pivotal role in retinal remodeling. The role of astrocytes in the retina is only beginning to be explored. One of the limitations in the field is the lack of appropriate animal models to better investigate the function of astrocytes in retinal health and disease. We have now established transgenic mice that overexpress the Nuc1 mutant form of Cryba1, specifically in astrocytes. Astrocytes in wild type mice show normal compact stellate structure, producing a honeycomb-like network. In contrast, in transgenics over-expressing the mutant (Nuc1) Cryba1 in astrocytes, bundle-like structures with abnormal patterns and morphology were observed. In the nerve fiber layer of the transgenic mice, an additional layer of astrocytes adjacent to the vitreous is evident. This abnormal organization of astrocytes affects both the superficial and deep retinal vascular density and remodeling. Fluorescein angiography showed increased venous dilation and tortuosity of branches in the transgenic retina, as compared to wild type. Moreover, there appear to be fewer interactions between astrocytes and endothelial cells in the transgenic retina than in normal mouse retina. Further, astrocytes overexpressing the mutant βA3/A1-crystallin migrate into the vitreous, and ensheath the hyaloid artery, in a manner similar to that seen in the Nuc1 rat. Together, these data demonstrate that developmental abnormalities of astrocytes can affect the normal remodeling process of both fetal and retinal vessels of the eye and that βA3/A1-crystallin is essential for normal astrocyte function in the retina.

Ontogeny of oxytocin and vasopressin receptor binding in the lateral septum in prairie and montane voles
Z. Wang, L.J. Young
Developmental Brain Research 1997; 104:191–195.

Adult prairie (Microtus ochrogaster). and montane voles (M. montanus). differ in the distribution of oxytocin OT. and vasopressin AVP receptor binding in the brain. The present study examined the ontogenetic pattern of these receptor bindings in the lateral septum in both species to determine whether adult differences in the receptor binding are derived from a common pattern in development. In both species, OT and AVP receptor binding in the lateral septum were detected neonatally, increased during development, and reached the adult level at weaning third week. The progression of OT and AVP receptor differed, as OT receptor binding increased continually until weaning while AVP receptor binding did not change in the first week, increased rapidly in the second week, and was sustained thereafter. For both receptors, the binding increased more rapidly in montane than in prairie voles, resulting in species differences in receptor binding at weaning and in adulthood. Together, these data indicate that OT and AVP could affect the brain during development in a peptide- and species-specific manner in voles.

Evolution of the vasopressin/oxytocin superfamily: Characterization of a cDNA encoding a vasopressin-related precursor, preproconopressin, from the mollusc Lymnaea stagnalis
RE Van Kesteren, AB Smit, RW Dirksi, ND De With, WPM Geraerts, and J Joosse
Proc. Nadl. Acad. Sci. USA May 1992; 89: 4593-4597. Neurobiology

Although the nonapeptide hormones vasopressin, oxytocin, and related peptides from vertebrates and some nonapeptides from invertebrates share similarities in amino acid sequence, their evolutionary relationships are not dear. To investigate this issue, we doned a cDNA encoding a vasopressin-related peptide, Lys-conopressin, produced in the central nervous system of the gastropod mollusc Lymnaea stagnalis. The predicted preproconopressin has the overall architecture of vertebrate preprovasopressins, with a signal peptide, Lys-conopressin, that is flanked at the C terminus by an amidation signal and a pair of basic residues, followed by a neurophysin domain. The Lymnaea neurophysin and the vertebrate neurophysins share high sequence identity, which includes the conservation of all 14 cysteine residues. In addition, the Lymnaea neurophysin possesses unique structural characteristics. It contains a putative N-linked glycosylation site at a position in the vertebrate neurophysins where a strictly conserved tyrosine residue, which plays an essential role in binding of the nonapptide hormones, is found. The C-terminal copeptin homologous extension of the Lymnaea neurophysin has low sequence identity with the vertebrate counterparts and is probably not cleaved from the prohormone, as are the mammalin copeptins. The conopressin gene is expressed in only a few neurons in both pedal ganglia of the central nervous system. The conopressin transcript is present in two sizes, due to alternative use of polyadenylylation signals. The data presented here demonstrate that the typical organization of the prohormones of the vasopressin/oxytocin superfamily must have been present in the common ancestors of vertebrates and invertebrates.

A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function
H Tosta, B Kolachanaa, S Hakimia, H Lemaitrea, BA Verchinskia, et al.
PNAS Aug 3, 2010; 107(31): 13936–13941
http://pnas.org/cgi/doi/10.1073/pnas.1003296107

The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance.
Test of Association Between 10 SNPs in the Oxytocin Receptor Gene and Conduct Disorder
JT Sakai, TJ Crowley, MC Stallings, M McQueen, JK Hewitt, C Hopfer, et al.
Psychiatr Genet. 2012 Apr; 22(2): 99–102. http://dx.doi.org:/10.1097/YPG.0b013e32834c0cb2

Animal and human studies have implicated oxytocin (OXT) in affiliative and prosocial behaviors. We tested whether genetic variation in the OXT receptor (OXTR) gene is associated with conduct disorder (CD).
Utilizing a family-based sample of adolescent probands recruited from an adolescent substance abuse treatment program, control probands and their families (total sample n=1,750), we conducted three tests of association with CD and 10 SNPs (single nucleotide polymorphisms) in the OXTR gene: (1) family-based comparison utilizing the entire sample; (2) within-Whites, case control comparison of adolescent patients with CD and controls without CD; and (3) within-Whites case-control comparison of parents of patients and parents of controls.
Family-based association tests failed to show significant results (no results p<0.05). While strictly correcting for the number of tests (α=0.002), adolescent patients with CD did not differ significantly from adolescent controls in genotype frequency for the OXTR SNPs tested; similarly, comparison of OXTR genotype frequencies for parents failed to differentiate patient and control family type, except a trend association for rs237889 (p=0.004). In this sample, 10 SNPs in the OXTR gene were not significantly associated with CD.

Leu55Pro transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers
CA Keetch, EHC Bromley, MG McCammon, N Wang, J Christodoulou, CV Robinson
JBC  Oct 11, 2005 M508753200. http://jbc.org/cgi/doi/10.1074/jbc.M508753200

Transthyretin is a tetrameric protein associated with the commonest form of

systemic amyloid disease. Using isotopically labeled proteins and mass spectrometry we compared subunit exchange in wild-type transthyretin with that of the variant associated with the most aggressive form of the disease, Leu55Pro. Wild-type subunit exchange occurs via both monomers and dimers , while exchange via dimers is the dominant mechanism for the Leu55Pro variant. Since patients with the Leu55Pro mutation are heterozygous, expressing both proteins simultaneously, we also analyzed the subunit exchange reaction between wild-type and Leu55Pro tetramers . We found that hybrid tetramers containing two or three Leu55Pro subunits dominate in the early stages of the reaction. Surprisingly we also found that in the presence of Leu55Pro transthyretin, the rate of dissociation of wild-type transthyretin is increased. This implies interactions between the two proteins that accelerate the formation of hybrid tetramers, a result with important implications for transthyretin amyloidos is.

Beyond Genetic Factors in Familial Amyloidotic Polyneuropathy: Protein Glycation and the Loss of Fibrinogen’s Chaperone Activity
G da Costa, RA Gomes, A Guerreiro, E Mateus, E Monteiro, et al.
PLoS ONE 2011; 6(10): e24850. http://dx.doi.org:/10.1371/journal.pone.0024850

Familial amyloidotic polyneuropathy (FAP) is a systemic conformational disease characterized by extracellular amyloid fibril formation from plasma transthyretin (TTR). This is a crippling, fatal disease for which liver transplantation is the only effective therapy. More than 80 TTR point mutations are associated with amyloidotic diseases and the most widely accepted disease model relates TTR tetramer instability with TTR point mutations. However, this model fails to explain two observations. First, native TTR also forms amyloid in systemic senile amyloidosis, a geriatric disease. Second, age at disease onset varies by decades for patients bearing the same mutation and some mutation carrier individuals are asymptomatic throughout their lives. Hence, mutations only accelerate the process and non-genetic factors must play a key role in the molecular mechanisms of disease. One of these factors is protein glycation, previously associated with conformational diseases like Alzheimer’s and Parkinson’s. The glycation hypothesis in FAP is supported by our previous discovery of methylglyoxal-derived glycation of amyloid fibrils in FAP patients. Here we show that plasma proteins are differentially glycated by methylglyoxal in FAP patients and that fibrinogen is the main glycation target. Moreover, we also found that fibrinogen interacts with TTR in plasma. Fibrinogen has chaperone activity which is compromised upon glycation by methylglyoxal. Hence, we propose that methylglyoxal glycation hampers the chaperone activity of fibrinogen, rendering TTR more prone to aggregation, amyloid formation and ultimately, disease.

Aromatic Sulfonyl Fluorides Covalently Kinetically Stabilize Transthyretin to Prevent Amyloidogenesis while Affording a Fluorescent Conjugate
NP Grimster, S Connelly, A Baranczak, J Dong, …, JW Kelly
J Am Chem Soc. 2013 Apr 17; 135(15): 5656–5668. http://dx.doi.org:/10.1021/ja311729d

Molecules that bind selectively to a given protein and then undergo a rapid chemoselective reaction to form a covalent conjugate have utility in drug development. Herein a library of 1,3,4-oxadiazoles substituted at the 2 position with an aryl sulfonyl fluoride and at the 5 position with a substituted aryl known to have high affinity for the inner thyroxine binding subsite of transthyretin (TTR) were conceived of by structure-based design principles and were chemically synthesized. When bound in the thyroxine binding site, most of the aryl sulfonyl fluorides react rapidly and chemoselectively with the pKa-perturbed K15 residue, kinetically stabilizing TTR and thus preventing amyloid fibril formation, known to cause polyneuropathy. Conjugation t50s range from 1 to 4 min, ~ 1400 times faster than the hydrolysis reaction outside the thyroxine binding site. Xray crystallography confirms the anticipated binding orientation and sheds light on the sulfonyl fluoride activation leading to the sulfonamide linkage to TTR. A few of the aryl sulfonyl fluorides efficiently form conjugates with TTR in plasma. A few of the TTR covalent kinetic stabilizers synthesized exhibit fluorescence upon conjugation and therefore could have imaging applications as a consequence of the environment sensitive fluorescence of the chromophore.

Identification of S-sulfonation and S-thiolation of a novel transthyretin Phe33Cys variant from a patient diagnosed with familial transthyretin amyloidosis
A Lim, T Prokaeva, ME Mccomb, LH Connors, M Skinner, and CE Costello
Protein Science 2003; 12:1775–1786.
http://proteinscience.org/cgi/doi/10.1110/ps.0349703.

Familial transthyretin amyloidosis (ATTR) is an autosomal dominant disorder associated with a variant form of the plasma carrier protein transthyretin (TTR). Amyloid fibrils consisting of variant TTR, wild-type TTR, and TTR fragments deposit in tissues and organs. The diagnosis of ATTR relies on the identification of pathologic TTR variants in plasma of symptomatic individuals who have biopsy proven amyloid disease. Previously, we have developed a mass spectrometry-based approach, in combination with direct DNA sequence analysis, to fully identify TTR variants. Our methodology uses immunoprecipitation to isolate TTR from serum, and electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry (MS) peptide mapping to identify TTR variants and posttranslational modifications. Unambiguous identification of the amino acid substitution is performed using tandem MS (MS/MS) analysis and confirmed by direct DNA sequence analysis. The MS and MS/MS analyses also yield information about posttranslational modifications. Using this approach, we have recently identified a novel pathologic TTR variant. This variant has an amino acid substitution (Phe — Cys) at position 33. In addition, like the Cys10 present in the wild type and in this variant, the Cys33 residue was both S-sulfonated and S-thiolated (conjugated to cysteine, cysteinylglycine, and glutathione). These adducts may play a role in the TTR fibrillogenesis.

Evolutionary relationships of lactate dehydrogenases (LDHs) from mammals, birds, an amphibian, fish, barley, and bacteria: LDH cDNA sequences from Xenopus, pig, and rat
S Tsuji, MA Qureshi, EW Hou, WM Fitch, and S S.-L. Li
Proc. Natl. Acad. Sci. USA Sep 1994; 91: 9392-9396. Evolution

The nucleotide sequences of the cDNAs encoding LDH (EC 1.1.1.27) subunits LDH-A (muscle), LDH-B (liver), and LDH-C (oocyte) from Xenopus laevis, LDH-A (muscle) and LDH-B (heart) from pig, and LDH-B (heart) and LDH-C (testis) from rat were determined. These seven newly deduced amino acid sequences and 22 other published LDH sequences, and three unpublished fish LDH-A sequences kindly provided by G. N. Somero and D. A. Powers, were used to construct the most parsimonious phylogenetic tree of these 32 LDH subunits from mammals, birds, an amphibian, fish, barley, and bacteria. There have been at least six LDH gene duplications among the vertebrates. The Xenopus LDH-A, LDH-B, and LDH-C subunits are most closely related to each other and then are more closely related to vertebrate LDH-B than LDH-A. Three fish LDH-As, as well as a single LDH of lamprey, also seem to be more related to vertebrate LDH-B than to land vertebrate LDH-A. The mammalian LDH-C (testis) subunit appears to have diverged very early, prior to the divergence of vertebrate LDH-A and LDH-B subunits, as reported previously.

Evidence for neutral and selective processes in the recruitment of enzyme-crystallins in avian lenses
Graeme Wistow, Andrea Anderson, and Joram Piatigorsky
Proc. Natl. Acad. Sci. USA Aug 1990; 87: 6277-6280, Evolution

In apparent contrast to most other tissues, the ocular lenses in vertebrates show striking differences in protein composition between taxa, most notably in the recruitment of different enzymes as major structural proteins. This variability appears to be the result of at least partially neutral evolutionary processes, although there is also evidence for selective modification in molecular structure. Here we describe a bird, the chimney swift (Chaetura pelagica), that lacks δ-crystallin/ argininosuccinate lyase, usually the major crystallin of avian lenses. Clearly, δ-crystallin is not specifically required for a functionally effective avian lens. Furthermore the lens composition of the swift is more similar to that of the related hummingbirds than to that of the barn swallow (Hirundo rustica), suggesting that phylogeny is more important than environmental selection in the recruitment of crystallins. However differences in ε-crystallin/lactate dehydrogenase-B sequence between swift and hummingbird and other avian and reptilian species suggest that selective pressures may also be working at the molecular level. These differences also confirm the close relationship between swifts and hummingbirds.

Enzyme/crystallins and extremely high pyridine nucleotide levels in the eye lens.
Zigler, J. S., Jr.; Rao, P. V.
FASEB J. 1991; 3: 223-225.

Taxon-specific crystallins are proteins present in high abundance in the lens of phylogenetically restricted groups of animals. Recently it has been found that these proteins are actually enzymes which the lens has apparently adopted to serve as structural proteins. Most of these proteins have been shown to be identical to, or related to, oxidoreductases. In guinea pig lens, which contains zeta-crystallin, a protein with an NADPH dependent oxidoreductase activity, the levels of both NADPH and NADP* are extremely high and correlate with the concentration of zeta-crystallin. We report here nucleotide assays on lenses from vertebrates containing other enzyme/crystallins. In each case where the enzyme/crystallin is a pyridine nucleotide-binding protein the level of that particular nucleotide is extremely high in the lens. The presence of an enzyme/crystallin does not affect the lenticular concentrations of those nucleotides which are not specifically bound. The possibility that nucleotide binding may be a factor in the selection of some enzymes to serve as enzyme/crystallins is considered.

Comparison of stability properties of lactate dehydrogenase B4/ε-crystallin from different species
CEM Voorter, LTM Wintjes, PWH Heinstra, H Bloemendal and WW De Jong
Eur. J. Biochem. 1993; 211: 643-648

ε-Crystallin occurs as an abundant lens protein in many birds and in crocodiles and has been identified as heart-type lactate dehydrogenase (LDH-B4). Lens proteins have, due to their longevity and environmental conditions, extraordinary requirements for structural stability. To study lens protein stability, we compared various parameters of LDH-B4/ε-crystallin from lens and/or heart of duck, which has abundant amounts of this enzyme in its lenses, and of chicken and pig, which have no λ-crystallin. Measuring the thermostability of LDH-B4 from the different sources, the t50 values (temperature at which 50% of the enzyme activity remains after a 20-min period) for LDH-B4 from duck heart, duck lens and chicken heart were all found to be around 76°C whereas pig heart LDHB4 was less thermostable, having a t50 value of 625°C. A similar tendency was found with urea inactivation studies. Plotting the first-order rate constants obtained from inactivation kinetic plots against urea concentration, it was clear that LDH-B4 from pig heart was less stable in urea than the homologous enzymes from duck heart, chicken heart and duck lens. The duck and chicken enzymes were also much more resistant against proteolysis than the porcine enzyme. Therefore, it is concluded that avian LDH-B4 is structurally more stable than the homologous enzyme in mammals. This greater stability might make it suitable to function as a ε-crystallin, as in duck, but is not necessarily associated with high lens expression, as in chicken.

Duck lens ε-crystallin and lactate dehydrogenase B4 are identical: A single-copy gene product with two distinct functions
W Hendriks, JWM Mulders, MA Bibby, C Slingsby, H Bloemendal, and WW De Jong
Proc. Natl. Acad. Sci. USA Oct 1988; 85: 7114-7118. Biochemistry

To investigate whether or not duck lens ε-crystaliin and duck heart lactate dehydrogenase (LDH) B4 are the product of the same gene, we have isolated and sequenced cDNA clones of duck ε-crystallin. By using these clones we demonstrate that there is a single-copy Ldh-B gene in duck and in chicken. In the duck lens this gene is overexpressed, and its product is subject to posttranslational modification. Reconstruction of the evolutionary history of the LDH protein family reveals that the mammalian Ldh-C gene most probably originated from an ancestral Ldh-A gene and that the amino acid replacement rate in LDH-C is approximately 4 times the rate in LDH-A. Molecular modeling of LDH-B sequences shows that the increased thermostability of the avian tetramer might be explained by mutations that increase the number of ion pairs. Furthermore, the replacement of bulky side chains by glycines on the corners of the duck protein suggests an adaptation to facilitate close packing in the lens.

