Feeds:
Posts
Comments

Archive for the ‘Best evidence’ Category


Live Conference Coverage @Medcitynews Converge 2018 Philadelphia: The Davids vs. the Cancer Goliath Part 2

8:40 – 9:25 AM The Davids vs. the Cancer Goliath Part 2

Startups from diagnostics, biopharma, medtech, digital health and emerging tech will have 8 minutes to articulate their visions on how they aim to tame the beast.

Start Time End Time Company
8:40 8:48 3Derm
8:49 8:57 CNS Pharmaceuticals
8:58 9:06 Cubismi
9:07 9:15 CytoSavvy
9:16 9:24 PotentiaMetrics

Speakers:
Liz Asai, CEO & Co-Founder, 3Derm Systems, Inc. @liz_asai
John M. Climaco, CEO, CNS Pharmaceuticals @cns_pharma 

John Freyhof, CEO, CytoSavvy
Robert Palmer, President & CEO, PotentiaMetrics @robertdpalmer 
Moira Schieke M.D., Founder, Cubismi, Adjunct Assistant Prof UW Madison @cubismi_inc

 

3Derm Systems

3Derm Systems is an image analysis firm for dermatologic malignancies.  They use a tele-medicine platform to accurately triage out benign malignancies observed from the primary care physician, expediate those pathology cases if urgent to the dermatologist and rapidly consults with you over home or portable device (HIPAA compliant).  Their suite also includes a digital dermatology teaching resource including digital training for students and documentation services.

 

CNS Pharmaceuticals

developing drugs against CNS malignancies, spun out of research at MD Anderson.  They are focusing on glioblastoma and Berubicin, an anthracycline antiobiotic (TOPOII inhibitor) that can cross the blood brain barrier.  Berubicin has good activity in a number of animal models.  Phase I results were very positive and Phase II is scheduled for later in the year.  They hope that the cardiotoxicity profile is less severe than other anthracyclines.  The market opportunity will be in temazolamide resistant glioblastoma.

Cubismi

They are using machine learning and biomarker based imaging to visualize tumor heterogeneity. “Data is the new oil” (Intel CEO). We need prediction machines so they developed a “my body one file” system, a cloud based data rich file of a 3D map of human body.

CUBISMI IS ON A MISSION TO HELP DELIVER THE FUTURE PROMISE OF PRECISION MEDICINE TO CURE DISEASE AND ASSURE YOUR OPTIMAL HEALTH.  WE ARE BUILDING A PATIENT-DOCTOR HEALTH DATA EXCHANGE PLATFORM THAT WILL LEVERAGE REVOLUTIONARY MEDICAL IMAGING TECHNOLOGY AND PUT THE POWER OF HEALTH DATA INTO THE HANDS OF YOU AND YOUR DOCTORS.

 

CytoSavvy

CytoSavvy is a digital pathology company.  They feel AI has a fatal flaw in that no way to tell how a decision was made. Use a Shape Based Model Segmentation algorithm which uses automated image analysis to provide objective personalized pathology data.  They are partnering with three academic centers (OSU, UM, UPMC) and pool data and automate the rule base for image analysis.

CytoSavvy’s patented diagnostic dashboards are intuitive, easy–to-use and HIPAA compliant. Our patented Shape-Based Modeling Segmentation (SBMS) algorithms combine shape and color analysis capabilities to increase reliability, save time, and improve decisions. Specifications and capabilities for our web-based delivery system follow.

link to their white paper: https://www.cytosavvy.com/resources/healthcare-ai-value-proposition.pdf

PotentialMetrics

They were developing a diagnostic software for cardiology epidemiology measuring outcomes however when a family member got a cancer diagnosis felt there was a need for outcomes based models for cancer treatment/care.  They deliver real world outcomes for persoanlized patient care to help patients make decisions on there care by using a socioeconomic modeling integrated with real time clinical data.

Featured in the Wall Street Journal, using the informed treatment decisions they have generated achieve a 20% cost savings on average.  There research was spun out of Washington University St. Louis.

They have concentrated on urban markets however the CEO had mentioned his desire to move into more rural areas of the country as there models work well for patients in the rural setting as well.

Please follow on Twitter using the following #hash tags and @pharma_BI 

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A heart-healthy diet has been the basis of atherosclerotic cardiovascular disease (ASCVD) prevention and treatment for decades. The potential cardiovascular (CV) benefits of specific individual components of the “food-ome” (defined as the vast array of foods and their constituents) are still incompletely understood, and nutritional science continues to evolve.

 

The scientific evidence base in nutrition is still to be established properly. It is because of the complex interplay between nutrients and other healthy lifestyle behaviours associated with changes in dietary habits. However, several controversial dietary patterns, foods, and nutrients have received significant media exposure and are stuck by hype.

 

Decades of research have significantly advanced our understanding of the role of diet in the prevention and treatment of ASCVD. The totality of evidence includes randomized controlled trials (RCTs), cohort studies, case-control studies, and case series / reports as well as systematic reviews and meta-analyses. Although a robust body of evidence from RCTs testing nutritional hypotheses is available, it is not feasible to obtain meaningful RCT data for all diet and health relationships.

 

Studying preventive diet effects on ASCVD outcomes requires many years because atherosclerosis develops over decades and may be cost-prohibitive for RCTs. Most RCTs are of relatively short duration and have limited sample sizes. Dietary RCTs are also limited by frequent lack of blinding to the intervention and confounding resulting from imperfect diet control (replacing 1 nutrient or food with another affects other aspects of the diet).

 

In addition, some diet and health relationships cannot be ethically evaluated. For example, it would be unethical to study the effects of certain nutrients (e.g., sodium, trans fat) on cardiovascular disease (CVD) morbidity and mortality because they increase major risk factors for CVD. Epidemiological studies have suggested associations among diet, ASCVD risk factors, and ASCVD events. Prospective cohort studies yield the strongest observational evidence because the measurement of dietary exposure precedes the development of the disease.

 

However, limitations of prospective observational studies include: imprecise exposure quantification; co-linearity among dietary exposures (e.g., dietary fiber tracks with magnesium and B vitamins); consumer bias, whereby consumption of a food or food category may be associated with non-dietary practices that are difficult to control (e.g., stress, sleep quality); residual confounding (some non-dietary risk factors are not measured); and effect modification (the dietary exposure varies according to individual/genetic characteristics).

 

It is important to highlight that many healthy nutrition behaviours occur with other healthy lifestyle behaviours (regular physical activity, adequate sleep, no smoking, among others), which may further confound results. Case-control studies are inexpensive, relatively easy to do, and can provide important insight about an association between an exposure and an outcome. However, the major limitation is how the study population is selected or how retrospective data are collected.

 

In nutrition studies that involve keeping a food diary or collecting food frequency information (i.e., recall or record), accurate memory and recording of food and nutrient intake over prolonged periods can be problematic and subject to error, especially before the diagnosis of disease.

 

The advent of mobile technology and food diaries may provide opportunities to improve accuracy of recording dietary intake and may lead to more robust evidence. Finally, nutrition science has been further complicated by the influences of funding from the private sector, which may have an influence on nutrition policies and practices.

 

So, the future health of the global population largely depends on a shift to healthier dietary patterns. Green leafy vegetables and antioxidant suppliments have significant cardio-protective properties when consumed daily. Plant-based proteins are significantly more heart-healthy compared to animal proteins.

 

However, in the search for the perfect dietary pattern and foods that provide miraculous benefits, consumers are vulnerable to unsubstantiated health benefit claims. As clinicians, it is important to stay abreast of the current scientific evidence to provide meaningful and effective nutrition guidance to patients for ASCVD risk reduction.

 

Available evidence supports CV benefits of nuts, olive oil and other liquid vegetable oils, plant-based diets and plant-based proteins, green leafy vegetables, and antioxidant-rich foods. Although juicing may be of benefit for individuals who would otherwise not consume adequate amounts of fresh fruits and vegetables, caution must be exercised to avoid excessive calorie intake. Juicing of fruits / vegetables with pulp removal increases calorie intake. Portion control is necessary to avoid weight gain and thus cardiovascular health.

 

There is currently no evidence to supplement regular intake of antioxidant dietary supplements. Gluten is an issue for those with gluten-related disorders, and it is important to be mindful of this in routine clinical practice; however, there is no evidence for CV or weight loss benefits, apart from the potential caloric restriction associated with a gluten free diet.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/28254181

 

https://www.sciencedirect.com/science/article/pii/S0735109713060294?via%3Dihub

 

http://circ.ahajournals.org/content/119/8/1161

 

http://refhub.elsevier.com/S0735-1097(17)30036-0/sref6

 

https://www.scopus.com/record/display.uri?eid=2-s2.0-0031709841&origin=inward&txGid=af40773f7926694c7f319d91efdcd40c

 

https://www.magonlinelibrary.com/doi/10.12968/hosp.2000.61.4.1875

 

https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548255

 

https://pharmaceuticalintelligence.com/2018/05/31/supplements-offer-little-cv-benefit-and-some-are-linked-to-harm-in-j-am-coll-cardiol/

Read Full Post »


Treatment of Lymphomas [2.4.4C]

Larry H. Bernstein, MD, FCAP, Author, Curator, Editor

http://pharmaceuticalinnovation.com/2015/8/11/larryhbern/Treatment-of-Lymphomas-[2.4.4C]

 

Lymphoma treatment

Overview

http://www.emedicinehealth.com/lymphoma/page8_em.htm#lymphoma_treatment

The most widely used therapies are combinations of chemotherapyand radiation therapy.

  • Biological therapy, which targets key features of the lymphoma cells, is used in many cases nowadays.

The goal of medical therapy in lymphoma is complete remission. This means that all signs of the disease have disappeared after treatment. Remission is not the same as cure. In remission, one may still have lymphoma cells in the body, but they are undetectable and cause no symptoms.

  • When in remission, the lymphoma may come back. This is called recurrence.
  • The duration of remission depends on the type, stage, and grade of the lymphoma. A remission may last a few months, a few years, or may continue throughout one’s life.
  • Remission that lasts a long time is called durable remission, and this is the goal of therapy.
  • The duration of remission is a good indicator of the aggressiveness of the lymphoma and of the prognosis. A longer remission generally indicates a better prognosis.

Remission can also be partial. This means that the tumor shrinks after treatment to less than half its size before treatment.

The following terms are used to describe the lymphoma’s response to treatment:

  • Improvement: The lymphoma shrinks but is still greater than half its original size.
  • Stable disease: The lymphoma stays the same.
  • Progression: The lymphoma worsens during treatment.
  • Refractory disease: The lymphoma is resistant to treatment.

The following terms to refer to therapy:

  • Induction therapy is designed to induce a remission.
  • If this treatment does not induce a complete remission, new or different therapy will be initiated. This is usually referred to as salvage therapy.
  • Once in remission, one may be given yet another treatment to prevent recurrence. This is called maintenance therapy.

Chemotherapy

Many different types of chemotherapy may be used for Hodgkin lymphoma. The most commonly used combination of drugs in the United States is called ABVD. Another combination of drugs, known as BEACOPP, is now widely used in Europe and is being used more often in the United States. There are other combinations that are less commonly used and not listed here. The drugs that make up these two more common combinations of chemotherapy are listed below.

ABVD: Doxorubicin (Adriamycin), bleomycin (Blenoxane), vinblastine (Velban, Velsar), and dacarbazine (DTIC-Dome). ABVD chemotherapy is usually given every two weeks for two to eight months.

BEACOPP: Bleomycin, etoposide (Toposar, VePesid), doxorubicin, cyclophosphamide (Cytoxan, Neosar), vincristine (Vincasar PFS, Oncovin), procarbazine (Matulane), and prednisone (multiple brand names). There are several different treatment schedules, but different drugs are usually given every two weeks.

The type of chemotherapy, number of cycles of chemotherapy, and the additional use of radiation therapy are based on the stage of the Hodgkin lymphoma and the type and number of prognostic factors.

Adult Non-Hodgkin Lymphoma Treatment (PDQ®)

http://www.cancer.gov/cancertopics/pdq/treatment/adult-non-hodgkins/Patient/page1

Key Points for This Section

Adult non-Hodgkin lymphoma is a disease in which malignant (cancer) cells form in the lymph system.

Because lymph tissue is found throughout the body, adult non-Hodgkin lymphoma can begin in almost any part of the body. Cancer can spread to the liver and many other organs and tissues.

Non-Hodgkin lymphoma in pregnant women is the same as the disease in nonpregnant women of childbearing age. However, treatment is different for pregnant women. This summary includes information on the treatment of non-Hodgkin lymphoma during pregnancy

Non-Hodgkin lymphoma can occur in both adults and children. Treatment for children, however, is different than treatment for adults. (See the PDQ summary on Childhood Non-Hodgkin Lymphoma Treatment for more information.)

There are many different types of lymphoma.

Lymphomas are divided into two general types: Hodgkin lymphoma and non-Hodgkin lymphoma. This summary is about the treatment of adult non-Hodgkin lymphoma. For information about other types of lymphoma, see the following PDQ summaries:

Age, gender, and a weakened immune system can affect the risk of adult non-Hodgkin lymphoma.

If cancer is found, the following tests may be done to study the cancer cells:

  • Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer.
  • Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes.
  • Immunophenotyping : A process used to identify cells, based on the types of antigens ormarkers on the surface of the cell. This process is used to diagnose specific types of leukemia and lymphoma by comparing the cancer cells to normal cells of the immune system.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis (chance of recovery) and treatment options depend on the following:

  • The stage of the cancer.
  • The type of non-Hodgkin lymphoma.
  • The amount of lactate dehydrogenase (LDH) in the blood.
  • The amount of beta-2-microglobulin in the blood (for Waldenström macroglobulinemia).
  • The patient’s age and general health.
  • Whether the lymphoma has just been diagnosed or has recurred (come back).

Stages of adult non-Hodgkin lymphoma may include E and S.

Adult non-Hodgkin lymphoma may be described as follows:

E: “E” stands for extranodal and means the cancer is found in an area or organ other than the lymph nodes or has spread to tissues beyond, but near, the major lymphatic areas.

S: “S” stands for spleen and means the cancer is found in the spleen.

Stage I adult non-Hodgkin lymphoma is divided into stage I and stage IE.

  • Stage I: Cancer is found in one lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen).
  • Stage IE: Cancer is found in one organ or area outside the lymph nodes.

Stage II adult non-Hodgkin lymphoma is divided into stage II and stage IIE.

  • Stage II: Cancer is found in two or more lymph node groups either above or below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen).
  • Stage IIE: Cancer is found in one or more lymph node groups either above or below the diaphragm. Cancer is also found outside the lymph nodes in one organ or area on the same side of the diaphragm as the affected lymph nodes.

Stage III adult non-Hodgkin lymphoma is divided into stage III, stage IIIE, stage IIIS, and stage IIIE+S.

  • Stage III: Cancer is found in lymph node groups above and below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen).
  • Stage IIIE: Cancer is found in lymph node groups above and below the diaphragm and outside the lymph nodes in a nearby organ or area.
  • Stage IIIS: Cancer is found in lymph node groups above and below the diaphragm, and in the spleen.
  • Stage IIIE+S: Cancer is found in lymph node groups above and below the diaphragm, outside the lymph nodes in a nearby organ or area, and in the spleen.

In stage IV adult non-Hodgkin lymphoma, the cancer:

  • is found throughout one or more organs that are not part of a lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen), and may be in lymph nodes near those organs; or
  • is found in one organ that is not part of a lymphatic area and has spread to organs or lymph nodes far away from that organ; or
  • is found in the liver, bone marrow, cerebrospinal fluid (CSF), or lungs (other than cancer that has spread to the lungs from nearby areas).

Adult non-Hodgkin lymphomas are also described based on how fast they grow and where the affected lymph nodes are in the body.  Indolent & aggressive.

The treatment plan depends mainly on the following:

  • The type of non-Hodgkin’s lymphoma
  • Its stage (where the lymphoma is found)
  • How quickly the cancer is growing
  • The patient’s age
  • Whether the patient has other health problems
  • If there are symptoms present such as fever and night sweats (see above)

Read Full Post »


Treatments for Lymphomas and Leukemias

Curator and Editor: Larry H. Bernstein, MD, FCAP

 

2.4.4 Treatments for leukemia by type

2.4.4.1 Acute Lymphocytic Leukemias

Treatment of Acute Lymphoblastic Leukemia

Ching-Hon Pu, and William E. Evans
N Engl J Med Jan 12, 2006; 354:166-178
http://dx.doi.org:/10.1056/NEJMra052603

Although the overall cure rate of acute lymphoblastic leukemia (ALL) in children is about 80 percent, affected adults fare less well. This review considers recent advances in the treatment of ALL, emphasizing issues that need to be addressed if treatment outcome is to improve further.

Acute Lymphoblastic Leukemia

Ching-Hon Pui, Mary V. Relling, and James R. Downing
N Engl J Med Apr 8, 2004; 350:1535-1548
http://dx.doi.org:/10.1056/NEJMra023001

This comprehensive survey emphasizes how recent advances in the knowledge of molecular mechanisms involved in acute lymphoblastic leukemia have influenced diagnosis, prognosis, and treatment.

Gene-Expression Patterns in Drug-Resistant Acute Lymphoblastic Leukemia Cells and Response to Treatment

Amy Holleman, Meyling H. Cheok, Monique L. den Boer, et al.
N Engl J Med 2004; 351:533-42

Childhood acute lymphoblastic leukemia (ALL) is curable with chemotherapy in approximately 80 percent of patients. However, the cause of treatment failure in the remaining 20 percent of patients is largely unknown.

Methods We tested leukemia cells from 173 children for sensitivity in vitro to prednisolone, vincristine, asparaginase, and daunorubicin. The cells were then subjected to an assessment of gene expression with the use of 14,500 probe sets to identify differentially expressed genes in drug-sensitive and drug-resistant ALL. Gene-expression patterns that differed according to sensitivity or resistance to the four drugs were compared with treatment outcome in the original 173 patients and an independent cohort of 98 children treated with the same drugs at another institution.

Results We identified sets of differentially expressed genes in B-lineage ALL that were sensitive or resistant to prednisolone (33 genes), vincristine (40 genes), asparaginase (35 genes), or daunorubicin (20 genes). A combined gene-expression score of resistance to the four drugs, as compared with sensitivity to the four, was significantly and independently related to treatment outcome in a multivariate analysis (hazard ratio for relapse, 3.0; P=0.027). Results were confirmed in an independent population of patients treated with the same medications (hazard ratio for relapse, 11.85; P=0.019). Of the 124 genes identified, 121 have not previously been associated with resistance to the four drugs we tested.

Conclusions  Differential expression of a relatively small number of genes is associated with drug resistance and treatment outcome in childhood ALL.

Leukemias Treatment & Management

Author: Lihteh Wu, MD; Chief Editor: Hampton Roy Sr
http://emedicine.medscape.com/article/1201870-treatment

The treatment of leukemia is in constant flux, evolving and changing rapidly over the past few years. Most treatment protocols use systemic chemotherapy with or without radiotherapy. The basic strategy is to eliminate all detectable disease by using cytotoxic agents. To attain this goal, 3 phases are typically used, as follows: remission induction phase, consolidation phase, and maintenance therapy phase.

Chemotherapeutic agents are chosen that interfere with cell division. Tumor cells usually divide more rapidly than host cells, making them more vulnerable to the effects of chemotherapy. Primary treatment will be under the direction of a medical oncologist, radiation oncologist, and primary care physician. Although a general treatment plan will be outlined, the ophthalmologist does not prescribe or manage such treatment.

  • The initial treatment of ALL uses various combinations of vincristine, prednisone, and L-asparaginase until a complete remission is obtained.
  • Maintenance therapy with mercaptopurine is continued for 2-3 years following remission.
  • Use of intrathecal methotrexate with or without cranial irradiation to cover the CNS varies from facility to facility.
  • Daunorubicin, cytarabine, and thioguanine currently are used to obtain induction and remission of AML.
  • Maintenance therapy for 8 months may lengthen remission. Once relapse has occurred, AML generally is curable only by bone marrow transplantation.
  • Presently, treatment of CLL is palliative.
  • CML is characterized by a leukocytosis greater than 100,000 cells. Emergent treatment with leukopheresis sometimes is necessary when leukostastic complications are present. Otherwise, busulfan or hydroxyurea may control WBC counts. During the chronic phase, treatment is palliative.
  • When CML converts to the blastic phase, approximately one third of cases behave as ALL and respond to treatment with vincristine and prednisone. The remaining two thirds resemble AML but respond poorly to AML therapy.
  • Allogeneic bone marrow transplant is the only curative therapy for CML. However, it carries a high early mortality rate.
  • Leukemic retinopathy usually is not treated directly. As the hematological parameters normalize with systemic treatment, many of the ophthalmic signs resolve. There are reports that leukopheresis for hyperviscosity also may alleviate intraocular manifestations.
  • When definite intraocular leukemic infiltrates fail to respond to systemic chemotherapy, direct radiation therapy is recommended.
  • Relapse, manifested by anterior segment involvement, should be treated by radiation. In certain cases, subconjunctival chemotherapeutic agents have been injected.
  • Optic nerve head infiltration in patients with ALL is an emergency and requires prompt radiation therapy to try to salvage some vision.

Treatments and drugs

http://www.mayoclinic.org/diseases-conditions/leukemia/basics/
treatment/con-20024914

Common treatments used to fight leukemia include:

  • Chemotherapy. Chemotherapy is the major form of treatment for leukemia. This drug treatment uses chemicals to kill leukemia cells.

Depending on the type of leukemia you have, you may receive a single drug or a combination of drugs. These drugs may come in a pill form, or they may be injected directly into a vein.

  • Biological therapy. Biological therapy works by using treatments that help your immune system recognize and attack leukemia cells.
  • Targeted therapy. Targeted therapy uses drugs that attack specific vulnerabilities within your cancer cells.

For example, the drug imatinib (Gleevec) stops the action of a protein within the leukemia cells of people with chronic myelogenous leukemia. This can help control the disease.

  • Radiation therapy. Radiation therapy uses X-rays or other high-energy beams to damage leukemia cells and stop their growth. During radiation therapy, you lie on a table while a large machine moves around you, directing the radiation to precise points on your body.

You may receive radiation in one specific area of your body where there is a collection of leukemia cells, or you may receive radiation over your whole body. Radiation therapy may be used to prepare for a stem cell transplant.

  • Stem cell transplant. A stem cell transplant is a procedure to replace your diseased bone marrow with healthy bone marrow.

Before a stem cell transplant, you receive high doses of chemotherapy or radiation therapy to destroy your diseased bone marrow. Then you receive an infusion of blood-forming stem cells that help to rebuild your bone marrow.

You may receive stem cells from a donor, or in some cases you may be able to use your own stem cells. A stem cell transplant is very similar to a bone marrow transplant.

2.4.4.2 Acute Myeloid Leukemia

New treatment approaches in acute myeloid leukemia: review of recent clinical studies.

Norsworthy K1Luznik LGojo I.
Rev Recent Clin Trials. 2012 Aug; 7(3):224-37.
http://www.ncbi.nlm.nih.gov/pubmed/22540908

Standard chemotherapy can cure only a fraction (30-40%) of younger and very few older patients with acute myeloid leukemia (AML). While conventional allografting can extend the cure rates, its application remains limited mostly to younger patients and those in remission. Limited efficacy of current therapies and improved understanding of the disease biology provided a spur for clinical trials examining novel agents and therapeutic strategies in AML. Clinical studies with novel chemotherapeutics, antibodies, different signal transduction inhibitors, and epigenetic modulators demonstrated their clinical activity; however, it remains unclear how to successfully integrate novel agents either alone or in combination with chemotherapy into the overall therapeutic schema for AML. Further studies are needed to examine their role in relation to standard chemotherapy and their applicability to select patient populations based on recognition of unique disease and patient characteristics, including the development of predictive biomarkers of response. With increasing use of nonmyeloablative or reduced intensity conditioning and alternative graft sources such as haploidentical donors and cord blood transplants, the benefits of allografting may extend to a broader patient population, including older AML patients and those lacking a HLA-matched donor. We will review here recent clinical studies that examined novel pharmacologic and immunologic approaches to AML therapy.

Novel approaches to the treatment of acute myeloid leukemia.

Roboz GJ1
Hematology Am Soc Hematol Educ Program. 2011:43-50.
http://dx.doi.org:/10.1182/asheducation-2011.1.43.

Approximately 12 000 adults are diagnosed with acute myeloid leukemia (AML) in the United States annually, the majority of whom die from their disease. The mainstay of initial treatment, cytosine arabinoside (ara-C) combined with an anthracycline, was developed nearly 40 years ago and remains the worldwide standard of care. Advances in genomics technologies have identified AML as a genetically heterogeneous disease, and many patients can now be categorized into clinicopathologic subgroups on the basis of their underlying molecular genetic defects. It is hoped that enhanced specificity of diagnostic classification will result in more effective application of targeted agents and the ability to create individualized treatment strategies. This review describes the current treatment standards for induction, consolidation, and stem cell transplantation; special considerations in the management of older AML patients; novel agents; emerging data on the detection and management of minimal residual disease (MRD); and strategies to improve the design and implementation of AML clinical trials.

Age ≥ 60 years has consistently been identified as an independent adverse prognostic factor in AML, and there are very few long-term survivors in this age group.5 Poor outcomes in elderly AML patients have been attributed to both host- and disease-related factors, including medical comorbidities, physical frailty, increased incidence of antecedent myelodysplastic syndrome and myeloproliferative disorders, and higher frequency of adverse cytogenetics.28 Older patients with multiple poor-risk factors have a high probability of early death and little chance of long-term disease-free survival with standard chemotherapy. In a retrospective analysis of 998 older patients treated with intensive induction at the M.D. Anderson Cancer Center, multivariate analysis identified age ≥ 75 years, unfavorable karyotype, poor performance status, creatinine > 1.3 mg/dL, duration of antecedent hematologic disorder > 6 months, and treatment outside a laminar airflow room as adverse prognostic indicators.29 Patients with 3 or more of these factors had expected complete remission rates of < 20%, 8-week mortality > 50%, and 1-year survival < 10%. The Medical Research Council (MRC) identified cytogenetics, WBC count at diagnosis, age, and de novo versus secondary disease as critical factors influencing survival in > 2000 older patients with AML, but cautioned in their conclusions that less objective factors, such as clinical assessment of “fitness” for chemotherapy, may be equally important in making treatment decisions in this patient population.30 It is hoped that data from comprehensive geriatric assessments of functional status, cognition, mood, quality of life, and other measures obtained during ongoing cooperative group trials will improve our ability to predict how older patients will tolerate treatment.

Current treatment of acute myeloid leukemia.

Roboz GJ1.
Curr Opin Oncol. 2012 Nov; 24(6):711-9.
http://dx.doi.org:/10.1097/CCO.0b013e328358f62d.

The objectives of this review are to discuss standard and investigational nontransplant treatment strategies for acute myeloid leukemia (AML), excluding acute promyelocytic leukemia.

RECENT FINDINGS: Most adults with AML die from their disease. The standard treatment paradigm for AML is remission induction chemotherapy with an anthracycline/cytarabine combination, followed by either consolidation chemotherapy or allogeneic stem cell transplantation, depending on the patient’s ability to tolerate intensive treatment and the likelihood of cure with chemotherapy alone. Although this approach has changed little in the last three decades, increased understanding of the pathogenesis of AML and improvements in molecular genomic technologies are leading to novel drug targets and the development of personalized, risk-adapted treatment strategies. Recent findings related to prognostically relevant and potentially ‘druggable’ molecular targets are reviewed.

SUMMARY: At the present time, AML remains a devastating and mostly incurable disease, but the combination of optimized chemotherapeutics and molecularly targeted agents holds significant promise for the future.

Adult Acute Myeloid Leukemia Treatment (PDQ®)
http://www.cancer.gov/cancertopics/pdq/treatment/adultAML/healthprofessional/page9

About This PDQ Summary

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Treatment Option Overview for AML

Successful treatment of acute myeloid leukemia (AML) requires the control of bone marrow and systemic disease and specific treatment of central nervous system (CNS) disease, if present. The cornerstone of this strategy includes systemically administered combination chemotherapy. Because only 5% of patients with AML develop CNS disease, prophylactic treatment is not indicated.[13]

Treatment is divided into two phases: remission induction (to attain remission) and postremission (to maintain remission). Maintenance therapy for AML was previously administered for several years but is not included in most current treatment clinical trials in the United States, other than for acute promyelocytic leukemia. (Refer to the Adult Acute Myeloid Leukemia in Remission section of this summary for more information.) Other studies have used more intensive postremission therapy administered for a shorter duration of time after which treatment is discontinued.[4] Postremission therapy appears to be effective when given immediately after remission is achieved.[4]

Since myelosuppression is an anticipated consequence of both the leukemia and its treatment with chemotherapy, patients must be closely monitored during therapy. Facilities must be available for hematologic support with multiple blood fractions including platelet transfusions and for the treatment of related infectious complications.[5] Randomized trials have shown similar outcomes for patients who received prophylactic platelet transfusions at a level of 10,000/mm3 rather than 20,000/mm3.[6] The incidence of platelet alloimmunization was similar among groups randomly assigned to receive pooled platelet concentrates from random donors; filtered, pooled platelet concentrates from random donors; ultraviolet B-irradiated, pooled platelet concentrates from random donors; or filtered platelets obtained by apheresis from single random donors.[7] Colony-stimulating factors, for example, granulocyte colony–stimulating factor (G-CSF) and granulocyte-macrophage colony–stimulating factor (GM-CSF), have been studied in an effort to shorten the period of granulocytopenia associated with leukemia treatment.[8] If used, these agents are administered after completion of induction therapy. GM-CSF was shown to improve survival in a randomized trial of AML in patients aged 55 to 70 years (median survival was 10.6 months vs. 4.8 months). In this Eastern Cooperative Oncology Group (ECOG) (EST-1490) trial, patients were randomly assigned to receive GM-CSF or placebo following demonstration of leukemic clearance of the bone marrow;[9] however, GM-CSF did not show benefit in a separate similar randomized trial in patients older than 60 years.[10] In the latter study, clearance of the marrow was not required before initiating cytokine therapy. In a Southwest Oncology Group (NCT00023777) randomized trial of G-CSF given following induction therapy to patients older than 65 years, complete response was higher in patients who received G-CSF because of a decreased incidence of primary leukemic resistance. Growth factor administration did not impact on mortality or on survival.[11,12] Because the majority of randomized clinical trials have not shown an impact of growth factors on survival, their use is not routinely recommended in the remission induction setting.

The administration of GM-CSF or other myeloid growth factors before and during induction therapy, to augment the effects of cytotoxic therapy through the recruitment of leukemic blasts into cell cycle (growth factor priming), has been an area of active clinical research. Evidence from randomized studies of GM-CSF priming have come to opposite conclusions. A randomized study of GM-CSF priming during conventional induction and postremission therapy showed no difference in outcomes between patients who received GM-CSF and those who did not receive growth factor priming.[13,14][Level of evidence: 1iiA] In contrast, a similar randomized placebo-controlled study of GM-CSF priming in patients with AML aged 55 to 75 years showed improved disease-free survival (DFS) in the group receiving GM-CSF (median DFS for patients who achieved complete remission was 23 months vs. 11 months; 2-year DFS was 48% vs. 21%), with a trend towards improvement in overall survival (2-year survival was 39% vs. 27%, = .082) for patients aged 55 to 64 years.[15][Level of evidence: 1iiDii]

References

  1. Kebriaei P, Champlin R, deLima M, et al.: Management of acute leukemias. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, pp 1928-54.
  2. Wiernik PH: Diagnosis and treatment of acute nonlymphocytic leukemia. In: Wiernik PH, Canellos GP, Dutcher JP, et al., eds.: Neoplastic Diseases of the Blood. 3rd ed. New York, NY: Churchill Livingstone, 1996, pp 283-302.
  3. Morrison FS, Kopecky KJ, Head DR, et al.: Late intensification with POMP chemotherapy prolongs survival in acute myelogenous leukemia–results of a Southwest Oncology Group study of rubidazone versus adriamycin for remission induction, prophylactic intrathecal therapy, late intensification, and levamisole maintenance. Leukemia 6 (7): 708-14, 1992. [PUBMED Abstract]
  4. Cassileth PA, Lynch E, Hines JD, et al.: Varying intensity of postremission therapy in acute myeloid leukemia. Blood 79 (8): 1924-30, 1992. [PUBMED Abstract]
  5. Supportive Care. In: Wiernik PH, Canellos GP, Dutcher JP, et al., eds.: Neoplastic Diseases of the Blood. 3rd ed. New York, NY: Churchill Livingstone, 1996, pp 779-967.
  6. Rebulla P, Finazzi G, Marangoni F, et al.: The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto. N Engl J Med 337 (26): 1870-5, 1997. [PUBMED Abstract]
  7. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. The Trial to Reduce Alloimmunization to Platelets Study Group. N Engl J Med 337 (26): 1861-9, 1997. [PUBMED Abstract]
  8. Geller RB: Use of cytokines in the treatment of acute myelocytic leukemia: a critical review. J Clin Oncol 14 (4): 1371-82, 1996. [PUBMED Abstract]
  9. Rowe JM, Andersen JW, Mazza JJ, et al.: A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood 86 (2): 457-62, 1995. [PUBMED Abstract]
  10. Stone RM, Berg DT, George SL, et al.: Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. Cancer and Leukemia Group B. N Engl J Med 332 (25): 1671-7, 1995. [PUBMED Abstract]
  11. Dombret H, Chastang C, Fenaux P, et al.: A controlled study of recombinant human granulocyte colony-stimulating factor in elderly patients after treatment for acute myelogenous leukemia. AML Cooperative Study Group. N Engl J Med 332 (25): 1678-83, 1995. [PUBMED Abstract]
  12. Godwin JE, Kopecky KJ, Head DR, et al.: A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest oncology group study (9031). Blood 91 (10): 3607-15, 1998. [PUBMED Abstract]
  13. Buchner T, Hiddemann W, Wormann B, et al.: GM-CSF multiple course priming and long-term administration in newly diagnosed AML: hematologic and therapeutic effects. [Abstract] Blood 84 (10 Suppl 1): A-95, 27a, 1994.
  14. Löwenberg B, Boogaerts MA, Daenen SM, et al.: Value of different modalities of granulocyte-macrophage colony-stimulating factor applied during or after induction therapy of acute myeloid leukemia. J Clin Oncol 15 (12): 3496-506, 1997. [PUBMED Abstract]
  15. Witz F, Sadoun A, Perrin MC, et al.: A placebo-controlled study of recombinant human granulocyte-macrophage colony-stimulating factor administered during and after induction treatment for de novo acute myelogenous leukemia in elderly patients. Groupe Ouest Est Leucémies Aiguës Myéloblastiques (GOELAM). Blood 91 (8): 2722-30, 1998. [PUBMED Abstract]

2.4.4.3 Treatment for CML

Chronic Myelogenous Leukemia Treatment (PDQ®)

http://www.cancer.gov/cancertopics/pdq/treatment/CML/Patient/page4

Treatment Option Overview

Key Points for This Section

There are different types of treatment for patients with chronic myelogenous leukemia.