Lactate Dehydrogenase A as a Highly Abundant Eye Lens Protein in Platypus (Ornithorhynchus anatinus): Upsilon (υ)-Crystallin
T van Rheede,  R Amons, N Stewart, and WW de Jong
Mol. Biol. Evol. 2003; 20(06):994–998. http://dx.doi.org:/10.1093/molbev/msg116

Vertebrate eye lenses mostly contain two abundant types of proteins, the α-crystallins and the β/λ-crystallins. In addition, certain housekeeping enzymes are highly expressed as crystallins in various taxa. We now observed an unusual approximately 41-kd protein that makes up 16% to 18% of the total protein in the platypus eye lens. Its cDNA sequence was determined, which identified the protein as muscle-type lactate dehydrogenase A (LDH-A). It is the first observation of LDH-A as a crystallin, and we designate it upsilon (υ)-crystallin. Interestingly, the related heart-type LDH-B occurs as an abundant lens protein, known as ε-crystallin, in many birds and crocodiles. Thus, two members of the ldh gene family have independently been recruited as crystallins in different higher vertebrate lineages, suggesting that they are particularly suited for this purpose in terms of gene regulatory or protein structural properties. To establish whether platypus LDH-A/υ-crystallin has been under different selective constraints as compared with other vertebrate LDH-A sequences, we reconstructed the vertebrate Ldh-A gene phylogeny. No conspicuous rate deviations or amino acid replacements were observed.

Isozymes, moonlighting proteins and promiscous enzymes
M Nath Gupta, M Kapoor, AB Majumder and V Singh
Current Science Apr 2011; 100(8): 1152-1162.

The structures of isoenzymes differ and yet these catalyse the same type of reaction. These structures evolved to suit the physiological needs and are located in different parts of cells or tissues. Moonlighting proteins represent the same structure performing very different biological functions. Biological promiscuity reveals that the same active sites can catalyse different types of reactions. These three different phenomena, all illustrate similar evolutionary strategies. Viewed together, it emerges that biologists need to take a hard look at the ‘structure–function’ paradigm as well as the notions of biological specificity. Meanwhile, biotechnologists  continue to exploit the opportunities which ‘nonspecificity’ offers.

Read Full Post »

Summary and Perspectives: Impairments in Pathological States: Endocrine Disorders, Stress Hypermetabolism and Cancer

Summary and Perspectives: Impairments in Pathological States: Endocrine Disorders, Stress Hypermetabolism and Cancer

Author and Curator: Larry H. Bernstein, MD, FCAP

This summary is the last of a series on the impact of transcriptomics, proteomics, and metabolomics on disease investigation, and the sorting and integration of genomic signatures and metabolic signatures to explain phenotypic relationships in variability and individuality of response to disease expression and how this leads to  pharmaceutical discovery and personalized medicine.  We have unquestionably better tools at our disposal than has ever existed in the history of mankind, and an enormous knowledge-base that has to be accessed.  I shall conclude here these discussions with the powerful contribution to and current knowledge pertaining to biochemistry, metabolism, protein-interactions, signaling, and the application of the -OMICS to diseases and drug discovery at this time.

The Ever-Transcendent Cell

Deriving physiologic first principles By John S. Torday | The Scientist Nov 1, 2014
http://www.the-scientist.com/?articles.view/articleNo/41282/title/The-Ever-Transcendent-Cell/

Both the developmental and phylogenetic histories of an organism describe the evolution of physiology—the complex of metabolic pathways that govern the function of an organism as a whole. The necessity of establishing and maintaining homeostatic mechanisms began at the cellular level, with the very first cells, and homeostasis provides the underlying selection pressure fueling evolution.

While the events leading to the formation of the first functioning cell are debatable, a critical one was certainly the formation of simple lipid-enclosed vesicles, which provided a protected space for the evolution of metabolic pathways. Protocells evolved from a common ancestor that experienced environmental stresses early in the history of cellular development, such as acidic ocean conditions and low atmospheric oxygen levels, which shaped the evolution of metabolism.

The reduction of evolution to cell biology may answer the perennially unresolved question of why organisms return to their unicellular origins during the life cycle.

As primitive protocells evolved to form prokaryotes and, much later, eukaryotes, changes to the cell membrane occurred that were critical to the maintenance of chemiosmosis, the generation of bioenergy through the partitioning of ions. The incorporation of cholesterol into the plasma membrane surrounding primitive eukaryotic cells marked the beginning of their differentiation from prokaryotes. Cholesterol imparted more fluidity to eukaryotic cell membranes, enhancing functionality by increasing motility and endocytosis. Membrane deformability also allowed for increased gas exchange.

Acidification of the oceans by atmospheric carbon dioxide generated high intracellular calcium ion concentrations in primitive aquatic eukaryotes, which had to be lowered to prevent toxic effects, namely the aggregation of nucleotides, proteins, and lipids. The early cells achieved this by the evolution of calcium channels composed of cholesterol embedded within the cell’s plasma membrane, and of internal membranes, such as that of the endoplasmic reticulum, peroxisomes, and other cytoplasmic organelles, which hosted intracellular chemiosmosis and helped regulate calcium.

As eukaryotes thrived, they experienced increasingly competitive pressure for metabolic efficiency. Engulfed bacteria, assimilated as mitochondria, provided more bioenergy. As the evolution of eukaryotic organisms progressed, metabolic cooperation evolved, perhaps to enable competition with biofilm-forming, quorum-sensing prokaryotes. The subsequent appearance of multicellular eukaryotes expressing cellular growth factors and their respective receptors facilitated cell-cell signaling, forming the basis for an explosion of multicellular eukaryote evolution, culminating in the metazoans.

Casting a cellular perspective on evolution highlights the integration of genotype and phenotype. Starting from the protocell membrane, the functional homolog for all complex metazoan organs, it offers a way of experimentally determining the role of genes that fostered evolution based on the ontogeny and phylogeny of cellular processes that can be traced back, in some cases, to our last universal common ancestor.  ….

As eukaryotes thrived, they experienced increasingly competitive pressure for metabolic efficiency. Engulfed bacteria, assimilated as mitochondria, provided more bioenergy. As the evolution of eukaryotic organisms progressed, metabolic cooperation evolved, perhaps to enable competition with biofilm-forming, quorum-sensing prokaryotes. The subsequent appearance of multicellular eukaryotes expressing cellular growth factors and their respective receptors facilitated cell-cell signaling, forming the basis for an explosion of multicellular eukaryote evolution, culminating in the metazoans.

Casting a cellular perspective on evolution highlights the integration of genotype and phenotype. Starting from the protocell membrane, the functional homolog for all complex metazoan organs, it offers a way of experimentally determining the role of genes that fostered evolution based on the ontogeny and phylogeny of cellular processes that can be traced back, in some cases, to our last universal common ancestor.

Given that the unicellular toolkit is complete with all the traits necessary for forming multicellular organisms (Science, 301:361-63, 2003), it is distinctly possible that metazoans are merely permutations of the unicellular body plan. That scenario would clarify a lot of puzzling biology: molecular commonalities between the skin, lung, gut, and brain that affect physiology and pathophysiology exist because the cell membranes of unicellular organisms perform the equivalents of these tissue functions, and the existence of pleiotropy—one gene affecting many phenotypes—may be a consequence of the common unicellular source for all complex biologic traits.  …

The cell-molecular homeostatic model for evolution and stability addresses how the external environment generates homeostasis developmentally at the cellular level. It also determines homeostatic set points in adaptation to the environment through specific effectors, such as growth factors and their receptors, second messengers, inflammatory mediators, crossover mutations, and gene duplications. This is a highly mechanistic, heritable, plastic process that lends itself to understanding evolution at the cellular, tissue, organ, system, and population levels, mediated by physiologically linked mechanisms throughout, without having to invoke random, chance mechanisms to bridge different scales of evolutionary change. In other words, it is an integrated mechanism that can often be traced all the way back to its unicellular origins.

The switch from swim bladder to lung as vertebrates moved from water to land is proof of principle that stress-induced evolution in metazoans can be understood from changes at the cellular level.

http://www.the-scientist.com/Nov2014/TE_21.jpg

A MECHANISTIC BASIS FOR LUNG DEVELOPMENT: Stress from periodic atmospheric hypoxia (1) during vertebrate adaptation to land enhances positive selection of the stretch-regulated parathyroid hormone-related protein (PTHrP) in the pituitary and adrenal glands. In the pituitary (2), PTHrP signaling upregulates the release of adrenocorticotropic hormone (ACTH) (3), which stimulates the release of glucocorticoids (GC) by the adrenal gland (4). In the adrenal gland, PTHrP signaling also stimulates glucocorticoid production of adrenaline (5), which in turn affects the secretion of lung surfactant, the distension of alveoli, and the perfusion of alveolar capillaries (6). PTHrP signaling integrates the inflation and deflation of the alveoli with surfactant production and capillary perfusion.  THE SCIENTIST STAFF

From a cell-cell signaling perspective, two critical duplications in genes coding for cell-surface receptors occurred during this period of water-to-land transition—in the stretch-regulated parathyroid hormone-related protein (PTHrP) receptor gene and the β adrenergic (βA) receptor gene. These gene duplications can be disassembled by following their effects on vertebrate physiology backwards over phylogeny. PTHrP signaling is necessary for traits specifically relevant to land adaptation: calcification of bone, skin barrier formation, and the inflation and distention of lung alveoli. Microvascular shear stress in PTHrP-expressing organs such as bone, skin, kidney, and lung would have favored duplication of the PTHrP receptor, since sheer stress generates radical oxygen species (ROS) known to have this effect and PTHrP is a potent vasodilator, acting as an epistatic balancing selection for this constraint.

Positive selection for PTHrP signaling also evolved in the pituitary and adrenal cortex (see figure on this page), stimulating the secretion of ACTH and corticoids, respectively, in response to the stress of land adaptation. This cascade amplified adrenaline production by the adrenal medulla, since corticoids passing through it enzymatically stimulate adrenaline synthesis. Positive selection for this functional trait may have resulted from hypoxic stress that arose during global episodes of atmospheric hypoxia over geologic time. Since hypoxia is the most potent physiologic stressor, such transient oxygen deficiencies would have been acutely alleviated by increasing adrenaline levels, which would have stimulated alveolar surfactant production, increasing gas exchange by facilitating the distension of the alveoli. Over time, increased alveolar distension would have generated more alveoli by stimulating PTHrP secretion, impelling evolution of the alveolar bed of the lung.

This scenario similarly explains βA receptor gene duplication, since increased density of the βA receptor within the alveolar walls was necessary for relieving another constraint during the evolution of the lung in adaptation to land: the bottleneck created by the existence of a common mechanism for blood pressure control in both the lung alveoli and the systemic blood pressure. The pulmonary vasculature was constrained by its ability to withstand the swings in pressure caused by the systemic perfusion necessary to sustain all the other vital organs. PTHrP is a potent vasodilator, subserving the blood pressure constraint, but eventually the βA receptors evolved to coordinate blood pressure in both the lung and the periphery.

Gut Microbiome Heritability

Analyzing data from a large twin study, researchers have homed in on how host genetics can shape the gut microbiome.
By Tracy Vence | The Scientist Nov 6, 2014

Previous research suggested host genetic variation can influence microbial phenotype, but an analysis of data from a large twin study published in Cell today (November 6) solidifies the connection between human genotype and the composition of the gut microbiome. Studying more than 1,000 fecal samples from 416 monozygotic and dizygotic twin pairs, Cornell University’s Ruth Ley and her colleagues have homed in on one bacterial taxon, the family Christensenellaceae, as the most highly heritable group of microbes in the human gut. The researchers also found that Christensenellaceae—which was first described just two years ago—is central to a network of co-occurring heritable microbes that is associated with lean body mass index (BMI).  …

Of particular interest was the family Christensenellaceae, which was the most heritable taxon among those identified in the team’s analysis of fecal samples obtained from the TwinsUK study population.

While microbiologists had previously detected 16S rRNA sequences belonging to Christensenellaceae in the human microbiome, the family wasn’t named until 2012. “People hadn’t looked into it, partly because it didn’t have a name . . . it sort of flew under the radar,” said Ley.

Ley and her colleagues discovered that Christensenellaceae appears to be the hub in a network of co-occurring heritable taxa, which—among TwinsUK participants—was associated with low BMI. The researchers also found that Christensenellaceae had been found at greater abundance in low-BMI twins in older studies.

To interrogate the effects of Christensenellaceae on host metabolic phenotype, the Ley’s team introduced lean and obese human fecal samples into germ-free mice. They found animals that received lean fecal samples containing more Christensenellaceae showed reduced weight gain compared with their counterparts. And treatment of mice that had obesity-associated microbiomes with one member of the Christensenellaceae family, Christensenella minuta, led to reduced weight gain.   …

Ley and her colleagues are now focusing on the host alleles underlying the heritability of the gut microbiome. “We’re running a genome-wide association analysis to try to find genes—particular variants of genes—that might associate with higher levels of these highly heritable microbiota.  . . . Hopefully that will point us to possible reasons they’re heritable,” she said. “The genes will guide us toward understanding how these relationships are maintained between host genotype and microbiome composition.”

J.K. Goodrich et al., “Human genetics shape the gut microbiome,” Cell,  http://dx.doi.org:/10.1016/j.cell.2014.09.053, 2014.

Light-Operated Drugs

Scientists create a photosensitive pharmaceutical to target a glutamate receptor.
By Ruth Williams | The Scentist Nov 1, 2014
http://www.the-scientist.com/?articles.view/articleNo/41279/title/Light-Operated-Drugs/

light operated drugs MO1

light operated drugs MO1

http://www.the-scientist.com/Nov2014/MO1.jpg

The desire for temporal and spatial control of medications to minimize side effects and maximize benefits has inspired the development of light-controllable drugs, or optopharmacology. Early versions of such drugs have manipulated ion channels or protein-protein interactions, “but never, to my knowledge, G protein–coupled receptors [GPCRs], which are one of the most important pharmacological targets,” says Pau Gorostiza of the Institute for Bioengineering of Catalonia, in Barcelona.

Gorostiza has taken the first step toward filling that gap, creating a photosensitive inhibitor of the metabotropic glutamate 5 (mGlu5) receptor—a GPCR expressed in neurons and implicated in a number of neurological and psychiatric disorders. The new mGlu5 inhibitor—called alloswitch-1—is based on a known mGlu receptor inhibitor, but the simple addition of a light-responsive appendage, as had been done for other photosensitive drugs, wasn’t an option. The binding site on mGlu5 is “extremely tight,” explains Gorostiza, and would not accommodate a differently shaped molecule. Instead, alloswitch-1 has an intrinsic light-responsive element.

In a human cell line, the drug was active under dim light conditions, switched off by exposure to violet light, and switched back on by green light. When Gorostiza’s team administered alloswitch-1 to tadpoles, switching between violet and green light made the animals stop and start swimming, respectively.

The fact that alloswitch-1 is constitutively active and switched off by light is not ideal, says Gorostiza. “If you are thinking of therapy, then in principle you would prefer the opposite,” an “on” switch. Indeed, tweaks are required before alloswitch-1 could be a useful drug or research tool, says Stefan Herlitze, who studies ion channels at Ruhr-Universität Bochum in Germany. But, he adds, “as a proof of principle it is great.” (Nat Chem Biol, http://dx.doi.org:/10.1038/nchembio.1612, 2014)

Enhanced Enhancers

The recent discovery of super-enhancers may offer new drug targets for a range of diseases.
By Eric Olson | The Scientist Nov 1, 2014
http://www.the-scientist.com/?articles.view/articleNo/41281/title/Enhanced-Enhancers/

To understand disease processes, scientists often focus on unraveling how gene expression in disease-associated cells is altered. Increases or decreases in transcription—as dictated by a regulatory stretch of DNA called an enhancer, which serves as a binding site for transcription factors and associated proteins—can produce an aberrant composition of proteins, metabolites, and signaling molecules that drives pathologic states. Identifying the root causes of these changes may lead to new therapeutic approaches for many different diseases.

Although few therapies for human diseases aim to alter gene expression, the outstanding examples—including antiestrogens for hormone-positive breast cancer, antiandrogens for prostate cancer, and PPAR-γ agonists for type 2 diabetes—demonstrate the benefits that can be achieved through targeting gene-control mechanisms.  Now, thanks to recent papers from laboratories at MIT, Harvard, and the National Institutes of Health, researchers have a new, much bigger transcriptional target: large DNA regions known as super-enhancers or stretch-enhancers. Already, work on super-enhancers is providing insights into how gene-expression programs are established and maintained, and how they may go awry in disease.  Such research promises to open new avenues for discovering medicines for diseases where novel approaches are sorely needed.

Super-enhancers cover stretches of DNA that are 10- to 100-fold longer and about 10-fold less abundant in the genome than typical enhancer regions (Cell, 153:307-19, 2013). They also appear to bind a large percentage of the transcriptional machinery compared to typical enhancers, allowing them to better establish and enforce cell-type specific transcriptional programs (Cell, 153:320-34, 2013).

Super-enhancers are closely associated with genes that dictate cell identity, including those for cell-type–specific master regulatory transcription factors. This observation led to the intriguing hypothesis that cells with a pathologic identity, such as cancer cells, have an altered gene expression program driven by the loss, gain, or altered function of super-enhancers.

Sure enough, by mapping the genome-wide location of super-enhancers in several cancer cell lines and from patients’ tumor cells, we and others have demonstrated that genes located near super-enhancers are involved in processes that underlie tumorigenesis, such as cell proliferation, signaling, and apoptosis.

Super-enhancers cover stretches of DNA that are 10- to 100-fold longer and about 10-fold less abundant in the genome than typical enhancer regions.

Genome-wide association studies (GWAS) have found that disease- and trait-associated genetic variants often occur in greater numbers in super-enhancers (compared to typical enhancers) in cell types involved in the disease or trait of interest (Cell, 155:934-47, 2013). For example, an enrichment of fasting glucose–associated single nucleotide polymorphisms (SNPs) was found in the stretch-enhancers of pancreatic islet cells (PNAS, 110:17921-26, 2013). Given that some 90 percent of reported disease-associated SNPs are located in noncoding regions, super-enhancer maps may be extremely valuable in assigning functional significance to GWAS variants and identifying target pathways.

Because only 1 to 2 percent of active genes are physically linked to a super-enhancer, mapping the locations of super-enhancers can be used to pinpoint the small number of genes that may drive the biology of that cell. Differential super-enhancer maps that compare normal cells to diseased cells can be used to unravel the gene-control circuitry and identify new molecular targets, in much the same way that somatic mutations in tumor cells can point to oncogenic drivers in cancer. This approach is especially attractive in diseases for which an incomplete understanding of the pathogenic mechanisms has been a barrier to discovering effective new therapies.

Another therapeutic approach could be to disrupt the formation or function of super-enhancers by interfering with their associated protein components. This strategy could make it possible to downregulate multiple disease-associated genes through a single molecular intervention. A group of Boston-area researchers recently published support for this concept when they described inhibited expression of cancer-specific genes, leading to a decrease in cancer cell growth, by using a small molecule inhibitor to knock down a super-enhancer component called BRD4 (Cancer Cell, 24:777-90, 2013).  More recently, another group showed that expression of the RUNX1 transcription factor, involved in a form of T-cell leukemia, can be diminished by treating cells with an inhibitor of a transcriptional kinase that is present at the RUNX1 super-enhancer (Nature, 511:616-20, 2014).

Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization 
Andrea Sánchez-Vallet, et al.   eLife 2013;2:e00790 http://elifesciences.org/content/2/e00790#sthash.LnqVMJ9p.dpuf

LysM effector

LysM effector

http://img.scoop.it/ZniCRKQSvJOG18fHbb4p0Tl72eJkfbmt4t8yenImKBVvK0kTmF0xjctABnaLJIm9

While host immune receptors

  • detect pathogen-associated molecular patterns to activate immunity,
  • pathogens attempt to deregulate host immunity through secreted effectors.

Fungi employ LysM effectors to prevent

  • recognition of cell wall-derived chitin by host immune receptors

Structural analysis of the LysM effector Ecp6 of

  • the fungal tomato pathogen Cladosporium fulvum reveals
  • a novel mechanism for chitin binding,
  • mediated by intrachain LysM dimerization,

leading to a chitin-binding groove that is deeply buried in the effector protein.

This composite binding site involves

  • two of the three LysMs of Ecp6 and
  • mediates chitin binding with ultra-high (pM) affinity.

The remaining singular LysM domain of Ecp6 binds chitin with

  • low micromolar affinity but can nevertheless still perturb chitin-triggered immunity.

Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex.

Mutated Genes in Schizophrenia Map to Brain Networks
From www.nih.gov –  Sep 3, 2013

Previous studies have shown that many people with schizophrenia have de novo, or new, genetic mutations. These misspellings in a gene’s DNA sequence

  • occur spontaneously and so aren’t shared by their close relatives.

Dr. Mary-Claire King of the University of Washington in Seattle and colleagues set out to

  • identify spontaneous genetic mutations in people with schizophrenia and
  • to assess where and when in the brain these misspelled genes are turned on, or expressed.

The study was funded in part by NIH’s National Institute of Mental Health (NIMH). The results were published in the August 1, 2013, issue of Cell.

The researchers sequenced the exomes (protein-coding DNA regions) of 399 people—105 with schizophrenia plus their unaffected parents and siblings. Gene variations
that were found in a person with schizophrenia but not in either parent were considered spontaneous.

The likelihood of having a spontaneous mutation was associated with

  • the age of the father in both affected and unaffected siblings.

Significantly more mutations were found in people

  • whose fathers were 33-45 years at the time of conception compared to 19-28 years.

Among people with schizophrenia, the scientists identified

  • 54 genes with spontaneous mutations
  • predicted to cause damage to the function of the protein they encode.

The researchers used newly available database resources that show

  • where in the brain and when during development genes are expressed.

The genes form an interconnected expression network with many more connections than

  • that of the genes with spontaneous damaging mutations in unaffected siblings.

The spontaneously mutated genes in people with schizophrenia

  • were expressed in the prefrontal cortex, a region in the front of the brain.

The genes are known to be involved in important pathways in brain development. Fifty of these genes were active

  • mainly during the period of fetal development.

“Processes critical for the brain’s development can be revealed by the mutations that disrupt them,” King says. “Mutations can lead to loss of integrity of a whole pathway,
not just of a single gene.”

These findings support the concept that schizophrenia may result, in part, from

  • disruptions in development in the prefrontal cortex during fetal development.

James E. Darnell’s “Reflections”

A brief history of the discovery of RNA and its role in transcription — peppered with career advice
By Joseph P. Tiano

James Darnell begins his Journal of Biological Chemistry “Reflections” article by saying, “graduate students these days

  • have to swim in a sea virtually turgid with the daily avalanche of new information and
  • may be momentarily too overwhelmed to listen to the aging.

I firmly believe how we learned what we know can provide useful guidance for how and what a newcomer will learn.” Considering his remarkable discoveries in

  • RNA processing and eukaryotic transcriptional regulation

spanning 60 years of research, Darnell’s advice should be cherished. In his second year at medical school at Washington University School of Medicine in St. Louis, while
studying streptococcal disease in Robert J. Glaser’s laboratory, Darnell realized he “loved doing the experiments” and had his first “career advancement event.”
He and technician Barbara Pesch discovered that in vivo penicillin treatment killed streptococci only in the exponential growth phase and not in the stationary phase. These
results were published in the Journal of Clinical Investigation and earned Darnell an interview with Harry Eagle at the National Institutes of Health.

Darnell arrived at the NIH in 1956, shortly after Eagle  shifted his research interest to developing his minimal essential cell culture medium, still used. Eagle, then studying cell metabolism, suggested that Darnell take up a side project on poliovirus replication in mammalian cells in collaboration with Robert I. DeMars. DeMars’ Ph.D.
adviser was also James  Watson’s mentor, so Darnell met Watson, who invited him to give a talk at Harvard University, which led to an assistant professor position
at the MIT under Salvador Luria. A take-home message is to embrace side projects, because you never know where they may lead: this project helped to shape
his career.

Darnell arrived in Boston in 1961. Following the discovery of DNA’s structure in 1953, the world of molecular biology was turning to RNA in an effort to understand how
proteins are made. Darnell’s background in virology (it was discovered in 1960 that viruses used RNA to replicate) was ideal for the aim of his first independent lab:
exploring mRNA in animal cells grown in culture. While at MIT, he developed a new technique for purifying RNA along with making other observations

  • suggesting that nonribosomal cytoplasmic RNA may be involved in protein synthesis.

When Darnell moved to Albert Einstein College of Medicine for full professorship in 1964,  it was hypothesized that heterogenous nuclear RNA was a precursor to mRNA.
At Einstein, Darnell discovered RNA processing of pre-tRNAs and demonstrated for the first time

  • that a specific nuclear RNA could represent a possible specific mRNA precursor.

In 1967 Darnell took a position at Columbia University, and it was there that he discovered (simultaneously with two other labs) that

  • mRNA contained a polyadenosine tail.

The three groups all published their results together in the Proceedings of the National Academy of Sciences in 1971. Shortly afterward, Darnell made his final career move
four short miles down the street to Rockefeller University in 1974.

Over the next 35-plus years at Rockefeller, Darnell never strayed from his original research question: How do mammalian cells make and control the making of different
mRNAs? His work was instrumental in the collaborative discovery of

  • splicing in the late 1970s and
  • in identifying and cloning many transcriptional activators.

Perhaps his greatest contribution during this time, with the help of Ernest Knight, was

  • the discovery and cloning of the signal transducers and activators of transcription (STAT) proteins.

And with George Stark, Andy Wilks and John Krowlewski, he described

  • cytokine signaling via the JAK-STAT pathway.

Darnell closes his “Reflections” with perhaps his best advice: Do not get too wrapped up in your own work, because “we are all needed and we are all in this together.”

Darnell Reflections - James_Darnell

Darnell Reflections – James_Darnell

http://www.asbmb.org/assets/0/366/418/428/85528/85529/85530/8758cb87-84ff-42d6-8aea-96fda4031a1b.jpg

Recent findings on presenilins and signal peptide peptidase

By Dinu-Valantin Bălănescu

γ-secretase and SPP

γ-secretase and SPP

Fig. 1 from the minireview shows a schematic depiction of γ-secretase and SPP

http://www.asbmb.org/assets/0/366/418/428/85528/85529/85530/c2de032a-daad-41e5-ba19-87a17bd26362.png

GxGD proteases are a family of intramembranous enzymes capable of hydrolyzing

  • the transmembrane domain of some integral membrane proteins.

The GxGD family is one of the three families of

  • intramembrane-cleaving proteases discovered so far (along with the rhomboid and site-2 protease) and
  • includes the γ-secretase and the signal peptide peptidase.

Although only recently discovered, a number of functions in human pathology and in numerous other biological processes

  • have been attributed to γ-secretase and SPP.

Taisuke Tomita and Takeshi Iwatsubo of the University of Tokyo highlighted the latest findings on the structure and function of γ-secretase and SPP
in a recent minireview in The Journal of Biological Chemistry.

  • γ-secretase is involved in cleaving the amyloid-β precursor protein, thus producing amyloid-β peptide,

the main component of senile plaques in Alzheimer’s disease patients’ brains. The complete structure of mammalian γ-secretase is not yet known; however,
Tomita and Iwatsubo note that biochemical analyses have revealed it to be a multisubunit protein complex.

  • Its catalytic subunit is presenilin, an aspartyl protease.

In vitro and in vivo functional and chemical biology analyses have revealed that

  • presenilin is a modulator and mandatory component of the γ-secretase–mediated cleavage of APP.

Genetic studies have identified three other components required for γ-secretase activity:

  1. nicastrin,
  2. anterior pharynx defective 1 and
  3. presenilin enhancer 2.

By coexpression of presenilin with the other three components, the authors managed to

  • reconstitute γ-secretase activity.

Tomita and Iwatsubo determined using the substituted cysteine accessibility method and by topological analyses, that

  • the catalytic aspartates are located at the center of the nine transmembrane domains of presenilin,
  • by revealing the exact location of the enzyme’s catalytic site.

The minireview also describes in detail the formerly enigmatic mechanism of γ-secretase mediated cleavage.

SPP, an enzyme that cleaves remnant signal peptides in the membrane

  • during the biogenesis of membrane proteins and
  • signal peptides from major histocompatibility complex type I,
  • also is involved in the maturation of proteins of the hepatitis C virus and GB virus B.

Bioinformatics methods have revealed in fruit flies and mammals four SPP-like proteins,

  • two of which are involved in immunological processes.

By using γ-secretase inhibitors and modulators, it has been confirmed

  • that SPP shares a similar GxGD active site and proteolytic activity with γ-secretase.

Upon purification of the human SPP protein with the baculovirus/Sf9 cell system,

  • single-particle analysis revealed further structural and functional details.

HLA targeting efficiency correlates with human T-cell response magnitude and with mortality from influenza A infection

From www.pnas.org –  Sep 3, 2013 4:24 PM

Experimental and computational evidence suggests that

  • HLAs preferentially bind conserved regions of viral proteins, a concept we term “targeting efficiency,” and that
  • this preference may provide improved clearance of infection in several viral systems.

To test this hypothesis, T-cell responses to A/H1N1 (2009) were measured from peripheral blood mononuclear cells obtained from a household cohort study
performed during the 2009–2010 influenza season. We found that HLA targeting efficiency scores significantly correlated with

  • IFN-γ enzyme-linked immunosorbent spot responses (P = 0.042, multiple regression).

A further population-based analysis found that the carriage frequencies of the alleles with the lowest targeting efficiencies, A*24,

  • were associated with pH1N1 mortality (r = 0.37, P = 0.031) and
  • are common in certain indigenous populations in which increased pH1N1 morbidity has been reported.

HLA efficiency scores and HLA use are associated with CD8 T-cell magnitude in humans after influenza infection.
The computational tools used in this study may be useful predictors of potential morbidity and

  • identify immunologic differences of new variant influenza strains
  • more accurately than evolutionary sequence comparisons.

Population-based studies of the relative frequency of these alleles in severe vs. mild influenza cases

  • might advance clinical practices for severe H1N1 infections among genetically susceptible populations.

Metabolomics in drug target discovery

J D Rabinowitz et al.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ.
Cold Spring Harbor Symposia on Quantitative Biology 11/2011; 76:235-46.
http://dx.doi.org:/10.1101/sqb.2011.76.010694 

Most diseases result in metabolic changes. In many cases, these changes play a causative role in disease progression. By identifying pathological metabolic changes,

  • metabolomics can point to potential new sites for therapeutic intervention.

Particularly promising enzymatic targets are those that

  • carry increased flux in the disease state.

Definitive assessment of flux requires the use of isotope tracers. Here we present techniques for

  • finding new drug targets using metabolomics and isotope tracers.

The utility of these methods is exemplified in the study of three different viral pathogens. For influenza A and herpes simplex virus,

  • metabolomic analysis of infected versus mock-infected cells revealed
  • dramatic concentration changes around the current antiviral target enzymes.

Similar analysis of human-cytomegalovirus-infected cells, however, found the greatest changes

  • in a region of metabolism unrelated to the current antiviral target.

Instead, it pointed to the tricarboxylic acid (TCA) cycle and

  • its efflux to feed fatty acid biosynthesis as a potential preferred target.

Isotope tracer studies revealed that cytomegalovirus greatly increases flux through

  • the key fatty acid metabolic enzyme acetyl-coenzyme A carboxylase.
  • Inhibition of this enzyme blocks human cytomegalovirus replication.

Examples where metabolomics has contributed to identification of anticancer drug targets are also discussed. Eventual proof of the value of

  • metabolomics as a drug target discovery strategy will be
  • successful clinical development of therapeutics hitting these new targets.

 Related References

Use of metabolic pathway flux information in targeted cancer drug design. Drug Discovery Today: Therapeutic Strategies 1:435-443, 2004.

Detection of resistance to imatinib by metabolic profiling: clinical and drug development implications. Am J Pharmacogenomics. 2005;5(5):293-302. Review. PMID: 16196499

Medicinal chemistry, metabolic profiling and drug target discovery: a role for metabolic profiling in reverse pharmacology and chemical genetics.
Mini Rev Med Chem.  2005 Jan;5(1):13-20. Review. PMID: 15638788 [PubMed – indexed for MEDLINE] Related citations

Development of Tracer-Based Metabolomics and its Implications for the Pharmaceutical Industry. Int J Pharm Med 2007; 21 (3): 217-224.

Use of metabolic pathway flux information in anticancer drug design. Ernst Schering Found Symp Proc. 2007;(4):189-203. Review. PMID: 18811058

Pharmacological targeting of glucagon and glucagon-like peptide 1 receptors has different effects on energy state and glucose homeostasis in diet-induced obese mice. J Pharmacol Exp Ther. 2011 Jul;338(1):70-81. http://dx.doi.org:/10.1124/jpet.111.179986. PMID: 21471191

Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the
[U-C(6)]-d-glucose tracer in mice. Metabolomics. 2009 Sep;5(3):336-345. PMID: 19718458

Metabolic Pathways as Targets for Drug Screening, Metabolomics, Dr Ute Roessner (Ed.), ISBN: 978-953-51-0046-1, InTech, Available from: http://www.intechopen.com/books/metabolomics/metabolic-pathways-as-targets-for-drug-screening

Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. FASEB J. 2013 Jul;27(7):2845-54.
http://dx.doi.org:/10.1096/fj.12-216929. PMID: 23515442

Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery

Drug Discov. Today 19 (2014), 171–182     http://dx.doi.org:/10.1016/j.drudis.2013.07.014

Highlights

  • We now have metabolic network models; the metabolome is represented by their nodes.
  • Metabolite levels are sensitive to changes in enzyme activities.
  • Drugs hitchhike on metabolite transporters to get into and out of cells.
  • The consensus network Recon2 represents the present state of the art, and has predictive power.
  • Constraint-based modelling relates network structure to metabolic fluxes.

Metabolism represents the ‘sharp end’ of systems biology, because changes in metabolite concentrations are

  • necessarily amplified relative to changes in the transcriptome, proteome and enzyme activities, which can be modulated by drugs.

To understand such behaviour, we therefore need (and increasingly have) reliable consensus (community) models of

  • the human metabolic network that include the important transporters.

Small molecule ‘drug’ transporters are in fact metabolite transporters, because

  • drugs bear structural similarities to metabolites known from the network reconstructions and
  • from measurements of the metabolome.

Recon2 represents the present state-of-the-art human metabolic network reconstruction; it can predict inter alia:

(i) the effects of inborn errors of metabolism;

(ii) which metabolites are exometabolites, and

(iii) how metabolism varies between tissues and cellular compartments.

However, even these qualitative network models are not yet complete. As our understanding improves

  • so do we recognise more clearly the need for a systems (poly)pharmacology.

Introduction – a systems biology approach to drug discovery

It is clearly not news that the productivity of the pharmaceutical industry has declined significantly during recent years

  • following an ‘inverse Moore’s Law’, Eroom’s Law, or
  • that many commentators, consider that the main cause of this is
  • because of an excessive focus on individual molecular target discovery rather than a more sensible strategy
  • based on a systems-level approach (Fig. 1).
drug discovery science

drug discovery science

Figure 1.

The change in drug discovery strategy from ‘classical’ function-first approaches (in which the assay of drug function was at the tissue or organism level),
with mechanistic studies potentially coming later, to more-recent target-based approaches where initial assays usually involve assessing the interactions
of drugs with specified (and often cloned, recombinant) proteins in vitro. In the latter cases, effects in vivo are assessed later, with concomitantly high levels of attrition.