Six types of standard treatment are used:

  1. Targeted therapy
  2. Chemotherapy
  3. Biologic therapy
  4. High-dose chemotherapy with stem cell transplant
  5. Donor lymphocyte infusion (DLI)
  6. Surgery

New types of treatment are being tested in clinical trials.

Patients may want to think about taking part in a clinical trial.

Patients can enter clinical trials before, during, or after starting their cancer treatment.

Follow-up tests may be needed.

There are different types of treatment for patients with chronic myelogenous leukemia.

Different types of treatment are available for patients with chronic myelogenous leukemia (CML). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information about new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Six types of standard treatment are used:

Targeted therapy

Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors are targeted therapy drugs used to treat chronic myelogenous leukemia.

Imatinib mesylate, nilotinib, dasatinib, and ponatinib are tyrosine kinase inhibitors that are used to treat CML.

See Drugs Approved for Chronic Myelogenous Leukemia for more information.

Chemotherapy

Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated.

See Drugs Approved for Chronic Myelogenous Leukemia for more information.

Biologic therapy

Biologic therapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy.

See Drugs Approved for Chronic Myelogenous Leukemia for more information.

High-dose chemotherapy with stem cell transplant

High-dose chemotherapy with stem cell transplant is a method of giving high doses of chemotherapy and replacing blood-forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body’s blood cells.

See Drugs Approved for Chronic Myelogenous Leukemia for more information.

Donor lymphocyte infusion (DLI)

Donor lymphocyte infusion (DLI) is a cancer treatment that may be used after stem cell transplant.Lymphocytes (a type of white blood cell) from the stem cell transplant donor are removed from the donor’s blood and may be frozen for storage. The donor’s lymphocytes are thawed if they were frozen and then given to the patient through one or more infusions. The lymphocytes see the patient’s cancer cells as not belonging to the body and attack them.

Surgery

Splenectomy

What`s new in chronic myeloid leukemia research and treatment?

http://www.cancer.org/cancer/leukemia-chronicmyeloidcml/detailedguide/leukemia-chronic-myeloid-myelogenous-new-research

Combining the targeted drugs with other treatments

Imatinib and other drugs that target the BCR-ABL protein have proven to be very effective, but by themselves these drugs don’t help everyone. Studies are now in progress to see if combining these drugs with other treatments, such as chemotherapy, interferon, or cancer vaccines (see below) might be better than either one alone. One study showed that giving interferon with imatinib worked better than giving imatinib alone. The 2 drugs together had more side effects, though. It is also not clear if this combination is better than treatment with other tyrosine kinase inhibitors (TKIs), such as dasatinib and nilotinib. A study going on now is looking at combing interferon with nilotinib.

Other studies are looking at combining other drugs, such as cyclosporine or hydroxychloroquine, with a TKI.

New drugs for CML

Because researchers now know the main cause of CML (the BCR-ABL gene and its protein), they have been able to develop many new drugs that might work against it.

In some cases, CML cells develop a change in the BCR-ABL oncogene known as a T315I mutation, which makes them resistant to many of the current targeted therapies (imatinib, dasatinib, and nilotinib). Ponatinib is the only TKI that can work against T315I mutant cells. More drugs aimed at this mutation are now being tested.

Other drugs called farnesyl transferase inhibitors, such as lonafarnib and tipifarnib, seem to have some activity against CML and patients may respond when these drugs are combined with imatinib. These drugs are being studied further.

Other drugs being studied in CML include the histone deacetylase inhibitor panobinostat and the proteasome inhibitor bortezomib (Velcade).

Several vaccines are now being studied for use against CML.

2.4.4.4. Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia Treatment (PDQ®)

General Information About Chronic Lymphocytic Leukemia

Key Points for This Section

  1. Chronic lymphocytic leukemia is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell).
  2. Leukemia may affect red blood cells, white blood cells, and platelets.
  3. Older age can affect the risk of developing chronic lymphocytic leukemia.
  4. Signs and symptoms of chronic lymphocytic leukemia include swollen lymph nodes and tiredness.
  5. Tests that examine the blood, bone marrow, and lymph nodes are used to detect (find) and diagnose chronic lymphocytic leukemia.
  6. Certain factors affect treatment options and prognosis (chance of recovery).
  7. Chronic lymphocytic leukemia is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell).

Chronic lymphocytic leukemia (also called CLL) is a blood and bone marrow disease that usually gets worse slowly. CLL is one of the most common types of leukemia in adults. It often occurs during or after middle age; it rarely occurs in children.

http://www.cancer.gov/images/cdr/live/CDR755927-750.jpg

Anatomy of the bone; drawing shows spongy bone, red marrow, and yellow marrow. A cross section of the bone shows compact bone and blood vessels in the bone marrow. Also shown are red blood cells, white blood cells, platelets, and a blood stem cell.

Anatomy of the bone. The bone is made up of compact bone, spongy bone, and bone marrow. Compact bone makes up the outer layer of the bone. Spongy bone is found mostly at the ends of bones and contains red marrow. Bone marrow is found in the center of most bones and has many blood vessels. There are two types of bone marrow: red and yellow. Red marrow contains blood stem cells that can become red blood cells, white blood cells, or platelets. Yellow marrow is made mostly of fat.

Leukemia may affect red blood cells, white blood cells, and platelets.

Normally, the body makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell.

A myeloid stem cell becomes one of three types of mature blood cells:

  1. Red blood cells that carry oxygen and other substances to all tissues of the body.
  2. White blood cells that fight infection and disease.
  3. Platelets that form blood clots to stop bleeding.

A lymphoid stem cell becomes a lymphoblast cell and then one of three types of lymphocytes (white blood cells):

  1. B lymphocytes that make antibodies to help fight infection.
  2. T lymphocytes that help B lymphocytes make antibodies to fight infection.
  3. Natural killer cells that attack cancer cells and viruses.
Blood cell development. CDR526538-750

Blood cell development. CDR526538-750

http://www.cancer.gov/images/cdr/live/CDR526538-750.jpg

Blood cell development; drawing shows the steps a blood stem cell goes through to become a red blood cell, platelet, or white blood cell. A myeloid stem cell becomes a red blood cell, a platelet, or a myeloblast, which then becomes a granulocyte (the types of granulocytes are eosinophils, basophils, and neutrophils). A lymphoid stem cell becomes a lymphoblast and then becomes a B-lymphocyte, T-lymphocyte, or natural killer cell.

Blood cell development. A blood stem cell goes through several steps to become a red blood cell, platelet, or white blood cell.

In CLL, too many blood stem cells become abnormal lymphocytes and do not become healthy white blood cells. The abnormal lymphocytes may also be called leukemia cells. The lymphocytes are not able to fight infection very well. Also, as the number of lymphocytes increases in the blood and bone marrow, there is less room for healthy white blood cells, red blood cells, and platelets. This may cause infection, anemia, and easy bleeding.

This summary is about chronic lymphocytic leukemia. See the following PDQ summaries for more information about leukemia:

  • Adult Acute Lymphoblastic Leukemia Treatment.
  • Childhood Acute Lymphoblastic Leukemia Treatment.
  • Adult Acute Myeloid Leukemia Treatment.
  • Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment.
  • Chronic Myelogenous Leukemia Treatment.
  • Hairy Cell Leukemia Treatment

Older age can affect the risk of developing chronic lymphocytic leukemia.

Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for CLL include the following:

  • Being middle-aged or older, male, or white.
  • A family history of CLL or cancer of the lymph system.
  • Having relatives who are Russian Jews or Eastern European Jews.

Signs and symptoms of chronic lymphocytic leukemia include swollen lymph nodes and tiredness.

Usually CLL does not cause any signs or symptoms and is found during a routine blood test. Signs and symptoms may be caused by CLL or by other conditions. Check with your doctor if you have any of the following:

  • Painless swelling of the lymph nodes in the neck, underarm, stomach, or groin.
  • Feeling very tired.
  • Pain or fullness below the ribs.
  • Fever and infection.
  • Weight loss for no known reason.

Tests that examine the blood, bone marrow, and lymph nodes are used to detect (find) and diagnose chronic lymphocytic leukemia.

The following tests and procedures may be used:

Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient’s health habits and past illnesses and treatments will also be taken.

  • Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following:
  • The number of red blood cells and platelets.
  • The number and type of white blood cells.
  • The amount of hemoglobin (the protein that carries oxygen) in the red blood cells.
  • The portion of the blood sample made up of red blood cells.

Results from the Phase 3 Resonate™ Trial

Significantly improved progression free survival (PFS) vs ofatumumab in patients with previously treated CLL

  • Patients taking IMBRUVICA® had a 78% statistically significant reduction in the risk of disease progression or death compared with patients who received ofatumumab1
  • In patients with previously treated del 17p CLL, median PFS was not yet reached with IMBRUVICA® vs 5.8 months with ofatumumab (HR 0.25; 95% CI: 0.14, 0.45)1

Significantly prolonged overall survival (OS) with IMBRUVICA® vs ofatumumab in patients with previously treated CLL

  • In patients with previously treated CLL, those taking IMBRUVICA® had a 57% statistically significant reduction in the risk of death compared with those who received ofatumumab (HR 0.43; 95% CI: 0.24, 0.79; P<0.05)1

Typical treatment of chronic lymphocytic leukemia

http://www.cancer.org/cancer/leukemia-chroniclymphocyticcll/detailedguide/leukemia-chronic-lymphocytic-treating-treatment-by-risk-group

Treatment options for chronic lymphocytic leukemia (CLL) vary greatly, depending on the person’s age, the disease risk group, and the reason for treating (for example, which symptoms it is causing). Many people live a long time with CLL, but in general it is very difficult to cure, and early treatment hasn’t been shown to help people live longer. Because of this and because treatment can cause side effects, doctors often advise waiting until the disease is progressing or bothersome symptoms appear, before starting treatment.

If treatment is needed, factors that should be taken into account include the patient’s age, general health, and prognostic factors such as the presence of chromosome 17 or chromosome 11 deletions or high levels of ZAP-70 and CD38.

Initial treatment

Patients who might not be able to tolerate the side effects of strong chemotherapy (chemo), are often treated with chlorambucil alone or with a monoclonal antibody targeting CD20 like rituximab (Rituxan) or obinutuzumab (Gazyva). Other options include rituximab alone or a corticosteroid like prednisione.

In stronger and healthier patients, there are many options for treatment. Commonly used treatments include:

  • FCR: fludarabine (Fludara), cyclophosphamide (Cytoxan), and rituximab
  • Bendamustine (sometimes with rituximab)
  • FR: fludarabine and rituximab
  • CVP: cyclophosphamide, vincristine, and prednisone (sometimes with rituximab)
  • CHOP: cyclophosphamide, doxorubicin, vincristine (Oncovin), and prednisone
  • Chlorambucil combined with prednisone, rituximab, obinutuzumab, or ofatumumab
  • PCR: pentostatin (Nipent), cyclophosphamide, and rituximab
  • Alemtuzumab (Campath)
  • Fludarabine (alone)

Other drugs or combinations of drugs may also be also used.

If the only problem is an enlarged spleen or swollen lymph nodes in one region of the body, localized treatment with low-dose radiation therapy may be used. Splenectomy (surgery to remove the spleen) is another option if the enlarged spleen is causing symptoms.

Sometimes very high numbers of leukemia cells in the blood cause problems with normal circulation. This is calledleukostasis. Chemo may not lower the number of cells until a few days after the first dose, so before the chemo is given, some of the cells may be removed from the blood with a procedure called leukapheresis. This treatment lowers blood counts right away. The effect lasts only for a short time, but it may help until the chemo has a chance to work. Leukapheresis is also sometimes used before chemo if there are very high numbers of leukemia cells (even when they aren’t causing problems) to prevent tumor lysis syndrome (this was discussed in the chemotherapy section).

Some people who have very high-risk disease (based on prognostic factors) may be referred for possible stem cell transplant (SCT) early in treatment.

Second-line treatment of CLL

If the initial treatment is no longer working or the disease comes back, another type of treatment may help. If the initial response to the treatment lasted a long time (usually at least a few years), the same treatment can often be used again. If the initial response wasn’t long-lasting, using the same treatment again isn’t as likely to be helpful. The options will depend on what the first-line treatment was and how well it worked, as well as the person’s health.

Many of the drugs and combinations listed above may be options as second-line treatments. For many people who have already had fludarabine, alemtuzumab seems to be helpful as second-line treatment, but it carries an increased risk of infections. Other purine analog drugs, such as pentostatin or cladribine (2-CdA), may also be tried. Newer drugs such as ofatumumab, ibrutinib (Imbruvica), and idelalisib (Zydelig) may be other options.

If the leukemia responds, stem cell transplant may be an option for some patients.

Some people may have a good response to first-line treatment (such as fludarabine) but may still have some evidence of a small number of leukemia cells in the blood, bone marrow, or lymph nodes. This is known as minimal residual disease. CLL can’t be cured, so doctors aren’t sure if further treatment right away will be helpful. Some small studies have shown that alemtuzumab can sometimes help get rid of these remaining cells, but it’s not yet clear if this improves survival.

Treating complications of CLL

One of the most serious complications of CLL is a change (transformation) of the leukemia to a high-grade or aggressive type of non-Hodgkin lymphoma called diffuse large cell lymphoma. This happens in about 5% of CLL cases, and is known as Richter syndrome. Treatment is often the same as it would be for lymphoma (see our document called Non-Hodgkin Lymphoma for more information), and may include stem cell transplant, as these cases are often hard to treat.

Less often, CLL may transform to prolymphocytic leukemia. As with Richter syndrome, these cases can be hard to treat. Some studies have suggested that certain drugs such as cladribine (2-CdA) and alemtuzumab may be helpful.

In rare cases, patients with CLL may have their leukemia transform into acute lymphocytic leukemia (ALL). If this happens, treatment is likely to be similar to that used for patients with ALL (see our document called Leukemia: Acute Lymphocytic).

Acute myeloid leukemia (AML) is another rare complication in patients who have been treated for CLL. Drugs such as chlorambucil and cyclophosphamide can damage the DNA of blood-forming cells. These damaged cells may go on to become cancerous, leading to AML, which is very aggressive and often hard to treat (see our document calledLeukemia: Acute Myeloid).

CLL can cause problems with low blood counts and infections. Treatment of these problems were discussed in the section “Supportive care in chronic lymphocytic leukemia.”

2.4.4.5  Lymphoma treatment

Overview

http://www.emedicinehealth.com/lymphoma/page8_em.htm#lymphoma_treatment

The most widely used therapies are combinations of chemotherapy and radiation therapy.

  • Biological therapy, which targets key features of the lymphoma cells, is used in many cases nowadays.

The goal of medical therapy in lymphoma is complete remission. This means that all signs of the disease have disappeared after treatment. Remission is not the same as cure. In remission, one may still have lymphoma cells in the body, but they are undetectable and cause no symptoms.

  • When in remission, the lymphoma may come back. This is called recurrence.
  • The duration of remission depends on the type, stage, and grade of the lymphoma. A remission may last a few months, a few years, or may continue throughout one’s life.
  • Remission that lasts a long time is called durable remission, and this is the goal of therapy.
  • The duration of remission is a good indicator of the aggressiveness of the lymphoma and of the prognosis. A longer remission generally indicates a better prognosis.

Remission can also be partial. This means that the tumor shrinks after treatment to less than half its size before treatment.

The following terms are used to describe the lymphoma’s response to treatment:

  • Improvement: The lymphoma shrinks but is still greater than half its original size.
  • Stable disease: The lymphoma stays the same.
  • Progression: The lymphoma worsens during treatment.
  • Refractory disease: The lymphoma is resistant to treatment.

The following terms to refer to therapy:

  • Induction therapy is designed to induce a remission.
  • If this treatment does not induce a complete remission, new or different therapy will be initiated. This is usually referred to as salvage therapy.
  • Once in remission, one may be given yet another treatment to prevent recurrence. This is called maintenance therapy.

Chemotherapy

Many different types of chemotherapy may be used for Hodgkin lymphoma. The most commonly used combination of drugs in the United States is called ABVD. Another combination of drugs, known as BEACOPP, is now widely used in Europe and is being used more often in the United States. There are other combinations that are less commonly used and not listed here. The drugs that make up these two more common combinations of chemotherapy are listed below.

ABVD: Doxorubicin (Adriamycin), bleomycin (Blenoxane), vinblastine (Velban, Velsar), and dacarbazine (DTIC-Dome). ABVD chemotherapy is usually given every two weeks for two to eight months.

BEACOPP: Bleomycin, etoposide (Toposar, VePesid), doxorubicin, cyclophosphamide (Cytoxan, Neosar), vincristine (Vincasar PFS, Oncovin), procarbazine (Matulane), and prednisone (multiple brand names). There are several different treatment schedules, but different drugs are usually given every two weeks.

The type of chemotherapy, number of cycles of chemotherapy, and the additional use of radiation therapy are based on the stage of the Hodgkin lymphoma and the type and number of prognostic factors.

Adult Non-Hodgkin Lymphoma Treatment (PDQ®)

http://www.cancer.gov/cancertopics/pdq/treatment/adult-non-hodgkins/Patient/page1

Key Points for This Section

Adult non-Hodgkin Lymphoma is a disease in which malignant (cancer) cells form in the lymph system.

Because lymph tissue is found throughout the body, adult non-Hodgkin lymphoma can begin in almost any part of the body. Cancer can spread to the liver and many other organs and tissues.

Non-Hodgkin lymphoma in pregnant women is the same as the disease in nonpregnant women of childbearing age. However, treatment is different for pregnant women. This summary includes information on the treatment of non-Hodgkin lymphoma during pregnancy

Non-Hodgkin lymphoma can occur in both adults and children. Treatment for children, however, is different than treatment for adults. (See the PDQ summary on Childhood Non-Hodgkin Lymphoma Treatment for more information.)

There are many different types of lymphoma.

Lymphomas are divided into two general types: Hodgkin lymphoma and non-Hodgkin lymphoma. This summary is about the treatment of adult non-Hodgkin lymphoma. For information about other types of lymphoma, see the following PDQ summaries:

Age, gender, and a weakened immune system can affect the risk of adult non-Hodgkin lymphoma.

If cancer is found, the following tests may be done to study the cancer cells:

  • Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer.
  • Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes.
  • Immunophenotyping : A process used to identify cells, based on the types of antigens ormarkers on the surface of the cell. This process is used to diagnose specific types of leukemia and lymphoma by comparing the cancer cells to normal cells of the immune system.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis (chance of recovery) and treatment options depend on the following:

  • The stage of the cancer.
  • The type of non-Hodgkin lymphoma.
  • The amount of lactate dehydrogenase (LDH) in the blood.
  • The amount of beta-2-microglobulin in the blood (for Waldenström macroglobulinemia).
  • The patient’s age and general health.
  • Whether the lymphoma has just been diagnosed or has recurred (come back).

Stages of adult non-Hodgkin lymphoma may include E and S.

Adult non-Hodgkin lymphoma may be described as follows:

E: “E” stands for extranodal and means the cancer is found in an area or organ other than the lymph nodes or has spread to tissues beyond, but near, the major lymphatic areas.

S: “S” stands for spleen and means the cancer is found in the spleen.

Stage I adult non-Hodgkin lymphoma is divided into stage I and stage IE.

  • Stage I: Cancer is found in one lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen).
  • Stage IE: Cancer is found in one organ or area outside the lymph nodes.

Stage II adult non-Hodgkin lymphoma is divided into stage II and stage IIE.

  • Stage II: Cancer is found in two or more lymph node groups either above or below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen).
  • Stage IIE: Cancer is found in one or more lymph node groups either above or below the diaphragm. Cancer is also found outside the lymph nodes in one organ or area on the same side of the diaphragm as the affected lymph nodes.

Stage III adult non-Hodgkin lymphoma is divided into stage III, stage IIIE, stage IIIS, and stage IIIE+S.

  • Stage III: Cancer is found in lymph node groups above and below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen).
  • Stage IIIE: Cancer is found in lymph node groups above and below the diaphragm and outside the lymph nodes in a nearby organ or area.
  • Stage IIIS: Cancer is found in lymph node groups above and below the diaphragm, and in the spleen.
  • Stage IIIE+S: Cancer is found in lymph node groups above and below the diaphragm, outside the lymph nodes in a nearby organ or area, and in the spleen.

In stage IV adult non-Hodgkin lymphoma, the cancer:

  • is found throughout one or more organs that are not part of a lymphatic area (lymph node group, tonsils and nearby tissue, thymus, or spleen), and may be in lymph nodes near those organs; or
  • is found in one organ that is not part of a lymphatic area and has spread to organs or lymph nodes far away from that organ; or
  • is found in the liver, bone marrow, cerebrospinal fluid (CSF), or lungs (other than cancer that has spread to the lungs from nearby areas).

Adult non-Hodgkin lymphomas are also described based on how fast they grow and where the affected lymph nodes are in the body.  Indolent & aggressive.

The treatment plan depends mainly on the following:

  • The type of non-Hodgkin’s lymphoma
  • Its stage (where the lymphoma is found)
  • How quickly the cancer is growing
  • The patient’s age
  • Whether the patient has other health problems
  • If there are symptoms present such as fever and night sweats (see above)

Read Full Post »


Liposomal encapsulated drug

Writer and Curator: Larry H. Bernstein, MD, FCAP 

7.2  Liposomal encapsulated drug

7.2.1 Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives

7.2.2 Colloids and Surfaces B: Biointerfaces 1 Sep 2013; 109:307–316

7.2.3 Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems

7.2.4 Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy

7.2.5 Liposome encapsulation of curcumin

7.2.6 Gemcitabine and γ-cyclodextrin-docetaxel inclusion complex-loaded liposome for highly effective combinational therapy of osteosarcoma

7.2.7 Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery

7.2.8 The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF

7.2.9 Interactions of nanomaterials and biological systems. Implications to personalized nanomedicine

7.2.1 Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives

Anna Karewicz, Dorota Bielska, Agnieszka Loboda, Barbara Gzyl-Malcher, Jan Bednar, Alicja Jozkowicz, Jozef Dulak, Maria Nowakowska

Highlights

    • Cationic, hydrophobic and cationic–hydrophobic derivatives of chitosan were obtained and characterized.• Curcumin-containing liposomes were successfully stabilized by effective coating with these derivatives.• Liposomes coated with cationic–hydrophobic chitosan are most promising for curcumin delivery.• Such coated liposomes easily penetrate cell membrane and release curcumin in a controlled manner.• These curcumin-loaded liposomal systems are non-toxic for normal cells, but toxic for murine melanoma.

Abstract

Stable vesicles for efficient curcumin encapsulation, delivery and controlled release have been obtained by coating of liposomes with thin layer of newly synthesized chitosan derivatives. Three different derivatives of chitosan were obtained and studied: the cationic (by introduction of the stable, quaternary ammonium groups), the hydrophobic (by attachment of N-dodecyl groups) and cationic–hydrophobic one (containing both quaternary ammonium and N-dodecyl groups). Zeta potential measurements confirmed effective coating of liposomes with all these chitosan derivatives. The liposomes coated with cationic–hydrophobic chitosan derivative are the most promising curcumin carriers; they can easily penetrate cell membrane and release curcumin in a controlled manner. Biological studies indicated that such systems are non-toxic for murine fibroblasts (NIH3T3) while toxic toward murine melanoma (B16F10) cell line.


Graphical abstract

Full-size image (30 K)

http://ars.els-cdn.com/content/image/1-s2.0-S0927776513002518-fx1.jpg

7.2.2 Colloids and Surfaces B: Biointerfaces 1 Sep 2013; 109:307–316
http://dx.doi.org:/10.1016/j.colsurfb.2013.03.059

Highlights

  • Cationic, hydrophobic and cationic–hydrophobic derivatives of chitosan were obtained and characterized.
  • Curcumin-containing liposomes were successfully stabilized by effective coating with these derivatives.
  • Liposomes coated with cationic–hydrophobic chitosan are most promising for curcumin delivery.
  • Such coated liposomes easily penetrate cell membrane and release curcumin in a controlled manner.
  • These curcumin-loaded liposomal systems are non-toxic for normal cells, but toxic for murine melanoma.

Abstract

Stable vesicles for efficient curcumin encapsulation, delivery and controlled release have been obtained by coating of liposomes with thin layer of newly synthesized chitosan derivatives. Three different derivatives of chitosan were obtained and studied: the cationic (by introduction of the stable, quaternary ammonium groups), the hydrophobic (by attachment of N-dodecyl groups) and cationic–hydrophobic one (containing both quaternary ammonium and N-dodecyl groups). Zeta potential measurements confirmed effective coating of liposomes with all these chitosan derivatives. The liposomes coated with cationic–hydrophobic chitosan derivative are the most promising curcumin carriers; they can easily penetrate cell membrane and release curcumin in a controlled manner. Biological studies indicated that such systems are non-toxic for murine fibroblasts (NIH3T3) while toxic toward murine melanoma (B16F10) cell line.

http://ars.els-cdn.com/content/image/1-s2.0-S0927776513002518-fx1.jpg

7.2.3 Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems

Matloob AH1Mourtas S1Klepetsanis P2Antimisiaris SG3.
Int J Pharm. 2014 Dec 10; 476(1-2):108-15
http://dx.doi.org:/10.1016/j.ijpharm.2014.09.041

Curcumin (CURC) was incorporated in liposomes as free drug or after formation of hydropropyl-β- or hydroxypropyl-γ-cyclodextrin (HPβCD or HPγCD) complexes prepared by coprecipitation and characterized by X-ray diffractometry. Liposomes encapsulating CURC as free drug or CD-complexes (hybrid formulations) were prepared by the dehydration-rehydration vesicle (DRV) method followed by extrusion, and characterized for size, zeta-potential and CURC loading. CURC stability (at 0.01 and 0.05mg/mL) in 80% (v/v) fetal bovine serum (FBS) was evaluated at 37°C. Results demonstrate that HPβCD stabilizes CURC more than HPγCD, but liposome encapsulation provides substantially more protection, than CDs. CURC stabilization is similar, when encapsulated as free compound or CD-complex. However, the last method increases CURC loading by 23 times (depending on the lipid composition of liposomes and the CD used), resulting in higher solubility. The stability profile of CURC in serum depends on the composition of liposomes and CURC concentration, since at lower concentrations larger CURC fractions are protected due to protein binding. Compared to the corresponding CD complexes, hybrid formulations provide intermediate CURC solubility (comparable to HPβCD) but profoundly higher stabilization.

7.2.4 Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy

Saengkrit N1Saesoo S1Srinuanchai W1Phunpee S1Ruktanonchai UR2.
Colloids Surf B Biointerfaces. 2014 Feb 1; 114:349-56.
http://dx.doi.org:/10.1016/j.colsurfb.2013.10.005

Highlights

  • The delivery of curcumin using liposomes was explored in cervical cancer cell lines.
  • A critical role of DDAB in liposomes containing curcumin was investigated.
  • DDAB is a potent inducer of cell uptake, anticancer efficiency and cell death.
  • Anticancer efficiency of liposomal curcumin was more pronounced than free curcumin.

The delivery of curcumin has been explored in the form of liposomal nanoparticles to treat various cancer cells. Since curcumin is water insoluble and an effective delivery route is through encapsulation in liposomes, which were modified with three components of DDAB, cholesterol and non-ionic surfactant. The purpose of this study was to establish a critical role of DDAB in liposomes containing curcumin at cellular response against two types of cell lines (HeLa and SiHa). Here, we demonstrate that DDAB is a potent inducer of cell uptake and cell death in both cell lines. The enhanced cell uptake was found on DDAB-containing liposome, but not on DDAB-free liposome. However, the cytotoxicity of DDAB-containing liposomes was high and needs to be optimized. The cytotoxicity of liposomal curcumin was more pronounced than free curcumin in both cells, suggesting the benefits of using nanocarrier. In addition, the anticancer efficiency and apoptosis effect of the liposomal curcumin formulations with DDAB was higher than those of DDAB-free liposomes. Therefore curcumin loaded liposomes indicate significant potential as delivery vehicles for the treatment of cervical cancers.

Full-size image (19 K)

http://ars.els-cdn.com/content/image/1-s2.0-S0927776513006309-fx1.jpg

7.2.5 Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation.

Hasan M1Belhaj N1Benachour H2Barberi-Heyob M3Kahn CJ4Jabbari E5Linder M1Arab-Tehrany E6.
Int J Pharm. 2014 Jan 30; 461(1-2):519-28
http://dx.doi.org:/10.1016/j.ijpharm.2013.12.007

The role of curcumin (diferuloylmethane), for cancer treatment has been an area of growing interest. However, due to its low absorption, the poor bioavailability of curcumin limits its clinical use. In this study, we reported an approach of encapsulation a curcumin by nanoliposome to achieve an improved bioavailability of a poorly absorbed hydrophobic compound. We demonstrated that liposomal preparations to deliver curcumin increase its bioavailability. Liposomes composed of salmon’s lecithin also improved curcumin bioavailability compared to those constituted of rapeseed and soya lecithins. A real-time label-free cell analysis system based on real-time cell impedance monitoring was used to investigate the in vitro cytotoxicity of liposomal preparations.

Fig. 1. Chemical structure of curcuminoids (curcumin, demethoxycurcumin, bis
demethoxycurcumin).

Table 2 Membrane fluidity of nanoliposomes with and without curcumin.
Sample                                            Membrane fluidity
Salmon liposome                           3.19 ± 0.08a,b,*
Curcumin loaded
salmon liposome                           2.81 ± 0.05*
Rapeseed liposome                       3.53 ± 0.07a,*
Curcumin loaded
rapeseed liposome                        2.83 ± 0.04*
Soya liposome                                3.58 ± 0.10b,*
Curcumin loaded
soya liposome                                2.83 ± 0.02*
* Significant t-test                         (p < 0.05)
between salmon
and rapeseed
(a), salmon and soya
(b), curcumin loaded liposome
and liposome of the same lecithin.

Fig. 3. Transmission electron microscopic images of rapeseed
(a), soya
(b) and salmon
(c) nanoliposomes

Fig. 4. Cell index (CI) kinetics of the MCF-7 cells exposed to different concentrations of curcumin.
CI was monitored during 72 h after compounds exposure. Reported data are the means of three replicates.
Statistical differences were found after 24 h for 12 and 20 mM of curcumin vs. control cells (without curcumin)
and between 12 mM and 20 mM of curcumin.

http://ars.els-cdn.com/content/image/1-s2.0-S0378517313010752-fx1.jpg

7.2.6 Gemcitabine and γ-cyclodextrin-docetaxel inclusion complex-loaded liposome for highly effective combinational therapy of osteosarcoma

Int J Pharm. 2014 Nov 26; 478(1):308-317.
http://dx.doi.org:/10.1016/j.ijpharm.2014.11.052

Fig.1. Schematic illustration of DTX and GEM loaded nanocarriers. First, DTX was complexed with HP-g-cyclodextrin to form a DTX/CD inclusion complex.
In the second step, GEM and DTX/CD complex was incorporated in a PEGylated liposome.

In vitro release study
The release study of DTX/GEM-L was performed in phosphate buffered saline (pH 7.4) at 37C. As shown in Fig. 3, no initial burst release phenomenon was
observed with both the drugs indicating that none of the drugs were present in the surface of liposome. As expected, hydrophilic GEM released faster than
that of DTX. 50% of GEM released within 16 h of study period and almost 90% of drug released during the 48 h study period. The faster release of drug was
attributed to the free diffusion of drug from the core of liposomes to the release media. On the other hand, DTX relatively released slowly from the liposome
system. It could be due to the presence of inclusion complex which delayed the release rate of DTX. Nearly 40% of DTX released from the CD/liposome
system at the end of 48 h study period. For this system, various factors decide the drug release patterns including nature of drug, interaction between drug
and lipid, diffusion path length. Moreover, difference in the hydrophobicity of drugs decides the drug release pattern. GEM is a highly hydrophilic drug
while DTX is a hydrophobic drug.

Cytotoxic effect of GEM and DTX against MG63 cancer cells
The in vitro antitumor potential of GEM and DTX (individually and combined) was evaluated in MG63 bone tumor cells. The cells were exposed to increasing
concentration of single as well as combined drug in a time-dependent manner. As shown in Fig. 4, both DTX and GEM inhibited the growth of the cancer cell
in a dose-dependent and time-dependent manner. As seen, DTX was more effective in controlling the cell growth rate compared to that of GEM. However,
combined DTX/GEM showed better antitumor potential than that of individual drugs. Most importantly, DTX/GEM-L showed a more pronounced tumor inhibiting
effect than the free drug combination. For example, at a fixed concentration of 1 mg/mL, free DTX/GEM showed 55% cell viability compared to 40% cell viability
for DTX/GEM-L at the end of 24 h. Notably, cellular viabilities of combinational drug were significantly lower than that of individual GEM or DTX. IC50 value
was calculated to quantitatively estimate the inhibitory levels. The IC50 for free GEM and free DTX were >10 mg/mL and 5.4 mg/mL.

Fig. 2. Transmission electron microscope (TEM) image of nanocarriers (A) blank liposome (B) DTX/GEM-loaded CD/liposome.

Fig. 3. In vitro release kinetics of DTX and GEM from DTX/GEM-L. The release study was performed in phosphate buffered saline (pH 7.4) at 37C. The nanoparticle
dispersions were kept in dialysis tube placed in tube containing media. The release samples were collected at predetermined time intervals. *p < 0.05 is the
statistical difference between release rate of GEM and DTX.

Fig. 4. In vitro cytotoxicity evaluation of formulations on MG63 cancer cells. The cells were treated with DTX, GEM, DTX/GEM, and DTX/GEM-L and incubated
for 24 h (a) and 48 h (b), respectively. Untreated cells were considered as control. (c) Cytotoxicity of blank nanoparticles. The free DTX and free GEM was
treated in respective concentrations while a molar ratio of 1:1 (two drugs) was used for DTX/GEM combinational cocktail as well as nanocarriers. *p < 0.05
and **p < 0.01 are the statistical difference between cytotoxicity of DTX/GEM-L and free GEM/DTX.

7.2.7 Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery

European Polymer Journal Sep 2013; 49(9)9:2485–2494
http://dx.doi.org:/10.1016/j.eurpolymj.2013.02.012

A tunable temperature-responsive nanoparticulate system based on the ionic modifications of hydroxypropyl cellulose (HPC) was obtained. Two derivatives of HPC were successfully obtained and characterized: cationic (modified with trimethylammonium groups) and anionic (modified with styrenesulfonate groups). Due to the polycation-polyanion interactions they spontaneously self-assemble into nanoparticles in water. The size and surface charge of the nanoparticles can be controlled by the polycation/polyanion ratio. The resulting structures are spherical with diameters in the range from 150 to 250 nm, as confirmed by AFM, SEM, and DLS measurements. The size of the nanospheres increases in elevated temperatures. A model compound, curcumin, known for its anti-cancer and anti-inflammatory properties, was effectively entrapped inside nanospheres. Its release profile was found to be temperature-dependent.


Graphical abstract

Full-size image (10 K)

Highlights

► Cationic and anionic derivatives of hydroxypropyl cellulose were synthesized. ► The polymers self-assemble forming spherical nanoparticles. ► The size of the nanoparticles is temperature-dependent. ► Curcumin could be efficiently entrapped within the nanospheres. ► No burst effect was observed for curcumin release.

7.2.8 The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF

Int J Pharm. 2014 Nov 13; 478(1):147-154.
http://dx.doi.org:/10.1016/j.ijpharm.2014.10.065

RNA interference (RNAi) holds considerable promise as a novel therapeutic strategy in the silencing of disease-causing genes. The development of effective delivery systems is important for the use of small interfering RNA (siRNA) as therapy. In the present study, we investigated the effect on breast cancer cell lines and the co-delivery of liposomes containing siHIF1-α and siVEGF. In order to achieve the co-delivery of siHIF1-α and siVEGF and to obtain lower cytotoxicity, higher transfection and silencing efficiency, in this study, we used chitosan-coated liposomal formulation as the siRNA delivery system. The obtained particle size and zeta potential values show that the chitosan coating process is an effective parameter for particle size and the zeta potential of liposomes. The liposome formulations loaded with siHIF1-α and siVEGF showed good stability and protected siRNA from serum degradation after 24-h of incubation. The expression level of VEGF mRNA was markedly suppressed in MCF-7 and MDA-MB435 cells transfected with chitosan-coated liposomes containing HIF1-α and VEGF siRNA, respectively (95% and 94%). In vitro co-delivery of siVEGF and siHIF1-α using chitosan-coated liposome significantly inhibited VEGF (89%) and the HIF1-α (62%) protein expression when compared to other liposome formulations in the MDA-MB435 cell. The co-delivery of siVEGF and siHIF1-α was greatly enhanced in the vitro gene silencing efficiency. In addition, chitosan-coated liposomes showed 96% cell viability. Considering the role of VEGF and HIF1-α in breast cancer, siRNA-based therapies with chitosan coated liposomes may have some promises in cancer therapy.

Fig. 2. TEM photographs of  cationic (a) and chitosan-coated (b) liposomes.

As shown in Table 1, the particle sizes of the liposome formulations fluctuated from 131.25 2.76 nm to 641.75 + 5.24 nm. The particle size of the chitosan-coated liposomes was significantly larger
than the non-coated liposome formulations (between 510.65 + 49.71 nm and 641.75 + 25.24 nm). In addition, the particle sizes of the liposome formulations containing siVEGF and siHIF were
smaller than those containing either siVEGF or siHIF  only (Table 1). According to the net surface charge values, the prepared liposome formulations which are suitable for the methods used,
are determined to have the expected electrical charge type (anionic liposome 23.10 + 0.71 mV; cationic liposome 39.05  1.63 mV). It was determined that siRNA which was added to the
formulation and coating with the chitosan of  the liposomes affected their net surface charge. The surface charge values changed into negative directions with the amount of siRNA added
to the formulation (anionic liposome 26.60 + 0.14 mV; cationic liposome 29.95 + 0.64 mV). It was determined that the surface charge values changed into positive directions during the
coating process of the negatively charged liposomes with a natural cationic polymer chitosan (chitosan coated anionic liposome 27.0 + 0.57). These  data suggest the liposome exerts
a protective effect on the siRNA.

7.2.9 Interactions of nanomaterials and biological systems. Implications to personalized nanomedicine

Adv Drug Deliv Rev. 2012 Oct; 64(13):1363-84.
http://dx.doi.org:/10.1016/j.addr.2012.08.005

The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials.

The application of nanotechnology to medicine has created an interdisciplinary research field, often referred to as nanomedicine, which has the potential to significantly improve the way many diseases are treated [1]. Within the nascent but rapidly growing field of nanomedicine, personalized medicine applications are among the most promising and exciting innovations [2]. Personalized medicine consists of a healthcare strategy where specific therapeutics are prescribed to patients on the basis of genetic, phenotypic, and environmental factors that influence the response to therapy [3]. It has long been recognized that individual patients respond differently to the same drug in terms of efficacy and safety due to the complexity and heterogeneity of diseases and patients [4]. For example, some drugs and dosages cause adverse health effects within a particular patient population while a different patient population responds well to the drug treatment with minimal side effects. Similarly, there may be marked variability in efficacy as well. With an increased understanding of genomics and the emergence of novel technologies for the investigation of molecular profiling and genetic mapping of a patient, personalized medicine is poised to begin reaching its full potential.

The application of nanomaterials to medical problems has already demonstrated a clinical impact in terms of delivery strategies for a range of bioactive molecules, including therapeutic agents, nucleic acids and imaging contrast agents [5]. Nanotechnology enables a combinatorial library of nanoparticles to be synthesized with precise control over surface modifications (e.g., targeting moieties, charge modification, stealth), size, shape, and other particle characteristics that can be screened in order to find the best particle properties for patient-specific therapeutics [6]. There are already examples of nanomedicine in the clinic. Doxil®, a PEGylated liposomal doxorubicin formulation, was the first nanosized therapeutic on the market in 1995 and was used as an effective treatment for metastatic breast cancer and recurrent ovarian cancer [7]. Other systems are in various stages of preclinical and clinical advancements. For example, a targeted therapeutic nanoparticle, named BIND-014, that accumulates in tumors while avoiding uptake by the healthy cells have shown promising results in an ongoing clinical trial [6]. Another example is a lipid nanoparticulate delivery system (Oncoprex®) containing plasmid DNA encoding the TUSC2 tumor suppressor that is being studied in combination with erlotinib, a human epidermal growth factor receptor (EGFR) inhibitor, in lung cancer patients unresponsive to erlotinib or lacking the EGFR mutation [8]. Preclinical studies in animals showed that intravenous TUSC2 nanoparticles work synergistically with erlotinib to overcome drug-induced resistance by simultaneously inactivating the EGFR pathway and by inducing apoptosis in resistant cells. A phase II clinical trial evaluating intravenous TUSC2 nanoparticles in combination with erlotinib will begin in 2012. This will provide two possible therapeutic options depending on the tumor EGFR expression: EGFR inhibitor monotherapy or in combination with the nanoparticles. Progress has also been made in the development of versatile nanocarriers placing emphasis upon patient-specific treatments. For example, Zhang and colleagues recently proposed red blood cell (RBC) membrane-coated nanoparticles to evade the immune system and exhibit longer retention time in the blood [9]. This approach suggests an elegant yet hard to clinically-implement methodology: the patient’s RBCs are collected and emptied to leave only the membranes, the latter are then fused with pre-formed polymeric nanoparticles. The resultant RBC-membrane coated nanoparticles are therefore decorated with the patient’s own proteins and cell membranes to evade the host’s defense mechanisms.

While personalized medicine can guide the design and use of nanocarriers, nanotechnology can also aid in the collection of genomic and molecular data necessary for personalized medicine. Advances in personalized medicine occur through the development of novel nanomaterials as well as technologies for the early detection, imaging, and identification of molecular signatures of diseases. The field of pharmacogenetics and “omics” technologies (e.g., pharmacogenomics, pharmacoproteomics and pharmacometabonomics) have enabled the investigation of an individual patient’s genetic and molecular profiles. This information have provided insights into the mechanisms of disease and how to appropriately combine therapeutics with specific disease profiles. Nanoscale materials and technologies have the ability to greatly expand the molecular and genetic information gathered from patients. For example, the GeneChip® microarray allows nanoscale patterning of biological molecules on surfaces with exquisite control over their spatial placement to obtain DNA sequencing [1, 10]. With the ability to control molecular deposition now in the nanometer range, a million-fold increase in information density could be packed in “nanoarrays” for the detection of nucleic acids or proteomic profiles [1113]. Another example is gold nanoparticles modified with biorecognition molecules that are used for high-throughput genomic detection and are currently approved for use by the FDA [1416].

A research report of commercialization efforts of nanomedicine from the Business Communications Company indicated that the global nanomedicine sales are projected to grow to over $100 billion by 2014 [17]. There are increasingly growing partnerships between biopharmaceutical companies and nanomedicine startups pursuing nanomedicine R&D projects due to the enormous potential applications of nanotechnology to healthcare. One of the predominant focuses is drug delivery applications. The other nanomedicine products include in vivo imaging agents, in vitro diagnostics, biomaterials, and active implants [18]. As our fundamental understanding of diseases increases, implementations of nanotechnology will offer an expanding toolbox to improve point-of-care diagnostics, enable integration of diagnostics with therapeutics, and treat patients with a more personal approach.

While nanomedicine starts to show much promise to the field of personalized medicine, further research is required to expand its impact. In particular, a fundamental understanding of the interactions between nanomaterial surfaces and complex proteins in biological fluids needs to be achieved. This would influence both in vivo delivery of therapeutics and ex vivo diagnostics. Likewise, interactions between nanomaterials and cells, through non-specific contacts or ligand-receptor interactions, as well as the intracellular mechanisms responsible for trafficking of a nanomaterial in the cell, must be more thoroughly characterized. There is a complex relationship between a nanomaterial’s physicochemical properties (e.g., size, charge, surface properties), and its interaction within a biological system. Small changes in size, charge, surface functionalization and chemical composition can lead to radically different interactions with living systems [19]. These interactions then determine the biocompatibility, stability, biological performance and side effects of the nanomaterial. In this regard, understanding the nano-bio interactions and the relationships between the nanomaterial properties/structure and activity will provide a conceptual basis for the rational design and safe use of personalized nanomedicines.

In the first section of this review, we will address different areas in which better comprehension is required and propose examples showing how nanomaterials interact with their environment in complex and subtle manners. Each subject will be discussed from the perspective of its implications for personalized medicine. The second section will highlight some examples that demonstrate current trends and novel concepts in the field of nanomedicine and its impact on personalized medicine. These include nano-sized platforms for the targeted delivery of therapeutics, contrast agents for diagnostic imaging, and theranostic nanoparticles. The use of nanoparticles for the discovery of biomarkers and molecular diagnostic will also be evaluated. Finally, the third section will present the scientific and technical challenges associated with developing personalized nanomedicines, various safety, political and ethical issues raised in the field, as well as the obstacles and limitations associated with personalized nanomedicine.

Interactions of nanomaterials in biological systems

As the role of nanomaterials in biology and medicine continues to grow, the number of situations in which they will be in contact with biological systems will indisputably increase. In this domain where the complexities of nanotechnology and human physiology combine, fundamental understanding is essential before one can think about intricate applications. In the following section, three different aspects of the interactions between nanomaterials and proteins will be presented. Their relevance to personalized medicine will be highlighted in the last section.

Protein-binding

When nanoparticles are utilized for treatment, imaging a tumor, or aiding to establish a diagnosis upon systemic administration, the first tissue they encounter is the blood and all the proteins it contains within. Similarly, when diagnostic nanomaterials are used in vitro or ex vivo to analyze samples of biological fluids, they will come in contact with complex proteins mixtures. The adsorption of proteins on a substrate is a much more complex phenomenon when the surface possesses nanoscale dimensions as compared to that of larger proportions [20]. The relative surface area of nanomaterials is very large and their features are on the same order as proteins (1 to 20 nm) [21]. The interactions between proteins and materials of the nano- and meso- or macroscales are therefore both quantitatively and qualitatively different.

Upon contact with biological fluids (e.g., blood, interstitial fluid or mucosal secretions), nanoparticles are coated with proteins that may change their surface charge and properties. This biological coating can subsequently lead to the loss of performance due to an increase in hydrodynamic size or aggregation. The protein that binds most strongly to polymeric nanoparticles, liposomes, iron oxide nanoparticles and carbon nanotubes are albumin, immunoglobulins, fibrinogen, apolipoproteins and proteins from the complement cascade [20].

Decreasing the nonspecific protein interaction

When nanoparticles are administered systemically, the proteins that adhere to their surface will greatly affect their circulation and biodistribution [22, 23]. Complement and immunoglobulin binding promotes particle opsonization, leading to recognition by the mononuclear phagocyte system (MPS) and rapid clearance from the bloodstream [22]. MPS capture is dictated by macrophage phagocytosis (mostly in the sinusoids of the liver) and splenic filtration [23, 24]. Aggregation of nanoparticles in the blood can also lead to retention and embolism in the lung capillaries [25].

Short circulation half-life, low efficacy, and toxicity caused by accumulation of foreign materials in the liver and spleen are the primary limitation for the systemic administration of nanoparticles. These issues have led to the development of strategies aimed at increasing blood residence time. Among these, the use of poly(ethylene glycol) (PEG) for surface functionalization has been shown to dramatically reduce protein absorption, particularly apolipoprotein J and complement protein C3, through hydrophilicity and steric repulsion effects, therefore extending residence time in blood [2628]. This has allowed the “stealth” nanoparticle carriers to be present in the bloodstream long enough to reach or recognize their therapeutic site of action [29].

Examples of “stealth” nanocarriers include PEGylated liposomal doxorubicin (Doxil®) and the PLA-PEG micelle form of paclitaxel (Genexol-PM®, marketed in Korea in 2007). Encapsulating doxorubicin within PEGylated nanoparticles allows for extended circulation half-life in blood and higher tumor concentration of doxorubicin. The homing to the disease site is driven only by the particles’ nano-dimensions and PEGylated surface through the enhanced permeability and retention (EPR) effect [30], which results from enhanced vascular permeability and the absence of a functioning lymphatic system, and is not related to any specific recognition of the target.

In addition to causing quick clearance, nonspecific interactions of nanomaterials with proteins from complex biological samples (e.g., human blood serum, plasma and tissue extracts) hamper the full exploitation of ex vivo nano-based diagnostics and arrays [31]. Novel diagnostic nanomaterials are emerging for the detection and quantification of less abundant biomarkers in biological samples and are envisioned to provide ground-breaking tools for personalized nanomedicine [32]. These nanoparticles and nanostructures possess many unique and advantageous physical properties when applied as ultra-sensitive signal transducers and protein biosensors in the fields of molecular diagnostics and proteomics. Their nanoscale dimensions also result in increases in information quality, quantity and density. Major examples include nanocantilevers, nanowires, nanotube arrays and oligonucleotide-modified gold nanoparticle-based bio-barcode assays that enable multi-biomarker detection [1]. However, the development of these approaches with high sensitivity and selectivity faces several bottlenecks including deconvolution of noise from the signal, especially in regard to biofouling. For the analysis of proteomic signatures, a major challenge will be the identification of signatures from low-concentration molecular species, in the presence of extremely high concentrations of non-specific serum proteins. Nonspecific binding remains a major concern which may lead to false positive signals and low signal-to-noise ratios for a given assay. For various applications such as affinity biosensors or nanoarrays, it is critical to block possible sites for nonspecific binding and/or treat nanomaterials with surface coatings that combine an ultralow fouling background with abundant biorecognition elements. To solve this problem, nonfouling coating materials such as zwitterionic polymers, PEG and its derivates have been developed to prevent nonspecific protein adsorption when exposed to complex media [33, 34]. For example, combined with a surface plasma resonance (SPR) sensor, the protein arrays created using zwitterionic poly(carboxybetaine acrylamide) are able to detect specific cancer biomarkers and monitor the kinetics of antigen-antibody interactions from 100% human blood plasma with high specificity and sensitivity [33]. The background noise was very low due to significantly minimized total nonspecific protein adsorption on the functionalized zwitterionic surface.

Limiting the immunogenicity

Decreasing the immunogenicity of a nanomaterial is also of critical importance since therapeutic nanoconstructs have dimensions very similar to those of pathogens for which recognition signals were positively selected for evolution [35]. The understanding of the immune reactions to therapeutic and diagnostic nanomaterials is still poorly characterized and additional knowledge is required to ensure which characteristics warrant repeated systemic administration without adverse reactions.

For example, in preclinical studies, the phenomenon aptly named accelerated blood clearance (ABC) has been observed in animal models for various types of nanoconstructs [3638]. In this effect, an initial sensitization of the animals to the nanomaterial triggers a transient immune response and induction of Immunoglobulin M (IgM) antibody which prompts rapid clearance of the subsequently administered doses by increased capture in the liver and the spleen [1214]. The factors that impact the appearance of this phenomenon are multifaceted and include the nature of the payload of the nanomaterial [39, 40], the dose administered [3941], and other physicochemical characteristics of each nanoconstruct [41, 42]. The encapsulation of cytotoxic compounds seems to highly diminish the ABC effect, possibly through a deleterious effect on the B cells responsible for the secretion of IgM [39, 40]. In the current context where all nanomedicines on the market contain anticancer drugs, the manifestations of ABC have had limited significance. However, the future development of nanomedicines for all types of diseases and encapsulating a variety of drugs will certainly have to address that problem before nanomaterials can be repeatedly and consistently administered.

Understanding nanomaterial-protein interactions is also important for the development of safer and better tolerated nanomedicine. PEGylated liposomes are known to exhibit prolonged circulation time in blood and have had success in translation to the clinic. However, infusion of therapeutic liposomal drugs such as Doxil® as well as other amphiphilic lipids which have reached the bedside (e.g., Cremophor EL®) could lead to a hypersensitivity syndrome called complement activation-related pseudoallergy (CARPA). The CARPA syndrome differs from anaphylaxis since it does not involve IgE but arises as a consequence of activation of the complement (C) system. Also, CARPA improves upon subsequent exposure and can be mitigated in patients by reducing the infusion rate as opposed to anaphylaxis where re-exposition usually triggers a more serious reaction [43].

Moghimi et al. have demonstrated that liposomes prepared using anionic phospholipid-PEG conjugates caused CARPA, partly because the highly cationic region of the globular C1q protein binds with the anionic charge localized on the phosphate oxygen of the lipid-PEG conjugate through electrostatic interaction. This induces activation of the complement cascade, opsonization of the nanoparticle surface and anaphylatoxin production (reflected in significant rises in SC5b-9, C4d, C3a and C5a levels in human sera) [44]. CARPA is mostly mild and transient, but in some patients, it can be severe or even lethal. In addition, a main manifestation of complement activation is cardiopulmonary distress; therefore, CARPA may be a safety issue primarily in cardiac patients.

Several methods have been explored to circumvent the problem. A previous study revealed that removal of the negative charge by methylation of the phosphate oxygen of lipid-PEG conjugates totally prevented complement activation. Others have recently synthesized a range of neutral lipopolymers and variations thereof for liposome engineering [45]. Remarkably, preliminary investigations have demonstrated that such lipopolymer-incorporated liposomes are poor activators of the human and porcine complement system when compared to vehicles bearing anionic lipid-PEG conjugates [46]. The nanoformulations prepared with neutral lipopolymers may hold great potential to treat patients with severe CARPA response or cardiac disease. More studies have been conducted to test the CARPA concept and the immunological interactions of liposomal and amphiphilic polymeric nanoparticles [47, 48]. In addition to the CARPA reactions observed in the clinics, complement activation also leads to opsonisation of the nanomaterials and enhances their clearance by the MPS. Therefore, any measure to prevent its activation could translate into increased circulation times and efficiency. Figure 1 demonstrates the different pathways that trigger the complement system and how physicochemical properties of nanomaterials can switch the activation process from one pathway to another [4955].

pathways of complement cascade activation nihms-401532-f0001

pathways of complement cascade activation nihms-401532-f0001

The physicochemical properties of the nanomaterial surface can trigger the different pathways of complement cascade activation [4955]. The classical pathway is activated through deposition of specific proteins like antibodies and others. The lectin pathway is triggered by the recognition of the surface by a Mannose-binding Lectin (MBL) through pathogen-associated motifs. The lectin subsequently interacts with a serine protease (MASP) to elicit the formation of a C3-convertase (C4b2a) analogously to the classical pathway. The spontaneous tickover responsible for the alternative pathway activation is constantly present in plasma. When not properly regulated, the preferred deposition of the C3b products on the surface of the nanomaterial amplifies the cascade activation. All 3 pathways lead to C5-convertases that cleave C5 and lead to the deposition of the terminal membrane attack complex which can lyse pathogens and senescent cells, further releasing proinflammatory mediators. The release of proinflammatory chemoattractants is symbolized by the yellow outburst.

Exploiting the beneficial aspects of protein-binding

The nanomaterial-protein interactions should not only be viewed as being disadvantageous, as some preferential interactions can be used to guide the distribution of nanoparticles to specific tissues. For example, decoration of nanomaterial with specific proteins prior to injection has been exploited for particular targeting purposes [5658].

More recently, a possibly higher response rate in a subset of patients observed during the first clinical studies on albumin-coated paclitaxel (nab-PTX, Abraxane®) sparked a flash of enthusiasm in the drug delivery community. In this study, it was found that different response rates between individual patients receivingnab-PTX could be explained by degrees of expression in the extratumoral protein SPARC (secreted protein acidic and rich in cysteine) [59]. SPARC is a secreted matricellular glycoprotein with high binding affinity to albumin which functions to regulate cell-matrix interactions [60]. Its overexpression is associated with increased tumor invasion and metastasis, leading to poor prognosis in multiple tumor types including breast, prostate, and head and neck cancers [61]. In this context, the prospect that SPARC-positive patients would respond better to nab-PTX was particularly appealing.

Desai et al. tested this hypothesis by correlating the clinical response and SPARC tumor expression in a retrospective analysis of 60 patients receiving nab-PTX as monotherapy against head and neck cancer [59]. It was found that response to nab-PTX was higher for SPARC-positive patients (83%) than SPARC-negative patients (25%). As shown in Figure 2, a possible explanation for the positive correlations between SPARC expression and the drug is that the interactions of albumin and SPARC in the tumor interstitium could facilitate the accumulation of nab-PTX in the tumor. Furthermore, the albumin-drug interactions were thought to facilitate the transport of paclitaxel molecules across endothelial barriers via gp60 receptor and caveolin-1 mediated transcytosis [59].

Mechanisms for the transport and accumulation of albumin-bound paclitaxel in tumor nihms-401532-f0002

Mechanisms for the transport and accumulation of albumin-bound paclitaxel in tumor nihms-401532-f0002

Mechanisms for the transport and accumulation of albumin-bound paclitaxel in tumors. Binding of albumin-bound paclitaxel complexes to the gp60 receptor and subsequent caveolin-1 mediated transcytosis results in transport across the endothelial barrier of the tumor vasculature. SPARC, an albumin-binding protein present in the tumor interstitium, enhances accumulation of the complexes in tumor tissue. Figure taken from reference [59].

As further supporting evidence, a study in animals with multiple tumor xenografts also showed correlations between the relative efficacy of nab-PTX and SPARC expression. In this study, the albumin-containing formulation was compared to polysorbate-based docetaxel. In comparison with control groups, the effect ofnab-PTX in HER2-positive breast tumors with increasing SPARC expression seemed superior to that witnessed in MDA-MB-231/HER2-positive tumors with low SPARC expression [62]. It should be noted, however, that differences between the pharmacological agents used (paclitaxel vs. docetaxel) and the large discrepancies between the doses of drug administered in the different groups strongly limit the conclusions that can be drawn from this study.

To complicate matters, a recent study yielded confounding evidence about the implication of SPARC on the efficacy of nab-PTX. In animals bearing patient-derived non-small cell lung cancer (NSCLC) tumor xenografts, the response to nab-PTX could not be correlated to SPARC expression. In this study, the improved antitumor effect of the albumin-based formulation over solvent-solubilized PTX could also be observed in some SPARC-negative tumors and the induction of SPARC expression in low-responsive tumors could not enhance activity [63]. This implies the possibility of other mechanisms being implicated to explain the response to nab-PTX. In this study, the compared doses of drugs (30 mg/kg/day of nab-PTX vs. 13.4 mg/kg/day of solvent-formulated PTX) were reputedly equitoxic. However, these doses were ascertained based on the tolerability of the compound in mice [64]. Hence, it still remains difficult to address if the benefits of nab-PTX over solvent-formulated PTX are uniquely owed to improved tolerability or to real targeting manifestations.

In conclusion, more efforts are needed before we can ascertain the role of SPARC expression as a biomarker for personalized anticancer therapies using albumin-based formulations. For one, there is a current lack of understanding of the stability of the 130-nm albumin-encapsulated PTX nanoparticles once it is introduced in the blood. Some reports mention that, upon dilution, the nanoparticles dissolve into individual albumin-PTX complexes [65], but the nature of these interactions between the drug and proteins remain unclear. Finally, larger prospective clinical validations in multiple tumor types are required to investigate the correlations between SPARC expression and response to treatment. As of now, the only published clinical justification that establishes association between nab-PTX and SPARC expression is a retrospective analysis of a 60-patient clinical phase II study [59].

The impact of nanomaterial-protein interactions on personalized nanomedicine

From the preceding examples, it is clear that further understanding of the interactions between proteins and nanomaterials are required to further establish their potential for personalized medicine. The role of blood proteins on the clearance and immunological mechanisms must be better defined in order to more effectively implement nanoconstructs for therapeutic purposes. Patients display inter-individual variability in the circulating levels of various proteins (e.g., lipoproteins, immunoglobulins, cytokines). These differences can explain the variations in each patient’s response to therapeutics or their higher susceptibility to side effects (i.e., CARPA is observed only in a “reacting” subset of patient population) [43]. Similarly, the homeostasis of blood component can also be intensely affected by health conditions or diseases [66]. For example, physiological stress can trigger overexpression of acute-phase proteins and some of these proteins (e.g., C-reactive protein) can enhance complement activation and macrophage uptake when fixed on the surface of pathogens and senescent cells [67, 68]. The impact of such conditions on the fate of therapeutic nanomaterial must be ascertained before nanomedicine can be used efficiently in a variety of diseases.

In addition, nanomaterial-protein interactions must also be further understood to optimally exploit their beneficial effects on the activity or distribution of nanoconstructs. The example of SPARC is particularly relevant because if the protein is confirmed as a predictive biomarker of response to treatment, the albumin-based formulation would become the first nanomedicine approved for individualized therapy. However, extensive additional preclinical and clinical evidence is required before patients screened based on SPARC expression can receive personalized treatments.

2.2 Ligand-mediated interactions

Nanomaterials can be designed to specifically recognize a target with a surface ligand. These interactions can be utilized to preferentially concentrate a therapeutic nanoconstruct at a diseased tissue in vivo [69] or to bind and detect a biomarker for ex vivo diagnostic purposes [1]. The dimensions of the nanomaterials and the opportunity for polyvalent decoration of their surface with ligands contribute to their potential as effective homing and recognition devices. Throughout evolution, pathogens have exploited the multivalent patterning of a ligand on their surface to considerably enhance their affinity and tropism for their target [35, 70]. Likewise, on artificial constructs, a simple increase in the stoichiometry of a ligand can sometimes drastically enhance the ability to bind a substrate [71].

The decoration of a nanoparticle’s surface with a ligand can also trigger receptor-mediated endocytosis by cells expressing the right target on their membrane, a process that has considerable implications for targeted delivery [72]. Ligand-mediated interactions provide many opportunities for personalized medicine including differential spatial localization, intentional homing of nanoparticles to active diseased sites, and elimination of off-target adverse effects. Figure 3A and B illustrate the active binding of nanoparticles to cell surfaces for vascular targeting and tumor cell targeting. Ligand-functionalized nano-based therapeutic systems or imaging contrast agents therefore represent unrivaled platforms to improve the specificity and sensitivity of treatment and diagnostic tools.

Nanoparticles with ligands specific for endothelial cell surface markers nihms-401532-f0003

(A) Nanoparticles with ligands specific for endothelial cell surface markers allow for binding and accumulation to tumor vasculature. (B) Once in the tumor tissue, nanoparticles with ligands specific for tumor cell markers can actively bind to tumor cells,

The ligands used to decorate nanoparticles can include antibodies, engineered antibody fragments, proteins, peptides, small molecules, and aptamers [73]. For both applications, two types of targets exist: targets that are ubiquitously-expressed in all tissues and targets that are specific to diseased cells. Herein several examples of ligand-receptor interactions exploiting both categories will be presented, and special attention will be given to a few nanoplatforms that are targeted through ligand-receptor interactions and have made their way successfully to clinical trials [74].

2.2.1 Ubiquitous targets

The active targeting of drug delivery systems with transferrin (Tf), a 80-kDa blood-circulating glycoprotein, is a concept which dates back to the late-1980s [75]. Several characteristics make the targeting of transferrin receptors (TfR) attractive and an abundance of systems exploiting this internalization pathway have been designed. First, although the TfR is expressed in all types of tissue to satisfy the ferric (II) iron requirements of dividing cells, the hyper-proliferation of cancer cells makes it an attractive overexpressed target in tumors [76]. Secondly, the endocytosed TfR is very rapidly recycled to the cell surface after internalization [77, 78] which makes it an appealing, almost non-saturable, entryway into the cells. Thirdly, the TfR is believed to facilitate the transport of macromolecules and nanoconstructs across the blood-brain barrier [77], representing a rare opportunity to enable penetration to the central nervous system. For all these reasons, the targeting of therapeutic nanomaterials through Tf has been widely studied.

Recently, Davis et al. reported the first human trial of targeted siRNA delivery using polymeric nanoparticles containing Tf-modified cyclodextrin (CALAA-01) [79, 80]. In this study, human Tf was used as a targeting ligand for binding to TfR, which is typically upregulated on cancer cells and trigger cellular uptake via clathrin-coated pits. These targeted nanoparticles were administered intravenously to patients with melanoma where they circulated and localized in tumors (Figure 4). The Tf on the nanoparticle surface was able to bind to overexpressed TfR on cancer cells, and the nanoparticles were internalized via receptor-mediated endocytosis (Figure 4d). Tumor biopsies from melanoma patients obtained after treatment showed the presence of intracellularly localized nanoparticles in amounts that correlated with dose levels of the nanoparticles administered. Furthermore, a reduction was found in both the specific messenger RNA and the protein levels when compared to tissue obtained before dosing of the targeted nanoconstructs.

Figure 4

Assembly and function of targeted cyclodextrin nanoparticles containing siRNA. (a) Nanoparticles consist of four components: (i) a water-soluble, linear cyclodextrin-containing polymer (CDP), (ii) an adamantane (AD)-PEG conjugate (AD-PEG), (iii) the targeting

The receptor tyrosine kinase EGFR is another potent and well-studied target for anticancer drug delivery systems which is constitutively expressed on the surface of cells throughout the body. In response to the binding of its ligands (i.e., various growth factors), EGFR is significantly involved in cell signaling pathways associated with growth, differentiation and proliferation. EGFR exists on the cell surface and is overexpressed in multi-drug resistant (MDR) cancer cells [81, 82]. Milane et al. utilized this overexpression through the development of EGFR-targeted polymeric nanocarriers for the treatment of MDR cancer using paclitaxel (a common chemotherapeutic agent) and lonidamine (an experimental drug; mitochondrial hexokinase 2 inhibitor) [82]. The safety and efficacy of nanoparticle treatment were tested in a mouse orthotopic model of MDR human breast cancer. It was observed that this nanocarrier system demonstrated superior efficacy and safety relative to free drug combinations (paclitaxel/lonidamine solution) and single agent treatments in nanoparticle and solution forms. The targeted nanoparticles loaded with a combination of paclitaxel and lonidamine were the only treatment group that achieved sustained decrease in tumor volume. In addition, treatment with the EGFR-targeted lonidamine/paclitaxel nanoparticles decreased tumor density and altered the MDR phenotype of the tumor xenografts, decreasing the MDR character of the xenografts as evidenced by a drop in the expression of P-glycoprotein (Pgp) and EGFR. In another study, a versatile nanodiamond (ND) construct that incorporates anti-EGFR monoclonal antibodies (mAb), a fluorescent imaging agent and paclitaxel has been developed for multimodal imaging and the treatment of triple-negative subtype of breast cancer (TNBC) [83]. EGFR is expressed at high levels in at least 20% of breast cancers overall, but in 60-70% of patients with TNBC [84], which makes EGFR a potential treatment target. The enhanced cellular internalization of anti-EGFR mAb conjugated ND was only observed in the EGFR-overexpressing MDA-MB-231 cells but not in the basal EGFR expressing MCF7 cells. The data suggested that targeting through the mAb moiety increased specificity and internalization within EGFR-overexpressing breast cancer cells, which subsequently enhanced therapeutic activity of targeted conjugates. To monitor receptor-mediated endocytosis, Lidke et al. used quantum dots (QDs) conjugated to epidermal growth factor (EGF) to study erbB/HER receptor-mediated cellular response to EGF in living human epidermoid carcinoma A431 cells, assigning the mechanism of EGF-induced signaling to heterodimerization of erbB1 and erbB2 monomers and uncovering retrograde transport of endocytosed QD probes [85].