Arguably the two chief hallmarks of the systems biology approach are:

(i) that we seek to make mathematical models of our systems iteratively or in parallel with well-designed ‘wet’ experiments, and
(ii) that we do not necessarily start with a hypothesis but measure as many things as possible (the ’omes) and

  • let the data tell us the hypothesis that best fits and describes them.

Although metabolism was once seen as something of a Cinderella subject,

  • there are fundamental reasons to do with the organisation of biochemical networks as
  • to why the metabol(om)ic level – now in fact seen as the ‘apogee’ of the ’omics trilogy –
  •  is indeed likely to be far more discriminating than are
  • changes in the transcriptome or proteome.

The next two subsections deal with these points and Fig. 2 summarises the paper in the form of a Mind Map.

metabolomics and systems pharmacology

metabolomics and systems pharmacology

http://ars.els-cdn.com/content/image/1-s2.0-S1359644613002481-gr2.jpg

Metabolic Disease Drug Discovery— “Hitting the Target” Is Easier Said Than Done

David E. Moller, et al.   http://dx.doi.org:/10.1016/j.cmet.2011.10.012

Despite the advent of new drug classes, the global epidemic of cardiometabolic disease has not abated. Continuing

  • unmet medical needs remain a major driver for new research.

Drug discovery approaches in this field have mirrored industry trends, leading to a recent

  • increase in the number of molecules entering development.

However, worrisome trends and newer hurdles are also apparent. The history of two newer drug classes—

  1. glucagon-like peptide-1 receptor agonists and
  2. dipeptidyl peptidase-4 inhibitors—

illustrates both progress and challenges. Future success requires that researchers learn from these experiences and

  • continue to explore and apply new technology platforms and research paradigms.

The global epidemic of obesity and diabetes continues to progress relentlessly. The International Diabetes Federation predicts an even greater diabetes burden (>430 million people afflicted) by 2030, which will disproportionately affect developing nations (International Diabetes Federation, 2011). Yet

  • existing drug classes for diabetes, obesity, and comorbid cardiovascular (CV) conditions have substantial limitations.

Currently available prescription drugs for treatment of hyperglycemia in patients with type 2 diabetes (Table 1) have notable shortcomings. In general,

Therefore, clinicians must often use combination therapy, adding additional agents over time. Ultimately many patients will need to use insulin—a therapeutic class first introduced in 1922. Most existing agents also have

  • issues around safety and tolerability as well as dosing convenience (which can impact patient compliance).

Pharmacometabolomics, also known as pharmacometabonomics, is a field which stems from metabolomics,

  • the quantification and analysis of metabolites produced by the body.

It refers to the direct measurement of metabolites in an individual’s bodily fluids, in order to

  • predict or evaluate the metabolism of pharmaceutical compounds, and
  • to better understand the pharmacokinetic profile of a drug.

Alternatively, pharmacometabolomics can be applied to measure metabolite levels

  • following the administration of a pharmaceutical compound, in order to
  • monitor the effects of the compound on certain metabolic pathways(pharmacodynamics).

This provides detailed mapping of drug effects on metabolism and

  • the pathways that are implicated in mechanism of variation of response to treatment.

In addition, the metabolic profile of an individual at baseline (metabotype) provides information about

  • how individuals respond to treatment and highlights heterogeneity within a disease state.

All three approaches require the quantification of metabolites found

relationship between -OMICS

relationship between -OMICS

http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/OMICS.png/350px-OMICS.png

Pharmacometabolomics is thought to provide information that

Looking at the characteristics of an individual down through these different levels of detail, there is an

  • increasingly more accurate prediction of a person’s ability to respond to a pharmaceutical compound.
  1. the genome, made up of 25 000 genes, can indicate possible errors in drug metabolism;
  2. the transcriptome, made up of 85,000 transcripts, can provide information about which genes important in metabolism are being actively transcribed;
  3. and the proteome, >10,000,000 members, depicts which proteins are active in the body to carry out these functions.

Pharmacometabolomics complements the omics with

  • direct measurement of the products of all of these reactions, but with perhaps a relatively
  • smaller number of members: that was initially projected to be approximately 2200 metabolites,

but could be a larger number when gut derived metabolites and xenobiotics are added to the list. Overall, the goal of pharmacometabolomics is

  • to more closely predict or assess the response of an individual to a pharmaceutical compound,
  • permitting continued treatment with the right drug or dosage
  • depending on the variations in their metabolism and ability to respond to treatment.

Pharmacometabolomic analyses, through the use of a metabolomics approach,

  • can provide a comprehensive and detailed metabolic profile or “metabolic fingerprint” for an individual patient.

Such metabolic profiles can provide a complete overview of individual metabolite or pathway alterations,

This approach can then be applied to the prediction of response to a pharmaceutical compound

  • by patients with a particular metabolic profile.

Pharmacometabolomic analyses of drug response are

Pharmacogenetics focuses on the identification of genetic variations (e.g. single-nucleotide polymorphisms)

  • within patients that may contribute to altered drug responses and overall outcome of a certain treatment.

The results of pharmacometabolomics analyses can act to “inform” or “direct”

  • pharmacogenetic analyses by correlating aberrant metabolite concentrations or metabolic pathways to potential alterations at the genetic level.

This concept has been established with two seminal publications from studies of antidepressants serotonin reuptake inhibitors

  • where metabolic signatures were able to define a pathway implicated in response to the antidepressant and
  • that lead to identification of genetic variants within a key gene
  • within the highlighted pathway as being implicated in variation in response.

These genetic variants were not identified through genetic analysis alone and hence

  • illustrated how metabolomics can guide and inform genetic data.

en.wikipedia.org/wiki/Pharmacometabolomics

Benznidazole Biotransformation and Multiple Targets in Trypanosoma cruzi Revealed by Metabolomics

Andrea Trochine, Darren J. Creek, Paula Faral-Tello, Michael P. Barrett, Carlos Robello
Published: May 22, 2014   http://dx.doi.org:/10.1371/journal.pntd.0002844

The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi,

  • involves administration of benznidazole (Bzn).

Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active. We used a

  • non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.

Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols

  1. trypanothione,
  2. homotrypanothione and
  3. cysteine

were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment.

These metabolites included reduction products, fragments and covalent adducts of reduced Bzn

  • linked to each of the major low molecular weight thiols:
  1. trypanothione,
  2. glutathione,
  3. g-glutamylcysteine,
  4. glutathionylspermidine,
  5. cysteine and
  6. ovothiol A.

Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI,

  • were found within the parasites,
  • but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.

Our data is indicative of a major role of the

  • thiol binding capacity of Bzn reduction products
  • in the mechanism of Bzn toxicity against T. cruzi.

 

 

Read Full Post »

Complex Models of Signaling: Therapeutic Implications

Complex Models of Signaling: Therapeutic Implications

Curator: Larry H. Bernstein, MD, FCAP

Updated 6/24/2019

Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

Damitha De Mel and Cenk Suphioglu *

NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Waurn Ponds, Victoria, Australia.

Nutrients 2014, 6, 3245-3258; http://dx.doi.org:/10.3390/nu6083245

Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are

  • α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA).

Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain,

  • DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total.

DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on.

On the other hand,

  • zinc is the most abundant trace metal in the human brain.

There are many scientific studies linking zinc, especially

  • excess amounts of free zinc, to cellular death.

Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between

  • omega-3 fatty acids, zinc transporter levels and
  • free zinc availability at cellular levels.

Many other studies have also suggested a possible

  • omega-3 and zinc effect on neurodegeneration and cellular death.

Therefore, in this review, we will examine

  • the effect of omega-3 fatty acids on zinc transporters and
  • the importance of free zinc for human neuronal cells.

Moreover, we will evaluate the collective understanding of

  • mechanism(s) for the interaction of these elements in neuronal research and their
  • significance for the diagnosis and treatment of neurodegeneration.

Epidemiological studies have linked high intake of fish and shellfish as part of the daily diet to

  • reduction of the incidence and/or severity of Alzheimer’s disease (AD) and senile mental decline in

Omega-3 fatty acids are one of the two main families of a broader group of fatty acids referred to as polyunsaturated fatty acids (PUFAs). The other main family of PUFAs encompasses the omega-6 fatty acids. In general, PUFAs are essential in many biochemical events, especially in early post-natal development processes such as

  • cellular differentiation,
  • photoreceptor membrane biogenesis and
  • active synaptogenesis.

Despite the significance of these

two families, mammals cannot synthesize PUFA de novo, so they must be ingested from dietary sources. Though belonging to the same family, both

  • omega-3 and omega-6 fatty acids are metabolically and functionally distinct and have
  • opposing physiological effects. In the human body,
  • high concentrations of omega-6 fatty acids are known to increase the formation of prostaglandins and
  • thereby increase inflammatory processes [10].

the reverse process can be seen with increased omega-3 fatty acids in the body.

Many other factors, such as

  1. thromboxane A2 (TXA2),
  2. leukotriene
  3. B4 (LTB4),
  4. IL-1,
  5. IL-6,
  6. tumor necrosis factor (TNF) and
  7. C-reactive protein,

which are implicated in various health conditions, have been shown to be increased with high omega-6 fatty acids but decreased with omega-3 fatty acids in the human body.

Dietary fatty acids have been identified as protective factors in coronary heart disease, and PUFA levels are known to play a critical role in

  • immune responses,
  • gene expression and
  • intercellular communications.

omega-3 fatty acids are known to be vital in

  • the prevention of fatal ventricular arrhythmias, and
  • are also known to reduce thrombus formation propensity by decreasing platelet aggregation, blood viscosity and fibrinogen levels

.Since omega-3 fatty acids are prevalent in the nervous system, it seems logical that a deficiency may result in neuronal problems, and this is indeed what has been identified and reported.

The main omega-3 fatty acids in the mammalian body are

  1. α-linolenic acid (ALA),
  2. docosahexenoic acid (DHA) and
  3. eicosapentaenoic acid (EPA).

In general, seafood is rich in omega-3 fatty acids, more specifically DHA and EPA (Table 1). Thus far, there are nine separate epidemiological studies that suggest a possible link between

  • increased fish consumption and reduced risk of AD
  • and eight out of ten studies have reported a link between higher blood omega-3 levels

Table 1. Total percentage of omega-3 fatty acids in common foods and supplements.

Food/Supplement EPA DHA ALA Total %
Fish
SalmonSardine

Anchovy

Halibut

Herring

Mackerel

Tuna

Fresh Bluefin

XX

X

X

X

X

X

X

XX

X

X

X

X

X

X

>50%>50%

>50%

>50%

>50%

>50%

>50%

>50%

Oils/Supplements
Fish oil capsulesCod liver oils

Salmon oil

Sardine oil

XX

X

X

XX

X

X

>50%>50%

>50%

>50%

Black currant oilCanola oil Mustard seed oils

Soybean oil

Walnut oil

Wheat germ oil

XX

X

X

X

X

10%–50%10%–50%

10%–50%

10%–50%

10%–50%

10%–50%

Seeds and other foods
Flaxseeds/LinseedsSpinach

Wheat germ Human milk

Peanut butter

Soybeans

Olive oil

Walnuts

XX

X

X

X

X

X

X

>50%>50%

10%–50%

10%–50%

<10%

<10%

<10%

<10%

 

Table adopted from Maclean C.H. et al. [18].

In another study conducted with individuals of 65 years of age or older (n = 6158), it was found that

  • only high fish consumption, but
  • not dietary omega-3 acid intake,
  • had a protective effect on cognitive decline

In 2005, based on a meta-analysis of the available epidemiology and preclinical studies, clinical trials were conducted to assess the effects of omega-3 fatty acids on cognitive protection. Four of the trials completed have shown

a protective effect of omega-3 fatty acids only among those with mild cognitive impairment conditions.

A  trial of subjects with mild memory complaints demonstrated

  • an improvement with 900 mg of DHA.

We review key findings on

  • the effect of the omega-3 fatty acid DHA on zinc transporters and the
  • importance of free zinc to human neuronal cells.

DHA is the most abundant fatty acid in neural membranes, imparting appropriate

  • fluidity and other properties,

and is thus considered as the most important fatty acid in neuronal studies. DHA is well conserved throughout the mammalian species despite their dietary differences. It is mainly concentrated

  • in membrane phospholipids at synapses and
  • in retinal photoreceptors and
  • also in the testis and sperm.

In adult rats’ brain, DHA comprises approximately

  • 17% of the total fatty acid weight, and
  • in the retina it is as high as 33%.

DHA is believed to have played a major role in the evolution of the modern human –

  • in particular the well-developed brain.

Premature babies fed on DHA-rich formula show improvements in vocabulary and motor performance.

Analysis of human cadaver brains have shown that

  • people with AD have less DHA in their frontal lobe
  • and hippocampus compared with unaffected individuals

Furthermore, studies in mice have increased support for the

  • protective role of omega-3 fatty acids.

Mice administrated with a dietary intake of DHA showed

  • an increase in DHA levels in the hippocampus.

Errors in memory were decreased in these mice and they demonstrated

  • reduced peroxide and free radical levels,
  • suggesting a role in antioxidant defense.

Another study conducted with a Tg2576 mouse model of AD demonstrated that dietary

  • DHA supplementation had a protective effect against reduction in
  • drebrin (actin associated protein), elevated oxidation, and to some extent, apoptosis via
  • decreased caspase activity.

 

Zinc

Zinc is a trace element, which is indispensable for life, and it is the second most abundant trace element in the body. It is known to be related to

  • growth,
  • development,
  • differentiation,
  • immune response,
  • receptor activity,
  • DNA synthesis,
  • gene expression,
  • neuro-transmission,
  • enzymatic catalysis,
  • hormonal storage and release,
  • tissue repair,
  • memory,
  • the visual process

and many other cellular functions. Moreover, the indispensability of zinc to the body can be discussed in many other aspects,  as

  • a component of over 300 different enzymes
  • an integral component of a metallothioneins
  • a gene regulatory protein.

Approximately 3% of all proteins contain

  • zinc binding motifs .

The broad biological functionality of zinc is thought to be due to its stable chemical and physical properties. Zinc is considered to have three different functions in enzymes;

  1. catalytic,
  2. coactive and

Indeed, it is the only metal found in all six different subclasses

of enzymes. The essential nature of zinc to the human body can be clearly displayed by studying the wide range of pathological effects of zinc deficiency. Anorexia, embryonic and post-natal growth retardation, alopecia, skin lesions, difficulties in wound healing, increased hemorrhage tendency and severe reproductive abnormalities, emotional instability, irritability and depression are just some of the detrimental effects of zinc deficiency.

Proper development and function of the central nervous system (CNS) is highly dependent on zinc levels. In the mammalian organs, zinc is mainly concentrated in the brain at around 150 μm. However, free zinc in the mammalian brain is calculated to be around 10 to 20 nm and the rest exists in either protein-, enzyme- or nucleotide bound form. The brain and zinc relationship is thought to be mediated

  • through glutamate receptors, and
  • it inhibits excitatory and inhibitory receptors.

Vesicular localization of zinc in pre-synaptic terminals is a characteristic feature of brain-localized zinc, and

  • its release is dependent on neural activity.

Retardation of the growth and development of CNS tissues have been linked to low zinc levels. Peripheral neuropathy, spina bifida, hydrocephalus, anencephalus, epilepsy and Pick’s disease have been linked to zinc deficiency. However, the body cannot tolerate excessive amounts of zinc.

The relationship between zinc and neurodegeneration, specifically AD, has been interpreted in several ways. One study has proposed that β-amyloid has a greater propensity to

  • form insoluble amyloid in the presence of
  • high physiological levels of zinc.

Insoluble amyloid is thought to

  • aggregate to form plaques,

which is a main pathological feature of AD. Further studies have shown that

  • chelation of zinc ions can deform and disaggregate plaques.

In AD, the most prominent injuries are found in

  • hippocampal pyramidal neurons, acetylcholine-containing neurons in the basal forebrain, and in
  • somatostatin-containing neurons in the forebrain.

All of these neurons are known to favor

  • rapid and direct entry of zinc in high concentration
  • leaving neurons frequently exposed to high dosages of zinc.

This is thought to promote neuronal cell damage through oxidative stress and mitochondrial dysfunction. Excessive levels of zinc are also capable of

  • inhibiting Ca2+ and Na+ voltage gated channels
  • and up-regulating the cellular levels of reactive oxygen species (ROS).

High levels of zinc are found in Alzheimer’s brains indicating a possible zinc related neurodegeneration. A study conducted with mouse neuronal cells has shown that even a 24-h exposure to high levels of zinc (40 μm) is sufficient to degenerate cells.

If the human diet is deficient in zinc, the body

  • efficiently conserves zinc at the tissue level by compensating other cellular mechanisms

to delay the dietary deficiency effects of zinc. These include reduction of cellular growth rate and zinc excretion levels, and

  • redistribution of available zinc to more zinc dependent cells or organs.

A novel method of measuring metallothionein (MT) levels was introduced as a biomarker for the

  • assessment of the zinc status of individuals and populations.

In humans, erythrocyte metallothionein (E-MT) levels may be considered as an indicator of zinc depletion and repletion, as E-MT levels are sensitive to dietary zinc intake. It should be noted here that MT plays an important role in zinc homeostasis by acting

  • as a target for zinc ion binding and thus
  • assisting in the trafficking of zinc ions through the cell,
  • which may be similar to that of zinc transporters

Zinc Transporters

Deficient or excess amounts of zinc in the body can be catastrophic to the integrity of cellular biochemical and biological systems. The gastrointestinal system controls the absorption, excretion and the distribution of zinc, although the hydrophilic and high-charge molecular characteristics of zinc are not favorable for passive diffusion across the cell membranes. Zinc movement is known to occur

  • via intermembrane proteins and zinc transporter (ZnT) proteins

These transporters are mainly categorized under two metal transporter families; Zip (ZRT, IRT like proteins) and CDF/ZnT (Cation Diffusion Facilitator), also known as SLC (Solute Linked Carrier) gene families: Zip (SLC-39) and ZnT (SLC-30). More than 20 zinc transporters have been identified and characterized over the last two decades (14 Zips and 8 ZnTs).