Finally, other examples of ubiquitously-occurring receptors being exploited for active targeting of ligand-functionalized therapeutics exist. For instance, various macromolecular drug conjugates and nanoparticulate systems were studied to take advantage of the overexpression of the folate receptor in tumor cells for the purpose of enhanced delivery as well as diagnosing and imaging malignant masses with improved specificity and sensitivity [86, 87]. Similarly, the retinol-binding protein, which is constitutively expressed in the brain, the spleen, the eyes, the genital organs and in lower quantities in the heart and lungs, was recently exploited to target stellate cells in the liver to alleviate cirrhotic fibrosis [88, 89]. In this approach, the favored non-specific distribution of the liposomes in the liver might contribute to enhancing the interactions between the nanomaterials and their target on the surface of the cells.

Cell-specific targets

Targeting to molecules that are differentially expressed at high levels by certain tissues offers a way to enhance accumulation at specific sites in the body. The exploitation of targets which are distinctively expressed in certain organs offers the possibility to further enhance the specificity of a treatment. The use of prostate-specific membrane antigen (PSMA) is a good example of a tissue-specific receptor that has been efficiently used to target anticancer drug-loaded nanoparticles. The first generation of prostate-specific nanoparticles incorporated PSMA-binding aptamers on their surface to promote internalization by cancer cells. In a mouse xenograft model, one single intratumoral injection of aptamer-functionalized nanoparticles loaded with docetaxel was able to show a considerably higher proportion of complete tumor regression and significantly prolonged survival rates [90]. Similar aptamer-decorated particles were also shown to be able to incorporate prodrugs of a hydrophilic platinum compound [91]. In order to translate these findings to the clinic, a formulation using a low molecular weight ligand with high affinity for PSMA was developed. These formulations using urea-based ligands provided the advantages of being easier to scale-up, while simultaneously not presenting the potential immunological problems associated with the presence of nucleic acids on the surface of the nanomaterial. A docetaxel-containing formulation functionalized with the PSMA-specific ligand, BIND-014, is currently in phase I clinical trials. Preliminary data showed stable disease in patients at doses below the commonly used regimen for the commercially-available, solvent-based docetaxel formulation [6].

Other specific targets have been investigated to optimize the interactions of therapeutic and diagnostic nanomaterials with diseased cells. For example, anti-CD33 monoclonal antibody has been successfully exploited to target leukemic cells since CD33 is a surface antigen expressed on over 80% of leukemia blast cells from acute myeloid leukemia (AML)-suffering patients but not on healthy cells [92]. Gemtuzumab, a monoclonal antibody to CD33 linked to a cytotoxic drug, was approved by the FDA in 2000 for use in patients over the age of 60 with relapsed AML. Upon the conjugation of anti-CD33 monoclonal antibody, the modified polymer/liposome hybrid nanovectors demonstrated enhanced internalization by CD33+ leukemic cell lines while limited interaction was found for nanovectors decorated with an isotype-matched control antibody [93]. In addition, the drug-loaded anti-CD33 nanoformulation exhibited the highest cytotoxicity against CD33+ leukemic cells, suggesting a promising targeted nanotherapeutics for the treatment of AML. The cancer cell-specific anti-nucleosome monoclonal antibody 2C5 (mAb 2C5), which recognizes the surface of various tumor cells (but not normal cells) via tumor cell surface-bound nucleosomes, was also attached to polymeric micelles, making the resulting micelles capable of specifically targeting a broad range of tumors [94]. Intravenous administration of tumor-specific 2C5 micelles loaded with paclitaxel into experimental mice bearing Lewis lung carcinoma resulted in an increased accumulation of paclitaxel in the tumor compared with free drug or paclitaxel in nontargeted micelles and in enhanced tumor growth inhibition.

The increasing availability of monoclonal antibodies for targeted therapy at large has fostered the interest of antibody-functionalized targeted nanomaterial for many years [9598]. However, the presence of these large biological macromolecules (Ab or Ab fragments) can seriously compromise their circulation times in the bloodstream, and their ability to traffic to their intended destination in vivo [99]. Therefore, large efforts have been put in the development of less immunogenic targeting moieties (e.g., peptides, small molecules) [100,101] which might possibly have brighter futures for in vivo applications.

2.2.3 Ligand-mediated in vitro diagnosis

In comparison, the immunologic properties of antibodies are much less of a hindrance for ex vivo diagnostic applications, and the field has benefited greatly from the specific-binding properties of these molecules to recognize and detect biomarkers of interest [1]. Several nanomaterials can be modified with different combinations of specific markers to rapidly screen molecular profiling of small populations of cancer cells at good signal-to-noise levels [102], which is of clinical importance for early cancer detection. An example of such technique named “bioorthogonal nanoparticle detection” (BOND) was developed by Weissleder and colleagues [102]. In this work, live cells were labeled with trans-cyclooctene-modified antibodies (anti-HER-2, EpCAM and EGFR, respectively) followed by coupling with tetrazine-modified fluorescent-labeled iron oxide nanoparticles (Figure 5A and B). The transverse relaxation rate (R2) was measured for ~ 1000 cells, a sample size in line with clinical specimens, using a miniaturized diagnostic magnetic resonance detector. As shown in Figure 5C, markers signals were nearly at normal levels for benign fibroblasts and leukocytes (except for CD45, naturally expressed in the latter) while tumor cells showed considerable heterogeneity in the expression of the different markers. The nuclear magnetic resonance (NMR) signals correlated well with the actual expression levels that were independently determined by flow cytometry using a larger sample size (Figure 5C). This BOND platform demonstrated its application in clinically-oriented molecular profiling by utilizing the polyvalent interactions between engineered nanomaterials and their targets of interest on cell surfaces.

Figure 5

(A and B) Two-step process for targeting biomarkers on cancer cells. Live cells are labeled with TCO-modified antibodies followed by covalent reaction with Tz-modified fluorescent0labeled iron oxide nanoparticles. (C) Cell profiling using a miniaturized

Similarly, small molecules can also be utilized for specific recognition. For example, the self-assembly properties of mannose-functionalized nanoobjects upon interactions with the lectin-coated E. Coli bacterial wall was utilized to detect the presence of the pathogen at different concentrations [103]. In this work, the material becomes highly fluorescent by spatially-rearranging itself in a polymeric fiber structure upon interaction with bacteria. Similarly, in a two-step approach, Weissleder et al. decorated the surface of gram-positive bacteria by targeting the surface D-Ala-D-Ala functional groups on the pathogen with vancomycin-trans-cyclooctene conjugates [104]. The presence of these conjugates is subsequently detected using tetrazine-functionalized magnetofluorescent nanoparticles which can attach covalently in situ with the cyclooctene moieties [102, 104].

Selection of ligands

Depending on the intended application, the ligands chosen in the nanomaterial design will highly influence the efficacy of the system. For ex vivo diagnosis, the nanoparticles are expected to immobilize on the cell surface via ligand-receptor interactions as a diagnostic tag. The high affinity and specificity of the ligands are of paramount importance for the reduction of false negatives and positives, respectively. In contrast, nanoparticles that serve as delivery vehicles for drugs will have other considerations. For example, considering that intracellular delivery of drug-loaded nanoparticles could provide enhanced therapeutic effects, selection techniques have been developed to distinguish internalizing ligands from non-internalizing ligands [105, 106]. Hild et al. elegantly showed that QDs modified with agonists binding to G protein-coupled receptors could be internalized whereas the same nanoparticles modified with antagonists could not [107]. The functionalization of the nanomaterial with the appropriate ligand dictates the fate of the nanoparticle, allowing for either simple flagging of the cell surface or further uptake to deliver a payload using the same target. Recently, Xiao et al. designed a cell-uptake selection strategy to isolate a group of cancer-cell specific internalizing RNA aptamers (Figure 6A) [108]. In this strategy, selection was carried out against prostate cancer cells using counter selection with non-prostate and normal prostate cells to remove non-specific strands. The internalizing ligands were preferentially collected by deleting non-internalizing, membrane-bound aptamers. The cell uptake properties of nanoparticles functionalized with the identified aptamers were confirmed to be highly specific and efficient (Figure 6B).

selection process for isolating RNA aptamers capable of cell-specific internalization in prostate cancer cells nihms-401532-f0006

selection process for isolating RNA aptamers capable of cell-specific internalization in prostate cancer cells nihms-401532-f0006

(A) Cell-uptake selection process for isolating RNA aptamers capable of cell-specific internalization in prostate cancer cells. (B) Visualization of aptamer-functionalized nanoparticle internalization by PC3 cells using confocal fluorescence microscopy.

Further efforts are now underway to identify ligands with the appropriate affinity and to apply these binding ligands to specifically engineer nanomaterials for diagnosis and targeted therapy [109]. One might note, however, that for a specific ligand, the internalizing properties of the nanomaterial can also depend on multiple physicochemical properties, like size [110] and surface density [111]. The biological processes emerging from successful internalization of the nanomaterials by the cells will be discussed in Section 2.3.

Considerations for personalized medicine

In the near future, the availability of ligand-functionalized therapeutic nanomaterial will have a clear impact on the individualized treatment of diseases. In this context, the detection and monitoring of the target expression before initiating therapy and during the whole treatment will clearly be of utmost importance. Similarly, multivalent nanoparticles are complex objects in which behavior depends on a variety of physicochemical properties [6, 112]. Presently, efforts should be made to better understand how ligand-functionalized nanomaterials interact with their targets. In parallel, a better comprehension of the correlations between target expression patterns and cancer prognosis is also required. When both of these aspects are addressed, the therapeutic targets to select for the rational design of nanomedicine will become clearer.

Interactions during intracellular processing

Once endocytosed, nanomaterials are internalized and remain entrapped in transport vesicles which traffic along the endolysosomal scaffold, thereby exerting key effects on subcellular organelles. Intracellular trafficking and the fate of nanomaterials are linked to their physicochemical properties and endocytic pathways [113116]. For example, nanoparticles taken up by clathrin-dependent receptor-mediated endocytosis (RME) are typically destined for lysosomal degradation; whereas, clathrin-independent RME internalization leads to endosomal accumulation and sorting to a nondegradative path [116]. While some drug delivery systems aim to avoid lysosomal degradation [117], recent studies have utilized directed delivery to this environment for the enzymatic release of therapeutics [116, 118]. Understanding the key intracellular interactions of nanoparticles has allowed researchers to engineer nanoparticles for highly specialized delivery. Appropriate design and engineering of nanocarriers could therefore allow for controlled intracellular delivery of therapeutics to individual intracellular compartments, which provides benefits to therapies associated with these unique organelles, including cancer therapy, gene therapy, and lysosomal storage disease (LSD) treatments. Furthermore, by offering an alternative to passive diffusion as an entryway into the cells, the design of nanomaterials that can be internalized by receptor-mediated endocytosis and thus release their active drugs inside subcellular organelles might provide a useful means to circumvent efflux pump-mediated drug resistance [119]. Here we briefly discuss several examples where the physiological endosomal and lysosomal environment can be exploited to develop responsive drug delivery systems.

Intracellular drug release

Polymer-drug conjugates were among the earliest formulations designed to preferentially release their payload inside the cell. Poly[N-(2-hydroxypropyl)methacrylamide] (HPMA) was the first synthetic polymer-drug conjugate to enter clinical trials in 1994. Others, like degradable polyglutamate (PGA), have also been widely clinically investigated as anticancer nanomedicines [118]. These nanosized drug delivery systems are based on the covalent conjugation of chemotherapeutics to hydrophilic polymers, which markedly improves solubility as well as alters drug biodistribution and pharmacokinetics. Conjugates have longer half-life (typically > 1 h) than free drug (< 5 min) when circulating in the blood, leading to significantly increased drug concentrations in tumors [120122]. Since most drugs need to be released from the macromolecule to exert their pharmacological effect, the nature of the linker between the drug and the polymer is therefore of crucial importance (Figure 7). Although the chemical reacting groups on both the macromolecule and the drug dictate the character of the linker available, various classes of bonds with passive or physiologically-triggered cleavage have been studied [123]. Clinical experience has shown that rapid degradation of ester bonds in the bloodstream could lead to suboptimal distribution of the drug in the tumor [124127]. Therefore, if the drug exerts its effects through an intracellular pharmacological receptor, it can be beneficial to design the conjugate with a lysosomally-degradable peptidyl linker (e.g., Gly-Phe-Leu-Gly). This type of linker is stable in the bloodstream but can be cleaved by the lysosomal protease cathepsin B once internalized over 24-48 h [114, 118, 128]. Lysosomes and lysosomal hydrolase malfunctions have been associated with several aspects of malignant transformation, including the loss of cell growth control, altered regulation of cell death, and acquisition of chemo-resistance and of metastatic potential [129]. Lysosomal protease-mediated drug release is thus a key conceptual design principle for the chemotherapy of cancer with nanomedicine [118]. An exciting clinical program is assessing a PGA-paclitaxel conjugate (CT-2103; Opaxio) using the Gly-Phe-Leu-Gly linker [120, 130]. In this system, paclitaxel is released to a small extent by slow hydrolytic release, but is released mainly through lysosomal cathepsin B degradation of the polymer backbone [131]. Experiments in cathepsin-B-homozygous knockout mice confirmed the importance of enzyme degradation and intracellular delivery. Clinical studies showed that a significant number of patients responded to stable disease profiles, particularly in patients with mesothelioma, renal cell carcinoma, NSCLC and in paclitaxel-resistant ovarian cancer [120]. In a recent randomized phase III clinical trial, PGA-paclitaxel demonstrated reduced severe side effects and superior therapeutic profiles compared with gemcitabine or vinorelbine as a first-line treatment for poor performance status NSCLC patients [132, 133]. Additionally, in comparison with men this trial showed increased survival in women treated with PGA-paclitaxel, specially marked in pre-menopausal women [134]. It should also be noted that activity might correlate with estrogen levels which increase expression of cathepsin B [135]. If these findings are confirmed in larger studies, PGA-paclitaxel could be used as a potential gender-specific first-line therapy to treat women with NSCLC.

Tumor cell internalization of polymer-drug conjugates nihms-401532-f0007

Tumor cell internalization of polymer-drug conjugates nihms-401532-f0007

Tumor cell internalization of polymer-drug conjugates occurs through several possible mechanisms, including fluid-phase pinocytosis (in solution), non-specific membrane binding (due to hydrophobic or charge interactions) resulting in receptor-mediated

In addition to lysosomally-cleavable peptide linkers, pH-sensitive cis-aconityl, hydrazone and acetal linkages that respond to changes in intracellular pH have also been used [115]. They can be hydrolyzed under the local acidic pH (6.5-4) within endosomal and lysosomal vesicles [136]. As such, pH-sensitive [137140] or reduction-specific [141, 142] nanoparticle formulations have been designed to facilitate the intracellular delivery of active components. Once low molecular weight drugs are released in the endosome, they are free to escape the intracellular vesicles by diffusion. However, for high molecular weight or charged compounds (e.g., proteins or nucleic acids), passive diffusion through the membrane is difficult and the formulation needs to further provide endosome-disruptive properties to allow for intracytosolic delivery.

Considerable effort has been made to design various types of endosomolytic formulations, especially for the delivery of siRNA and other therapeutic nucleic acids. siRNA must escape from endosome compartments before endosomal/lysosomal degradation occurs in order to exert their gene silencing activity. A wide range of delivery systems have been developed, including dendrimers, liposomes, cationic lipid-like compounds (lipidoids), cyclodextrin, polyethyleneimine (PEI) and others, to facilitate endosomal escape and ensure cytosolic delivery of the therapeutics. In these systems, membrane-disruptive properties can be obtained by using proteins and peptides [143, 144], polymers [145, 146] or simply by incorporating a high number of ionisable amine groups to exploit the proton sponge effect [117]. Figure 8 illustrates the mechanisms of the proton sponge effect, in which nucleic acids are released from polyamine-containing nanoparticles in acidic endosomes. The key to understanding the proton pump hypothesis is the lysosomal proton pump (v-ATPase), which is responsible for acidification of the lysosomal compartment. Within acidifying lysosomal compartments, unsaturated amines on the nanoparticle surface are capable of sequestering protons that are supplied by the proton pump, continuing pump activity and leading to the retention of one Cl- anion and one water molecule for each proton that enters the lysosome. Ultimately, this process causes lysosomal swelling and rupture, leading to siRNA-loaded particle deposition in the cytoplasm [20].

The proton sponge effect nihms-401532-f0008

The proton sponge effect nihms-401532-f0008

The proton sponge effect allows for cationic nanoparticles to escape endosomal and lysosomal vesicles and enter the cytoplasm. When cationic nanoparticles enter acidic vesicles, unsaturated amino groups sequester protons supplied by v-ATPase (proton pump).

Finally, increasing attention has been focused on the targeting of therapeutic agents to specific organelles. This can be achieved by attaching subcellular targeting ligands on the surface of nanomaterials to redirect their accumulation to desired compartments. For instance, Niemann-Pick type A and B are rare genetic LSDs associated with a deficiency of acid sphingomyelinase (ASM), a single enzyme required for the metabolism of lipids, glycoproteins or mucopolysaccharides [147]. A recent study demonstrated that the specific delivery of recombinant ASM to lysosomes by nanocarriers coated with antibody against intercellular adhesion molecule-1 (ICAM-1) could alleviate lysosomal lipid accumulation and improve the efficacy of enzyme replacement therapy [147].

Considerations for personalized medicine

The utilization of intracellular enzymes to trigger the therapeutic activity of nanoconstructs has considerable implications for personalized medicine. As differences in enzyme expression between individuals and pathologies are expected, the sophisticated systems described above might prove more beneficial in a certain subset of patient populations. For example, if the effect of gender-specific cathepsin B expression on the efficacy of PGA-paclitaxel is further confirmed in clinical trials, the appeal of the drug conjugate to treat women-specific cancer types (e.g., ovarian, breast) will certainly be strengthened. More generally, the linkers that can be cleaved by an intracellular protease of interest (e.g., Gly-Phe-Leu-Gly linker) might turn out to be very useful for the design of future drug delivery systems to treat patients overexpressing the target proteases.

The development of drug delivery systems which can effectively deliver their payload inside the cells is also crucial for the future of nucleic acid-based therapies. These therapies hold great promises as treatment and prevention methods for various diseases. For example, successful delivery of siRNA could inhibit the expression of MDR transporters and may restore tumors’ chemosensitivity to treatment [148, 149]. In this context, the combination of conventional chemotherapeutics with siRNA-based therapeutics represents a promising therapy for patients with chemoresistance malignancies.

Engineered nanomaterials for personalized medicine applications

Nanomaterials have evolved significantly over the last few years and nanomedicine has brought unprecedented advances in the diagnosis, imaging and treatment of a variety of diseases. Presently, nearly 250 nano-sized products exist in various stages of development, including nanomaterials with different compositions, physicochemical characteristics, surface functionality and geometry [150]. The following section will explore some examples of the applications of nanomaterials relevant to personalized medicine and the associated design features based on an understanding of nano-bio interactions.

Ex vivo diagnostics

The identification of biomarkers represents the first step in attaining an individually tailored medicine. Biomarkers could be mutant genes, RNAs, proteins, lipids or metabolites that are associated with a specific pathological stage or clinical outcome. Molecular profiling studies on biomarker discoveries have shown that gene expression patterns can be used to identify cancer classification, yielding new insights into tumor pathology such as stage, grade, clinical course and response to treatment [151]. Alizadeh et al. were the first to report the correlation between gene expression patterns and clinically distinct subtypes of cancer based on their study of diffuse large B-cell lymphoma [152]. The concept of a specific molecular profile for each patient’s tumor was later validated [153, 154]. By linking biomarkers with cancer behavior, it is possible to improve diagnosis, assess response to treatment and evaluate progression of cancer based on each patient’s molecular profile [155].

The enhanced interactions that occur between nanomaterials and biomacromolecules (e.g., proteins and nucleic acids) markedly improve the sensitivities of current detection methods. Nanomaterial surfaces can be tailored to selectively bind biomarkers and sequester them for subsequent high-sensitivity proteomic tests [156]. For example, nanoparticles containing DNA sequences complementary to messenger RNAs of biomarker genes can be used as simple and semi-quantitative beacons for the detection of the expression patterns of biomarkers in a single cell [157]. A bio-barcode assay has been recently developed based on oligonucleotide modified gold nanoparticles for high-throughput detection of nucleic acid and protein targets [15]. This approach utilizes gold nanoparticles functionalized with oligonucleotides and antibodies to target either a patient’s DNA or a protein sample and can detect multiple markers with high accuracy (95%). This nanoparticle-based bio-barcode assay has extraordinarily high sensitivity (10−18 M) similar to that of PCR-based assays but without the need for lengthy amplification procedures [14, 15]. Furthermore, this approach does not suffer from the problems often associated with conventional fluorescent probes for microarray labeling, such as photobleaching (loss of signal after exposure to light), which opens a new avenue for developing highly selective panel assays for early detection of a wide range of diseases. This technology has been approved by the FDA for genetic screening to determine drug sensitivity and to detect genetic mutations. It is currently being validated for the detection of proteins found in prostate cancer, ovarian cancer, and Alzheimer’s disease [16].

Likewise, the simultaneous use of nanomaterials with different ligands can allow concurrent detection and precise profiling of the epitopes present in cell specimens. Yezhelyev et al. demonstrated the detection and quantification of multiple biomarkers in human breast cancer cells and biopsies using QDs conjugated with primary antibodies against HER2, ER, PR, EGFR and mTOR [158]. The parallel evaluations of three specimens revealed distinct molecular profiles: one tumor biopsy over-expressed EGFR, another ER and PR, and the third one ER and HER2. This high throughput ex vivo screening analysis could be used to identify the molecular signatures of an individual patient’s tumor, and to correlate a panel of cancer biomarkers with the clinically distinct subset of biomarkers present in the patient’s tumor.

Nanomaterials can also be used to harvest disease-relevant biomarkers in the sample for early detection. Luchini et al. used Poly(N-isopropylacrylamide) hydrogel nanoparticles to harvest and concentrate low molecular weight (LMW) biomarkers (e.g., proteins and metabolites) from biological fluids via electrostatic interactions [159]. The hydrogel nanoparticles possessed defined porosity and negatively- and positively-charged groups for a rapid one-step sequestration and concentration of the ionized LMW fractions from complex serum molecules. The captured peptides or proteins were protected from further enzymatic degradation and were readily extracted from the particles by electrophoresis. When using the nanoporous sieves presented in this study, the proteins are denatured when eluted out of particles and then analyzed by MS for biomarker discovery. The denaturation step may hinder subsequent applications that require the analytes to be in their native state (e.g., immunoassays, enzymatic assays). Therefore, it is necessary to develop novel nanoparticles which preserve the conformational integrity of the isolated proteins. Combined with current proteomic technologies, these nanoparticles provide enormous enhancement of rare biomarkers associated with disease.

In vivo imaging

In recent years, several medical diagnostic technologies have been developed for clinical imaging and detection, including fluorescence imaging, positron emission tomography (PET), single-photon-emission computer tomography (SPET), and magnetic resonance imaging (MRI). These methods require injection of fluorescent trackers, radionuclides or contrast agents. The development of contrast agents able to target specific molecules could advance the molecular characterization of disease, from the identification of disease-associated molecular pathways to the clinical monitoring of relevant biomarkers before and after treatment [5]. Nanomaterials have been explored as platforms for the development of novel contrast agents because they are easily functionalized, possess high contrast, and have tunable physicochemical properties [5].

Various formulations of superparamagnetic iron oxide nanoparticles (SPIONs) are approved or are under clinical investigation for imaging. A key advantage of SPIONs in comparison to other inorganic or heavy metal-based MRI contrast agents is their innocuity. Particles can be degraded to iron and iron oxides molecules that are metabolized, stored in intracellular pools as ferritin, and incorporated into hemoglobin [160]. Administration of 100-200 mg iron/kg in rodent models elicited no detectable side effects [160, 161], a dose well above that used for MRI procedures (< 5 mg/kg). Ferumoxides (Feridex I.V.®) and ferucarbotan (Resovist®) are clinically approved as the first generation SPIONs and are suitable for T2- and T2*-weighted imaging. These contrast agents rely on passive targeting strategies to detect and evaluate lesions of the liver associated with an alteration in the MPS [162]. Their distinctive in vivo behavior dictates their utility in the clinic: ferumoxides, administered via slow infusion, for the detection of small focal lesions with high accuracy during delayed phase imaging [163] and ferocarbotan, which can be administered as a rapid bolus, to produce higher liver-to-tumor contrast during dynamic imaging [164]. Two other SPIONs formulations are currently in clinical trials as contrast agents for MR angiography (MRA). Supravist (Ferucarbotran, a T1-weighted reformulation of Resovist) and VSOP-C184 (7-nm, citrate-coated SPION formulation) have generated first-class images comparable to those using gadolinium (Gd) based agents but with favorable safety, tolerability, and efficacy data [165167]. These nanoparticle-based MRA agents will likely play an important role in advancing angiography as imaging modality for personalized medicine due to their advantages of long plasma half-life and ultra-small sizes that facilitate the detection of small vessels with slow and/or complex flow [165, 168]. SPIONs are now being developed to track cell movement in vivo following transplantation with the long-term goal of developing and monitoring personalized cell-based therapies [169].

For similar applications and as an alternative approach to the use of MRI, others have utilized QDs as probes for high resolution molecular imaging of cellular components and for tracking a cell’s activities and movements inside the body [170, 171]. With the capability of single-cell detection, these nanomaterials enable the real-time characterization of properties of certain cancer cells that distinguish them from closely related non-pathogenic cells.

Since targeted cancer treatments are selected on the basis of the expression patterns of specific biomarkers, there is an urgent need for detecting and monitoring the changes in biomarker expression in situ in a non-invasive manner. Nanoparticles are in development to maximize the specificity of contrast agents by exploiting receptor-ligand interactions. Targeted nanoparticles are able to accumulate at sites where the molecular target is expressed, increasing the local concentration of contrast agents.

One example is the 18F-labeled ABY-025 affibody, a compact three-helix bundle that binds HER-2 [5, 172]. When tested in animals, the 18F-labeled ABY-025 was able to directly assess HER-2 expression in vivousing PET and monitor changes in receptor expression in response to therapeutic interventions [172]. Lee and colleagues also reported that herceptin-conjugated magnetic nanoparticles that target HER-2 could significantly enhance MR sensitivity compared with currently available probes, enabling the detection of a tumor mass as small as 50 mg [173]. The correlation of the signal observed by non-invasive imaging modalities with receptor expression could be utilized to perform follow-up studies without the need for biopsies to evaluate treatment efficacy and direct therapy tailoring.

In the near future, in vivo imaging techniques using nanomaterials will go beyond the field of oncology. Monocrystalline iron oxide particles functionalized with anti-myosin Fab fragments are in preclinical development to detect myocardial infarcts [174]. Similarly, combination approaches using two or more imaging modalities are particularly appealing. Cross-linked iron oxide nanoparticles (CLION) activated by proteases were prepared by encapsulating iron oxide nanoparticles within polymer-Cy5.5 conjugates, combining fluorescence and MRI imaging to assess the enzymatic activity in plaques [175178]. In this system, the fluorescence of the multiple Cy5.5 molecules was quenched until the lysine-lysine bonds were cleaved by cathepsin B, which is upregulated in atherosclerotic lesions. The CLION developed initially for tomography was also able to image vulnerable plaques and infarcted lesions. Other multi-modal nanoparticle-based contrast agents include fluorescently labeled gadolinium-conjugated gold nanoparticles [179] and paramagnetic lipid-coated QDs [180].

Theranostic nanoparticles

Theranostic nanoparticles integrate molecular imaging and drug delivery, allowing the imaging of therapeutic delivery as well as follow-up studies to assess treatment efficacy [181183]. Theranostic nanoparticles can serve as useful tools to explore the fundamental process of drug release after cellular internalization of nanoparticles, which could provide key insights into the rational design of targeted nanocarriers for personalized treatment.

For example, a smart core-shell QD platform, namely QD-aptamer (doxorubicin), was engineered to sense drug release (Figure 9) [183]. A10 RNA aptamer was used to recognize the extracellular domain of PSMA. The intercalation of doxorubicin within the double-stranded “GC” dinucleotide segment of the A10 aptamer on the surface of QDs resulted in quenching of both QD and doxorubicin fluorescence (“OFF” state). Upon receptor-mediated endocytosis of targeted QD conjugates into PSMA-expressing prostate cancer cells, the released doxorubicin induced the recovery of fluorescence from both the QDs and doxorubicin (“ON” state). This system allowed sensing of the intracellular release of doxorubicin and enabled the synchronous fluorescent localization and killing of cancer cells.

QD-aptamer (doxorubicin) system

QD-aptamer (doxorubicin) system

(a) Schematic of a QD-aptamer (doxorubicin) system capable of fluorescence resonance energy transfer (FRET). Doxorubicin is able to intercalate with the A10 PSMA aptamer bound to the QD surface, quenching both QD and doxorubicin fluorescence through a

Another elegant design is the drug-containing paramagnetic nanoparticles targeted to various atherosclerotic plaque lesions components including the αvβ3 integrin [184], fibrin [185], and collagen type III [186], allowing both targeted MR imaging and drug delivery. Animal studies were performed using αvβ3-targeted nanoparticles containing the anti-angiogenesis drug fumagillin repeatedly administered to atherosclerotic rabbits [184]. The results demonstrated that nanoparticle accumulation enabled imaging of the atherosclerotic lesion and generated an anti-angiogenic effect. Advances in this field will pave the way for detecting disease, targeting therapies, and assessing response with one single nanoparticle agent.

Targeted therapies

One of the major avenues of personalized nanomedicine is the development of delivery platforms that can specifically target diseased tissues (i.e., tumor) [187]. In theory, drug targeting would not only ensure a more effective treatment of the target tissue, but also permit a much lower overall dose to be administered than conventional drug delivery, reducing adverse side effects and increasing patient compliance. Two approaches, both passive and active targeting, have been utilized to home nanoparticles to active sites in disease conditions.

Passive targeting takes advantage of the inherent biophysicochemical properties of the nanoparticles (size, shape, charge and flexibility etc.). This phenomenon is most often associated with EPR effects in tumors. A recent in vivo breast cancer study in rodents showed that the passive targeting approach can be used to personalize treatment [188]. Individualized therapy in its simplest form could be achieved by studying the intratumoral accumulation of iodine-containing liposomes by X-ray tomography to predict the deposition of therapeutic doxorubicin-loaded liposomes in the diseased tissue [188]. If tumor accumulation is found to correlate with the patient’s susceptibility to treatment, this approach could be used to identify individuals with lesions possessing leaky vasculature and who would benefit the most from nanosized formulation.

Actively targeted personalized therapies involve surface modification of drug carriers with ligands such as antibodies, peptides, aptamers, and small molecules that specifically bind to tissues of interest. The drug can then be delivered to the target cells through receptor-mediated internalizing interactions as presented in section 2.2 and 2.3. The binding targets of the modified nanocarriers include differentially overexpressed receptors/antigens on the plasma membrane of disease cells and the differentially overexpressed extra-cellular matrix proteins in diseased tissues. For instance, a peptide-conjugated nanoparticle was shown to target the vascular basement membrane exposed on injured vasculature [189]. The C-11 peptide decorating the nanoparticles showed high affinity for collagen IV, which represents 50% of the vascular basement membrane. This targeted nanoparticle platform holds particular promise for treatments of targeted blood vessel walls such as catheter or stent-induced cardiovascular injuries.

Intracellular organelles can also be targeted. Direct DNA delivery to the mitochondrial matrix has been suggested for the treatment of genetic diseases associated with mitochondrial genome defects [190]. Lee et al. conjugated the mitochondrial leader peptide, a peptide derived from the nucleocytosol-expressed but mitochondria-localized ornithine transcarbamylase, to polyethylenimine using a disulfide bond to render the resultant PEI-MLP conjugates mitochondriotropic [190]. In vitro delivery tests of rhodamine-labeled DNA into living cells demonstrated that PEI-MLP/DNA complexes were localized at mitochondrial sites. The data suggested that PEI-MLP can deliver DNA to the mitochondrial sites and may be useful for the development of direct mitochondrial gene therapy.

Combination therapies

The combination of multiple therapeutic agents in a single nanocarrier has been proposed as an alternative approach to increase the efficacy of anticancer treatments through synergistic interactions while mitigating drug resistance [191]. As a proof of concept, Kolishetti et al. developed a targeted therapeutic nanoparticle system for co-delivery of cisplatin and docetaxel, two drugs with different metabolic targets, to prostate cancer cells [192]. In this approach, a Pt(IV) cisplatin prodrug-polymer conjugate was blended with PLGA-PEG and docetaxel to form nanoparticles (Figure 10) [192]. The dual-drug encapsulated nanoparticles were then conjugated with the A10 aptamer to target PSMA overexpressing cancer cells. In vitro studies demonstrated that the aptamer targeted, dual-drug loaded nanoparticles were 5 to 10 times more cytotoxic than respective single drug encapsulating nanoparticles.

Pt(IV)-PLA drug conjugates were blended with PLGA-PEG and docetaxel to form nanoparticles  nihms-401532-f0010

Pt(IV)-PLA drug conjugates were blended with PLGA-PEG and docetaxel to form nanoparticles nihms-401532-f0010

Pt(IV)-PLA drug conjugates were blended with PLGA-PEG and docetaxel to form nanoparticles capable of delivering chemotherapy drug combinations. The nanoparticle surface was then functionalized with the A10 aptamer to target the nanoparticles to PSMA receptors.

The release of multiple payloads can also be tailored to enhance efficacy. Sengupta et al. synthesized a biphasic “nanocell” with a lipid layer containing combretastatin and a hydrophobic core containing PLGA-doxorubicin conjugates [193]. This construct enabled temporal release of the two drugs: combrestatin was released first to collapse the blood vessels and trap the particles inside the tumor, followed by the release of doxorubicin to kill the tumor cells focally without being diluted by the blood circulation. The polymeric nanocell was compared with liposomes co-encapsulating combretastatin and doxorubicin, which lack the differential drug release kinetics. In murine models bearing Lewis lung carcinoma and B16/F10 melanoma, the nanocell platform resulted in better tumor reduction, longer median survival time, and lower systemic toxicity. This study demonstrated that sequential delivery and scheduling of combinatorial drugs are important parameters that influence drug synergism and side effects.

Finally, combination strategies are particularly appealing in the case of siRNA delivery where the knockdown of specific genes can lead to tremendous improvement in the efficiency of drugs. For instance, MDR-1 gene silencing and paclitaxel co-therapy in PLGA nanoparticles was shown to significantly contribute in overcoming tumor multidrug resistance in vivo [194]. Taken together, the development of combination nanotherapeutic strategies that combine gene silencing and drug delivery could provide a more potent therapeutic effect, especially in refractory tumors.

Research on the development of combinational therapies is on the rise. However, this area will benefit from further investigations involving: (1) the discovery of efficacious molecular targets in cancer cells and better understanding of drug activity in these cells; (2) understanding the pharmacokinetics of different drugs by simultaneously delivering multiple therapeutic agents to the target site; (3) the demonstration of the contribution of each component of the combination to the treatment effect; (4) the development of nanocarriers that allow for precisely-controlled loading and release of two or more drugs with variable properties; and (5) the evaluation of responses to treatment among patients following the use of combination therapies.

Challenges with nanomaterials for personalized nanomedicine
Toxicity of nanomaterials

The uncertain health hazard potential of nanomaterials is probably the most significant hurdle for regulatory approval and commercialization of nanomedical products [195]. The unique physical and chemical properties of nanomaterials (i.e. small size, increased reactivity, high surface-to-volume ratio, etc.) while are likely to provide health benefits, may also be associated with deleterious effects on cells and tissues [187, 196]. Nanomaterials have dimensions similar to organelles found in the cell and have the potential to interfere with vital cellular functions, resulting in potential toxicity [197]. While engineered nanomaterials offer improved half-life circulation, this implies that the time required for clearance of loaded drug will also be prolonged. Accordingly, some nanoparticles may be retained in the body not only for days, but potentially for years. Some nanomaterials such as metal nanoparticles, metal oxide nanoparticles, QDs, fullerenes and fibrous nanomaterials were found to induce chromosomal fragmentation, DNA strand breakages, point mutations, oxidative DNA adducts and alterations in gene expression [198], sometimes even through cellular barriers [199]. In these cases, the safety profile becomes a major concern. Although there have been no reported examples of clinical toxicity due to nanomaterials thus far, early studies indicate that nanomaterials could initiate adverse biological interactions that can lead to toxicological outcomes [200]. Since the mechanisms and severity of nanotoxicity are not fully predictable or testable with current toxicological methods, the toxicity of nanomaterials is rapidly emerging as an important area of tangential study in the nanomedicine research field.

There are many different factors to consider when designing nanomaterials and an understanding of how different parameters affect toxicity can aid in designing safer nanomaterials for medical applications. Some important parameters to consider include size, shape, surface area, charge, state of aggregation, crystallinity, and the potential to generate reactive oxygen species (ROS) [200]. Size is a significant factor and can influence the distribution and toxicity of a material. Studies with gold nanoparticles (AuNPs) in four different cell lines demonstrated that both toxicity and the mechanism of cell death were size-dependent [201]. 1.4 nm AuNPs were 60-fold more toxic than 15 nm AuNPs and cell death from 1.4 nm AuNPs was due to necrosis while 1.2 nm AuNPs caused apoptosis of the cells [201]. The toxicity of the 1.4 nm AuNPs was due to the ability to intercalate with DNA while AuNPs of larger sizes were unable to intercalate with the DNA [202]. Size can affect both the distribution within the body as well as the distribution within a cell [203, 204]. Studies of QDs in macrophages have shown that QD size influences subcellular trafficking, with the smallest QDs able to target histones in the cell nucleus [204]. Composition is another factor that influences the toxicity of nanomaterials. QDs may create a health hazard due to toxic heavy metal elements such as cadmium that are incorporated into the QDs [205]. It may, however, be possible to reduce the potential toxicity of nanomaterials such as QDs by adding a coating or nanoshell [206].

Carbon nanotubes (CNTs) are a nanomaterial that has great potential in various medical applications. However, concerns have emerged over its toxicity due to its shape, which resembles asbestos fibers [207]. Longer CNTs have been shown to act like indigestible fibers that lead to frustrated phagocytosis and granuloma formation [208]. Studies in mice have shown that frustrated phagocytosis can lead to massive release of oxygen radicals by immune cells, which can result in chronic granulomatous inflammation and potentially mesothelioma if the CNTs are in the pleural cavity or peritoneum [209]. CNTs can cause mutagenic effects through the generation of inflammation and direct interaction with components of the cell. Exposure of mice to CNTs by inhalation increased the rate of mutation of the K-ras gene locus in the lung, with the mutations occurring during times of maximum inflammation in the tissue [210]. CNTs can also interact directly with the cellular cytoskeleton, including the microtubule system during the formation of the mitotic spindle apparatus, leading to aberrant cell division [211].

Nanomaterials such as titanium dioxide can cause toxicity based on crystalline structure. Cytotoxic studies showed that the anatase form of titanium dioxide was 100 times more toxic than the rutile form, and that the toxicity correlated with the generation of ROS under UV light [212]. Oxidative stress and the generation of ROS is a key injury mechanism that promotes inflammation and atherogenesis, resulting in adverse health events [213, 214]. The surface composition also plays a role in nanomaterial toxicity. Discontinuous crystal planes and material defects can act as sites for ROS generation [200]. The presence of transition metals or organic chemicals on the surface of nanomaterials can also result in oxygen radical formation and oxidative stress [215].

The degradability of a nanomaterial is another important parameter to consider for toxicity. If nondegradable nanomaterials have no mechanism of clearance from the body, they can accumulate in organs and cells and exert toxic effects. Injectable gold compounds have been used for the treatment of rheumatoid arthritis and the accumulation of gold compounds in the body over time may cause toxic effects in patients [216]. However, biodegradable materials may also cause toxic effects if the degraded components of the material are toxic [217].

In addition, the nanomaterial charge is a significant contributor to the toxicity of the material. Increased in vitro cytotoxicity and in vivo pulmonary toxicity has been observed for cationic polystyrene nanospheres when compared with anionic or neutral polystyrene [218, 219]. Interestingly, the mechanism of toxicity for cationic nanospheres was dependent on the cell type and uptake mechanism [219]. In macrophages, particles entered the cell through phagosomes and caused lysosomal rupture due to the proton sponge effect. Upon entry into the cytosol, the particles caused an increase in Ca2+ uptake by mitochondria and oxidative stress, leading to apoptosis. In epithelial cells, cationic particles entered through caveolae. The particles also induced an increase in mitochondrial Ca2+ uptake and oxidative stress, but cell death was by necrosis.

As new nanomaterials are developed, it is important to consider potential mechanisms of toxicity. Nanomaterials have the increased potential to cross biological barriers and obtain access to tissues and cells as a result of their physicochemical properties. As novel properties are introduced into nanomaterials resulting in new interactions with biological systems, it is possible that new mechanisms of injury and toxicological paradigms might emerge [200]. A further understanding of how nanomaterials interact with biological systems may provide better methods to engineer nanomaterials to minimize toxicity [20].

Mass transport

Efficient delivery of nanotherapeutics is another challenge encountered in regards to nanomaterials. The small size of nanoparticles may result in acceleration or delay in their intended action. They may also accumulate non-specifically in certain tissues after administration. Enormous efforts have been expended towards achieving targeted delivery through modification of nanoparticles with antibodies, small molecules, aptamers and/or peptides. However, the biodistribution of nanotherapeutical agents is primarily governed by their ability to negotiate through biological barriers including the mononuclear phagocyte system (MPS), endothelial/epithelial membranes, complex networks of blood vessels, and abnormal blood flow. In addition, drug delivery is further inhibited by barriers such as enzymatic degradation and molecular/ionic efflux pumps that expel drugs from target cells. A full understanding of the interactions between nanomaterials and biological systems will open the door to rational design of nanomedicines and hence improve their biodistribution.

Complexity of nanopharmaceuticals, characterization, stability and storage

To design therapeutics and diagnostics that are functional for personalized use, multiple components will be integrated into a single nanomaterial, requiring multiple steps such as chemical synthesis, formulation and purification. Those procedures will inevitably lower the yield and increase the production cost. In addition, scale-up and manufacturing under current good manufacturing practice (cGMP) will be challenging. In general, multifunctional nanotherapeutics have more variables within their physicochemical properties, which make it more difficult to predict the fate and action after administration. The characterization of nanotherapeutic agents also poses a challenge to manufacturers as well as regulators in terms of chemical, physical, magnetic, optical and biological properties. It would be difficult to monitor a wide range of physicochemical parameters including composition, structure, shape, size, size distribution, concentration, agglomeration, surface functionality, porosity, surface area, surface charge, and surface specification after nanotherapeutic agents are administered.

Stability and storage are also hurdles that must be addressed for clinical practice. For example, biodegradable polymers have been widely used as nanotherapeutic carriers. Depending on their chemical and morphological properties, a polymer will start degrading after nanoparticle formulation in aqueous/organic solvents, which usually results in a change in physicochemical properties (such as agglomeration, particle size, surface charge, drug loading, drug release profile), and can in turn affect the performance in vivo. As such, storage conditions may be critical to the shelf life of nanotherapeutics. For example, the measurement result of nanoparticle size, surface charge, polymer degradation rate and drug release profile may be quite different when nanotherapeutics are stored in deionized water, as opposed to phosphate buffered saline (PBS) or human blood serum.

Limitations and obstacles of personalized nanomedicine

While personalized nanomedicine holds much promise, there are also many challenges associated with it that need to be overcome in order for it to reach its full potential. Manipulating materials at the nanoscale level is difficult and complex due to novel nanoscale interactions, forces and effects that can complicate the reliability, predictability and utility of nanomedical products. Moreover, the potential risks of nanomedicine products and the uncertainties associated with those risks make it difficult to design and obtain consent in clinical trials to assess the clinical utility of such products.

Regulatory approval of nanomedicine products may present another major obstacle. Personalized treatment strategies are inherently not designed to be safe and efficacious for a population, but rather for an individual. Due to the complexity and differences among individual patients in terms of therapeutic response, clinical outcome, genetic profile and many other factors, it is inconceivable to evaluate and approve an exponentially large combinatorial library of possible nanoparticle configurations with various sizes, shapes, surface modifications and therapeutic payloads, especially when considering the long time and high cost associated with the development of an average therapeutic. On the other hand, as the nanomaterials involved in personalized medical applications become more advanced and multifunctional, they may increasingly challenge and eventually invalidate traditional regulatory categories and criteria. Thus, regulatory reform is necessary to facilitate the translation of nano-based medical products into clinical use. It will be critical for the Food and Drug Administration (FDA) to make adjustments and additional requirements to provide predictable and well-defined evaluation pathways for nanomedicine products, and to adapt regulatory requirements when appropriate to keep pace with rapidly emerging nanomaterials and nanotechnologies.

The incorporation of nanomaterials and nanotechnology into personalized medicine also brings up ethical issues. Nanodiagnostics and genetic testing offer the opportunity to collect more personal data on patients than ever before [220]. In particular, the use of point-of-care nanodevices that may bypass a health care professional will have a large impact on mass collection of personal data. This large volume of molecular-level data collected by such nanodevices will challenge the health care system in terms of storage and handling as well as privacy issues, and may raise questions for patients who will receive a torrent of medical information that will inevitably contain false positive and other misleading data [187].

The advances in nanomaterials and nanobiotechnology will play an important role in the development of cutting-edge diagnostic and therapeutic tools, which are an essential component of personalized medicine. While nanomedicine products face safety, scientific, regulatory and ethical issues, personalized medicine also encounters challenges and obstacles. A major obstacle with personalized approaches such as genetic testing is heterogeneity. A recent study demonstrated that a tumor’s genetic makeup can vary significantly within a single tumor [221]. The study showed that, within a single tumor, about 2/3 of the mutations found in a single biopsy was not uniformly detected throughout all the sampled regions of the same patient’s tumors. These results elucidated that a single biopsy cannot be considered representative of the landscape of genetic abnormalities in a tumor and that current practices may miss important genetic mutations that could affect the treatment of the disease [222]. Moreover, there were significant differences between mutations in the original tumor and the site of metastasis. The tumor discovered at diagnosis may be very different from the tumor that is growing or exposed to different treatments. However, getting additional biopsies from patients at different stages could be costly and inconvenient for patients. These findings represent a significant challenge for personalized medicine, as the use of genetic testing to direct therapy may be more complex than currently thought.

Economic considerations

The economical conundrums behind the advance of personalized nanomedicine are intricate. On the one hand, given the important resources devoted to the development of complex nanomaterial systems, the choice to focus only on the treatment of a subset of the population (i.e., HER-2 positive breast cancer patients) might be a difficult one to make. The aforementioned risks and challenges associated with the design of nanomaterial remain similar whether it is to treat all patients suffering from cancer or just a cohort showing a specific mutation. Therefore, the financial gain-to-risk ratio strongly leans towards applications which benefit larger populations. On the other hand, the proof of efficacy needed to obtain regulatory approval might be easier to obtain with a system rationally designed for a specific subpopulation where the prognosis with standard treatment is particularly grim. The evaluation of therapeutic candidates in patients that are more likely to benefit from it might speed up clinical trials and facilitate regulatory approval of the nanomaterial.

In this context, what makes nanomaterials remarkably appealing are their versatility and the ability to transfer the efforts dedicated to the development of one platform to other applications. The example of the CLION system, where the imaging platform was translated from oncology to cardiovascular applications was mentioned in section 3.2 [175178], but others also exist. For example, liposomes similar to the commercially-available doxorubicin liposomal formulations were recently proposed to act as scavenging nanomaterials for drug detoxification [223, 224]. Similarly, 2-hydroxypropyl-β-cyclodextrin, an excipient which forms nanosized complexes with multiple drugs, was shown to overcome cholesterol metabolism dysfunction in Niemann-Pick Type C [225, 226]. It was approved in 2011 for the intravenous and intrathecal treatment of this very rare LSD.

Finally, the development of treatments for orphan or “niche” diseases might provide attractive entryways to the clinic for nanomaterials. The favorable benefit-to-risk ratio expressly encountered in disorders for which no current treatment exist can prove an efficient way of showing the feasibility of an approach as well as the tolerability and safety of a novel material. In this perspective, scientists at the Children’s Hospital of Philadelphia have invested tremendous efforts in developing an adenovirus-based treatment for Leber Congenital Amaurosis (LCA), a very rare degenerative disease which irremediably leads to blindness [227229]. This gene delivery vector, which is now in phase II/III for LCA, was developed in parallel with an analogous formulation containing encoding DNA for the human coagulation factor IX, for the treatment of hemophilia B [230]. These examples, showcasing the versatility of drug delivery systems, offer strong support to the future contribution of nanomedicine to personalized medicine.

Conclusions

In summary, the application of nanomaterials in the realm of medicine has demonstrated tremendous potential from early diagnosis of disease to the development of highly effective targeted therapeutics. As our understanding of health and disease become more refined at the molecular level, the potential of nanomaterials to address the biological complexities of diseases will increase. Likewise, opportunities to develop patient- and disease-specific therapeutics or diagnostic modalities will emerge.

Contemporary chemistry and material science enable the fabrication of a virtually infinite library of nanomaterials. In the near future, these materials will be engineered to efficiently optimize interactions with biological systems for a range of medical applications. For the purpose of targeted therapy and diagnostic imaging, nanocarriers should possess improved stability, extended circulation half-life, favorable biodistribution profiles, lower immunotoxicity as well as targeting to specific tissues, cells and subcellular organelles. Proper ligands will also be chosen based on differential expression of molecular markers on diseased cells to produce patient-specific nanomedicines. When used for detection and diagnosis, nanomaterials should be engineered to avoid non-specific protein absorption and specifically recognize the targets of interest with high affinity. In this context, an in-depth understanding and thorough investigation of how nanomaterials interact with biological structures is required. In order to promote the development of nanomedicines into clinically feasible therapies, there is an urgent need for complete characterization of nanomaterial interactions with biological milieus that drive possible toxicological responses. Medical products must be demonstrated to not only be effective but also safe before they are approved for patient use. Some experimental studies have indicated that engineered nanomaterials could exhibit unique toxicological properties in cell culture and in animal models that may not be predicted from the toxicological assessment of the bulk version of the same materials. To establish a database and appropriated standardized protocols for toxicity assessment, the mechanism of nanomaterial-induced toxicity must be fully explored and nanomaterials must be investigated in vitro and in vivo (e.g., absorption, distribution, metabolism, excretion and toxicological studies) on a particle-by-particle basis.

In parallel, the concept of personalized medicine is also particularly appealing from the perspective of optimizing treatments for an individual patient. Nevertheless, this is a nascent field that has yet to reach its full potential. A potential error may be to succumb to over-enthusiasm and adopt personalized therapeutic practices without strong evidence that personalized treatment is superior to conventional approaches. Even in the field of antibody-based targeted anticancer treatments, which benefited from a head-start in individualized therapies, each clinical or genomic study brings new understanding of the intricate phenomena involved in treating the disease [231]. The understanding of all genomic components of complex diseases like cancer is still unraveling. One should therefore be careful before jumping to conclusions in identifying a particular biomarker as the new ubiquitous target that will eradicate the disease once and for all.

Although significant challenges exist, including regulatory issues and scientific challenges associated with manufacturing nanomedical products, the development and deployment of personalized nanomedicines holds enormous promise for the future treatment of complex diseases. Some nanomedicine products are already in clinical trials, and many others are in various phases of preclinical development. Critical and rational assessment of clinical needs coupled with an improved understanding of physicochemical parameters of nanomaterials that define their effects on the biological system will foster the development of efficient and safe nanomedicine. It is therefore practical to envision a future translation of personalized nanomedicine to the bedside.

Read Full Post »


Pancreatic Cancer and Crossing Roads of Metabolism

Curator: Demet Sag, PhD

 

PART I: Pancreatic Cancer

  • Intro
  • What is Pancreas cancer
  • What are the current and possible applications for treatment and early diagnosis
  • How pancreatic cancer is related to obesity, overweight, BMI, diabetes
  • Genetics of Pancreatic Cancer

PART II : Translational Research on Molecular Genetics Studies at Immune Response Mechanism 

  • Natural Killer Cells
  • IL-17
  • Chemokines

search_result- pancreatic cancer clinical trial studies

https://clinicaltrials.gov/ct2/results?term=Pancreatic+Cancer&Search=Searchpc 1

PART I: Pancreatic Cancer

Introduction:

Our body works a s a system even during complex diseases that is sometimes forgotten.  From nutrition to basic immune responses since we are born we start to change how we respond and push the envelope to keep hemostasis in our body.

During this time additional factors also increase or decrease the rate of changes such as life style, environment, inherited as well acquired genetic make-up, types of infections, weight and stress only some of them. As a result we customized our body so deserve a personalized medicine for a treatment. Customized approach is its hype with developing technology to analyze data and compare functional genomics of individuals.

However, still we need the basic cell differentiation to solve the puzzle to respond well and connect the dots for physiological problems.  At the stem of the changes there is a cell that respond and amplify its reaction to gain a support to defend at its best . Thus, in this review I like to make a possible connection for pancreatic cancer, obesity-diabetes and innate immune response through natural killer cells.

Pancreatic cancer is one of the most lethal malignancies. Pancreatic cancer is one of the most difficult cancers to treat. Fewer than 5% of patients survive more than 5 years after diagnosis. The 5-year survival rate is despite therapeutic improvements still only 6%. More than 80% of the pancreatic tumors are classified as pancreatic ductal adenocarcinoma (PDA).

When cells in the pancreas that secrete digestive enzymes (acinar cells) turn into duct-like structures, pancreatic cancer can develop. Oncogenic signaling – that which causes the development of tumors – can influence these duct-like cells to form lesions that are a cancer risk.

 

Crossing roads

The recent publication brought up the necessity to understand how pancreatic cancer and IL17 are connected.

Schematic diagram showing the central role of IL-17B–IL-17RB signaling in pancreatic cancer metastasis.

Adapted from an illustration by Heng-Hsiung Wu and colleagues

http://jem.rupress.org/content/212/3/284/F2.large.jpg

 

Simply, obesity and diabetes increases the risks of cancers, cardiovascular disease, hypertension, and type-2 DM.  There is a very big public health concern as obesity epidemic, the incidence of diabetes is increasing globally, with an estimated 285 million people, or 6.6% of the population from 20 to 79 years of age, affected this is especially more alarming as child obesity is on the rise.

According to a World Health Organization (WHO) report showing that 400 million people are obese in the world, with a predicted increase to 700 million by 2015  and in the US, 30–35 percent of adults are obese.  In addition, high BMI and increased risk of many common cancers, such as liver, endometrium, breast, pancreas, and colorectal cancers have a linear increasing relationship.

The BMI is calculated by dividing body weight in kilograms by height squared in meters kg/m2). The current standard categories of BMI are as follows: underweight, <18.5; normal weight, 18.5–24.9; overweight, 25.0–29.9; obese, 30.0–34.9; and severely obese, > or = 35.0).

Furthermore, natural killer cells not only control innate immune responses but have function in other immune responses that was not recognized well before.

Recently, there have been reports regarding Natural Killer cells on was about the function of IL17 that is produced by iNKT, a subtype of NK, for a possible drug target.  In addition, regulation of receptors that are up or downregulated by NK cells for a precise determination between compromised cells and healthy cells.

Therefore, instead of sole reliance on SNPs, or GWAS for early diagnostics or only organ system base pathology, compiling the overall health of the system is necessary for a proper molecular diagnostics and targeted therapies.

  • What is Pancreas cancer

SNAP SHOT:

Incidence

  • It is a rare type of cancer.
  • 20K to 200K US cases per year

 Medically manageable

Treatment can help

 Requires a medical diagnosis

  1. lab tests or imaging
  2. spreads rapidly and has a poor prognosis.
  3. treatments may include: removing the pancreas, radiation, and chemotherapy.

 Ages affected; even though person may develop this cancer from age 0 to 60+ there is a high rate of incidence after age 40.

 

People may experience:

  • Pain: in the abdomen or middle back
  • Whole body: nausea, fatigue, or loss of appetite
  • Also common: yellow skin and eyes, fluid in the abdomen, weight loss, or dark urine
  • The pancreas secretes enzymes that aid digestion and hormones that help regulate the metabolism of sugars.

Prescription

  • Chemotherapy regimen by injection: Irinotecan, Gemcitabine (Gemzar), Oxaliplatin (Eloxatin)
  • Other treatments: Leucovorin by injection, Fluorouracil by injection (Adrucil)

 

Also common

  • Chemotherapy regimen: Gemcitabine-Oxaliplatin regimen, Docetaxel-Gemcitabine regimen
  • Procedures: Radiation therapy, Pancreatectomy, surgery to remove pancreatic tumors

 

Specialists

  • Radiologist: Uses images to diagnose and treat disease within the body.
  • Oncologist: Specializes in cancer.
  • Palliative medicine: Focuses on improving quality of life for terminally ill patients.
  • General surgeon: Performs a range of surgeries on the abdomen, skin, breast, and soft tissue.
  • Gastroenterologist: Focuses on the digestive system and its disorders.

What are the current and possible applications for treatment and early diagnosis

Diagnostics

Several imaging techniques are employed in order to see if cancer exists and to find out how far it has spread. Common imaging tests include:

  • Ultrasound – to visualize tumor
  • Endoscopic ultrasound (EUS) – thin tube with a camera and light on one end
  • Abdominal computerized tomography (CT) scans – to visualize tumor
  • Endoscopic retrograde cholangiopancreatography (ERCP) – to x-ray the common bile duct
  • Angiogram – to x-ray blood vessels
  • Barium swallows to x-ray the upper gastrointestinal tract
  • Magnetic resonance imaging (MRI) – to visualize tumor
  • Positron emission tomography (PET) scans – useful to detect if disease has spread

 

New solutions in Diagnostics;

The study, published in Nature Communications, suggests that targeting the gene in question – protein kinase D1 (PKD1) – could lead to new ways of halting the development of one of the most difficult tumors to treat.

“As soon as pancreatic cancer develops, it begins to spread, and PKD1 is key to both processes. Given this finding, we are busy developing a PKD1 inhibitor that we can test further,” says the study’s co-lead investigator, Dr. Peter Storz.

Do we have new markers?

Is it possible check the cancer along with glucose levels or insulin at the point of care or companion diagnostics?

Therapy

New Solutions in Therapies

ABRAXANE (paclitaxel formulated as albumin bound nanoparticles; nab-paclitaxel), in combination with gemcitabine, has been recommended for use within NHS Scotland by the Scottish Medicines Consortium (SMC) for the treatment of metastatic adenocarcinoma of the pancreas.

The SMC decision is based on results from the MPACT (Metastatic Pancreatic Adenocarcinoma Clinical Trial) study, published in the October 2013 edition of the New England Journal of Medicine, which demonstrated an increase in median overall survival of 1.8 months when compared to gemcitabine alone [(8.5 months vs. 6.7 months respectively) (HR 0.72; 95% CI 0.62 to 0.83 P<0.001)]. 

Updated results from post-hoc analysis of the MPACT trial based on an extended data cut-off (8 months) at the time the trial was closed demonstrated an increase in the median overall survival benefit of 2.1 months when compared to gemcitabine alone [(8.7 months vs. 6.6 months respectively) (HR 0.72,95% CI = 0.62 to 0.83, P<.001)].

Using radioactive bacteria to stop the spread of pancreatic cancer – scientists from Albert Einstein College of Medicine of Yeshiva University used bacteria to carry radioisotopes commonly used in cancer treatment directly into pancreatic cancer cells. They found in animal experiments that the incidence of secondary tumors went down dramatically – i.e. the cancer was much less likely to spread (metastasize).

Targeting stroma is another approached that is followed by TGen to potentially extend patient survival in all cases including advanced cases based on a report at Clinical Cancer Research, published online by the American Association for Cancer Research. Thus this eliminates one of the limiting factor to reach tumor cells and destroying the accumulation of stroma — the supporting connective tissue that includes hyaluronan and few other collagen types.

One of the study leaders, Andrew Biankin, a Cancer Research UK scientist at the University of Glasgow in the UK said that “Being able to identify which patients would benefit from platinum-based treatments would be a game-changing moment for treating pancreatic cancer, potentially improving survival for a group of patients.” 

 In the journal Nature, the international team- including scientists from Cancer Research UK showed the evidence of large chunks of DNA being shuffled around, which they were able to classify according to the type of disruption they created in chromosomes.

The study concludes there are four subtypes of pancreatic cancer, depending on the frequency, location and types of DNA rearrangement. It terms the subtypes: stable, locally rearranged, scattered and unstable.

Can we develop an immunotherapy?

 Genetics of Pancreatic Cancer 

There are many ongoing studies to develop diagnostics technologies and treatments. However, the etiology of PC is not well understood. Pancreas has dual functions that include 2% of endocrine hormone secretion and 98% exocrine secretion, enzymes, to help digestion. As a result, pancreatic cancer is related to obesity, overweight, diabetes.

First, eliminating the risk factors can be the simplest path. Next approach is dropping the obesity and diabetes to prevent the occurrence of cancers since in the U.S. population, 50 percent are overweight, 30 percent are medically obese and 10 percent have diabetes mellitus (DM). Tobacco smoking, alcohol consumptions, chronic pancreatitis, and genetic risk factors, have been recognized as potential risk factors for the development and progression of PC.

Many studies showed that the administration of anti-diabetic drugs such as metformin and thiazolidinediones (TZD) class of PPAR-γ agonists decreases the risk of cancers.  Thus, these agents are thought to be the target to diagnose or cure PC.

Type 2 diabetes mellitus has been associated with an increased risk of several human cancers, such as liver, pancreatic, endometrial, colorectal, breast, and bladder cancer. The majority of the data show that metformin therapy decreases, while insulin secretagog drugs slightly increase the risk of certain types of cancers in type 2 diabetes.

Metformin can decrease cell proliferation and induce apoptosis in certain cancer cell lines. Endogenous and exogenous (therapy induced) hyperinsulinemia may be mitogenic and may increase the risk of cancer in type 2 diabetes. Type 2 diabetes mellitus accounts for more than 95% of the cases.

In PDA these cells have been reported to express specific genes such as Aldh1 or CD133. To date, more than 20 case-control studies and cohort and nested case-control studies with information on the association between diabetes and pancreatic cancer, BMI and cancer, and obesity and cancer have been reported.

Meta analysis and cohort studies:

 

  1. Meta studies for Diabetes and PC

Most of the diabetes and PC studies were included in two meta-analyses, in 1995 and in 2005, investigating the risk of pancreatic cancer in relation to diabetes.

The first meta-analysis, conducted in 1995, included 20 of these 40 published case-control and cohort studies and reported an overall estimated relative risk (RR) of pancreatic cancer of 2.1 with a 95% confidence interval (CI) of 1.6-2.8. These values were relatively unchanged when the analyses were restricted to patients who had diabetes for at least 5 years (RR, 2.0 [95% CI, 1.2-3.2]).

The second meta-analysis, which was conducted in 2005, included 17 case-control and 19 cohort and nested case-control studies published from 1996 to 2005 and demonstrated an overall odds ratio (OR) for pancreatic cancer of 1.8 and 95% CI of 1.7-1.9 .   Individuals diagnosed with diabetes within 4 years before their pancreatic cancer diagnosis had a 50% greater risk of pancreatic cancer than did those diagnosed with diabetes more than 5 years before their cancer diagnosis (OR, 2.1 [95% CI, 1.9-2.3] versus OR, 1.5 [95% CI, 1.3-1.8]; P = 0.005).

  1. In a recent pooled analysis of 2192 patients with pancreatic cancer and 5113 cancer-free controls in three large case-control studies conducted in the United States (results of two of the three studies were published after 2005),
  2. Risk estimates decreased as the number of years with diabetes increased.
  3. Individuals with diabetes for 2 or fewer, 3-5, 6-10, 11-15, or more than 15 years had ORs (95% CIs) of 2.9 (2.1-3.9), 1.9 (1.3-2.6), 1.6 (1.2-2.3), 1.3 (0.9-2.0), and 1.4 (1.0-2.0), respectively (P < 0.0001 for trend).

pc2

  1. Meta Studies between BMI and PC

Meta studies in 2003 and 2008 showed a week positive association between BMI and PC.  In 2003, a meta-analysis of six case-control and eight prospective studies including 6,391 PC cases 2% increase in risk per 1 kg/m2 increase in BMI. In 2008, 221 datasets, including 282,137 incidence of cancer cases with 3,338,001 subjects the results were similar  RR, 1.12; CI, 1.02–1.22.

In 2007, 21 prospective studies handled , 10 were from the United States, 9 were from Europe, and 2 were from Asia and studies was conducted including 3,495,981 individuals and 8,062 PC cases. There was no significant difference between men and women and the estimated summary risk ratio (RR) per 5 kg/m2 increase in BMI was 1.12 (95% CI, 1.06–1.17) in men and women combined.

This study concluded that concluded that there was a positive association between BMI and risk of PC, per  a 5 kg/m2 increase in BMI may be equal to  a 12% increased risk of PC.

  • The location and type of the obesity may also signal for a higher risk. The recent Women’s Health Initiative study in the United States among 138,503 postmenopausal showed that  women central obesity  in relation to PC (n=251) after average of 7.7 years of follow-up duration demonstrated that central adiposity is related to developing PC at a higher risk. Based on their result “women in the highest quintile of waist-to-hip ratio have a 70 percent (95% CI, 10–160%) greater risk of PC compared with women in the lowest quintile”
  • Age of obesity or being overweight versus risk of developing PC was also examined.
  • Regardless of their DM status they were at risk and decreased their survival even more so among men than women between age of 14-59.

overweight   14 to 39 years   (highest odds ratio [OR], 1.67; 95% CI, 1.20–2.34) or

obese            20 to 49 years     (highest OR, 2.58; 95% CI, 1.70–3.90)   , independent of DM status.