Members of the SLC39 family have been identified as the putative facilitators of zinc influx into the cytosol, either from the extracellular environment or from intracellular compartments (Figure 1).

The identification of this transporter family was a result of gene sequencing of known Zip1 protein transporters in plants, yeast and human cells. In contrast to the SLC39 family, the SLC30 family facilitates the opposite process, namely zinc efflux from the cytosol to the extracellular environment or into luminal compartments such as secretory granules, endosomes and synaptic vesicles; thus decreasing intracellular zinc availability (Figure 1). ZnT3 is the most important in the brain where

  • it is responsible for the transport of zinc into the synaptic vesicles of
  • glutamatergic neurons in the hippocampus and neocortex,

 

Figure 1. Putative cellular localization of some of the different human zinc transporters (i.e., Zip1- Zip4 and ZnT1- ZnT7). Arrows indicate the direction of zinc passage by the appropriate putative zinc transporters in a generalized human cell. Although there are fourteen Zips and eight ZnTs known so far, only the main zinc transporters are illustrated in this figure for clarity and brevity.

Figure 1: Subcellular localization and direction of transport of the zinc transporter families, ZnT and ZIP. Arrows show the direction of zinc mobilization for the ZnT (green) and ZIP (red) proteins. A net gain in cytosolic zinc is achieved by the transportation of zinc from the extracellular region and organelles such as the endoplasmic reticulum (ER) and Golgi apparatus by the ZIP transporters. Cytosolic zinc is mobilized into early secretory compartments such as the ER and Golgi apparatus by the ZnT transporters. Figures were produced using Servier Medical Art, http://www.servier.com/.   http://www.hindawi.com/journals/jnme/2012/173712.fig.001.jpg

zinc transporters

zinc transporters

 

 

Early zinc signaling (EZS) and late zinc signaling (LZS)

Early zinc signaling (EZS) and late zinc signaling (LZS)

http://www.hindawi.com/journals/jnme/2012/floats/173712/thumbnails/173712.fig.002_th.jpg

 

Figure 2: Early zinc signaling (EZS) and late zinc signaling (LZS). EZS involves transcription-independent mechanisms where an extracellular stimulus directly induces an increase in zinc levels within several minutes by releasing zinc from intracellular stores (e.g., endoplasmic reticulum). LSZ is induced several hours after an external stimulus and is dependent on transcriptional changes in zinc transporter expression. Components of this figure were produced using Servier Medical Art, http://www.servier.com/ and adapted from Fukada et al. [30].

 

DHA and Zinc Homeostasis

Many studies have identified possible associations between DHA levels, zinc homeostasis, neuroprotection and neurodegeneration. Dietary DHA deficiency resulted in

  • increased zinc levels in the hippocampus and
  • elevated expression of the putative zinc transporter, ZnT3, in the rat brain.

Altered zinc metabolism in neuronal cells has been linked to neurodegenerative conditions such as AD. A study conducted with transgenic mice has shown a significant link between ZnT3 transporter levels and cerebral amyloid plaque pathology. When the ZnT3 transporter was silenced in transgenic mice expressing cerebral amyloid plaque pathology,

  • a significant reduction in plaque load
  • and the presence of insoluble amyloid were observed.

In addition to the decrease in plaque load, ZnT3 silenced mice also exhibited a significant

  • reduction in free zinc availability in the hippocampus
  • and cerebral cortex.

Collectively, the findings from this study are very interesting and indicate a clear connection between

  • zinc availability and amyloid plaque formation,

thus indicating a possible link to AD.

DHA supplementation has also been reported to limit the following:

  1. amyloid presence,
  2. synaptic marker loss,
  3. hyper-phosphorylation of Tau,
  4. oxidative damage and
  5. cognitive deficits in transgenic mouse model of AD.

In addition, studies by Stoltenberg, Flinn and colleagues report on the modulation of zinc and the effect in transgenic mouse models of AD. Given that all of these are classic pathological features of AD, and considering the limiting nature of DHA in these processes, it can be argued that DHA is a key candidate in preventing or even curing this debilitating disease.

In order to better understand the possible links and pathways of zinc and DHA with neurodegeneration, we designed a study that incorporates all three of these aspects, to study their effects at the cellular level. In this study, we were able to demonstrate a possible link between omega-3 fatty acid (DHA) concentration, zinc availability and zinc transporter expression levels in cultured human neuronal cells.

When treated with DHA over 48 h, ZnT3 levels were markedly reduced in the human neuroblastoma M17 cell line. Moreover, in the same study, we were able to propose a possible

  • neuroprotective mechanism of DHA,

which we believe is exerted through

  • a reduction in cellular zinc levels (through altering zinc transporter expression levels)
  • that in turn inhibits apoptosis.

DHA supplemented M17 cells also showed a marked depletion of zinc uptake (up to 30%), and

  • free zinc levels in the cytosol were significantly low compared to the control

This reduction in free zinc availability was specific to DHA; cells treated with EPA had no significant change in free zinc levels (unpublished data). Moreover, DHA-repleted cells had

  • low levels of active caspase-3 and
  • high Bcl-2 levels compared to the control treatment.

These findings are consistent with previous published data and further strengthen the possible

  • correlation between zinc, DHA and neurodegeneration.

On the other hand, recent studies using ZnT3 knockout (ZnT3KO) mice have shown the importance of

  • ZnT3 in memory and AD pathology.

For example, Sindreu and colleagues have used ZnT3KO mice to establish the important role of

  • ZnT3 in zinc homeostasis that modulates presynaptic MAPK signaling
  • required for hippocampus-dependent memory

Results from these studies indicate a possible zinc-transporter-expression-level-dependent mechanism for DHA neuroprotection.

Collectively from these studies, the following possible mechanism can be proposed (Figure 2).

possible benefits of DHA in neuroprotection through reduction of ZnT3 transporter

possible benefits of DHA in neuroprotection through reduction of ZnT3 transporter

 

Figure 2. Proposed neuroprotection mechanism of docosahexaenoic acid (DHA) in reference to synaptic zinc. Schematic diagram showing possible benefits of DHA in neuroprotection through reduction of ZnT3 transporter expression levels in human neuronal cells, which results in a reduction of zinc flux and thus lowering zinc concentrations in neuronal synaptic vesicles, and therefore contributing to a lower incidence of neurodegenerative diseases (ND), such as Alzheimer’s disease (AD).

More recent data from our research group have also shown a link between the expression levels of histone H3 and H4 proteins in human neuronal cells in relation to DHA and zinc. Following DHA treatment, both H3 and H4 levels were up-regulated. In contrast, zinc treatment resulted in a down-regulation of histone levels. Both zinc and DHA have shown opposing effects on histone post-translational modifications, indicating a possible distinctive epigenetic pattern. Upon treatment with zinc, M17 cells displayed an increase in histone deacetylase (HDACs) and a reduction in histone acetylation. Conversely, with DHA treatment, HDAC levels were significantly reduced and the acetylation of histones was up-regulated. These findings also support a possible interaction between DHA and zinc availability.

Conclusions

It is possible to safely claim that there is more than one potential pathway by which DHA and zinc interact at a cellular level, at least in cultured human neuronal cells. Significance and importance of both DHA and zinc in neuronal survival is attested by the presence of these multiple mechanisms.
Most of these reported studies were conducted using human neuroblastoma cells, or similar cell types, due to the lack of live mature human neuronal cells. Thus, the results may differ from results achieved under actual human physiological conditions due to the structural and functional differences between these cells and mature human neurons. Therefore, an alternative approach that can mimic the human neuronal cells more effectively would be advantageous.

Sphingosine-1-phosphate signaling as a therapeutic target          

E Giannoudaki, DJ Swan, JA Kirby, S Ali

Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

Cell Health and Cytoskeleton 2012; 4: 63–72

S1P is a 379Da member of the lysophospholipid family. It is the direct metabolite of sphingosine through the action of two sphingosine kinases, SphK1 and SphK2. The main metabolic pathway starts with the hydrolysis of sphingomyelin, a membrane sphingolipid, into ceramide by the enzyme sphingomyelinase and the subsequent production of sphingosine by ceramidase (Figure 1). Ceramide can also be produced de novo in the endoplasmic reticulum (ER) from serine and palmitoyl coenzyme A through multiple intermediates. S1P production is regulated by various S1P-specific and general lipid phosphatases, as well as S1P lyase, which irreversibly degrades S1P into phosphoethanolamine and hexadecanal. The balance between intracellular S1P and its metabolite ceramide can determine cellular fate. Ceramide promotes apoptosis, while S1P suppresses cell death and promotes cell survival. This creates an S1P ceramide “rheostat” inside the cells. S1P lyase expression in tissue is higher than it is in erythrocytes and platelets, the main “suppliers” of S1P in blood. This causes a tissue–blood gradient of S1P, which is important in many S1P-mediated responses, like the lymphocyte egress from lymphoid organs.

S1P signaling overview

S1P is produced inside cells; however, it can also be found extracellularly, in a variety of different tissues. It is abundant in the blood, at concentrations of 0.4–1.5 μM, where it is mainly secreted by erythrocytes and platelets. Blood S1P can be found separately, but mainly it exists in complexes with high-density lipoprotein (HDL) (∼60%).  Many of the cardioprotective effects of HDL are hypothesized to involve S1P. Before 1996, S1P was thought to act mainly intracellularly as a second messenger. However, the identification of several GPCRs that bind S1P led to the initiation of many studies on

  • extracellular S1P signaling through those receptors.

There are five receptors that have been identified currently. These can be coupled with different G-proteins. Assuming that each receptor coupling with a G protein has a slightly different function, one can recognize the complexity of S1P receptor signaling.

S1P as a second messenger

S1P is involved in many cellular processes through its GPCR signaling; studies demonstrate that S1P also acts at an intracellular level. Intracellular S1P plays a role in maintaining the balance of cell survival signal toward apoptotic signals, creating a

  • cell “rheostat” between S1P and its precursor ceramide.

Important evidence that S1P can act intracellularly as a second messenger came from yeast (Saccharomyces cerevisiae) and plant (Arabidopsis thaliana) cells. Yeast cells do not express any S1P receptors, although they can be affected by S1P during heat-shock responses. Similarly, Arabidopsis has only one GPCR-like protein, termed “GCR1,” which does not bind S1P, although S1P regulates stomata closure during drought.

Sphingosine-1-phosphate

Sphingosine-1-phosphate

In mammals, the sphingosine kinases have been found to localize in different cell compartments, being responsible for the accumulation of S1P in those compartments to give intracellular signals. In mitochondria, for instance,

  • S1P was recently found to interact with prohibitin 2,

a conserved protein that maintains mitochondria assembly and function. According to the same study,

SphK2 is the major producer of S1P in mitochondria and the knockout of its gene can cause

  • disruption of mitochondrial respiration and cytochrome c oxidase function.

SphK2 is also present in the nucleus of many cells and has been implicated to cause cell cycle arrest, and it causes S1P accumulation in the nucleus. It seems that nuclear S1P is affiliated with the histone deacetylases HDAC1 and HDAC2,

  • inhibiting their activity, thus having an indirect effect in epigenetic regulation of gene expression.

In the ER, SphK2 has been identified to translocate during stress, and promote apoptosis. It seems that S1P has specific targets in the ER that cause apoptosis, probably through calcium mobilization signals.

Sphingosine 1-phosphate (S1P) is a small bioactive lipid molecule that is involved in several processes both intracellularly and extracellularly. It acts intracellularly

  • to promote the survival and growth of the cell,

through its interaction with molecules in different compartments of the cell.

It can also exist at high concentrations extracellularly, in the blood plasma and lymph. This causes an S1P gradient important for cell migration. S1P signals through five G protein-coupled receptors, S1PR1–S1PR5, whose expression varies in different types of cells and tissue. S1P signaling can be involved in physiological and pathophysiological conditions of the cardiovascular, nervous, and immune systems and diseases such as ischemia/reperfusion injury, autoimmunity, and cancer. In this review, we discuss how it can be used to discover novel therapeutic targets.

The involvement of S1P signaling in disease

In a mouse model of myocardial ischemia-reperfusion injury (IRI), S1P and its carrier, HDL, can help protect myocardial tissue and decrease the infarct size. It seems they reduce cardiomyocyte apoptosis and neutrophil recruitment to the ischemic tissue and may decrease leukocyte adhesion to the endothelium. This effect appears to be S1PR3 mediated, since in S1PR3 knockout mice it is alleviated.

Ischemia activates SphK1, which is then translocated to the plasma membrane. This leads to an increase of intracellular S1P, helping to promote cardiomyocyte survival against apoptosis, induced by ceramide. SphK1 knockout mice cannot be preconditioned against IRI, whereas SphK1 gene induction in the heart protects it from IRI. Interestingly, a recent study shows SphK2 may also play a role, since its knockout reduces the cardioprotective effects of preconditioning. Further, administration of S1P or sphingosine during reperfusion results in better recovery and attenuation of damage to cardiomyocytes. As with preconditioning, SphK1 deficiency also affects post-conditioning of mouse hearts after ischemia reperfusion (IR).

S1P does not only protect the heart from IRI. During intestinal IR, multiple organs can be damaged, including the lungs. S1P treatment of mice during intestinal IR seems to have a protective effect on lung injury, probably due to suppression of iNOS-induced nitric oxide generation. In renal IRI, SphK1 seems to be important, since its deficiency increased the damage in kidney tissue, whereas the lentiviral overexpression of the SphK1 gene protected from injury. Another study suggests that, after IRI, apoptotic renal cells release S1P, which recruits macrophages through S1PR3 activation and might contribute to kidney regeneration and restoration of renal epithelium. However, SphK2 is negatively implicated in hepatic IRI, its inhibition helping protect hepatocytes and restoring mitochondrial function.

Further studies are implicating S1P signaling or sphingosine kinases in several kinds of cancer as well as autoimmune diseases.

Figure 2 FTY720-P causes retention of T cells in the lymph nodes.

Notes: C57BL/6 mice were injected with BALB/c splenocytes in the footpad to create an allogenic response then treated with FTY720-P or vehicle every day on days 2 to 5. On day 6, the popliteal lymph nodes were removed. Popliteal node-derived cells were mixed with BALB/c splenocytes in interferon gamma (IFN-γ) cultured enzyme-linked immunosorbent spot reactions. Bars represent the mean number of IFN-γ spot-forming cells per 1000 popliteal node-derived cells, from six mice treated with vehicle and seven with FTY720-P. **P , 0.01.  (not shown)

Fingolimod (INN, trade name Gilenya, Novartis) is an immunomodulating drug, approved for treating multiple sclerosis. It has reduced the rate of relapses in relapsing-remitting multiple sclerosis by over half. Fingolimod is a sphingosine-1-phosphate receptor modulator, which sequesters lymphocytes in lymph nodes, preventing them from contributing to an autoimmune reaction.

Fingolimod3Dan

Fingolimod3Dan

 

http://upload.wikimedia.org/wikipedia/commons/thumb/4/48/Fingolimod3Dan.gif/200px-Fingolimod3Dan.gif

The S1P antagonist FTY720 has been approved by the US Food and Drug Administration to be used as a drug against multiple sclerosis (MS). FTY720 is in fact a prodrug, since it is phosphorylated in vivo by SphK2 into FTY720-P, an S1P structural analog, which can activate S1PR1, 3, 4, and 5. FTY720-P binding to S1PR1 causes internalization of the receptor, as does S1P – but instead of recycling it back to the cell surface, it promotes its ubiquitination and degradation at the proteasome. This has a direct effect on lymphocyte trafficking through the lymph nodes, since it relies on S1PR1 signaling and S1P gradient (Figure 2). In MS, it stops migrating lymphocytes into the brain, but it may also have direct effects on the CNS through neuroprotection. FTY720 can pass the blood–brain barrier and it could be phosphorylated by local sphingosine kinases to act through S1PR1 and S1PR3 receptors that are mainly expressed in the CNS. In MS lesions, astrocytes upregulate those two receptors and it has been shown that FTY720-P treatment in vitro inhibits astrocyte production of inflammatory cytokines. A recent study confirms the importance of S1PR3 signaling on activated astrocytes, as well as SphK1, that are upregulated and promote the secretion of the potentially neuroprotective cytokine CXCL-1.

There are several studies implicating the intracellular S1P ceramide rheostat to cancer cell survival or apoptosis and resistance to chemotherapy or irradiation in vitro. Studies with SphK1 inhibition in pancreatic, prostate cancers, and leukemia, show increased ceramide/S1P ratio and induction of apoptosis. However, S1P receptor signaling plays conflicting roles in cancer cell migration and metastasis.

Modulation of S1P signaling: therapeutic potential

S1P signaling can be involved in many pathophysiological conditions. This means that we could look for therapeutic targets in all the molecules taking part in S1P signaling and production, most importantly the S1P receptors and the sphingosine kinases. S1P agonists and antagonists could also be used to modulate S1P signaling during pathological conditions.

S1P can have direct effects on the cardiovascular system. During IRI, intracellular S1P can protect the cardiomyocytes and promote their survival. Pre- or post-conditioning of the heart with S1P could be used as a treatment, but upregulation of sphingosine kinases could also increase intracellular S1P bioavailability. S1P could also have effects on endothelial cells and neutrophil trafficking. Vascular endothelial cells mainly express S1PR1 and S1PR3; only a few types express S1PR2. S1PR1 and S1PR3 activation on these cells has been shown to enhance their chemotactic migration, probably through direct phosphorylation of S1PR1 by Akt, in a phosphatidylinositol 3-kinase and Rac1-dependent signaling pathway. Moreover, it stimulates endothelial cell proliferation through an ERK pathway. S1PR2 activation, however, inhibits endothelial cell migration, morphogenesis, and angiogenesis, most likely through Rho-dependent inhibition of Rac signaling pathway, as Inoki et al showed in mouse cells with the use of S1PR1 and S1PR3 specific antagonists.