  • This association was different between men and women from the ages of 14 to 59:

stronger in men               (adjusted OR, 1.80; 95% CI, 1.45–2.23)

weaker in women            (adjusted OR, 1.32; 95% CI, 1.02–1.70).

  • The effect of BMI , obesity and overweight had reduced overall survival of PC regardless of disease stage and tumor resection status

high BMI (= or > 25)                          20 to 49 years , an earlier onset of PC by 2 to 6 years.

obese patients: hazard ratio,               1.86, 95% CI, 1.35–2.56).

overweight or obese                             30 to 79 years,  in the year prior to recruitment

overweight patients: hazard ratio,       1.26, 95% CI, 0.94–1.69;

Similarly, the authors concluded that:

  • Being overweight or obese during early adulthood was associated with a greater risk of PC and a younger age of disease onset, whereas obesity at an older age was associated with a lower overall survival in patients diagnosed with PC.
  • More recently, several large prospective cohort studies with a long duration of follow-up has been conducted in the U.S. showing a positive association between high BMI and the risk of PC (adjusted RR 1.13–1.54), suggesting the role of obesity and overweight with higher risk in the development and eventual death due to PC.
  • Although the role of smoking and gender in the association of obesity and PC is not clear, the new evidence strongly supports a positive association of high BMI with increased risk of PC, consistent with the majority of early findings; however, all recent studies strongly suggest that obesity and overweight are independent risk factor of PC.
  • Diabetes was associated with a 1.8-fold increase in risk of pancreatic cancer (95% CI, 1.5-2.1).

How pancreatic cancer is related to obesity, overweight, BMI, diabetes

 pc3

Connections in Physiology and Pathology:

Altogether cumulative data suggest that DM has a three-fold increased risk for the development of PC and a two-fold risk for biliary cancer insulin resistance and abnormal glucose metabolism, even in the absence of diabetes, is associated with increased risk for the development of PC.  Obesity alters the metabolism towards insulin resistance through affecting gene expression of inflammatory cytokines, adipose hormones such as adipokines, and PPAR-γ.

Furthermore, adiponectin also pointed out to be a negative link factor for cancers such as colon, breast, and PC.  Therefore, insulin resistance is one of the earliest negative effects of obesity, early altered glucose metabolism, chronic inflammation, oxidative stress and decreased levels of adipose hormone adiponectin and PPAR-γ, key regulators for adipogenesis.

Potential pathways directly linking obesity and diabetes to pancreatic cancer. Obesity and diabetes cause mutiple alterations in glucose and lipid hemastasis, microenvironments, and immune responses, which result in the activation of several oncogenic signaling pathways.

These deregulations increase cell survival and proliferation, eventually leading to the development and progression of pancreatic cancer. ROS, reactive oxygen species; IGF-1, insulin-like growth factor-1; IR, insulin receptors; IGF-1R, insulin-like growth factor-1 receptors; TNFR, tumor necrosis factor receptors; TLR, Toll-like receptors; HIF-1α, hypoxia-inducible factor-α1; AMPK, AMP kinase; IKK, IκB kinase; PPAR-γ, peroxisome proliferator-activated receptor-γ; VEGF, vascular endothelial growth factor; MAPK, MAP kinase; mTOR, mammalian target of rapamycin; TSC, tuberous sclerosis complex; Akt, protein kinase B. PI3K, phosphoinositide-3-kinase; STAT3, activator of transcription-3; JNK, c-Jun NH2-terminal kinase.

Top six pathways interacting with obesity or diabetes in modifying the risk of pancreatic cancer are Chemokine Signaling, Pathways in cancer, Cytokine-cytokine receptor interaction, Calcium signaling pathway. MAPK signaling pathway.

This analysis showed

  • GNGT2,
  • RELA,
  • TIAM1,
  • CBLC,
  • IFNA13, 
  • IL22RA1, 
  • IL2RA
  • GNAS,
  • MAP2K7,
  • DAPK3, 
  • EPAS1 and 
  • FOS as contributor genes.

  Furthermore, top overrepresented canonical pathways, including

  1. Role of RIG1-like Receptors in Antiviral Innate Immunity,
  2. Role of PI3K/AKT Signaling in the Pathogenesis of Influenza, and
  3. Molecular Mechanisms of Cancer

in genes interacting with risk factors (P < 10−8) are

  • TRAF6, 
  • RELA,
  • IFNA7,
  • IFNA4,
  • NFKB2,
  • IFNA10,
  • IFNA16,
  • NFKB1,
  • IFNA1/IFNA13,
  • IFNA5,
  • IFNA14,
  • IFNA,
  • GSK3B,
  • IFNA16,
  • IFNA14,
  • TP53,
  • FYN,
  • ARHGEF4,
  • GNAS,
  • CYCS ,
  • AXIN1,
  • ADCY4,
  • PRKAR2A,
  • ARHGEF1 ,
  • CDC42,
  • RAC,3
  • SIN3A,
  • RB1,
  • FOS ,
  • CDH1,
  • NFKBIA,
  • GNAT1,
  • PAK3,
  • RHOA,
  • RASGRP1,
  • PIK3CD,
  • BMP6,
  • CHEK2, and
KEGG code Pathway description Risk factor No. of genes/genes with marginal effecta No. of SNPs/eigenSNPs in the interaction analysisb PG x Ec Major contributing genesd
hsa04062e Chemokine Signalinge Obesity 175/27 695/181 3.29 × 10−6 GNGT2 RELA TIAM1
hsa05200 Pathways in cancer Obesity 315/37 806/212 5.35 × 10−4 CBLC RELA
hsa04060 Cytokine-cytokine receptor interaction Obesity 247/36 422/149 6.97 × 10−4 IFNA13 IL22RA1 IL2RA
hsa04020 Calcium signaling pathway Diabetes 171/24 759/190 1.57 × 10−4 GNAS
hsa04010 MAPK signaling pathway Diabetes 260/32 523/154 3.56 × 10−4 FOS MAP2K7
hsa05200 Pathways in cancer Diabetes 315/37 806/212 4.46 × 10−4 DAPK3 EPAS1 FOS

aNumber of genes making up the pathway/ number of genes survived the PCA-LRT (P ≤ 0.10).

bNumber of SNPs in the “reconstructed” pathways/number of principal components for LRT.

cP value was estimated by LRT in logistic regression model with adjustment of age, sex, study site, pack years(continuous), obesity or diabetes as appropriate, and five principal components for population structure.

dGenes with PG x E ≤ 0.05 in logistic regression and P ≤ 0.10 in PCA-LRT.

ePathways remained significant after Bonferroni correction (P < 1.45 × 10−4)

pc4

Top overrepresented canonical pathways in genes interacting with risk factors (P < 10−8)

Biological process Risk factor P Valuea Ratiob Contributing genes
Role of RIG1-like Receptors in Antiviral Innate Immunity Obesity 6.71 × 10−11 12/49 (0.25) TRAF6 RELA IFNA7 IFNA4 NFKB2 IFNA10 IFNA16 NFKB1
IFNA1/IFNA13 IFNA5 IFNA14 IFNA6
Role of PI3K/AKT Signaling in the Pathogenesis of Influenza Obesity 8.64 × 10−9 12/74 (0.12) RELA IFNA7 IFNA4 NFKB2 GSK3B IFNA10 IFNA16 NFKB1
IFNA1/IFNA13 IFNA5 IFNA14 IFNA6
Molecular Mechanisms of Cancer Diabetes 1.03 × 10−9 24/378 (0.063) TP53 FYN ARHGEF4 GNAS CYCS AXIN1 ADCY4 PRKAR2A
ARHGEF1 CDC42 RAC3 SIN3A RB1 FOS CDH1 NFKBIA GNAT1
PAK3 RHOA RASGRP1 PIK3CD BMP6 CHEK2 E2F2

aCalculated using Fisher’s exact test (right-tailed).

bNumber of genes interacting with a risk factor of interest (P ≤ 0.05) in a given pathway divided by total number of genes making up that pathway.

Pancreatic Cancer and Diabetes:

We conclude that diabetes type II has a fundamental influence on pancreatic ductal adenocarcinoma by stimulating cancer cell proliferation, while metformin inhibits cancer cell proliferation. Chronic inflammation had only a minor effect on the pathophysiology of an established adenocarcinoma.

  • Diabetes increases tumor size and proliferation of carcinoma cells
  • Diabetes does not decrease cell death in carcinomas
  • Diabetes II like syndrome reduces the number of Aldh1+cells within the tumor
  • Metformin decreases tumor size and proliferation of carcinoma cells

 

Much is known about factors increasing the likelihood to develop PDA. Identified risk factors include among others chronic pancreatitis, long lasting diabetes, and obesity. Patients with chronic and especially hereditary pancreatitis have a very high relative risk of developing pancreatic cancer of 13.3 and 69.0, respectively. Patients with diabetes and obesity have a moderately increased relative risk of 1.8 and 1.3. These studies indicate that a substantial number of patients with PDA also suffer from local inflammation or diabetes.

http://www.biomedcentral.com/1471-2407/15/51/figure/F3?highres=y

http://www.biomedcentral.com/content/figures/s12885-015-1047-x-4.jpg

pc5

Potential mechanisms underlying the associations of diabetes and cancer.

  • AdipoR1/R2, adiponectin receptor 1/2;
  • AMPK, 5′-AMPactivated protein kinase;
  • IGF-1, insulin-like growth factor-1;
  • IGF-1R, insulin-like growth factor-1 receptor;
  • IKK, IκA;B kinase; IR, insulin receptor;
  • IRS-1, insulin receptor substrate-1;
  • MAPK, mitogen-activated-protein-kinase;
  • mTOR, mammalian target of rapamycin;
  • NF-κA;B, nuclear factor-κA;B;
  • ObR, leptin receptor;
  • PAI-1, plasminogen activator inhibitor-1;
  • PI3-K, phosphatidylinositol 3-kinase;
  • ROS, Reactive oxygen species;
  • TNF-α, tumor necrosis factor- α;
  • TNF-R1, tumor necrosis factor-receptor 1;
  • uPA, urokinase-type plasminogen activator;
  • uPAR, urokinase-type plasminogen activator receptor;
  • VEGF, vascular endothelial growth factor;
  • VEGFR, vascular endothelial growth factor receptor.

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3238796_nihms-277874-f0001.jpg

Type 2 diabetes mellitus is likely the third modifiable risk factor for pancreatic cancer after cigarette smoking and obesity. The relationship between diabetes and pancreatic cancer is complex. Diabetes or impaired glucose tolerance is present in more than 2/3rd of pancreatic cancer patients.

Epidemiological investigations have found that long-term type 2 diabetes mellitus is associated with a 1.5-fold to 2.0-fold increase in the risk of pancreatic cancer. A causal relationship between diabetes and pancreatic cancer is also supported by findings from prediagnostic evaluations of glucose and insulin levels in prospective studies.

Insulin resistance and associated hyperglycemia, hyperinsulinemia, and inflammation have been suggested to be the underlying mechanisms contributing to development of diabetes-associated pancreatic cancer.

Stem Cells

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3410675_nihms295920f1.jpg

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932318/

pc6

“A study by Permert et al.using glucose tolerance tests in patients with newly diagnosed pancreatic cancer showed that 75% of patients met criteria for diabetes. Pannala et al. used fasting blood glucose values or previous use of antidiabetic medications to define diabetes in patients with pancreatic cancer (N.=512) and age-matched control non-cancer subjects attending primary care clinics (N.=933) “

Distribution of fasting blood glucose among pancreatic cancer cases and controls. From Pannala et al.

“ They reported a nearly seven-fold higher prevalence of diabetes in pancreatic cancer patients compared to controls (47% vs. 7%). In a retrospective study using similar criteria, Chari et al. found the prevalence of diabetes in pancreatic cancer patients to be 40%.  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932318/

 

Relationship between type 2 diabetes and risk of pancreatic cancer in case-control and nested case control studies. “Diamond: point estimate representing study-specific relative risks or summary relative risks with 95% CIs. Horizontal lines: represent 95% confidence intervals (CIs). Test for heterogeneity among studies: P<0.001, I2=93.6%. 1, cohort studies (N.=27) use incidence or mortality rate as the measurements of relative risk; 2, cohort studies (N.=8) use standardized incidence/mortality rate as the measurement of relative risk. From Benet al.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932318/

Table II

Sensitivity and specificity for biomarkers for pancreatic cancer.

Biomarker Study Sensitivity Specificity N.
CA19-9 Goonetilleke 68 79 82 Meta-analysis
Steinberg 69 81 90 Meta-analysis
CA125 Duraker 85 57 78 123
Haguland 86 45 76 95
CEA Ni 87 45 75 68
Haglund 86 54 76 95
Zhao 88 25 86 143
Duraker 85 39 91 123
SPan-1 Kiriyama 74 81 76 64
Chung 89 92 83 67
Kobayashi 90 82 85 200
Du-PAN 2 Satake 83 48 85 239
Sawabu 91 72 94 32
Kawa 92 64 200

NIHMS552557.html

PART II:  Targets for Immunomodulation to develop a therapy


Natural Killer Cells:

Natural Killer cells usually placed under non-specific immune response as a first defend mechanism during innate immunity.  NKs responses to innate immune reactions but not only viruses but also bacteria and parasitic infections develop a new line of defense.  These reactions involve amplification of many cytokines based on the specific infection or condition.  Thus, these activities help NKs to evolve.

However, their functions proven to be more than innate immune response since from keeping the pregnancy term to prevent recurrent abortions to complex diseases such as cancer, diabetes and cardiovascular conditions they have roles thorough awakening chemokines and engaging them specifically with their receptors to activate other immune cells.  For example, there is a signaling mechanism connection between NKs and DCs to respond attacks.  Furthermore, there are interactions between various types of immune cells and they are specific for example between NK and Tregs.

During pregnancy there is a special kind of interaction between NK cells and Tregs.

  • There can be several reasons such as to protect pregnancy from the immunosuppressive environment so then the successful implantation of the embryo and tolerance of the mother to the embryo can be established. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation.
  • During cancer development tumors want to build a microenvironment through an array of highly orchestrated immune elements to generate a new environment against the host. In normal pregnancy, decidua, the uterine endometrium,  is critical for the development of placental vasculature.
  • This is the region gets thicks and thin during female cycles to prevent or accept pregnancies. As a result, mother nature created that 70% of all human decidual lymphocytes are NK cells, defined as uterine or decidual NK (dNK) cells.
  • The NK cell of decidua (dNK) and  peripheral blood NK cells are different since  dNK cells are characterized as CD56brightCD16CD3, express killer cell immunoglobulin-like receptors and exhibit low killing capacity despite the presence of cytolytic granules, and a higher frequency of CD4+CD25bright   

The lesson learn here is that pregnancy and mammary tissue are great examples of controlling cellular differentiation and growth since after pregnancy all these cells go back to normal state.

Understanding these minute differences and relations to manipulate gene expression may help to:

  1. Develop better biomaterials to design long lasting medical devices and to deliver vaccines without side effects.
  2. Generate safer vaccines as NKcells are the secret weapons in DC vaccination and studying their behavior together with T-cell activation in vaccinated individuals might predict clinical outcome.
  3. Establish immunotherapies based on interactions between NK cells and Tregs for complex diseases not only cancer, but also many more such as autoimmune disorder, transplants, cardiovascular, diabetes.

pc 1

Trascription factors are the silence players of the gene expression that matches input to output as a cellular response either good or bad but this can be monitored and corrected with a proper meical device or diagnostics tool to provide successful treatment regimen.

  • Therefore, the effects of Tregs on NK during gene regulation analyzed and compared among other living organisms for concerved as well as signature sequence targets even though the study is on human.
  • Unfortunatelly we can’t mutate the human for experimental purposes so comparative developmental studies now its widely called stem cell biology with a system biology approach may help to establish the pathway.

NK and T reg regulation share a common interest called T box proteins. These proteins are conserved and also play role in development of heart at very early development, embryology.  What is shared among all T-box is simply lie behind the capacity for DNA binding through the T-box domain and transcriptional regulatory activity, which plays a role in controlling the expression of developmental gene in all animal species.

 The Special T box protein: T-bet

The first identified T-box protein was Brachyury (T). in a nut shell

  • The T-box domain is made up of about 180 amino-acid residues that includes a specific sequence of DNA
  • called T-box  domain,  TCACACCT between residues 135 and 326 in mouse.
  • However, T-bet which is the T-box protein expressed in T cells and also called as TBX21 is quite conserved in 18 members of the T-box protein (TBX) family
  • since it has a crucial dual role during development and for coordination of both innate and adaptive immune responses.

T-Bet was originally cloned for its role in Th1 lineage, it has a role in Th2 development, too. 

The whole mechanism based on direct activation and modulation mechanisms in that  T-Bet directly activates IFN-γ gene transcription and enhances development of Th1 cells at the same time modulates IL-2 and Th2 cytokines in an IFN-γ-independent manner that creates an attenuation of Th2 cell development.

Thus, certain lipids ligands or markers can be utilized during vaccine design to steer the responses for immune therapies against autoimmune diseases.   As a result, tumors can be removed and defeated by manipulating NKs action.

 

INKT:

NKT has functions in diabetes, asthma. One cell type that has been proposed to contribute immensely to the development of asthma is NKT cells, which constitute a small population of lymphocytes that express markers of both T cells (T-cell receptor, TCR) and NK cells (e.g., NK1.1, NKG2D). NKT cells can be subdivided into at least three subtypes, based on their TCR. Type I NKT cells or invariant NKT (iNKT) cells express invariant TCR chains (V14–J18 in mice and V24–J18 in humans) coupled with a limited repertoire of V chains (V8, V7 and V2 in mice and V11 in humans).

The studies in the past decade showed the protective mechanism of NKT cells during the development of Type 1 diabetes can be complex.

  1. First, NKT cells can impair the differentiation of anti-islet reactive T cells into Th1 effector cells in a cell–cell contact dependent manner, which did not require Th2 cytokine production or CD1d recognition.
  2. Second, NKT cells accumulating in the pancreas can indirectly suppress diabetogenic CD4+T cells via IFN-γ production.
  3. Last, anergic iNKT cells induced by protracted αGalCer stimulation can induce the production of noninflammatory DCs, which inhibit diabetes development in an Ag-specific fashion.

These findings point to an important protective role for NKT cells during autoimmune pathogenesis in the pancreas.

A crucial role has been suggested for invariant natural killer T cells (iNKT) in regulating the development of asthma, a complex and heterogeneous disease characterized by airway inflammation and airway hyperreactivity (AHR).

iNKT cells constitute a unique subset of T cells responding to endogenous and exogenous lipid antigens, rapidly secreting a large amount of cytokines, which amplify both innate and adaptive immunity.

IL17:

Terashima A et al (2008) identified a novel subset of natural killer T (NKT) cells that expresses the interleukin 17 receptor B (IL-17RB) for IL-25 (also known as IL-17E) and is essential for the induction of Airway hypersensitive reaction (AHR). IL-17RB is preferentially expressed on a fraction of CD4(+) NKT cells but not on other splenic leukocyte populations tested.

They strongly suggested that IL-17RB(+) CD4(+) NKT cells play a crucial role in the pathogenesis of asthma.

NKT connection can be established between through targeting IL17 and IL17RB. There is a functional specialization of interleukin-17 family members. Interleukin-17A (IL-17A) is the signature cytokine of the recently identified T helper 17 (Th17) cell subset. IL-17 has six family members (IL-17A to IL-17F).

Although IL-17A and IL-17F share the highest amino acid sequence homology, they perform distinct functions; IL-17A is involved in the development of autoimmunity, inflammation, and tumors, and also plays important roles in the host defenses against bacterial and fungal infections, whereas IL-17F is mainly involved in mucosal host defense mechanisms. IL-17E (IL-25) is an amplifier of Th2 immune responses.

 There is no one easy answer for the role of IL-17 in pancreatic cancer as there are a number of unresolved issues and but it can be only suggested that  pro-tumorigenic IL-17 activity is confined to specific subsets of patients with pancreatic cancer since there is a increased expression of IL-17RB in these patients about ∼40% of pancreatic cancers presented on their histochemical staining (IHC-  immunohistochemistry.

IL17 and breast cancer:

In addition, during breast cancer there is an increased signaling of interleukin-17 receptor B (IL-17RB) and IL-17B.  They promoted tumor formation in breast cancer cells in vivo and even created acinus formation in immortalized normal mammary epithelial cells in vitro cell culture assays.

  • Furthermore, the elevated expression of IL-17RB not only present itself  stronger than HER2 for a better prognosis but also brings the shortest survival rate if patients have increased  IL-17RB and HER2 levels.
  • However, decreased level of IL-17RB in trastuzumab-resistant breast cancer cells significantly reduced their tumor growth.  This may prompt a different independent  role for  IL-17RB and HER2  in breast cancer development.
  • In addition, treatment with antibodies specifically against IL-17RB or IL-17B effectively attenuated tumorigenicity of breast cancer cells.

These results suggest that the amplified IL-17RB/IL-17B signaling pathways may serve as a therapeutic target for developing treatment to manage IL-17RB-associated breast cancer.

IL 17 and Asthma:

A requirement for iNKT cells has also been shown in a model of asthma induced with air pollution, ozone and induced with respiratory viruses chronic asthma studied in detail. In these studies specific types of NKT cells found to that specific types of NK and receptors trigger of asthma symptoms. Taken together, these studies indicate that both Th2 cells (necessary for allergen-specific responses) and iNKT cells producing IL-4 and IL-13 are required for the development of allergen-induced AHR.

Although CD4+ IL-4/IL-13-producing iNKT cells (in concert with antigen-specific Th2 cells) are crucial in allergen-induced AHR, NK1.1IL-17-producing iNKT cells have a major role in ozone-induced AHR.

A main question in iNKT cell biology involves the identification of lipid antigens that can activate iNKT cells since this allow to identify which microorganisms to attack as  a result, the list of microorganisms that produce lipids that activate iNKT cells is rapidly growing.

Invariant natural killer T cells (iNKT) cell function in airway hyperreactivity (AHR). iNKT cells secrete various cytokines, including Th2 cytokines, which have direct effects on hematopoietic cells, airway smooth muscle cells, and goblet cells. Alternatively, iNKT cells could regulate other cell types that are known to be involved in asthma pathogenesis, e.g., neutrophils and alveolar macrophages.

http://www.nature.com/mi/journal/v2/n5/images/mi200996f1.jpg

Chemokines:

Chemokines  have a crucial role in organogenesis of various organs including lymph nodes, arising from their key roles in stem cell migration. Moreover, most homeostatic chemokines can control the movement of lymphocytes and dendritic cells and eventually adaptive immunity. Chemokines are heparin-binding proteins with 4 cysteine residues in the conserved positions.

The human chemokine system has about 48 chemokines. They are subgrouped based on:

  • Number of cysteines
  • Number of amino acid separating cysteines
  • Presence or absence of ELR motif includes, 3-amino acid sequence, glutamic acid-leucine-arginine
  • functionally classified as inflammatory, homeostatic, or both, based on their expression patterns

Chemokines are structurally divided into 4 subgroups :CXC, CC, CX3C, and C. X represent an aminoacid so the first 2 cysteines are separated by 1 is grouped as CXC and 3 amino acids is called CX3C chemokines but in CC  the first 2 cysteines are adjacent. In the C chemokines there is no second and fourth cysteines.

Various types of inflammatory stimuli induce abundantly the expression of inflammatory chemokines to induce the infiltration of inflammatory cells such as granulocytes and monocytes/macrophages.

  • inflammatory chemokines are CXC chemokines with ELR motif and CCL2.
  • homeostatic chemokines are expressed constitutively in specific tissues or cells.

cmi20132f2

Chemokines exert their biological activities by binding their corresponding receptors, which belong to G-protein coupled receptor (GPCR) with 7-span transmembrane portions. Thus, the target cell specificity of each chemokine is determined by the expression pattern of its cognate receptor .

Moreover, chemokines can bind to proteoglycans and glycosaminoglycans with a high avidity, because the carboxyl-terminal region is capable of binding heparin.

Consequently, most chemokines are produced as secretory proteins, but upon their secretion, they are immobilized on endothelium cells and/or in extracellular matrix by interacting with proteoglycans and glycosaminoglycans. The immobilization facilitates the generation of a concentration gradient, which is important for inducing the target cells to migrate in a directed way.

The human chemokine system.

Chemokine receptor Chemokines Receptor expression in
Leukocytes Epithelium Endothelium
CXCR1 CXCL6, 8 PMN +
CXCR2 CXCL1, 2, 3, 5, 6, 7, 8 PMN + +
CXCR3 CXCL4, 9, 10, 11 Th1, NK +
CXCR4 CXCL12 Widespread + +
CXCR5 CXCL13 B
CXCR6 CXCL16 Activated T +
CXCR7 (ACKR3) CXCL12, CXCL11 Widespread + +
Unknown CXCL14 (acts on monocytes)
CCR1 CCL3, 4, 5, 7, 14, 15, 16, 23 Mo, Mϕ, iDC, NK + +
CCR2 CCL2, 7, 8, 12, 13 Mo, Mϕ, iDC, NK
activated T, B
+ +
CCR3 CCL5, 7, 11, 13, 15, 24, 26, 28 Eo, Ba, Th2 +
CCR4 CCL2, 3, 5, 17, 22 iDC, Th2, NK, T, Mϕ
CCR5 CCL3, 4, 5, 8 Mo, Mϕ, NK, Th1
activated T
+
CCR6 CCL20 iDC, activated T, B +
CCR7 CCL19, 21 mDC, Mϕ, naïve T
activated T
+
CCR8 CCL1, 4, 17 Mo, iDC, Th2, Treg
CCR9 CCL25 T +
CCR10 CCL27, 28 Activated T, Treg +
Unknown CCL18 (acts on mDC and naïve T)
CX3CR1 CX3CL1 Mo, iDC, NK, Th1 +
XCR1 XCL1, 2 T, NK
Miscellaneous Scavenger receptors for chemokines
Duffy antigen (ACKR1) CCL2, 5, 11, 13, 14
CXCL1, 2, 3, 7, 8
D6 (ACKR2) CCL2, 3, 4, 5, 7, 8, 12
CCL13, 14, 17, 22
CCRRL1 (ACKR4) CCL19, CCL21, CCL25

Leukocyte anonyms are as follows. Ba: basophil, Eo: eosinophil, iDC: immature dendritic cell, mDC: mature dendritic cell, Mo: monocyte, Mϕ: macrophage, NK: natural killer cell, Th1: type I helper T cell, Th2: type II helper T cell, and Treg: regulatory T cell.

 pc9

There are differences between  human liver and peripheral NK cells. Regulation of NK cell functions by CD226, CD96 and TIGIT.close. CD226 binding to CD155 or CD112 at the cell surface of transformed or infected cells triggers cytotoxic granule exocytosis and target cell lysis by natural killer (NK) cells. TIGIT, CD226, CD96 and CRTAM ligand specificity and signalling.close.

Regulation of NK cell-mediated cancer immunosurveillance through CD155 expression.close.   CD155 is frequently overexpressed by cancer cells.

pc10

Liver NK cells Circulating NK cells References
CD3-CD56+ 30.6% (11.6–51.3%) 12.8% (1–22%) 17
CD56bright/total NK cell ~50% ~10% 18,19
CD56dim/total NK cell ~50% ~90% 18,19
CD27 high low 20,21
CD16 + 18,22
CD69 +/−, higher +/− 16
Chemokine receptor CCR7 and CXCR3
(CD56bright)
CXCR1, CX3CR1
(CD56dim)
13,23
Inhibitory receptor (NKG2A) high low 24
Natural cytotoxicity higher high 18,19
TRAIL high low 1
Perforin, Granzyme B high low 2
Cytokine production high
(MIP-1α/β, IL-10,
TNF-α, TNF-β, IFN-γ,
GM-CSF)
low
(TNF-α, TNF-β, IFN-γ,
GM-CSF, IL-10)
18
ADCC high 25
  • In conclusion, having to develop precise early diagnostics is about determining the overlapping genes as key among diabetes, obesity, overweight and pancreas functions even pregnancy can be suggested.

 

  • It seems feasible to develop an immunotherapy for pancreatic cancer with the focus on chemokines and primary  signaling between iNKT and Tregs such as one of the recent plausable target IL-17 and IL17 RB.

References:

 Heng-Hsiung Wu,1et al Targeting IL-17B–IL-17RB signaling with an anti–IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. Published March 2, 2015 // JEM vol. 212 no. 3 333-349 

MUNIRAJ1andS. T. CHARIMinerva Gastroenterol Dietol. 2012 Dec; 58(4): 331–345.PMCID: PMC3932318

Beaudoin L. et al. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic β cells. Immunity. 2002;17:725–736.

Wang J, Cho S, Ueno A, et al. Ligand-dependent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation.J. Immunol. 2008;181:2438–2445.

Lee HH, Meyer EH, Goya S, et al. Apoptotic cells activate NKT cells through T cell Ig-like mucin-like-1 resulting in airway hyper-reactivity. J. Immunol.2010;185:5225–5235.

Huang CK1, et al  6Autocrine/paracrine mechanism of interleukin-17B receptor promotes breast tumorigenesis through NF-κB-mediated antiapoptotic pathway. Oncogene. 2014 Jun 5;33(23):2968-77.

Terashima A1 et al  A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med. 2008 Nov 24;205(12):2727-33.

Isaksson B et al. Lifestyle factors and pancreatic cancer risk: a cohort study from the Swedish Twin Registry. Int J Cancer. 2002;98:480–482.

Larsson SC et al Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. Br J Cancer.2005;93:1310–1315.

Michaud DS et al Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA.2001;286:921–929.

Patel AV et al Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. Cohort.Cancer Epidemiol Biomarkers Prev. 2005;14:459–466.

Rapp K et al  Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer. 2005;93:1062–1067.

Shibata A et al. A prospective study of pancreatic cancer in the elderly. Int J Cancer. 1994;58:46–49.

Howe GR, Jain M, Miller AB. Dietary factors and risk of pancreatic cancer: results of a Canadian population-based case-control study. Int J Cancer.1990;45:604–608.

Nilsen TI, Vatten LJ. A prospective study of lifestyle factors and the risk of pancreatic cancer in Nord-Trondelag, Norway. Cancer Causes Control.2000;11:645–652.

Zatonski W et al Nutritional factors and pancreatic cancer: a case-control study from south-west Poland. Int J Cancer. 1991;48:390–394.

Berrington de GA et al A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer. 2003;89:519–523.

Larsson SC, Orsini N, Wolk A. Body mass index and pancreatic cancer risk: A meta-analysis of prospective studies. Int J Cancer. 2007;120:1993–1998.

Renehan AG et al  Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–578.

Luo J et al Obesity and risk of pancreatic cancer among postmenopausal women: the Women’s Health Initiative (United States) Br J Cancer. 2008;99:527–531.

Li D et al Body mass index and risk, age of onset, and survival in patients with pancreatic cancer.JAMA. 2009;301:2553–2562.

Jiao L et al . Body mass index, effect modifiers, and risk of pancreatic cancer: a pooled study of seven prospective cohorts. Cancer Causes Control. 2010;21:1305–1314.

Johansen D et al Metabolic factors and the risk of pancreatic cancer: a prospective analysis of almost 580,000 men and women in the Metabolic Syndrome and Cancer Project. Cancer Epidemiol Biomarkers Prev. 2010;19:2307–2317.

Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci (Lond) 2010;118:315–332. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–481.

Pisani P. Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem. 2008;114:63–70.

Jazet IM, Pijl H, Meinders AE. Adipose tissue as an endocrine organ: impact on insulin resistance. Neth J Med. 2003;61:194–212.

Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846.

Shoelson et al  Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem. 2009;115:86–96.

Boyd DB. Insulin and cancer. Integr Cancer Ther. 2003;2:315–329.

Fisher WE, Boros LG, Schirmer WJ. Insulin promotes pancreatic cancer: evidence for endocrine influence on exocrine pancreatic tumors. J Surg Res.1996;63:310–313.

P Matangkasombut1,2, et al Natural killer T cells and the regulation of asthma Mucosal Immunology (2009) 2, 383–392;

Tahir SM, Cheng O, Shaulov A, et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol. 2001;167:4046–4050.

Motohashi S, Kobayashi S, Ito T, et al. Preserved IFN-α production of circulating Vα24 NKT cells in primary lung cancer patients. Int. J. Cancer.2002;102:159–165.

Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J. Immunol. 1999;163:2387–2391.

Chang DH, Osman K, Connolly J, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 2005;201:1503–1517.

Ambrosino E, Terabe M, Halder RC, et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 2007;179:5126–5136.  uncovered a new immunoregulatory axis where vNKT cells can inhibit the antitumor activity of iNKT cells and CD8+ T cells

Crowe NY, Coquet JM, Berzins SP, et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 2005;202:1279–1288.

Novak J, Beaudoin L, Park S, et al. Prevention of Type 1 diabetes by invariant NKT cells is independent of peripheral CD1d expression. J. Immunol.2007;178:1332–1340.

Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA. 1995;273:1605–9.

Huxley R et al Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–83.

Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, et al. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer.2011;47:1928–37.

Clinic, Mayo. “Mayo researchers identify gene that pushes normal pancreas cells to change shape.”Medical News Today. MediLexicon, Intl., 24 Feb. 2015. Web.10 Mar. 2015.

James D. Byrne et al Local iontophoretic administration of cytotoxic therapies to solid tumors

Sci Transl Med 4 February 2015: Vol. 7, Issue 273, p. 273ra14 Sci. Transl. Med. DOI: 10.1126/scitranslmed.3009951, published online 4 February 2015, abstract.

Mayo Clinic news release, accessed 20 February 2015 via Newswise.

Additional source: ACS, What are the key statistics about pancreatic cancer?, accessed 20 February 2015.

Additional source: ACS, What is pancreatic cancer?, accessed 20 February 2015.

Scottish Medicines Consortium. Treatment Assessment. February 2015

NHS England. Cancer Drugs Fund list Version 3. Available at http://www.england.nhs.uk/wp-content/uploads/2015/01/ncdf-list-dec14.pdf . Last accessed January 2015

NHS England. Cancer Drugs Fund: Albumin-bound paclitaxel decision summary. Available athttp://www.england.nhs.uk/wp-content/uploads/2015/01/ncdf-summ-albumin-pac.pdf. Accessed February 2015

Cancer Research UK. Pancreatic cancer key stats. Available athttp://www.cancerresearchuk.org/cancer-info/cancerstats/keyfacts/pancreatic-cancer/cancerstats-key-facts-on-pancreatic-cancer. Accessed February 2015

Cancer Research UK. Statistics and outlook for pancreatic cancer. Available athttp://www.cancerresearchuk.org/about-cancer/type/pancreatic-cancer/treatment/statistics-and-outlook-for-pancreatic-cancer Accessed February 2015

ISD Scotland. Cancer statistics: Pancreatic Cancer. Available at http://www.isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/Pancreatic/ Accessed February 2015

Von Hoff DD, et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N Engl J Med. 2013;369:1691 – 1703. Available at:http://www.nejm.org/doi/full/10.1056/NEJMoa1304369 Accessed February 2015

Goldstein D et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. JNCI J Ntal Cancer Inst, 2015, 1-10. DOI: 10.1093/jnci/dju413. Accessed February 2015

The Translational Genomics Research Inst. “TGen study: Destroying tumor material that ‘cloaks’ cancer cells could benefit patients.” Medical News Today. MediLexicon, Intl., 27 Feb. 2015. Web. 10 Mar. 2015.

Mol Carcinog. 2012 Jan; 51(1): 64–74. doi:  10.1002/mc.20771

Mendonça FM1, de Sousa FR1, Barbosa AL1, Martins SC1, Araújo RL1, Soares R2, Abreu C1. Metabolism. 2015 Metabolic syndrome and risk of cancer: which link? Feb;64(2):182-9.

Huang CK1, et al  Autocrine/paracrine mechanism of interleukin-17B receptor promotes breast tumorigenesis through NF-κB-mediated antiapoptotic pathway. Oncogene. 2014 Jun 5;33(23):2968-77.

 Jiao L et al  Dietary consumption of advanced glycation end products andpancreatic cancer in the prospective NIH-AARP Diet and Health Study.

 Cancer. 2014 Dec 1;120(23):3669-75. doi: 10.1002/cncr.28863. Epub 2014 Oct 14. Clinical and pathologic features of familial pancreatic cancer.

The Rockefeller University Press, doi: 10.1084/jem.20141702 Cancer Lett. 2015 Jan 28;356(2 Pt A):281-8. doi: 10.1016/j.canlet.2014.03.028. Epub 2014 Apr 2.

 Humphris JL1, et al  Australian Pancreatic Cancer Genome Initiative  Br J Cancer. 2014 Nov 25;111(11):2180-6. doi: 10.1038/bjc.2014.525. Epub 2014 Oct 2.

Søreide K1, Sund M2.  Epidemiological-molecular evidence of metabolic reprogramming on proliferation, autophagy and cell signaling in pancreas cancer.  Am J Clin Nutr. 2015 Jan;101(1):126-34. doi: 10.3945/ajcn.114.098061. Epub 2014 Nov 19.

Lin CC1, et al .Independent and joint effect of type 2 diabetes and gastric and hepatobiliary diseases on risk of pancreatic cancer risk: 10-year follow-up of population-based cohort.

Wang Z1 et al  Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014 Oct;106(1):19-26. doi: 10.1016/j.diabres.2014.04.007. Epub 2014 Apr 18.

Preziosi G1, Oben JA2, Fusai G3Obesity and pancreatic cancer.  Surg Oncol. 2014 Jun;23(2):61-71. doi: 10.1016/j.suronc.2014.02.003. Epub 2014 Mar 12.

Berger NA1Obesity and cancer pathogenesis. Ann N Y Acad Sci. 2014 Apr;1311:57-76. doi: 10.1111/nyas.12416.

De Souza AL1, Saif MW. Diabetes and pancreatic cancer. JOP. 2014 Mar 10;15(2):118-20. doi: 10.6092/1590-8577/2286.

Timofte D et al Metabolic disorders in patients operated for pancreatic cancer.  Rev Med Chir Soc Med Nat Iasi. 2014 Apr-Jun;118(2):392-8.

Lowenfels AB, Maisonneuve P. Epidemiologic and etiologic factors of pancreatic cancer. Hematol Oncol Clin North Am. 2002;16:1–16.

Lowenfels AB, Sullivan T, Fiorianti J, Maisonneuve P. The epidemiology and impact of pancreatic diseases in the United States. Curr Gastroenterol Rep.2005;7:90–95.

Michaud DS. Epidemiology of pancreatic cancer. Minerva Chir. 2004;59:99–111.

Schuster DP. Obesity and the Development of Type 2 Diabetes: the Effects of Fatty Tissue Inflamation. Dovepress; 2010. pp. 253–262.

WHO. World Health Organization Fact Sheet for World Wide Prevalence of Obesity. 2006. http://www.who.int/mediacentre/factsheets/fs311/en/index.html.

Chang S et al, State ranks of incident cancer burden due to overweight and obesity in the United States, 2003. Obesity (Silver Spring) 2008;16:1636–1650.

Lewis L. Lanie  Evolutionary struggles between NK cells and viruses Nature Reviews Immunology 8, 259-268 (April 2008) | doi:10.1038/nri2276

Seth, S. et alThe murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem. Biophys. Res. Commun. 364, 959–965 (2007).

de Andrade et al DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 92, 237–244 (2014).

Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nature Rev. Immunol. 8, 713–725 (2008).

Lagrue, K. et alThe central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapseImmunol. Rev. 256, 203–221 (2013).

Vyas, Y. M. et alSpatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactionsJ. Immunol. 167, 4358–4367 (2001).

Shibuya, K. et alCD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferationJ. Exp. Med. 198,1829–1839 (2003).

Lozano, E. et al  The CD226/CD155 interaction regulates the proinflammatory (TH1/TH17)/anti-inflammatory (TH2) balance in humans. J. Immunol. 191, 3673–3680 (2013).

Maier, M. K. et alThe adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigensEur. J. Immunol. 37, 2214–2225(2007).

Pende, D. et alExpression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction.Blood 107, 2030–2036 (2006).

O’Leary et al  T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol. 7, 507–516(2006).

Sanchez-Correa, B. et alDecreased expression of DNAM-1 on NK cells from acute myeloid leukemia patientsImmunol. Cell Biol. 90, 109–115 (2012).

Mamessier, E. et alHuman breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

Nakai, R. et alOverexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101, 1326–1330 (2010).

Tane, S. et alThe role of Necl-5 in the invasive activity of lung adenocarcinomaExp. Mol. Pathol. 94, 330–335 (2013).

Sloan, K. E. et alCD155/PVR plays a key role in cell motility during tumor cell invasion and migrationBMC Cancer 4, 73 (2004)

Chan, C. J., Smyth, M. J. & Martinet, L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ. 21, 5–14 (2014).

Li, M. et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J. Biol. Chem. 289, 17647–17657 (2014).

Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoireBlood 104, 3664–3671 (2004).

Sharma S. Natural killer cells and regulatory T cells in early pregnancy loss.

Int J Dev Biol. 2014;58(2-4):219-29. doi: 10.1387/ijdb.140109ss. Review.

Mukaida N, Sasaki S, Baba T. Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment.  Mediators Inflamm. 2014;2014:170381. doi: 10.1155/2014/170381. Epub 2014 May 22. Review.

Van Elssen CH, Oth T, Germeraad WT, Bos GM, Vanderlocht J.  Natural killer cells: the secret weapon in dendritic cell vaccination strategies.Clin Cancer Res. 2014 Mar 1;20(5):1095-103. doi: 10.1158/1078-0432.CCR-13-2302. Review.

Gardner AB, Lee SK, Woods EC, Acharya AP. Biomaterials-based modulation of the immune system. Biomed Res Int. 2013;2013:732182. doi: 10.1155/2013/732182. Epub 2013 Sep 22. Review.

Pedroza-Pacheco I, Madrigal A, Saudemont A. Interaction between natural killer cells and regulatory T cells: perspectives for immunotherapy. Cell Mol Immunol. 2013 May;10(3):222-9. doi: 10.1038/cmi.2013.2. Epub 2013 Mar 25. Review.

Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ.  The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013 Feb;138(2):105-15. doi: 10.1111/imm.12036. Review.

Tian Z, Chen Y, Gao B.Natural killer cells in liver disease.  Hepatology. 2013 Apr;57(4):1654-62. doi: 10.1002/hep.26115. Review.

Joyce S, Girardi E, Zajonc DM. J NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. Immunol. 2011 Aug 1;187(3):1081-9. doi: 0.4049/jimmunol.1001910. Review.

Diana J, Gahzarian L, Simoni Y, Lehuen A. Innate immunity in type 1 diabetes.  Discov Med. 2011 Jun;11(61):513-20. Review.

Wu L, Van Kaer L.Natural killer T cells in health and disease. Front Biosci (Schol Ed). 2011 Jan 1;3:236-51. Review.

Cantorna MT.  Why do T cells express the vitamin D receptor? Ann N Y Acad Sci. 2011 Jan;1217:77-82. doi: 10.1111/j.1749-6632.2010.05823.x. Epub 2010 Nov 29. Review.

Key Papers:

These papers, Gilfian et all and Iguchi-Manaka et al,  were the first to show the role of CD226 in NK cell- and CD8+ T cell-mediated tumour immunosurveillance using Cd226−/− mice.

  • Gilfillan, S.et alDNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med. 205, 2965–2973 (2008).
  • Iguchi-Manaka, A.et alAccelerated tumor growth in mice deficient in DNAM-1 receptor.  Exp. Med. 205, 2959–2964 (2008).

Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector functionCancer Cell 26, 923–937 (2014).
This study shows that TIGIT is expressed by PD1+ exhausted tumour-infiltrating T cells and that targeting these receptors with monoclonal antibodies represents a promising strategy to restore CD8+ T cell functions in cancer or in chronic infectious disease.

Khakoo, S. I. et alHLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infectionScience 305, 872–874 (2004).

Fang, M. et alCD94 is essential for NK cell-mediated resistance to a lethal viral disease.Immunity 34, 579–589 (2011).
This study using CD94-deficient mice shows that the activating receptor formed by CD94 and NKG2E is essential for the resistance of C57BL/6 mice to mousepox.

Pradeu, T., Jaeger, S. & Vivier, E. The speed of change: towards a discontinuity theory of immunity? Nature Rev. Immunol. 13, 764–769 (2013).
This is an outstanding review on the formulation of a new immune paradigm ‘the discontinuity theory’

Further Reading:

Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi
Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi

Patents

1.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08974784-20150310.html

Anti-pancreatic cancer antibodies: David M. Goldenberg, Mendham, NJ (US); Hans J. Hansen, Picayune, MS (US); Chien-Hsing Chang, Downingtown, PA (US); …

2.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week42/OG/html/1407-3/US08865413-20141021.html

A method of diagnosing pancreatic cancer in a human, the method comprising detecting the level of golgi apparatus protein 1 in a sample from the …

3.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08974802-20150310.html

A method for the treatment of pancreatic cancer, which comprises the administration to a human patient with pancreatic cancer of an effective …

4.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week50/OG/html/1409-3/US08912191-20141216.html

A method of treatment of melanoma, colorectal cancer, or pancreatic cancerwherein the treatment inhibits the progress of, reduces the rate of …

5.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08975401-20150310.html

A method of treating a cancer selected from breast cancer, hepatocellular carcinoma … gastric carcinoma, leukemia and pancreatic cancer in a subject …

6.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week42/OG/html/1407-3/US08865173-20141021.html

Treatments for pancreatic cancer metastases: Suzanne M. Spong, San Francisco, CA (US); Thomas B. Neff, Atherton, CA (US); and Stephen J. Klaus, San …

7.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week48/OG/html/1409-1/US08901093-20141202.html

Custom vectors for treating and preventing pancreatic cancer: Dennis L. Panicali, Acton, MA (US); Gail P. Mazzara, Winchester, MA (US); Linda R. …

8.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week09/OG/html/1412-1/US08969366-20150303.html

A method for treating a disease selected from the group consisting of melanoma, stomach cancer, liver cancer, colorectal cancerpancreatic …

9.       Drug composition cytotoxic for pancreatic cancer cells

http://www.uspto.gov/web/patents/patog/week13/OG/html/1401-1/US08685941-20140401.html

Drug composition cytotoxic for pancreatic cancer cells: James Turkson, Orlando, Fla. (US) Assigned to University of Central Florida Research …

10.    [PDF] J. John Shimazaki, Esq. 1539 Lincoln Way, Suite 204

http://www.uspto.gov/web/offices/com/sol/foia/tac/2.66/74713131.pdf

  1. John Shimazaki, Esq. 1539 Lincoln Way, Suite 204 … containing the Of fice Action because Applicant™s president™s father was ill withpancreatic

11.    [PDF] Written Comments on Genetic Diagnostic Testing Study

http://www.uspto.gov/aia_implementation/gen_e_lsi_20130207.pdf

Page 5 of 23 extracolonic cancers of LS include liver cancerpancreatic cancer, gall bladder duct cancer, prostate cancer, sarcomas, thyroid cancer …

12.    Detection of digestive organ cancer, gastric cancer …

http://www.uspto.gov/web/patents/patog/week02/OG/html/1410-2/US08932990-20150113.html

Detection of digestive organ cancer, gastric cancer, colorectal cancerpancreatic cancer, and biliary tract cancer by gene expression profiling

13.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week06/OG/html/1399-2/US08648112-20140211.html

wherein said cancer is selected from the group consisting of a sarcoma, … a nervous system cancer, prostate cancerpancreatic cancer, and colon can …

14.    Treatment of hyperproliferative diseases with vinca …

http://www.uspto.gov/web/patents/patog/week45/OG/html/1408-2/US08883775-20141111.html

A method of treating or ameliorating a hyperproliferative disorder selected from the group consisting of glioblastoma, lung cancer, breast cancer . …

15.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week30/OG/html/1404-5/US08791125-20140729.html

A method for treating a Weel kinase mediated cancer selected from the group consisting of breast cancer, lung cancerpancreatic cancer, colon …

16.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week08/OG/html/1411-4/US08962891-20150224.html

wherein said proliferative disorder is breast cancer or pancreatic cancer. …

17.    Immunoconjugates, compositions for making them, and …

http://www.uspto.gov/web/patents/patog/week40/OG/html/1407-1/US08852599-20141007.html

A method for treating a cancer in a subject suffering from such cancer, … pancreatic cancer, ovarian cancer, lymphoma, colon cancer, mesothelioma, …

18.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week11/OG/html/1400-3/US08673898-20140318.html

A method of treating cancer, … lung cancer, melanoma, neuroblastomas, oral cancer, ovarian cancerpancreatic cancer, prostate cancer , rectal cance …

19.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week43/OG/html/1407-4/US08871744-20141028.html

A method for treating a subject having breast cancer, ovarian cancer, or pancreatic cancer in need of therapy thereof comprising administering to …

20.    [PDF] Pamela Scudder <pscudder@windstream.net> Sent: Saturday …

http://www.uspto.gov/sites/default/files/aia_implementation/gene-comment-scudder.pdf

My daughter died of ovarian cancer. My other daughter and many … (mutation) is known to cause a higher incidence of pancreatic (for instance) cancer …

21.    Methods of treating cancer using pyridopyrimidinone …

http://www.uspto.gov/web/patents/patog/week48/OG/html/1409-1/US08901137-20141202.html

A method of treating pancreatic cancer which method comprises administering to a patient a therapeutically effective amount of a compound that is:

22.    Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo …

http://www.uspto.gov/web/patents/patog/week02/OG/html/1410-2/US08933086-20150113.html

A method of treating pancreatic cancer in a patient, comprising administering to said patient a therapeutically effective amount of a compound …

23.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week49/OG/html/1409-2/US08906934-20141209.html

… wherein the cell proliferative disorder is selected from the group consisting of cervical cancer, colon cancer, ovarian cancerpancreatic cancer, …

24.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week32/OG/html/1405-2/US08802703-20140812.html

A method of inhibiting MEK in a cancer cell selected from the group consisting of human melanoma cells and human pancreatic cancer cells …

25.    Antibody-based arrays for detecting multiple signal …

http://www.uspto.gov/web/patents/patog/week08/OG/html/1399-4/US08658388-20140225.html

A method for performing a multiplex, high-throughput immunoassay for facilitating a cancer diagnosis, the method comprising:

26.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week48/OG/html/1409-1/US08901147-20141202.html

A method for the treatment of colorectal cancer, lung cancer, breast cancer, prostatecancer, urinary cancer, kidney cancer, and pancreatic …

27.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week16/OG/patentee/alphaY.htm

Yamaue, Hiroki; to Onco Therapy Science, Inc. Combination therapy for pancreatic cancer using an antigenic peptide and chemotherapeutic agent 08703713 …

28.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week48/OG/patentee/alphaP_Utility.htm

… The Custom vectors for treating and preventing pancreatic cancer … system and apparatus for control of pancreatic beta cell function to improve …

29.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week16/OG/patentee/alphaW.htm

Whatcott, Cliff; and Han, Haiyong, to Translational Genomics Research Institute, The Therapeutic target for pancreatic cancer cells 08703736 Cl. …

30.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week10/OG/patentee/alphaG.htm

Goldenberg, David M.; Hansen, Hans J.; Chang, Chien-Hsing; and Gold, David V., to Immunomedics, Inc. Anti-pancreatic cancer antibodies 08974784 Cl. …

31.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week42/OG/patentee/alphaD.htm

… Narayan, Vaibhav; and Patterson, Scott, to Celera Corporation Pancreatic cancertargets and uses thereof 08865413 Cl. 435-7.1. Domsch, Matthew L.; …

32.    [PDF] 15 March 2005 – United States Patent and Trademark Office

http://www.uspto.gov/web/trademarks/tmog/20050315_OG.pdf

15 March 2005 – United States Patent and Trademark Office

33.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08975248-20150310.html

Combinations of therapeutic agents for treating cancer: … myeloma, colorectal adenocarcinoma, cervical carcinoma and pancreatic carcinoma, …

34.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week05/OG/patentee/alphaG_Utility.htm

… Inc. Medium-chain length fatty acids, salts and triglycerides in combination with gemcitabine for treatment of pancreatic cancer 08946190 Cl. …

35.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week13/OG/patentee/alphaT_Utility.htm

Turkson, James; to University of Central Florida Research Foundation, Inc. Drug composition cytotoxic for pancreatic cancer cells 08685941 Cl. 514-49.

36.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week31/OG/patentee/alphaG_Utility.htm

… David M., to Immunomedics, Inc. Anti-mucin antibodies for early detection and treatment of pancreatic cancer 08795662 Cl. 424-130.1. Gold, …

37.    [PDF] www.uspto.gov

http://www.uspto.gov/web/trademarks/tmog/20110816_OG.pdf

http://www.uspto.gov

38.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week29/OG/patentee/alphaG.htm

Goggins, Michael G.; and Sato, Norihiro, to Johns Hopkins University, The Aberrantly methylated genes in pancreatic cancer 08785614 Cl. 536-24.3. …

39.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week46/OG/html/1408-3/US08889697-20141118.html

wherein said cancer is pancreatic cnacer, chronic myelogenous leukemia (CML), acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL …

40.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week39/OG/patentee/alphaM_Utility.htm

Malafa, Mokenge P.; and Sebti, Said M., to University of South Florida Delta-tocotrienol treatment and prevention of pancreatic cancer 08846653 Cl. …

41.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week02/OG/patentee/alphaK_Utility.htm

… Taro, to National University Corporation Kanazawa University Detection of digestive organ cancer, gastric cancer, colorectal cancerpancreatic …

42.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week11/OG/patentee/alphaK_Utility.htm

Kirn, David; to Sillajen Biotherapeutics, Inc. Oncolytic vaccinia virus cancer therapy 08980246 Cl. 424-93.2. Kirn, Larry J.; …

43.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week39/OG/patentee/alphaM_Utility.htm

Malafa, Mokenge P.; and Sebti, Said M., to University of South Florida Delta-tocotrienol treatment and prevention of pancreatic cancer 08846653 Cl. …

44.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week35/OG/patentee/alphaS_Utility.htm

list of patentees to whom patents were issued on the 2nd day of september, 2014 and to whom reexamination certificates were issued during the week …

45.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week42/OG/patentee/alphaS.htm

… Therapeutics Inc. Compounds and compositions for stabilizing hypoxia inducible factor-2 alpha as a method for treating cancer 08865748 Cl. …

46.    [PDF] Paper No. 12 UNITED STATES PATENT AND TRADEMARK OFFICE …

http://www.uspto.gov/sites/default/files/ip/boards/bpai/decisions/prec/bhide.pdf

high incidence of ras involvement, such as colon and pancreatic tumors. By … withcancer or pre-cancerous states will serve to treat or palliate the …

47.    CPC Scheme – C07K PEPTIDES – United States Patent and …

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-C07K.html

PEPTIDES (peptides in … Cancer-associated SCM-recognition factor, CRISPP} [2013‑01] … Kazal type inhibitors, e.g. pancreatic secretory inhibitor, …

48.    Class Definition for Class 514 – DRUG, BIO-AFFECTING AND …

http://www.uspto.gov/web/patents/classification/uspc514/defs514.htm

… compound X useful as an anti-cancer … certain rules as to patent … Cystic fibrosis is manifested by faulty digestion due to a deficiency of pa …

49.    United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-G01N_3.html

Cancer-associated SCM-recognition factor, CRISPP . G01N 2333/4748. . . . . … Bovine/basic pancreatic trypsin inhibitor (BPTI, aprotinin) G01N …

50.    Class Definition for Class 530 – CHEMISTRY: NATURAL RESINS …

http://www.uspto.gov/web/patents/classification/uspc530/defs530.htm

CLASS 530 , CHEMISTRY: NATURAL … Typically the processes of this subclass include solvent extraction of pancreatic … as well as with some forms of …

51.    CPC Definition – A61K PREPARATIONS FOR MEDICAL, DENTAL, OR …

http://www.uspto.gov/web/patents/classification/cpc/html/defA61K.html

PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES … i.e. Pancreatic stem cells are classified in A61K 35/39, … preparations containing cancer a …

52.    Class 530: CHEMISTRY: NATURAL RESINS OR DERIVATIVES …

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/def/530.htm

Typically the processes of this subclass include solvent extraction of pancreatic … 828 for cancer -associated proteins … provided for in Class …

53.    United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-G01N_1.html

Home page of the United States Patent and … Pancreatic cells} G01N 33/5073 … – relevant features relating to a specifically defined cancer are …

54.    *****TBD***** – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/shadowFiles/defs514sf.htm?514_971&S&10E&10F

class 514, drug, bio-affecting and body treating compositions …

55.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week47/OG/patentee/alphaN_Utility.htm

… Dale E., to Buck Institute for Age Research, The Reagents and methods for cancertreatment and … useful for diagnosis and treatment of pancreati …

56.    United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-C12Y_2.html

Pancreatic ribonuclease (3.1.27.5) C12Y 301/27006. . Enterobacter ribonuclease (3.1.27.6) C12Y 301/27007. . Ribonuclease F (3.1.27.7) C12Y 301/27008. …

57.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week01/OG/patentee/alphaI_Utility.htm

Institute for Cancer Research: See … and Segev, Hanna, to Technion Research & Development Foundation Limited Populations of pancreatic …

58.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week53/OG/patentee/alphaC.htm

Cancer Research Technology Limited: See–Collins, Ian; Reader, John Charles; Klair, Suki; Scanlon, Jane; Addison, Glynn; and Cherry, Michael 08618121 …

59.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week12/OG/patentee/alphaP_Utility.htm

… to University Health Network Cyclic inhibitors of carnitine palmitoyltransferase and treating cancer … progenitor cells and pancreatic endocrine …

60.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week47/OG/patentee/alphaI.htm

… to King Fahd University of Petroleum and Minerals Cytotoxic compounds for treatingcancer … or preventing a pancreatic dysfunction 08894972 Cl …

61.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week50/OG/patentee/alphaC.htm

… and Taylor-Papadimitriou, Joyce, to Københavns Universitet Generation of a cancer-specific … to CuRNA, Inc. Treatment of pancreatic …

62.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week29/OG/patentee/alphaP_Utility.htm

… to Cedars-Sinai Medical Center Drug delivery of temozolomide for systemic based treatment of cancer … Pancreatic enzyme compositions and …

63.    Class 424: DRUG, BIO-AFFECTING AND BODY TREATING …

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/def/424.htm

… a disclosed or even specifically claimed utility (i.e., compound X having an attached radionuclide useful as an anti-cancer diagnostic or …

64.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week25/OG/patentee/alphaT_Utility.htm

… Chang-Jer, to Gold Nanotech Inc. Physical nano-complexes for preventing and treating cancer and … and protective solution for protecting pancrea …

65.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week27/OG/patentee/alphaA_Utility.htm

… Thomas T., to Penn State Research Foundation, The In vivo photodynamic therapy ofcancer via a near infrared … of pancreatic beta-cells by …

66.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week32/OG/patentee/alphaB_Utility.htm

Birnie, Richard; to University of York, The Cancer vaccine 08802619 Cl. 514-1. Birtwhistle, Daniel P.; Long, James R.; and Reinke, Robert E., …

67.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week20/OG/patentee/alphaC_Utility.htm

… to Cornell University Method for treating cancer 08729133 Cl. 514-673 … methods for promoting the generation of PDX1+ pancreatic cells …

68.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week49/OG/patentee/alphaL_Utility.htm

… Kurt, to Abbvie Biotherapeutics Inc. Compositions against cancer antigen LIV-1 and uses … H., to Amylin Pharmaceuticals, LLC Pancreatic …

69.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week11/OG/patentee/alphaS_Utility.htm

… Kenji; and Matsuda, Hirokazu, to Kyoto University Molecular probe for imaging ofpancreatic islets and use … use in the treatment of cancer …

70.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week36/OG/patentee/alphaK.htm

… Emi; Matsumi, Chiemi; and Saitoh, Yukie, to Actgen Inc Antibody having anti-cancer … The Plectin-1 targeted agents for detection and treatment …

71.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week53/OG/patentee/alphaK.htm

list of patentees to whom patents were issued on the 31th day of december, 2013 and to whom reexamination certificates were issued during the week …

72.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week40/OG/patentee/alphaK_Utility.htm

… Uemoto, Shinji; and Kawaguchi, Yoshiya, to Kyoto University Method of culturingpancreatic islet-like tissues by a … of breast cancer 08853183 …

Clinical Trials:

Region Name   Number of Studies
World 1824  
Africa   [map]   10  
Central America   [map]   4  
East Asia   [map]   179  
Japan 40   [studies]
Europe   [map]   444  
Middle East   [map]   46  
North America 1189  
Canada   [map]   102   [studies]
Mexico 11   [studies]
United States   [map]   1144   [studies]
Alabama 60   [studies]
Alaska 4   [studies]
Arizona 107   [studies]
Arkansas 23   [studies]
California 235   [studies]
Colorado 79   [studies]
Connecticut 51   [studies]
Delaware 15   [studies]
District of Columbia 36   [studies]
Florida 187   [studies]
Georgia 77   [studies]
Hawaii 15   [studies]
Idaho 11   [studies]
Illinois 139   [studies]
Indiana 94   [studies]
Iowa 51   [studies]
Kansas 39   [studies]
Kentucky 48   [studies]
Louisiana 46   [studies]
Maine 11   [studies]
Maryland 189   [studies]
Massachusetts 142   [studies]
Michigan 116   [studies]
Minnesota 114   [studies]
Mississippi 14   [studies]
Missouri 91   [studies]
Montana 27   [studies]
Nebraska 42   [studies]
Nevada 32   [studies]
New Hampshire 25   [studies]
New Jersey 64   [studies]
New Mexico 27   [studies]
New York 230   [studies]
North Carolina 111   [studies]
North Dakota 22   [studies]
Ohio 136   [studies]
Oklahoma 41   [studies]
Oregon 54   [studies]
Pennsylvania 180   [studies]
Rhode Island 23   [studies]
South Carolina 72   [studies]
South Dakota 23   [studies]
Tennessee 115   [studies]
Texas 212   [studies]
Utah 36   [studies]
Vermont 11   [studies]
Virginia 69   [studies]
Washington 83   [studies]
West Virginia 12   [studies]
Wisconsin 74   [studies]
Wyoming 9   [studies]
North Asia   [map]   24  
Pacifica   [map]   39  
South America   [map]   30  
South Asia   [map]   23  
Southeast Asia   [map]   25  

Search Results for ‘pancreas cancer’

Genomics and Epigenetics: Genetic Errors and Methodologies – Cancer and Other Diseases on March 25, 2015 |  Read Full Post »

@Mayo Clinic: Inhibiting the gene, protein kinase D1 (PKD1), and its protein could stop spread of this form of Pancreatic Cancer on February 24, 2015  Read Full Post »

The Changing Economics of Cancer Medicine: Causes for the Vanishing of Independent Oncology Groups in the US on November 26, 2014 | Read Full Post »

Autophagy-Modulating Proteins and Small Molecules Candidate Targets for Cancer Therapy: Commentary of Bioinformatics Approaches on September 18, 2014 |  Read Full Post »

New Immunotherapy Could Fight a Range of Cancers on June 4, 2014  Read Full Post »

Locally Advanced Pancreatic Cancer: Efficacy of FOLFIRINOX  on June 1, 2014  Read Full Post »

 

ipilimumab, a Drug that blocks CTLA-4 Freeing T cells to Attack Tumors @DM Anderson Cancer Center on May 28, 2014 | Read Full Post »

NIH Study Demonstrates that a New Cancer Immunotherapy Method could be Effective against a wide range of Cancers  on May 12, 2014 |

Cancer Research: Curations and Reporting Posted in on May 6, 2014 | Read Full Post »

Cancer Research: Curations and Reporting: Aviva Lev-Ari, PhD, RN  on April 20, 2014 | Read Full Post »

Prologue to Cancer – e-book Volume One – Where are we in this journey? on April 13, 2014 | Read Full Post »

 

Epilogue: Envisioning New Insights in Cancer Translational Biology on April 4, 2014 | Read Full Post »

 

A Synthesis of the Beauty and Complexity of How We View Cancer

on March 26, 2014 Read Full Post »

 

Pancreatic Cancer Diagnosis: Four Novel Histo-pathologies Screening Characteristics offers more Reliable Identification of Cellular Features associated with Cancer

on November 13, 2013 | Read Full Post »

 

What`s new in pancreatic cancer research and treatment?

on October 21, 2013 | Read Full Post »

 

Family History of Cancer may increase the Risk of Close Relatives developing the Same Type of Cancer as well as Different Types

on July 25, 2013 Read Full Post »

 

2013 Perspective on “War on Cancer” on December 23, 1971

on July 5, 2013 Read Full Post »

 

Mesothelin: An early detection biomarker for cancer (By Jack Andraka) on April 21, 2013 |  Read Full Post »

Pancreatic Cancer: Genetics, Genomics and Immunotherapy

on April 11, 2013 |  Read Full Post »

New methods for Study of Cellular Replication, Growth, and Regulation on March 25, 2015 Read Full Post »

Diet and Diabetes on March 2, 2015 |  Read Full Post »

Neonatal Pathophysiology on February 22, 2015 |  Read Full Post »

Endocrine Action on Midbrain on February 12, 2015 | Read Full Post »

Gastrointestinal Endocrinology on February 10, 2015 | Read Full Post »

Parathyroids and Bone Metabolism on February 10, 2015 | Read Full Post »

Pancreatic Islets on February 8, 2015 | Read Full Post »

Pituitary Neuroendocrine Axis on February 4, 2015 |Read Full Post »

Highlights in the History of Physiology on December 28, 2014 | Read Full Post »

Outline of Medical Discoveries between 1880 and 1980 on December 3, 2014 | Read Full Post »

Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present on November 21, 2014  Read Full Post »

Implantable Medical Devices to 2015 – Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Trends on November 17, 2014 | Read Full Post »

Pharmacological Action of Steroid Hormones on October 27, 2014 | Read Full Post »

Metabolomics Summary and Perspective on October 16, 2014 | Read Full Post »

Pancreatic Tumors take nearly 20 years to become Lethal after the first Genetic Perturbations – Discovery @ The Johns Hopkins University  on October 15, 2014 |Read Full Post »

Isoenzymes in cell metabolic pathways on October 6, 2014 | Read Full Post »

Metformin, thyroid-pituitary axis, diabetes mellitus, and metabolism on September 28, 2014 | Read Full Post »

Carbohydrate Metabolism on August 13, 2014 | Read Full Post »

A Primer on DNA and DNA Replication on July 29, 2014 | Read Full Post »

The Discovery and Properties of Avemar – Fermented Wheat Germ Extract: Carcinogenesis Suppressor on June 7, 2014 | Read Full Post »

Previous Articles posted on Prostate Cancer

@Mayo Clinic: Inhibiting the gene, protein kinase D1 (PKD1), and its protein could stop spread of this form of Pancreatic Cancer 2012pharmaceutical 2015/02/24
Published
Thymoquinone, an extract of nigella sativa seed oil, blocked pancreatic cancer cell growth and killed the cells by enhancing the process of programmed cell death. larryhbern 2014/07/15
Published
Moringa Oleifera Kills 97% of Pancreatic Cancer Cells in Vitro larryhbern 2014/06/21
Published
The Gonzalez protocol: Worse than useless for pancreatic cancer sjwilliamspa 2014/06/17
Published
An alternative approach to overcoming the apoptotic resistance of pancreatic cancer 2012pharmaceutical 2014/06/03
Published
Locally Advanced Pancreatic Cancer: Efficacy of FOLFIRINOX 2012pharmaceutical 2014/06/01
Published
Consortium of European Research Institutions and Private Partners will develop a microfluidics-based lab-on-a-chip device to identify Pancreatic Cancer Circulating Tumor Cells (CTC) in blood 2012pharmaceutical 2014/04/10
Published
Pancreatic Cancer Diagnosis: Four Novel Histo-pathologies Screening Characteristics offers more Reliable Identification of Cellular Features associated with Cancer 2012pharmaceutical 2013/11/13
Published
What`s new in pancreatic cancer research and treatment? 2012pharmaceutical 2013/10/21
Published
Pancreatic Cancer: Genetics, Genomics and Immunotherapy tildabarliya 2013/04/11
Published
Pancreatic cancer genomes: Axon guidance pathway genes – aberrations revealed 2012pharmaceutical 2012/10/24
Published
Biomarker tool development for Early Diagnosis of Pancreatic Cancer: Van Andel Institute and Emory University 2012pharmaceutical 2012/10/24
Published
Personalized Pancreatic Cancer Treatment Option 2012pharmaceutical 2012/10/16
Published
Battle of Steve Jobs and Ralph Steinman with Pancreatic cancer: How we lost ritusaxena 2012/05/21
Published
Early Biomarker for Pancreatic Cancer Identified pkandala 2012/05/17
Published
Usp9x: Promising therapeutic target for pancreatic cancer ritusaxena 2012/05/14
Published
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert sjwilliamspa 2015/03/27
Published
Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease 2012pharmaceutical 2015/02/15
Published
Pancreatic Islets larryhbern 2015/02/08
Publ
Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi
Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi

Read Full Post »


Voluntary and Involuntary S- Insufficiency

Writer and Curator: Larry H Bernstein, MD, FCAP 

Transthyretin and the Stressful Condition

Introduction

This article is written among a series of articles concerned with stress, obesity, diet and exercise, as well as altitude and deep water diving for extended periods, and their effects.  There is a reason that I focus on transthyretin (TTR), although much can be said about micronutients and vitamins, and fat soluble vitamins in particular, and iron intake during pregnancy.    While the importance of vitamins and iron are well accepted, the metabolic basis for their activities is not fully understood.  In the case of a single amino acid, methionine, it is hugely important because of the role it plays in sulfur metabolism, the sulfhydryl group being essential for coenzyme A, cytochrome c, and for disulfide bonds.  The distribution of sulfur, like the distribution of iodine, is not uniform across geographic regions.  In addition, the content of sulfur found in plant sources is not comparable to that in animal protein.  There have been previous articles at this site on TTR, amyloid and sepsis.