Regarding permeability of the vascular endothelium and endothelial barrier integrity, S1P receptors can have different effects. S1PR1 activation enhances endothelial barrier integrity by stimulation of cellular adhesion and upregulation of adhesion molecules. However, S1PR2 and S1PR3 have been shown to have barrier-disrupting effects in vitro, and vascular permeability increasing effects in vivo. All the effects S1P can have on vascular endothelium and smooth muscle cells suggest that activation of S1PR2, not S1PR1 and S1PR3, signaling, perhaps with the use of S1PR2 specific agonists, could be used therapeutically to inhibit angiogenesis and disrupt vasculature, suppressing tumor growth and progression.

An important aspect of S1P signaling that is being already therapeutically targeted, but could be further investigated, is immune cell trafficking. Attempts have already been made to regulate lymphocyte cell migration with the use of the drug FTY720, whose phosphorylated form can inhibit the cells S1PR1-dependent egress from the lymph nodes, causing lymphopenia. FTY720 is used as an immunosuppressant for MS but is also being investigated for other autoimmune conditions and for transplantation. Unfortunately, Phase II and III clinical trials for the prevention of kidney graft rejection have not shown an advantage over standard therapies. Moreover, FTY720 can have some adverse cardiac effects, such as bradycardia. However, there are other S1PR1 antagonists that could be considered instead, including KRP-203, AUY954, and SEW2871. KRP-203 in particular has been shown to prolong rat skin and heart allograft survival and attenuate chronic rejection without causing bradycardia, especially when combined with other immunomodulators.

There are studies that argue S1P pretreatment has a negative effect on neutrophil chemotaxis toward the chemokine CXCL-8 (interleukin-8) or the potent chemoattractant formyl-methionyl-leucyl-phenylalanine. S1P pretreatment might also inhibit trans-endothelial migration of neutrophils, without affecting their adhesion to the endothelium. S1P effects on neutrophil migration toward CXCL-8 might be the result of S1PRs cross-linking with the CXCL-8 receptors in neutrophils, CXCR-1 and CXCR-2. Indeed, there is evidence suggesting S1PR4 and S1PR3 form heterodimers with CXCR-1 in neutrophils. Another indication that S1P plays a role in neutrophil trafficking is a recent paper on S1P lyase deficiency, a deficiency that impairs neutrophil migration from blood to tissue in knockout mice.

S1P lyase and S1PRs in neutrophils may be new therapeutic targets against IRI and inflammatory conditions in general. Consistent with these results, another study has shown that inhibition of S1P lyase can have a protective effect on the heart after IRI and this effect is alleviated when pretreated with an S1PR1 and S1PR3 antagonist. Inhibition was achieved with a US Food and Drug Administration-approved food additive, 2-acetyl-4-tetrahydroxybutylimidazole, providing a possible new drug perspective. Another S1P lyase inhibitor, LX2931, a synthetic analog of 2-acetyl-4-tetrahydroxybutylimidazole, has been shown to cause peripheral lymphopenia when administered in mice, providing a potential treatment for autoimmune diseases and prevention of graft rejection in transplantation. This molecule is currently under Phase II clinical trials in rheumatoid arthritis patients.

S1P signaling research has the potential to discover novel therapeutic targets. S1P signaling is involved in many physiological and pathological processes. However, the complexity of S1P signaling makes it necessary to consider every possible pathway, either through its GPCRs, or intracellularly, with S1P as a second messenger. Where the activation of one S1P receptor may lead to the desired outcome, the simultaneous activation of another S1P receptor may lead to the opposite outcome. Thus, if we are to target a specific signaling pathway, we might need specific agonists for S1P receptors to activate one S1P receptor pathway, while, at the same time, we might need to inhibit another through S1P receptor antagonists.

Evidence of sphingolipid signaling in cancer

Biologically active lipids are important cellular signaling molecules and play a role in cell communication and cancer cell proliferation, and cancer stem cell biology.  A recent study in ovarian cancer cell lines shows that exogenous sphingosine 1 phosphate (SIP1) or overexpression of the sphingosine kinase (SPHK1) increases ovarian cancer cell proliferation, invasion and contributes to cancer stem cell like phenotype.  The diabetes drug metformin was shown to be an inhibitor of SPHK1 and reduce ovarian cancer tumor growth.

 2019 Apr;17(4):870-881. doi: 10.1158/1541-7786.MCR-18-0409. Epub 2019 Jan 17.

SPHK1 Is a Novel Target of Metformin in Ovarian Cancer.

Abstract

The role of phospholipid signaling in ovarian cancer is poorly understood. Sphingosine-1-phosphate (S1P) is a bioactive metabolite of sphingosine that has been associated with tumor progression through enhanced cell proliferation and motility. Similarly, sphingosine kinases (SPHK), which catalyze the formation of S1P and thus regulate the sphingolipid rheostat, have been reported to promote tumor growth in a variety of cancers. The findings reported here show that exogenous S1P or overexpression of SPHK1 increased proliferation, migration, invasion, and stem-like phenotypes in ovarian cancer cell lines. Likewise, overexpression of SPHK1 markedly enhanced tumor growth in a xenograft model of ovarian cancer, which was associated with elevation of key markers of proliferation and stemness. The diabetes drug, metformin, has been shown to have anticancer effects. Here, we found that ovarian cancer patients taking metformin had significantly reduced serum S1P levels, a finding that was recapitulated when ovarian cancer cells were treated with metformin and analyzed by lipidomics. These findings suggested that in cancer the sphingolipid rheostat may be a novel metabolic target of metformin. In support of this, metformin blocked hypoxia-induced SPHK1, which was associated with inhibited nuclear translocation and transcriptional activity of hypoxia-inducible factors (HIF1α and HIF2α). Further, ovarian cancer cells with high SPHK1 were found to be highly sensitive to the cytotoxic effects of metformin, whereas ovarian cancer cells with low SPHK1 were resistant. Together, the findings reported here show that hypoxia-induced SPHK1 expression and downstream S1P signaling promote ovarian cancer progression and that tumors with high expression of SPHK1 or S1P levels might have increased sensitivity to the cytotoxic effects of metformin. IMPLICATIONS: Metformin targets sphingolipid metabolism through inhibiting SPHK1, thereby impeding ovarian cancer cell migration, proliferation, and self-renewal.

Nrf2:INrf2(Keap1) Signaling in Oxidative Stress

James W. Kaspar, Suresh K. Niture, and Anil K. Jaiswal*

Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD

Free Radic Biol Med. 2009 Nov 1; 47(9): 1304–1309. http://dx.doi.org:/10.1016/j.freeradbiomed.2009.07.035

Nrf2:INrf2(Keap1) are cellular sensors of chemical and radiation induced oxidative and electrophilic stress. Nrf2 is a nuclear transcription factor that

  • controls the expression and coordinated induction of a battery of defensive genes encoding detoxifying enzymes and antioxidant proteins.

This is a mechanism of critical importance for cellular protection and cell survival. Nrf2 is retained in the cytoplasm by an inhibitor INrf2. INrf2 functions as an adapter for

  • Cul3/Rbx1 mediated degradation of Nrf2.
  • In response to oxidative/electrophilic stress,
  • Nrf2 is switched on and then off by distinct

early and delayed mechanisms.

Oxidative/electrophilic modification of INrf2cysteine151 and/or PKC phosphorylation of Nrf2serine40 results in the escape or release of Nrf2 from INrf2. Nrf2 is stabilized and translocates to the nucleus, forms heterodimers with unknown proteins, and binds antioxidant response element (ARE) that leads to coordinated activation of gene expression. It takes less than fifteen minutes from the time of exposure

  • to switch on nuclear import of Nrf2.

This is followed by activation of a delayed mechanism that controls

  • switching off of Nrf2 activation of gene expression.

GSK3β phosphorylates Fyn at unknown threonine residue(s) leading to

  • nuclear localization of Fyn.

Fyn phosphorylates Nrf2tyrosine568 resulting in

  • nuclear export of Nrf2,
  • binding with INrf2 and
  • degradation of Nrf2.

The switching on and off of Nrf2 protects cells against free radical damage, prevents apoptosis and promotes cell survival.

NPRA-mediated suppression of AngII-induced ROS production contributes to the antiproliferative effects of B-type natriuretic peptide in VSMC

Pan Gao, De-Hui Qian, Wei Li,  Lan Huang
Mol Cell Biochem (2009) 324:165–172

http://dx.doi.org/10.1007/s11010-008-9995-y

Excessive proliferation of vascular smooth cells (VSMCs) plays a critical role in the pathogenesis of diverse vascular disorders, and inhibition of VSMCs proliferation has been proved to be beneficial to these diseases.

In this study, we investigated the antiproliferative effect of

  • B-type natriuretic peptide (BNP), a natriuretic peptide with potent antioxidant capacity,

on rat aortic VSMCs, and the possible mechanisms involved. The results indicate that

  • BNP potently inhibited Angiotensin II (AngII)-induced VSMCs proliferation,

as evaluated by [3H]-thymidine incorporation assay. Consistently, BNP significantly decreased

  • AngII-induced intracellular reactive oxygen species (ROS)
  • and NAD(P)H oxidase activity.

8-Br-cGMP, a cGMP analog,

  • mimicked these effects.

To confirm its mechanism, siRNA of natriuretic peptide receptor-A(NRPA) strategy technology was used

  • to block cGMP production in VSMCs, and
  • siNPRA attenuated the inhibitory effects of BNP in VSMCs.

Taken together, these results indicate that

  • BNP was capable of inhibiting VSMCs proliferation by
  • NPRA/cGMP pathway,

which might be associated with

  • the suppression of ROS production.

These results might be related, at least partly, to the anti-oxidant property of BNP.

Cellular prion protein is required for neuritogenesis: fine-tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics

A Alleaume-Butaux, C Dakowski, M Pietri, S Mouillet-Richard, Jean-Marie Launay, O Kellermann, B Schneider

1INSERM, UMR-S 747, 2Paris Descartes University, Sorbonne Paris, 3Public Hospital of Paris, Department of Biochemistry, Paris, France; 4Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland

Cell Health and Cytoskeleton 2013; 5: 1–12

Neuritogenesis is a complex morphological phenomena accompanying neuronal differentiation. Neuritogenesis relies on the initial breakage of the rather spherical symmetry of neuroblasts and the formation of buds emerging from the postmitotic neuronal soma. Buds then evolve into neurites, which later convert into an axon or dendrites. At the distal tip of neurites, the growth cone integrates extracellular signals and guides the neurite to its target. The acquisition of neuronal polarity depends on deep modifications of the neuroblast cytoskeleton characterized by the remodeling and activation of focal adhesions (FAs) and localized destabilization of the actin network in the neuronal sphere.Actin instability in unpolarized neurons allows neurite sprouting, ie, the protrusion of microtubules, and subsequent neurite outgrowth. Once the neurite is formed, actin microfilaments recover their stability and exert a sheathed action on neurites, a dynamic process necessary for the maintenance and integrity of neurites.

A combination of extrinsic and intrinsic cues pilots the architectural and functional changes in FAs and the actin network along neuritogenesis. This process includes neurotrophic factors (nerve growth factor, brain derived neurotrophic factor, neurotrophin, ciliary neurotrophic factor, glial derived neurotrophic factor) and their receptors, protein components of the extracellular matrix (ECM) (laminin, vitronectin, fibronectin), plasma membrane integrins and neural cell adhesion molecules (NCAM), and intracellular molecular protagonists such as small G proteins (RhoA, Rac, Cdc42) and their downstream targets.

Neuritogenesis is a dynamic phenomenon associated with neuronal differentiation that allows a rather spherical neuronal stem cell to develop dendrites and axon, a prerequisite for the integration and transmission of signals. The acquisition of neuronal polarity occurs in three steps:

(1) neurite sprouting, which consists of the formation of buds emerging from the postmitotic neuronal soma;

(2) neurite outgrowth, which represents the conversion of buds into neurites, their elongation and evolution into axon or dendrites; and

(3) the stability and plasticity of neuronal polarity.

In neuronal stem cells, remodeling and activation of focal adhesions (FAs) associated with deep modifications of the actin cytoskeleton is a prerequisite for neurite sprouting and subsequent neurite outgrowth. A multiple set of growth factors and interactors located in the extracellular matrix and the plasma membrane orchestrate neuritogenesis

  • by acting on intracellular signaling effectors,
  • notably small G proteins such as RhoA, Rac, and Cdc42,
  • which are involved in actin turnover and the dynamics of FAs.

The cellular prion protein (PrPC), a glycosylphosphatidylinositol

  • (GPI)-anchored membrane protein

mainly known for its role in a group of fatal

  • neurodegenerative diseases,

has emerged as a central player in neuritogenesis.

Here, we review the contribution of PrPC to neuronal polarization and detail the current knowledge on the

  • signaling pathways fine-tuned by PrPC
  • to promote neurite sprouting, outgrowth, and maintenance.

We emphasize that PrPC-dependent neurite sprouting is a process in which PrPC

  • governs the dynamics of FAs and the actin cytoskeleton
  • via β1 integrin signaling.

The presence of PrPC is necessary to render neuronal stem cells

  • competent to respond to neuronal inducers and
  • to develop neurites.

In differentiating neurons, PrPC exerts

  • a facilitator role towards neurite elongation.

This function relies on the interaction of PrPC with a set of diverse partners such as

  1. elements of the extracellular matrix,
  2. plasma membrane receptors,
  3. adhesion molecules, and
  4. soluble factors that control actin cytoskeleton turnover through Rho-GTPase signaling.

Once neurons have reached their terminal stage of differentiation and acquired their polarized morphology, PrPC also

  • takes part in the maintenance of neurites.

By acting on tissue nonspecific alkaline phosphatase, or

  • matrix metalloproteinase type 9,

PrPC stabilizes interactions between

  • neurites and the extracellular matrix.

Keywords: prion, neuronal differentiation

Read Full Post »

Diabetes Mellitus

Author & Curator: Larry H. Bernstein, MD, FCAP

 

Diabetes mellitus (DM) is a group of metabolic diseases defined by high blood glucose levels, which, depending on the fasting blood glucose, may be pre-diabetes or overt diabetes (110 mg/dl. 124 mg/dl). This blood glucose level reflects a disorder of control of glucose metabolism, which is mediated through the pituitary growth hormone acting on the liver, which produces insulin growth factor 1 (IGF1).  Diabetes is due to either the pancreas not producing enough insulin, or the cells of the body not responding properly to the insulin produced. That said, there is much to be understood about the long term systemic effects of this disorder, a multisystem disease. The presence of pre-diabetes glucose levels is sufficient to proactively take measures to reduce the circulating glucose.

Globally, as of 2013, an estimated 382 million people have diabetes worldwide, with type 2 diabetes making up about 90% of the cases. This is equal to 8.3% of the adults population, with equal rates in both women and men. Worldwide in 2012 and 2013 diabetes resulted in 1.5 to 5.1 million deaths per year, making it the 8th leading cause of death. Diabetes overall at least doubles the risk of death. The number of people with diabetes is expected to rise to 592 million by 2035. The economic costs of diabetes globally was estimated in 2013 at $548 billion and in the United States in 2012 $245 billion.

The observation of symptoms of frequent urination, increased thirst, and increased hunger is symptomatic of overt DM, and is seen with diabetic ketoacidosis, with very high hyperglycemia and glucosuria, particularly in Type 1 DM. Untreated, diabetes leads to serious complications. Acute complications include diabetic ketoacidosis. Serious long-term complications include heart disease, stroke, kidney failure, foot ulcers and damage to the eyes.

There are three main types of diabetes mellitus:

  • Type 1 DM results from the body’s failure to produce enough insulin. This form was previously referred to as “insulin-dependent diabetes mellitus” (IDDM) or “juvenile diabetes”. The cause is unknown.
  • Type 2 DM begins with insulin resistance, a condition in which cells fail to respond to insulin properly. As the disease progresses a lack of insulin may also develop. This form was previously referred to as “non insulin-dependent diabetes mellitus” (NIDDM) or “adult-onset diabetes”. The primary cause is excessive body weight and not enough exercise.
  • Gestational diabetes, the third, occurs when pregnant women without a previous history of diabetes develop a high blood glucose level.

Type 1 DM, which presents suddenly in children or young adults, is possibly an as yet unidentified post-translational or epigenetic form, unrelated to Type 2, which is becoming more common in children.  It results in the destruction of islet beta cells that then have no capacity to produce insulin.  A family history of the disease would be a signal to raise a child with great care to not stress the pancreas.  Even though I raised the possibility of an epigenetic factor, it is important to keep in mind that the regulation of glucose is responsive to a number of stresses, even in a healthy person.  These are:

  • Corticosteroids
  • Glucagon
  • Growth hormone
  • Catecholamines
  • Proinflammatory cytokines
  • Anxiety disorder
  • Eating disorder

Gestational diabetes is perhaps Type 2 diabetes in a pregnant woman initiated by the condition of pregnancy. Whether these women were not diabetic, with a glucose level between 100-110 prior to pregnancy, is an open question. However, the pregnant state is accompanied by large effects by hormone levels.

Type 2 diabetes has been increasing worldwide, not only in western nations.  However, in non-western countries that have large populations of underserved, there is still a major problem with protein energy malnutrition (PEM). Globally, as of 2013, an estimated 382 million people have diabetes worldwide, with type 2 diabetes making up about 90% of the cases. This is equal to 8.3% of the adults population, with equal rates in both women and men. Worldwide in 2012 and 2013 diabetes resulted in 1.5 to 5.1 million deaths per year, making it the 8th leading cause of death. Diabetes overall at least doubles the risk of death. The number of people with diabetes is expected to rise to 592 million by 2035. The economic costs of diabetes globally was estimated in 2013 at $548 billion and in the United States in 2012 $245 billion.

The major long-term complications relate to damage to blood vessels. Diabetes doubles the risk of cardiovascular disease and about 75% of deaths in diabetics are due to coronary artery disease. Other “macrovascular” diseases are stroke, and peripheral vascular disease. The primary microvascular complications of diabetes include damage to the eyes, kidneys, and nerves. Damage to the eyes, known as diabetic retinopathy, is caused by damage to the blood vessels in the retina of the eye, and can result in gradual vision loss and potentially blindness. Damage to the kidneys, known as diabetic nephropathy, can lead to tissue scarring, urine protein loss, and eventually chronic kidney disease, sometimes requiring dialysis or kidney transplant. Damage to the nerves of the body, known as diabetic neuropathy, is the most common complication of diabetes.

Prevention and treatment involves a healthy diet, physical exercise, not using tobacco and being a normal body weight. Blood pressure control and proper foot care are also important for people with the disease. Type 1 diabetes must be managed with insulin injections. Type 2 diabetes may be treated with medications with or without insulin. Insulin and some oral medications can cause low blood sugar. Weight loss surgery in those with obesity is an effective measure in those with type 2 DM. Gestational diabetes usually resolves after the birth of the baby.

A number of articles in http://pharmaceuticalintelligence,com (this journal) have presented the relationship of DM to heart and vascular disease. The complexity of the disease is not to be underestimated, and there havr been serious controversies with adverse consequences over the use of the class of drugs that includes rosiglitazone and piaglitazone, which has opened serious issues about how clinical trials are conducted, and how the data obtained in studies may be compromised.

Pharmaceutical Insights

Management of Diabetes Mellitus: Could Simultaneous Targeting of Hyperglycemia and Oxidative Stress Be a Better Panacea?

Omotayo O. Erejuwa
Int. J. Mol. Sci. 2012, 13, 2965-2972; http://www.mdpi.com/journal/ijms http://dx.doi.org:/10.3390/ijms13032965

The primary aim of the current management of diabetes mellitus is to achieve and/or maintain a glycated hemoglobin level of ≤6.5%. However, recent evidence indicates that intensive treatment of hyperglycemia is characterized by increased weight gain, severe hypoglycemia and higher mortality. Besides, evidence suggests that it is difficult to achieve and/or maintain optimal glycemic control in many diabetic patients; and that the benefits of intensively-treated hyperglycemia are restricted to microvascular complications only. Evidence also indicates that multiple drugs are required to achieve optimal glycemic target in many diabetic patients. In fact, in many diabetic patients in whom optimal glycemic goal is achieved, glycemic control deteriorates even with optimal drug therapy. It does suggest that with the current hypoglycemic or antidiabetic drugs, it is difficult to achieve and/or maintain tight glycemic control in diabetic patients. In many developing countries, the vast majority of diabetic patients have limited or lack access to quality healthcare providers and good therapeutic monitoring.

While increased weight gain could be due to some component drugs (such as sulphonylureas or insulin) of the intensive therapy regimens, hypoglycemia could be drug-induced or comorbidity-induced. Considering the evidence that associates hypoglycemia with increased mortality, higher incidence of mortality in intensive therapy group could be due to hypoglycemia or too low levels of glycosylated hemoglobin. However, it is difficult to contend that increased mortality was entirely due to hypoglycemia. The possibility of drug-induced or drug-associated toxicities could not be ruled out. For instance, rosiglitazone, which has been prohibited and withdrawn from the market in Europe, was one of the hypoglycemic drugs used to achieve intensive therapy of hyperglycemia in Action to Control Cardiovascular Risk in Diabetes (ACCORD). If these findings are anything to go by, does it not suggest that targeting hyperglycemia as the only therapeutic goal in the management of diabetes mellitus could be detrimental to diabetic patients? In addition, the current hypoglycemic drugs are characterized by limitations and adverse effects. Together with the limitations of intensive glycemic treatment (only beneficial in reducing the risk of microvascular complications, but not macrovascular disease complications), does it not imply that targeting hyperglycemia alone is not only deleterious but also limited and ineffective?

The latest figures predict that the global incidence of diabetes mellitus, which was estimated to be 366 million in 2011, will rise to 522 million by 2030. In view of these frightening statistics on the prevalence of diabetes mellitus and on the lack of adequate healthcare, together with the associated diabetic complications, morbidity and mortality, does it not suggest that there is an urgent need for a better therapeutic management of this disorder? Taken together, with these findings and statistics, it can be contended that it is high time alternative and/or complementary therapies to the currently available hypoglycemic agents (which target primarily hyperglycemia only) were sought.

All these may contribute to the unabated increase in global prevalence of diabetes mellitus and its complications In view of these adverse effects and limitations of intensive treatment of hyperglycemia in preventing diabetic complications, which is linked to oxidative stress,

  • this commentary proposes a hypothesis that “simultaneous targeting of hyperglycemia and oxidative stress” could be more effective than “intensive treatment of hyperglycemia” in the management of diabetes mellitus.

Oxidative stress is defined as

  • an “imbalance between oxidants and antioxidants in favor of the oxidants, potentially leading to damage”.

It is implicated in the pathogenesis and complications of diabetes mellitus. The role of oxidative stress is more definite in the pathogenesis of type 2 diabetes mellitus than in type 1 diabetes mellitus. In regard to diabetic complications, there is compelling evidence in support of the role of oxidative stress in both types of diabetes mellitus. Evidence suggests that elevated reactive oxygen species (ROS), which causes factor of increased ROS production, causes tissue damage or diabetic complications have been identified. These include:

  • hyperglycemia-enhanced polyol pathway;
  • hyperglycemia-enhanced formation of advanced glycation endproducts (AGEs);
  • hyperglycemia-activated protein kinase C (PKC) pathway;
  • hyperglycemia-enhanced hexosamine pathway; and
  • hyperglycemia-activated Poly-ADP ribose polymerase (PARP) pathway.

These pathways are activated or enhanced by hyperglycemia-driven mitochondrial superoxide overproduction.

Even though oxidative stress plays an important role in its pathogenesis and complications,

  • unlike other diseases characterized by oxidative stress, diabetes mellitus is unique.

Its cure (restoration of euglycemia, e.g., via pancreas transplants) does not prevent oxidative stress and diabetic complications. This is very important because hyperglycemia exacerbates oxidative stress which is linked to diabetic complications. Theoretically, restoration of euglycemia should prevent oxidative stress and diabetic complications. However, this is not the case. At present, it remains unclear why restoration of euglycemia does not automatically prevent oxidative stress and diabetic complications. The development of diabetes-related complications (both microvascular and macrovascular) may occur in diabetic patients after normoglycemia has been restored. It is a phenomenon whereby previous hyperglycemic milieu is remembered in many target organs such as heart, eyes, kidneys and nerves. This phenomenon is also documented in diabetic animals. Compelling evidence implicates the role of oxidative stress as an important mechanism by which glycemic memory causes tissue damage and diabetic complications. In view of higher incidence of diabetic complications (of which oxidative stress plays an important role) in conventionally-treated diabetic patients, targeting oxidative stress in these patients might be beneficial. In other words, it is possible that the combination of a conventional therapy of hyperglycemia and antioxidant therapy might be more effective and beneficial than intensive therapy of hyperglycemia alone, which is the gold standard at the moment.

Loss of ACE 2 Exaggerates High-Calorie Diet-Induced Insulin Resistance by Reduction of GLUT4 in Mice

M Takeda, K Yamamoto, Y Takemura, H Takeshita, K Hongyo, et al.  Diabetes 61:1–11, 2012

ACE type 2 (ACE2) functions as

  • a negative regulator of the renin angiotensin system
  • by cleaving angiotensin II (AII) into angiotensin 1–7 (A1–7).

This study assessed the role of

  • endogenous ACE2 in maintaining insulin sensitivity.

Twelve-week-old male ACE2 knockout (ACE2KO) mice had normal insulin sensitivities when fed a standard diet. AII infusion or a high-fat high-sucrose (HFHS) diet impaired glucose tolerance and insulin sensitivity more severely

  • in ACE2KO mice than in their wild-type (WT) littermates.

The strain difference in glucose tolerance

  • was not eliminated by an AII receptor type 1 (AT1) blocker
  • but was eradicated by A1–7 or an AT1 blocker combined with the A1–7 inhibitor (A779).

The expression of GLUT4 and a transcriptional factor, myocyte enhancer factor (MEF) 2A,

  • was dramatically reduced in the skeletal muscles of the standard diet–fed ACE2KO mice.

The expression of GLUT4 and MEF2A was increased

  • by A1–7 in ACE2KO mice and
  • decreased by A779 in WT mice.

A1–7 enhanced upregulation of MEF2A and GLUT4 during differentiation of myoblast cells. In conclusion,

  • ACE2 protects against high calorie diet-induced insulin resistance in mice.

This mechanism may involve the transcriptional regulation of GLUT4 via an A1–7-dependent pathway.
Modulation of the action of insulin by angiotensin-(1–7)
FP. Dominici, V Burghi, MC. Munoz, JF. Giani

Clinical Science (2014) 126, 613–630 http://dx.doi.org:/10.1042/CS20130333

The prevalence of Type 2 diabetes mellitus is predicted to increase dramatically over the coming years and the clinical implications and healthcare costs from this disease are overwhelming. In many cases, this pathological condition is linked to a cluster of metabolic disorders, such as

  1. obesity,
  2. systemic hypertension and
  3. dyslipidaemia,
  • defined as the metabolic syndrome.

Insulin resistance has been proposed as the key mediator of all of these features and contributes to the associated high cardiovascular morbidity and mortality. Although the molecular mechanisms behind insulin resistance are not completely understood, a negative cross-talk between

  • AngII (angiotensin II) and the insulin signalling pathway

has been the focus of great interest in the last decade. Indeed,

substantial evidence has shown that

  • anti-hypertensive drugs that block the RAS (renin–angiotensin system) may also act to prevent diabetes.

Despite its long history, new components within the RAS continue to be discovered.

Among them, Ang-(1–7) [angiotensin-(1–7)] has gained special attention as a counter-regulatory hormone

  • opposing many of the AngII-related deleterious effects.

Specifically, we and others have demonstrated that Ang-(1–7) improves the action of insulin and opposes the negative effect that AngII exerts at this level. In the present review, we provide evidence showing that

  • insulin and Ang-(1–7) share a common intracellular signalling pathway.

We also address the molecular mechanisms behind the beneficial effects of Ang-(1–7) on

  • AngII-mediated insulin resistance.

Finally, we discuss potential therapeutic approaches leading to modulation of the

  • ACE2 (angiotensin-converting enzyme 2)/Ang-(1–7)/Mas receptor axis

as a very attractive strategy in the therapy of the metabolic syndrome and diabetes-associated diseases.

Increased Skeletal Muscle Capillarization After Aerobic Exercise Training and Weight Loss Improves Insulin Sensitivity in Adults With IGT

Prior, JB. Blumenthal, LI. Katzel, AP. Goldberg, AS. Ryan. Diabetes Care 2014;37:1469–1475
http://dx.doi.org:/10.2337/dc13-2358

Transcapillary transport of insulin is one determinant of glucose uptake by skeletal muscle; thus,

  • a reduction in capillary density (CD) may worsen insulin sensitivity.

Skeletal muscle CD is lower in older adults with impaired glucose tolerance (IGT) compared with those with normal glucose tolerance and

  • may be modifiable through aerobic exercise training and weight loss (AEX+WL).

Insulin sensitivity (M) and 120-min postprandial glucose (G120) correlated with CD at baseline (r = 0.58 and r = 20.60, respectively, P < 0.05).

AEX+WL increased maximal oxygen consumption (VO2max) 18%(P = 0.02) and reduced weight and fat mass 8% (P < 0.02).

Regression analyses showed that the AEX+WL-induced increase in CD

  • independently predicted the increase in M (r = 0.74, P < 0.01)
  • as well as the decrease in G120 (r = 20.55, P < 0.05).

AEX+WL increases skeletal muscle CD in older adults with IGT. This represents one mechanism by which AEX+WL improves insulin sensitivity in older adults with IGT.

Glycaemic durability with dipeptidyl peptidase-4 inhibitors in type 2 diabetes: a systematic review and meta-analysis of long-term randomised controlled trials.

K Esposito, P Chiodini, MI Maiorino, G Bellastella, A Capuano, D Giugliano. BMJ Open 2014;4:e005442.
http://dx.doi.org:/10.1136/bmjopen-2014-005442

A systematic review and meta-analysis of longterm randomised trials of DPP-4 inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin). on haemoglobin A1c (HbA1c) was conducted. The difference between final and intermediate HbA1c assessment was the primary outcome. All trials were of 76 weeks duration at least. The difference in HbA1c changes between final and intermediate points averaged 0.22% (95% CI 0.15% to 0.29%), with high heterogeneity (I2=91%, p<0.0001). Estimates
of differences were not affected by the analysis of six extension trials (0.24%, 0.02 to 0.46), or five trials in which a DPP-4 inhibitor was added to metformin (0.24%, 0.16 to 0.32).

  • The effect of DPP-4 inhibitors on HbA1c in type 2 diabetes significantly declines during the second year of treatment.

Overcoming Diabetes Mellitus & Borderline Diabetes
By Max Stanley Chartrand, Ph.D. (Behavioral Medicine)

The over-arching biomarker that has more to do with the ability to restore normal metabolic processes is in achieving a cellular pH 7.45 (via the Kreb’s Cycle). To say the least, getting one’s cellular pH to 7.45 and A1C score below 6.0 can be a daunting task!

SIRCLE®: Naturally Achieved Targets

 Cellular pH 7.35-7.45

 Oxygen 99-100% @55-65 bpm

 Resting Blood Pressure: 110-135/ 65-80

mmHg (differs male vs female)

 Fasting blood sugar consistently <70-99

mg/dL or 3.5-5.5 mmol/L

 HgA1C score: .04-5.8

 HDL: 40-60 mg/dL; LDL: 100 -140 mg/dL;

triglycerides: <85 mg/dL

 C-Reactive Protein (CRP) Score <.5

 Galectin-3 Assay <17.8 ng/mL

Antidiabetic Activity of Hydroalcoholic Extracts of Nardostachys jatamansi in Alloxan-induced Diabetic Rats

M.A. Aleem, B.S. Asad, T Mohammed, R.A. Khan, M.F. Ahmed, A. Anjum, M. Ibrahim. Brit J Med & Medical Res 4(28): 4665-4673, 2014. http://www.sciencedomain.org/review-history.php?iid=579&id=12&aid=5024

The antidiabetic study was carried out to estimate the anti hyperglycemic potential of Nardostachys Jatamansi rhizome’s hydroalcoholic extracts in alloxan induced diabetic rats over a period of two weeks. The hydroalcoholic extract HAE1 at a dose (500mg/kg) exhibited significantly greater antihyperglycemic activity than extract HAE2 at a dose (500mg/kg) in diabetic rats. The hydroalcoholic extracts showed improvement in different parameters associated with diabetes, like body weight, lipid
profile and biochemical parameters. Extracts also showed improvement in

  • regeneration of β-cells of pancreas in diabetic rats.

Histopathological studies support the healing of pancreas by hydro alcoholic extracts (HAE1& HAE2) of Nardostachys Jatamansi, as a probable mechanism of their antidiabetic activity.

Antidiabetic and Antihyperlipidemic Effect of Parmelia Perlata. Ach. in Alloxan Induced Diabetic Rats.
Jothi G and Brindha P
Internat J of Pharmacy and Pharmaceut Sciences 2014; 6(suppl 1)

The aqueous extract of the selected plant was administered at dose levels of 200mg and 400mg/kg body weight for 60 days. After the experimental period the blood and tissue samples were collected and subjected to various biochemical and enzymic parameters. There were profound alteration in

  • fasting blood glucose,
  • serum insulin,
  • glycosylated hemoglobin (HbA1C) and
  • liver glycogen levels in alloxanized rats.
  1. Glucose-6-phosphatase,
  2. glucokinase, and
  3. fructose 1-6 bisphosphatase activity
  • were also altered in diabetic rats.

Administration of plant extract significantly (P<0.05)

  • reduced the fasting blood glucose and HbA1C level and increased the level of plasma insulin.

The activities of glucose metabolizing enzymes were also resumed to normal. There was a profound improvement in serum lipid profiles by

  • reducing serum triglyceride, cholesterol, LDL, VLDL, free fatty acids, phospholipids and increasing the HDL level in a dose dependent manner.

The effects of leaf extract were compared with standard drug glibenclamide (600μg/Kg bw). The results indicate that Parmelia perlata. Ach., Linn. could be a good natural source for developing an antidiabetic drug that can effectively maintained the blood glucose levels and lipid profile to near normal values.

Pathophysiological Insights
Diabetic glomerulosclerosis

Reviewers: Nikhil Sangle, M.D.
Revised: 21 February 2014,
Copyright: (c) 2003-2012, PathologyOutlines.com, Inc.