Transthyretin and Lean Body Mass in Stable and Stressed State

https://pharmaceuticalintelligence.com/2013/12/01/transthyretin-and-lean-body-mass-in-stable-and-stressed-state/

A Second Look at the Transthyretin Nutrition Inflammatory Conundrum

https://pharmaceuticalintelligence.com/2012/12/03/a-second-look-at-the-transthyretin-nutrition-inflammatory-conundrum/

Stabilizers that prevent transthyretin-mediated cardiomyocyte amyloidotic toxicity

https://pharmaceuticalintelligence.com/2013/12/02/stabilizers-that-prevent-transthyretin-mediated-cardiomyocyte-amyloidotic-toxicity/

Thyroid Function and Disorders

https://pharmaceuticalintelligence.com/2015/02/05/thyroid-function-and-disorders/

Proteomics, Metabolomics, Signaling Pathways, and Cell Regulation: a Compilation of Articles in the Journal http://pharmaceuticalintelligence.com

https://pharmaceuticalintelligence.com/2014/09/01/compilation-of-references-in-leaders-in-pharmaceutical-intelligence-about-proteomics-metabolomics-signaling-pathways-and-cell-regulation-2/

Malnutrition in India, high newborn death rate and stunting of children age under five years

https://pharmaceuticalintelligence.com/2014/07/15/malnutrition-in-india-high-newborn-death-rate-and-stunting-of-children-age-under-five-years/

Vegan Diet is Sulfur Deficient and Heart Unhealthy

https://pharmaceuticalintelligence.com/2013/11/17/vegan-diet-is-sulfur-deficient-and-heart-unhealthy/

How Methionine Imbalance with Sulfur-Insufficiency Leads to Hyperhomocysteinemia

https://pharmaceuticalintelligence.com/2013/04/04/sulfur-deficiency-leads_to_hyperhomocysteinemia/

Amyloidosis with Cardiomyopathy

https://pharmaceuticalintelligence.com/2013/03/31/amyloidosis-with-cardiomyopathy/

Advances in Separations Technology for the “OMICs” and Clarification of Therapeutic Targets

https://pharmaceuticalintelligence.com/2012/10/22/advances-in-separations-technology-for-the-omics-and-clarification-of-therapeutic-targets/

Sepsis, Multi-organ Dysfunction Syndrome, and Septic Shock: A Conundrum of Signaling Pathways Cascading Out of Control

https://pharmaceuticalintelligence.com/2012/10/13/sepsis-multi-organ-dysfunction-syndrome-and-septic-shock-a-conundrum-of-signaling-pathways-cascading-out-of-control/

Automated Inferential Diagnosis of SIRS, sepsis, septic shock

https://pharmaceuticalintelligence.com/2012/08/01/automated-inferential-diagnosis-of-sirs-sepsis-septic-shock/

Transthyretin and the Systemic Inflammatory Response 

Transthyretin has been widely used as a biomarker for identifying protein-energy malnutrition (PEM) and for monitoring the improvement of nutritional status after implementing a nutritional intervention by enteral feeding or by parenteral infusion. This has occurred because transthyretin (TTR) has a rapid removal from the circulation in 48 hours and it is readily measured by immunometric assay. Nevertheless, concerns have been raised about the use of TTR in the ICU setting, which prompts a review of the actual benefit of using this test in a number of settings. TTR is easily followed in the underweight and the high risk populations in an ambulatory setting, which has a significant background risk of chronic diseases.  It is sensitive to the systemic inflammatory response syndrom (SIRS), and needs to be understood in the context of acute illness to be used effectively. There are a number of physiologic changes associated with SIRS and the injury/repair process that will affect TTR and will be put in context in this review. The most important point is that in the context of an ICU setting, the contribution of TTR is significant in a complex milieu.  copyright @ Bentham Publishers Ltd. 2009.

Transthyretin as a marker to predict outcome in critically ill patients.
Arun Devakonda, Liziamma George, Suhail Raoof, Adebayo Esan, Anthony Saleh, Larry H. Bernstein.
Clin Biochem Oct 2008; 41(14-15): 1126-1130

A determination of TTR level is an objective method od measuring protein catabolic loss of severly ill patients and numerous studies show that TTR levels correlate with patient outcomes of non-critically ill patients. We evaluated whether TTR level correlates with the prevalence of PEM in the ICUand evaluated serum TTR level as an indicator of the effectiveness of nutrition support and the prognosis in critically ill patients.

TTR showed excellent concordance with patients classified with PEM or at high malnutrition risk, and followed for 7 days, it is a measure of the metabolic burden. TTR levels did not respond early to nutrition support because of the delayed return to anabolic status. It is particularly helpful in removing interpretation bias, and it is an excellent measure of the systemic inflammatory response concurrent with a preexisting state of chronic inanition.

 The Stressful Condition as a Nutritionally Dependent Adaptive Dichotomy

Yves Ingenbleek and Larry Bernstein
Nutrition 1999;15(4):305-320 PII S0899-9007(99)00009-X

The injured body manifests a cascade of cytokine-induced metabolic events aimed at developing defense mechanisms and tissue repair. Rising concentrations of counterregulatory hormones work in concert with cytokines to generate overall insulin and insulin-like growth factor 1 (IGF-1), postreceptor resistance and energy requirements grounded on lipid dependency. Dalient features are self-sustained hypercortisolemia persisting as long as cytokines are oversecreted and down-regulation of the hypothalamo-pituitary-thyroid axis stabilized at low basal levels. Inhibition of thyroxine 5’deiodinating activity (5’DA) accounts for the depressed T3 values associated with the sparing of both N and energy-consuming processes. Both the liver and damaged territories adapt to stressful signals along up-regulated pathways disconnected from the central and peripheral control systems. Cytokines stimulate 5’DA and suppress the synthesis of TTR, causing the drop of retinol-binding protein (RBP) and the leakage of increased amounts of T4 and retinol in free form. TTR and RBP thus work as prohormonal reservoirs of precursor molecules which need to be converted into bioactive derivatives (T3 and retinoic acids) to reach transcriptional efficiency. The converting steps (5’DA and cellular retinol-binding protein-1) are activated to T4 and retinol, themselves operating as limiting factors to positive feedback loops. …The suicidal behavior of TBG, CBG, and IGFBP-3 allows the occurrence of peak endocrine and mitogenic influences at the site of inflammation. The production rate of TTR by the liver is the main determinant of both the hepatic release and blood transport of holoRBP, which explains why poor nutritional status concomitantly impairs thyroid- and retinoid-dependent acute phase responses, hindering the stressed body to appropriately face the survival crisis.  …
abbreviations: TBG, thyroxine-binding globulain; CBG, cortisol-binding globulin; IGFBP-3, insulin growth factor binding protein-3; TTR, transthyretin; RBP, retionol-binding protein.

Why Should Plasma Transthyretin Become a Routine Screening Tool in Elderly Persons? 

Yves Ingenbleek.
J Nutrition, Health & Aging 2009.

The homotetrameric TTR molecule (55 kDa as MM) was first identified in cerebrospinal fluid (CSF).  The initial name of prealbumin (PA)  was assigned based on the electrophoretic migration anodal to albumin. PA was soon recognized as a specific binding protein for thyroid hormone. and also of plasma retinol through the mediation of the small retinol-binding protein (RBP, 21 kDa as MM), which has a circulating half-life half that of TTR (24 h vs 48 h).

There exist at least 3 goos reasons why TTR should become a routine medical screening test in elderly persons.  The first id grounded on the assessment of protein nutritional status that is frequently compromized and may become a life threatening condition.  TTR was proposed as a marker of protein-energy malnutrition (PEM) in 1972. As a result of protein and energy deprivation, TTR hepatic synthesis is suppressed whereas all plasma indispensable amino acids (IAAs) manifest declining trends with the sole exception of methionine (Met) whose concentration usually remains unmodified. By comparison with ALB and transferrin (TF) plasma values, TTR did reveal a much higher degree of reactivity to changes in protein status that has been attributed to its shorter biological half-life and to its unusual tryptophan richness. The predictive ability of outcome offered by TTR is independent of that provided by ALB and TF. Uncomplicated PEM primarily affects the size of body nitrogen (N) pools, allowing reduced protein syntheses to levels compatible with survival.  These adaptiver changes are faithfully identified by the serial measurement of TTR whose reliability has never been disputed in protein-depleted states. On the contrary, the nutritional relevance of TTR has been controverted in acute and chronic inflammatory conditions due to the cytokine-induced transcriptional blockade of liver synthesis which is an obligatory step occurring independently from the prevailing nutritional status. Although PEM and stress ful disorders refer to distinct pathogenic mechanisms, their combined inhibitory effects on TTR liber production fueled a long-lasting strife regarding a poor specificity.  Recent body compositional studies have contributed to disentagling these intermingled morbidities, showing that evolutionary patterns displayed by plasma TTR are closely correlated with the fluctuations of lean body mass (LBM).

The second reason follows from advances describing the unexpected relationship established between TTR and homocysteine (Hcy), a S-containing AA not found in customary diets but resulting from the endogenous transmethylation of dietary methionine.  Hcy may be recycled to Met along a remethylation pathway (RM) or irreversibly degraded throughout the transsulfuration (TS) cascade to relase sulfaturia as end-product. Hcy is thus situated at the crossrad of RM and TS pathways which are in equilibrium keeping plasma Met values unaltered.  Three dietary water soluble B viatamins are implicated in the regulation of the Hcy-Met cycle. Folates (vit B9) are the most powerful agent, working as a supplier of the methyl group required for the RM process whereas cobalamines (vit B12) and pyridoxine (vit B6) operate as cofactors of Met-synthase and cystathionine-β-synthase.  Met synthase promotes the RM pathway whereas the rate-limiting CβS governs the TS degradative cascade. Dietary deficiency in any of the 3 vitamins may upregulate Hcy plasma values, an acquied biochemiucal anomaly increasingly encountered in aged populations.

The third reason refers to recent and fascinating data recorded in neurobiology and emphasizing the specific properties of TTR in the prevention of brain deterioration. TTR participates directly in the maintenance of memory and normal cognitive processes during the aging process by acting on the retinoid signaling pathway.  Moreover, TTR may bind amyloid β peptide in vitro, preventing its transformation into toxic amyloid fibrils and amyloid plaques.  TTR works as a limiting factor for the plasma transport of retinoid, which in turn operates as a limiting determinant of both physiologically active retinoic acid (RA) derivatives, implying that any fluctuation in protein status might well entail corresponding  alterations in cellular bioavailability of retinoid compounds.  Under normal aging circumstances, the concentration of retinoid compounds declines in cerebral tissues together with the downregulation of RA receptor expression. In animal models, depletion of RAs causes the deposition of amyloid-β peptides, favoring the formation of amyloid plaques.

Prealbumin and Nutritional Evaluation

Larry Bernstein, Walter Pleban
Nutrition Apr 1996; 12(4):255-259.
http://nutritionjrnl.com/article/S0899-9007(96)90852-7

We compressed 16-test-pattern classes of albumin (ALB), cholesterol (CHOL), and total protein (TPR) in 545 chemistry profiles to 4 classes by conveerting decision values to a number code to separate malnourished (1 or 2) from nonmalnourished (NM)(0) patients using as cutoff values for NM (0), mild (1), and moderate (2): ALB 35, 27 g/L; TPR 63, 53 g/L; CHOL 3.9, 2.8 mmol/L; and BUN 9.3, 3.6 mmol/L. The BUN was found to have  to have too low an S-value to make a contribution to the compressed classification. The cutoff values for classifying the data were assigned prior to statistical analysis, after examining information in the structured data. The data was obtained by a natural experiment in which the test profiles routinely done by the laboratory were randomly extracted. The analysis identifies the values used that best classify the data and are not dependent on distributional assumptions. The data were converted to 0, 1, or 2 as outcomes, to create a ternary truth table (eaxch row in nnn, the n value is 0 to 2). This allows for 3(81) possible patterns, without the inclusion of prealbumin (TTR). The emerging system has much fewer patterns in the information-rich truth table formed (a purposeful, far from random event). We added TTR, coded, and examined the data from 129 patients. The classes are a compressed truth table of n-coded patterns with outcomes of 0, 1, or 2 with protein-energy malnutrition (PEM) increasing from an all-0 to all-2 pattern.  Pattern class (F=154), PAB (F=35), ALB (F=56), and CHOL (F=18) were different across PEM class and predicted PEM class (R-sq. = 0.7864, F=119, p < E-5). Kruskall-Wallis analysis of class by ranks was significant for pattern class E-18), TTR (6.1E-15) ALB (E-16), CHOL (9E-10), and TPR (5E-13). The medians and standard error (SEM) for TTR, ALB, and CHOL of four TTR classes (NM, mild, mod, severe) are: TTR = 209, 8.7; 159, 9.3; 137, 10.4; 72, 11.1 mg/L. ALB – 36, 0.7; 30.5, 0.8; 25.0, 0.8; 24.5, 0.8 g/L. CHOL = 4.43, 0.17; 4.04, 0.20; 3.11, 0.21; 2.54, 0.22 mmol/L. TTR and CHOL values show the effect of nutrition support on TTR and CHOL in PEM. Moderately malnourished patients receiving nutrition support have TTR values in the normal range at 137 mg/L and at 159 mg/L when the ALB is at 25 g/L or at 30.5 g/L.

An Informational Approach to Likelihood of Malnutrition 

Larry Bernstein, Thomas Shaw-Stiffel, Lisa Zarney, Walter Pleban.
Nutrition Nov 1996;12(11):772-776.  PII: S0899-9007(96)00222-5.
http://dx.doi.org:/nutritionjrnl.com/article/S0899-9007(96)00222-5

Unidentified protein-energy malnutrition (PEM) is associated with comorbidities and increased hospital length of stay. We developed a model for identifying severe metabolic stress and likelihood of malnutrition using test patterns of albumin (ALB), cholesterol (CHOL), and total protein (TP) in 545 chemistry profiles…They were compressed to four pattern classes. ALB (F=170), CHOL (F = 21), and TP (F = 5.6) predicted PEM class (R-SQ = 0.806, F= 214; p < E^-6), but pattern class was the best predictor (R-SQ = 0.900, F= 1200, p< E^-10). Ktuskal-Wallis analysis of class by ranks was significant for pattern class (E^18), ALB (E^-18), CHOL (E^-14), TP (@E^-16). The means and SEM for tests in the three PEM classes (mild, mod, severe) were; ALB – 35.7, 0.8; 30.9, 0.5; 24.2, 0.5 g/L. CHOL – 3.93, 0.26; 3.98, 0.16; 3.03, 0.18 µmol/L, and TP – 68.8, 1.7; 60.0, 1.0; 50.6, 1.1 g/L. We classified patients at risk of malnutrition using truth table comprehension.

Downsizing of Lean Body Mass is a Key Determinant of Alzheimer’s Disease

Yves Ingenbleek, Larry Bernstein
J Alzheimer’s Dis 2015; 44: 745-754.
http://dx.doi.org:/10.3233/JAD-141950

Lean body mass (LBM) encompasses all metabolically active organs distributed into visceral and structural tissue compartments and collecting the bulk of N and K stores of the human body. Transthyretin (TTR)  is a plasma protein mainly secreted by the liver within a trimolecular TTR-RBP-retinol complex revealing from birth to old age strikingly similar evolutionary patterns with LBM in health and disease. TTR is also synthesized by the choroid plexus along distinct regulatory pathways. Chronic dietary methionine (Met) deprivation or cytokine-induced inflammatory disorders generates LBM downsizing following differentiated physiopathological processes. Met-restricted regimens downregulate the transsulfuration cascade causing upstream elevation of homocysteine (Hcy) safeguarding Met homeostasis and downstream drop of hydrogen sulfide (H2S) impairing anti-oxidative capacities. Elderly persons constitute a vulnerable population group exposed to increasing Hcy burden and declining H2S protection, notably in plant-eating communities or in the course of inflammatory illnesses. Appropriate correction of defective protein status and eradication of inflammatory processes may restore an appropriate LBM size allowing the hepatic production of the retinol circulating complex to resume, in contrast with the refractory choroidal TTR secretory process. As a result of improved health status, augmented concentrations of plasma-derived TTR and retinol may reach the cerebrospinal fluid and dismantle senile amyloid plaques, contributing to the prevention or the delay of the onset of neurodegenerative events in elderly subjects at risk of Alzheimer’s disease.

Amyloidogenic and non-amyloidogenic transthyretin variants interact differently with human cardiomyocytes: insights into early events of non-fibrillar tissue damage

Pallavi Manral and Natalia Reixach
Biosci.Rep.(2015)/35/art:e00172 http://dx.doi.org:/10.1042/BSR20140155

TTR (transthyretin) amyloidosis are diseases characterized by the aggregation and extracellular deposition of the normally soluble plasma protein TTR. Ex vivo and tissue culture studies suggest that tissue damage precedes TTR fibril deposition, indicating that early events in the amyloidogenic cascade have an impact on disease development. We used a human cardiomyocyte tissue culture model system to define these events. We previously described that the amyloidogenic V122I TTR variant is cytotoxic to human cardiac cells, whereas the naturally occurring, stable and non-amyloidogenic T119M TTR variant is not. We show that most of the V122I TTR interacting with the cells is extracellular and this interaction is mediated by a membraneprotein(s). In contrast, most of the non-amyloidogenic T119M TTR associated with the cells is intracellular where it undergoes lysosomal degradation. The TTR internalization process is highly dependent on membrane cholesterol content. Using a fluorescent labelled V122I TTR variant that has the same aggregation and cytotoxic potential as the native V122I TTR, we determined that its association with human cardiomyocytes is saturable with a KD near 650nM. Only amyloidogenic V122I TTR compete with fluorescent V122I force ll-binding sites. Finally, incubation of the human cardiomyocytes with V122I TTR but not with T119M TTR, generates superoxide species and activates caspase3/7. In summary, our results show that the interaction of the amyloidogenic V122I TTR is distinct from that of a non-amyloidogenic TTR variant and is characterized by its retention at the cell membrane, where it initiates the cytotoxic cascade.

Emerging roles for retinoids in regeneration and differentiation in normal and disease states

Lorraine J. Gudas
Biochimica et Biophysica Acta 1821 (2012) 213–221
http://dx.doi.org:/10.1016/j.bbalip.2011.08.002

The vitamin (retinol) metabolite, all-transretinoic acid (RA), is a signaling molecule that plays key roles in the development of the body plan and induces the differentiation of many types of cells. In this review the physiological and pathophysiological roles of retinoids (retinol and related metabolites) in mature animals are discussed. Both in the developing embryo and in the adult, RA signaling via combinatorial Hoxgene expression is important for cell positional memory. The genes that require RA for the maturation/differentiation of T cells are only beginning to be cataloged, but it is clear that retinoids play a major role in expression of key genes in the immune system. An exciting, recent publication in regeneration research shows that ALDH1a2(RALDH2), which is the rate-limiting enzyme in the production of RA from retinaldehyde, is highly induced shortly after amputation in the regenerating heart, adult fin, and larval fin in zebrafish. Thus, local generation of RA presumably plays a key role in fin formation during both embryogenesis and in fin regeneration. HIV transgenic mice and human patients with HIV-associated kidney disease exhibit a profound reduction in the level of RARβ protein in the glomeruli, and HIV transgenic mice show reduced retinol dehydrogenase levels, concomitant with a greater than 3-fold reduction in endogenous RA levels in the glomeruli. Levels of endogenous retinoids (those synthesized from retinol within cells) are altered in many different diseases in the lung, kidney, and central nervous system, contributing to pathophysiology.

The Membrane Receptor for Plasma Retinol-Binding Protein, A New Type of Cell-Surface Receptor

Hui Sun and Riki Kawaguchi
Intl Review Cell and Molec Biol, 2011; 288:Chap 1. Pp 1:34
http://dx.doi.org:/10.1016/B978-0-12-386041-5.00001-7

Vitamin A is essential for diverse aspects of life ranging from embryogenesis to the proper functioning of most adul torgans. Its derivatives (retinoids) have potent biological activities such as regulating cell growth and differentiation. Plasma retinol-binding protein (RBP) is the specific vitamin A carrier protein in the blood that binds to vitamin A with high affinity and delivers it to target organs. A large amount of evidence has accumulated over the past decades supporting the existence of a cell-surface receptor for RBP that mediates cellular vitamin A uptake. Using an unbiased strategy, this specific cell-surface RBP receptor has been identified as STRA6, a multi-transmembrane domain protein with previously unknown function. STRA6 is not homologous to any protein of known function and represents a new type of cell-surface receptor. Consistent with the diverse functions of vitamin A, STRA6 is widely expressed in embryonic development and in adult organ systems. Mutations in human STRA6 are associated with severe pathological phenotypes in many organs
such as the eye, brain, heart, and lung. STRA6 binds to RBP with high affinity and mediates vitamin A uptake into cells. This review summarizes the history of the RBP receptor research, its expression in the context of known functions of vitamin A in distinct human organs, structure/function analysis of this new type of membrane receptor, pertinent questions regarding its very existence, and its potential implication in treating human diseases.

Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease

Ibrahim González-Marrero, Lydia Giménez-Llort, Conrad E. Johanson, et al.
Front Cell Neurosc  Feb2015; 9(17): 1-10
http://dx.doi.org:/10.3389/fncel.2015.00017

Compromised secretory function of choroid plexus (CP) and defective cerebrospinal fluid (CSF) production, along with accumulation of beta-amyloid (Aβ) peptides at the blood-CSF barrier (BCSFB), contribute to complications of Alzheimer’s disease (AD). The AD triple transgenic mouse model (3xTg-AD) at 16 month-old mimics critical hallmarks of the human disease: β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) with a temporal-and regional-specific profile. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aβ in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau) on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase only of Aβ42 isoform in epithelial cytosol and in stroma surrounding choroidal capillaries; this buildup may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aβ transporters: the low density lipoprotein receptor-related protein1 (LRP1) and the receptor for advanced glycation end product (RAGE). A thickening of the epithelial basal membrane and greater collagen-IV deposition occurred around capillaries in CP, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin(TTR) protein compared to Non-Tg mice. Collectively these findings indicate CP dysfunction hypothetically linked to increasing Aβ burden resulting in less efficient ion transport, concurrently with reduced production of CSF (less sink action on brain Aβ) and diminished secretion of TTR (less neuroprotection against cortical Aβ toxicity). The putative effects of a disabled CP-CSF system on CNS functions are discussed in the context of AD.

Endoplasmic reticulum: The unfolded protein response is tangled In neurodegeneration

Jeroen J.M. Hoozemans, Wiep Scheper
Intl J Biochem & Cell Biology 44 (2012) 1295–1298
http://dx.doi.org/10.1016/j.biocel.2012.04.023

Organelle facts•The ER is involved in the folding and maturation ofmembrane-bound and secreted proteins.•The ER exerts protein quality control to ensure correct folding and to detect and remove misfolded proteins.•Disturbance of ER homeostasis leads to protein misfolding and induces the UPR.•Activation of the UPR is aimed to restore proteostasis via an intricate transcriptional and (post)translational signaling network.•In neurodegenerative diseases classified as tauopathies the activation of the UPR coincides with the pathogenic accumulation of the microtubule associated protein tau.•The involvement of the UPR in tauopathies makes it a potential therapeutic target.

The endoplasmic reticulum (ER) is involved in the folding and maturation of membrane-bound and secreted proteins. Disturbed homeostasis in the ER can lead to accumulation of misfolded proteins, which trigger a stress response called the unfolded protein response (UPR). In neurodegenerative diseases that are classified as tauopathies, activation of the UPR coincides with the pathogenic accumulation of the microtubule associated protein tau. Several lines of evidence indicate that UPR activation contributes to increased levels of phosphorylated tau, a prerequisite for the formation of tau aggregates. Increased understanding of the crosstalk between signaling pathways involved in protein quality control in the ERand tau phosphorylation will support the development of new therapeutic targets that promote neuronal survival.

Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases

Derrick Sek Tong Ong and Jeffery W Kelly
Current Opin Cell Biol 2011; 23:231–238
http://dx.doi.org:/10.1016/j.ceb.2010.11.002

Inheriting a mutant misfolding-prone protein that cannot be efficiently folded in a given cell type(s) results in a spectrum of human loss-of-function misfolding diseases. The inability of the biological protein maturation pathways to adapt to a specific misfolding-prone protein also contributes to pathology. Chemical and biological therapeutic strategies are presented that restore protein homeostasis, or proteostasis, either by enhancing the biological capacity of the proteostasis network or through small molecule stabilization of a specific misfolding-prone protein. Herein, we review the recent literature on therapeutic strategies to ameliorate protein misfolding diseases that function through either of these mechanisms, or a combination thereof, and provide our perspective on the promise of alleviating protein misfolding diseases by taking advantage of proteostasis adaptation.

Read Full Post »


Depth Underwater and Underground

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

Deep diving for mammals is dangerous for humans and land based animals for too long, and it has dangerous consequences, most notable in nitrogen emboli  with very deep underwater diving. Other mammals live in water and have adapted to a water habitat.  This is another topic that needs further exploration.

Deep diving has different meanings depending on the context. Even in recreational diving the meaning may vary:

In recreational diving, a depth below about 30 metres (98 ft), where nitrogen narcosis becomes a significant hazard for most divers, may be considered a “deep dive”

In technical diving, a depth below about 60 metres (200 ft) where hypoxic breathing gas becomes necessary to avoid oxygen toxicity may be considered a “deep dive”.

Early experiments carried out by Comex S.A. (Compagnie maritime d’expertises) using hydrox and trimix attained far greater depths than any recreational technical diving. One example being the Comex Janus IV open-sea dive to 501 metres (1,644 ft) in 1977. The open-sea diving depth record was achieved in 1988 by a team of Comex divers who performed pipe line connection exercises at a depth of 534 metres (1,752 ft) in the Mediterranean Sea as part of the Hydra 8 program. These divers needed to breathe special gas mixtures because they were exposed to very high ambient pressure (more than 50 times atmospheric pressure).

Then there is the adaptation to the water habitat as a living environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.

http://en.wikipedia.org/wiki/Deep_diving

Marine ecosystems are part of the earth’s aquatic ecosystem. The habitats that make up this vast system range from the productive nearshore regions to the barren ocean floor. The marine waters may be fully saline, brackish or nearly fresh. The saline waters have a salinity of 35-50 ppt (= parts per thousand). The freshwater has a salinity of less than 0.5 ppt. The brackish water lies in between these 2. Marine habitats are situated from the coasts, over the continental shelf to the open ocean and deep sea. The ecosystems are sometimes linked with each other and are sometimes replacing each other in other geographical regions. The reason why habitats differ from another is because of the physical factors that influence the functioning and diversity of the habitats. These factors are temperature, salinity, tides, currents, wind, wave action, light and substrate.

Marine ecosystems are home to a host of different species ranging from planktonic organisms that form the base of the marine food web to large marine mammals. Many species rely on marine ecosystems for both food and shelter from predators. They are very important to the overall health of both marine and terrestrial environments. Coastal habitats are those above the spring high tide limit or above the mean water level in non-tidal waters.  They are close to the sea and include habitats such as coastal dunes and sandy shores, beaches , cliffs and supralittoral habitats. Coastal habitats alone account for approximately 30% of all marine biological productivity.

http://www.marbef.org/wiki/marine_habitats_and_ecosystems

All plant and animal life forms are included from the microscopic picoplankton all the way to the majestic blue whale, the largest creature in the sea—and for that matter in the world. It wasn’t until the writings of Aristotle from 384-322 BC that specific references to marine life were recorded. Aristotle identified a variety of species including crustaceans, echinoderms, mollusks, and fish.
Today’s classification system was developed by Carl Linnaeus external link as an important tool for use in the study of biology and for use in the protection of biodiversity. Without very specific classification information and a naming system to identify species’ relationships, scientists would be limited in attempts to accurately describe the relationships among species. Understanding these relationships helps predict how ecosystems can be altered by human or natural factors.

Preserving biodiversity is facilitated by taxonomy. Species data can be better analyzed to determine the number of different species in a community and to determine how they might be affected by environmental stresses. Family, or phylogenetic, trees for species help predict environmental impacts on individual species and their relatives.

http://marinebio.org/oceans/marine-taxonomy/

For generations, whales and other marine mammals have intrigued humans. 2,400 years ago, Aristotle, a Greek scientist and philosopher, recognized that whales are mammals, not fish, because they nurse their young and breathe air like other mammals. There are numerous myths and legends surrounding marine mammals. The Greeks believed that killing a dolphin was as bad as murdering a human. An Amazon legend said that river dolphins came to shore dressed as men to woo pretty girls during fiestas. During the Middle Ages, there were numerous legends surrounding the narwhals’ amazing tusk, which was thought to have come from the unicorn.

Insert movie

Marine mammals evolved from their land dwelling ancestors over time by developing adaptations to life in the water. To aid swimming, the body has become streamlined and the number of body projections has been reduced. The ears have shrunk to small holes in size and shape. Mammary glands and sex organs are not part of the external physiology, and posterior (hind) limbs are no longer present.

Mechanisms to prevent heat loss have also been developed. The cylindrical body shape with small appendages reduces the surface area to volume ratio of the body, which reduces heat loss. Marine mammals also have a counter current heat exchange mechanism created by convergent evolution external link where the heat from the arteries is transferred to the veins as they pass each other before getting to extremities, thus reducing heat loss. Some marine mammals also have a thick layer of fur with a water repellent undercoat and/or a thick layer of blubber that can’t be compressed. The blubber provides insulation, a food reserve, and aids with buoyancy. These heat loss adaptations can also lead to overheating for animals that spend time out of the water. To prevent overheating, seals or sea lions will swim close to the surface with their front flippers waving in the air. They also flick sand onto themselves to keep the sun from directly hitting their skin. Blood vessels can also be expanded to act as a sort of radiator.

One of the major behavioral adaptations of marine mammals is their ability to swim and dive. Pinnipeds swim by paddling their flippers while sirenians and cetaceans move their tails or flukes up and down.

Some marine mammals can swim at relatively high speeds. Sea lions swim up to 35 kph and orcas can reach 50 kph. The fastest marine mammal, however, is the common dolphin, which reaches speeds up to 64 kph. While swimming, these animals take very quick breaths. For example, fin whales can empty and refill their huge lungs in less than 2 seconds. Marine mammals’ larynx and esophagus close automatically when they open their mouths to catch prey during dives. Oxygen is stored in hemoglobin in the blood and in myoglobin in the muscles. The lungs are also collapsible so that air is pushed into the windpipe preventing excess nitrogen from being absorbed into the tissues. Decreasing pressure can cause excess nitrogen to expand in the tissues as animals ascend to shallower depths, which can lead to decompression sickness,  aka “the bends.” Bradycardia, the reduction of heart rate by 10 to 20%, also takes place to aid with slowing respiration during dives and the blood flow to non-essential body parts. These adaptations allow sea otters to stay submerged for 4 to 5 minutes and dive to depths up to 55 m. Pinnipeds can often stay down for 30 minutes and reach average depths of 150-250 m. One marine mammal with