General

==================================================

  • Diffuse capillary basement membrane thickening, diffuse and nodular glomerulosclerosis
  • Causes glomerular disease, arteriolar sclerosis, pyelonephritis, papillary necrosis; similar between type I and II patients
  • Accounts for 30% of long term dialysis patients in US; causes 20% of deaths in patients with diabetes < age 40
  • Changes may be related to nephronectin, which functions in the assembly of extracellular matrix (Nephrol Dial Transplant 2012;27:1889)

Clinical features

==================================================

  • Proteinuria occurs in 50%, usually 12-22 years after onset of diabetes
  • End stage renal disease occurs in 30% of type I patients
  • Early increased GFR and microalbuminemia (30-300 mg/day) are predictive of future diabetic nephropathy
  • Renal disease reduced by tight diabetic control; may recur with renal allografts; ACE inhibitors may reduce progression

Micro description

==================================================

  • Basement membrane thickening and increased mesangial matrix in ALL patients
  • Diffuse glomerulosclerosis: increase in mesangial matrix associated with PAS+ basement membrane thickening, eventually obliterates mesangial cells
  • Nodular glomerulosclerosis: also called intercapillary glomerulosclerosis or Kimmelstiel-Wilson disease; ovoid, spherical, laminated hyaline masses in peripheral of glomerulus, PAS+, eventually obliterates glomerular tuft; specific for diabetes and membranoproliferative glomerulonephritis, light-chain disease and amyloidosis (Hum Pathol 1993;24:77 (pathogenesis of Kimmelstiel-Wilson nodule))
  • Profound hyalinization of afferent arterioles (insudative lesion-intramural): specific for diabetes in afferent arterioles, but non-specific if in periphery of glomerular loop, Bowman’s capsule or mesangium; insudative material composed of proteins, lipids and mucopolysaccharides
  • Organizing fibroepithelial crescents: associated with aggressive clinical course
  • Diffuse thickening of tubular basement membrane, tubular atrophy and interstitial fibrosis
  • Isolated thickened glomerular basement membrane and proteinuria may be an early predictor of diabetic disease (Mod Pathol 2004;17:1506)

Nodular glomerulosclerosis, Kidney

 Glomeruli:

  1.     Acellular, homogeneous, eosinophilic, globular nodules in the mesangial orintercapillary region of a glomerular tuft with capillary displaced to the periphery.
  2.     Diffuse intercapillary glomerulosclerosis: increasing eosinophilic mesangial matrix materials.
  3.     Capsular drop: eosinophilic small nodules on Bowman’s capsule.
  4.     Fibrin cap: eosinophilic, waxy, fatty structure within the lumen of one or more capillary loops of glomerular tufts.
nodular glomeruloschlerosis

nodular glomeruloschlerosis

http://www.kidneypathology.com/Imagenes/Diabetes/Imagen.Hial.jul.w.jpg

Islet amyloid polypeptide, islet amyloid, and diabetes mellitus.

Westermark P1, Andersson A, Westermark GT.
Physiol Rev. 2011 Jul;91(3):795-826.
http://dx.doi.org:/10.1152/physrev.00042.2009.

Islet amyloid polypeptide (IAPP), or amylin, was named for its tendency to

  • aggregate into insoluble amyloid fibrils, features typical of islets of most individuals with type 2 diabetes.

This pathological characteristic is most probably of

  • great importance for the development of the β-cell failure in this disease,
  • but the molecule also has regulatory properties in normal physiology.

In addition, it possibly contributes to the diabetic condition. This review deals with both these facets of IAPP.

Islet amyloid polypeptide (IAPP, or amylin) is one of the major secretory products of β-cells of the pancreatic islets of Langerhans. It is

  • a regulatory peptide with putative function
  • both locally in the islets, where it inhibits insulin and glucagon secretion, and at distant targets.

It has binding sites in the brain, possibly contributing also to satiety regulation and inhibits gastric emptying. Effects on several other organs have also been described.

IAPP was discovered through its ability to

  • aggregate into pancreatic islet amyloid deposits,

which are seen particularly in association with type 2 diabetes in humans and with diabetes in a few other mammalian species, especially monkeys and cats.

Aggregated IAPP has cytotoxic properties and is believed to be

  • of critical importance for the loss of β-cells in type 2 diabetes

and also in pancreatic islets transplanted into individuals with type 1 diabetes. This review deals both with physiological aspects of IAPP and with the

  • pathophysiological role of aggregated forms of IAPP,
  • including mechanisms whereby human IAPP forms toxic aggregates and amyloid fibrils.

Islet amyloid, initially named “islet hyalinization,” was described in 1901 by two researchers independently and for a long time was considered an enigma. It was found to occur in association with diabetes mellitus, particularly in elderly individuals, but its possible pathogenetic importance was often denied. The similarity of the hyaline substance to amyloid was noted at an early date, and some researchers reported staining reactions typical of amyloid. It had been shown in 1959 that

  • amyloid of several types has a characteristic ultrastructure,
  • and islet deposits were found to share this appearance.

When biochemical analyses of amyloid fibrils from systemic primary and secondary amyloidoses showed that

  • these consisted of distinctive proteins,
  • it was suspected that the islet deposits might also be a polymerized protein.

The chemical composition of islet amyloid did not attract much attention even after the characteristics of other amyloid fibrils had been elucidated. The finding that the amyloid in C cell-derived medullary thyroid carcinoma is of polypeptide hormonal origin was an important indication that amyloid in other endocrine tissues also comes from the local secretory products, and it was believed that

  • insulin, or proinsulin, or split products thereof constitute the islet amyloid fibrils.

Immunological trials to characterize the amyloid yielded equivocal results. Only when concentrated formic acid was used on amyloid,

  • extracted from an amyloid-rich insulinoma, was it possible to purify the major fibril protein
  • and characterize it by NH2-terminal amino acid sequence analysis,

which very unexpectedly revealed a novel peptide,

  • not resembling any part of proinsulin
  • but with partial identity to the neuropeptide calcitonin gene-related peptide (CGRP).

Further characterization of the peptide purified from an insulinoma and from islet amyloid of human and feline origin proved it to be a 37-amino acid (aa) residue peptide. The peptide was initially named “insulinoma amyloid peptide” , later diabetes-associated peptide (DAP), and finally islet amyloid polypeptide (IAPP), or “amylin”.

IAPP is a 37-aa residue long peptide, but by the application of molecular biological methods it was quickly shown that IAPP is expressed initially as

  • part of an 89-aa residue preproprotein containing a 22-aa signal peptide and
  • two short flanking peptides, the latter cleaved off at double basic aa residues similar to proinsulin.

IAPP is expressed by one single-copy gene on the short arm of chromosome 12,

  • in contrast to insulin and the other members of the calcitonin family, including
  • CGRP,
  • adrenomedullin, and
  • calcitonin,

all of which are encoded by genes on the evolutionary related chromosome 11.

The preproIAPP gene contains three exons, of which

  • the last two encode the full prepromolecule.

The signal peptide is cleaved

  • off in the endoplasmic reticulum (ER), and
  • conversion of proIAPP to IAPP takes place in the secretory vesicles.

ProIAPP and proinsulin are both processed by the two endoproteases

  • prohormone convertase 2 (PC2) and
  • prohormone convertase 1/3 (PC1/3) and
  • by carboxypeptidase E (CPE) (Figure 1).
amylin

amylin

A: the amino acid sequence of human pro-islet amyloid polypeptide (proIAPP) with the cleavage site for PC2 at the NH2 terminus and the cleavage site for PC1/3 at the COOH terminus, indicated by arrows. The KR residues (blue) that remain at the COOH terminus after PC1/3 processing are removed by carboxypeptidase E. This event exposes the glycine residue that is used for COOH-terminal amidation.
Below is a cartoon of IAPP in blue with the intramolecular S-S bond between residues 2–7 and the amidated COOH terminus.

B: the amino acid sequence of human proinsulin with the basic residues at the B-chain/C-peptide junction and the A-chain/C-peptide/junction indicated in blue and the processing sites indicated by arrows. PC1/3 does almost exclusively process proinsulin at the B-chain/C-peptide junction while PC2 preferentially processes proinsulin at the A-chain/C-peptide junction. The basic residues (RR) (position 31, 32) that remain at the COOH terminus of the B-chain is removed by the carboxypeptidase CPE. Below is a cartoon of insulin A-chain and B-chain in red with intermolecular SS bonds between cystein residues 7 in the A and B chains, between cystein residues at position 19 in the B-chain and 20 in the A-chain and the intermolecular SS bond between cystein residues at position 6 and 11 of the A-chain.

http://physrev.physiology.org/content/physrev/91/3/795/F1.large.jpg

  1. IAPP and insulin genes contain similar promoter elements,
  2. and the transcription factor PDX1 regulates the effects of glucose on both genes.
  3. Glucose stimulated β-cells respond with a parallel expression pattern of IAPP and insulin in the rat.

However, this parallel secretion of IAPP and insulin is altered in experimental diabetes models in rodents. Perfused rat pancreas secreted relatively

  • more IAPP than insulin when exposed to dexamethasone, whereas
  • high doses of streptozotocin or alloxan reduced insulin secretion more than that of IAPP.

Oleat and palmitate increased the expression of IAPP but not of insulin in MIN6 cells. In mice fed a diet high in fat for 6 mo, plasma IAPP increased 4.5 times more than insulin compared with mice fed standard food containing 4% fat.

In human recipients who had become insulin-independent by intrahepatically transplanted islets, there was disproportionately

  • more IAPP than normal secreted during hyperglycemia.

These examples show that the strictly parallel expression of IAPP and insulin may be disturbed under certain conditions.

The crystalline structure of insulin in granules is well characterized.

  • Hexameric insulin, together with zinc, constitutes the core of the mature granules, while
  • IAPP, together with a large number of additional components, including the C peptide, is found in the halo region.

The highly fibrillogenic human IAPP has to be protected in some way from aggregation, which otherwise would take place spontaneously. The fact that very fibril-prone proteins can be kept in solution at high concentrations is known from studies of arthropod silk. The composition of the β-cell granule is extremely complex, and it has many components in addition to insulin and C peptide, in micromolar concentrations.

It is probable that IAPP is protected from aggregation by interaction with other components. Plausible candidates are

  • proinsulin, insulin, or their processing intermediates.

Insulin has been found to be

  • a strong inhibitor of IAPP fibril formation.

This finding has been verified in a number of subsequent studies, which have also shown the potency of the inhibition. The inhibition seems to depend

  • solely on the B-chain,
  • which binds specifically to a short segment of IAPP.

An insulin-to-IAPP ratio of between 1:5 and 1:100 had a strong inhibitory effect. The molar ratio between IAPP and insulin in the granule as a whole is ∼1–2:50.

Type 2 Diabetes, APOE Gene, and the Risk for Dementia and Related Pathologies. The Honolulu-Asia Aging Study

Rita Peila, Beatriz L. Rodriguez and Lenore J. Launer
Diabetes Apr 2002; 51(4): 1256-1262
http://dx.doi.org:/10.2337/diabetes.51.4.1256

Type 2 diabetes may be a risk factor for dementia, but the associated pathological mechanisms remains unclear. We evaluated the association of diabetes

  • alone or combined with the apolipoprotein E (APOE) gene
  • with incident dementia and neuropathological outcomes

in a population-based cohort of 2,574 Japanese-American men enrolled in the Honolulu-Asia Aging Study, including 216 subjects who underwent autopsy. Type 2 diabetes was ascertained by interview and direct glucose testing. Dementia was assessed in 1991 and 1994 by clinical examination and magnetic resonance imaging and was diagnosed according to international guidelines. Logistic regression was used to assess the RR of developing dementia, and log-linear regression was used to estimate the incident rate ratio (IRR) of neuropathological outcomes.

Diabetes was associated with

  1. total dementia (RR 1.5 [95% CI 1.01–2.2]),
  2. Alzheimer’s disease (AD; 1.8 [1.1–2.9]), and
  3. vascular dementia (VsD; 2.3 [1.1–5.0]).

Individuals with both type 2 diabetes and the APOE ε4 allele

  • had an RR of 5.5 (CI 2.2–13.7) for AD compared with those with neither risk factor.

Participants with type 2 diabetes and the ε4 allele had

  • a higher number of hippocampal neuritic plaques (IRR 3.0 [CI 1.2–7.3]) and
  • neurofibrillary tangles in the cortex (IRR 3.5 [1.6–7.5]) and hippocampus (IRR 2.5 [1.5–3.7]), and
  • they had a higher risk of cerebral amyloid angiopathy (RR 6.6, 1.5–29.6).

Type 2 diabetes is a risk factor for AD and VsD. The association between diabetes and AD is particularly strong among carriers of the APOE ε4 allele. The neuropathological data are consistent with the clinical results.

Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice

  1. Anderson, MR. King, L Delbruck, CG. Jolivalt
    Dis. Model. Mech. June 2014; 7(6): 625-633
    http://dx.doi.org:/10.1242/dmm.015750

One of the tissues or organs affected by diabetes is the nervous system,

  • predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy)
  • but also the central system with impaired learning, memory and mental flexibility.

The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but

  • only the C57BL6 mice showed statistically significant hyperglycemia.

STZ-diabetic C57BL6 mice

  • developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas
  • neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point.

By 6 months on HFD, Swiss Webster mice developed

  • learning and memory deficits in the Barnes maze test,
  • whereas their peripheral nervous system remained normal.

In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction,

  • as indicated by nerve conduction slowing and thermal hyperalgesia,
  • but showed normal learning and memory functions.

Our data indicate that STZ-induced diabetes or a HFD can damage

  • both peripheral and central nervous systems,
  • but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions
  • and only in Swiss Webster mice.

In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.

Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin

S Srodulski, S Sharma, AB Bachstetter, JM Brelsfoard, et al.
Molecular Neurodegeneration  2014; 9(30):
http://dx.doi.org:/10.1186/1750-1326-9-30

Background: We recently found that brain tissue from patients with type-2 diabetes (T2D) and cognitive impairment

  • contains deposits of amylin, an amyloidogenic hormone synthesized and co-secreted with insulin by pancreatic β-cells.

Amylin deposition is promoted by

  • chronic hypersecretion of amylin (hyperamylinemia), which is common in humans with obesity or pre-diabetic insulin resistance.

Human amylin oligomerizes quickly when oversecreted, which is toxic,

  • induces inflammation in pancreatic islets and
  • contributes to the development of T2D.

Here, we tested the hypothesis that accumulation of oligomerized amylin affects brain function.

Methods: In contrast to amylin from humans,

  • rodent amylin is neither amyloidogenic nor cytotoxic.

We exploited this fact by comparing

  • rats overexpressing human amylin in the pancreas (HIP rats) with their littermate rats

which express only wild-type (WT) non-amyloidogenic rodent amylin. Cage activity, rotarod and novel object recognition tests were performed on animals nine months of age or older. Amylin deposition in the brain was documented by immunohistochemistry, and western blot. We also measured neuroinflammation by immunohistochemistry, quantitative real-time PCR and cytokine protein levels.

Results: Compared to WT rats, HIP rats show

i) reduced exploratory drive,
ii) impaired recognition memory and
iii) no ability to improve the performance on the rotarod.

The development of neurological deficits is

  • associated with amylin accumulation in the brain.

The level of oligomerized amylin in supernatant fractions and pellets from brain homogenates

  • is almost double in HIP rats compared with WT littermates (P < 0.05).

Large amylin deposits (>50 μm diameter) were also occasionally seen in HIP rat brains. Accumulation of oligomerized amylin

  • alters the brain structure at the molecular level.

Immunohistochemistry analysis with an ED1 antibody indicates possible activated microglia/macrophages which

  • are clustering in areas positive for amylin infiltration.

Multiple inflammatory markers are expressed in HIP rat brains as opposed to WT rats, confirming that

  • amylin deposition in the brain induces a neuroinflammatory response.

Conclusions:

  1. Hyperamylinemia promotes accumulation of oligomerized amylin in the brain
  2. leading to neurological deficits through an oligomerized amylin-mediated inflammatory response.

Additional studies are needed to determine

  • whether brain amylin accumulation may predispose to diabetic brain injury and cognitive decline.

Keywords: Diabetes, Alzheimer’s Disease, Amylin, Pre-diabetes, Insulin Resistance, Inflammation, Behavior

Read Full Post »

Curated by: Dr. Venkat S. Karra, Ph.D.

In our recent article we mentioned about the amyloidosis, most importantly the most common form of amlyodosis – Primary Amyloidosis (AL).

Primary amyloidosis (AL) is an acquired plasma cell disorder in which a monoclonal immunoglobulin light chain is produced in the bone marrow and usually found in the blood or urine. AL amyloidosis occasionally occurs with multiple myeloma. The amyloid fibrils in this type of amyloidosis are made up of immunoglobulin light chain proteins (kappa or lambda).

Amyloidosis can only be diagnosed by a positive biopsy (i.e., an identification of the amyloid deposits in a piece of tissue). Initial biopsies are most commonly obtained from the abdominal fat.

If amyloid is suspected in other organs, however, a biopsy may be needed from these specific areas. If amyloid is present in a tissue biopsy, further tests can be done to determine the type of the amyloid.

The Amyloid Treatment & Research Program (ATRP) at Boston Medical Center (BMC) is an international referral center that treats amyloidosis with stem cell transplantation.

Last week researchers at Mayo Clinic have used urinary exosomes as a non-invasive diagnostic tool that will offer a snapshot of what is occurring in kidney tissue.

Urinary exosomes are rapidly becoming a powerful tool in the study of renal disease.

English: Urinary system

Already proteomics studies are looking into ways of using urinary exosome to diagnose genetic diseases and characterize disease biomarkers.

The urinary exosomes are excreted from every renal epithelial cells (from the glomerular podocytes to the urinary epithelial cells lining the urinary drainage system) provides us with an opportunity to study proteins once were either difficult or impossible to reach.

With this understanding the researchers undertook this study to evaluate the possible differences among urinary exosomes from patients with different plasma cells dyscrasias. This study suggests that urinary exosomes may be an excellent non-invasive tool for identifying patients with AL amyloidosis because high molecular weight light chain oligomers were found only in patients with AL.

The oligomeric light chain species captured in the urinary exosomes may represent the initial steps of amyloidogenesis. The potential of urinary exosomes in AL is tremendous and deserves further studies. When combined with mass spectrometry and other proteomics techniques, urinary exosomes represent tremendous potential to increase our understanding of amyloidogenesis.

Authors believe that this is the first report of the use of urinary exosome in the study of patients with plasma cell dyscrasias, specifically patients with AL amyloidosis.

References:

1. Amyloidosis: http://pharmaceuticalintelligence.com/2012/06/04/amyloidosis/

2. Alzheimers Disease: http://pharmaceuticalintelligence.com/category/alzheimers-disease-2/

3. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers

4. Source article: Differences in Immunoglobulin Light Chain Species Found in Urinary Exosomes in Light Chain Amyloidosis (AL)

5.  Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury.

 6. Characterization of PKD protein-positive exosome-like vesicles.

7. Large-scale proteomics and phosphoproteomics of urinary exosomes.

8. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy.

Read Full Post »

%d bloggers like this: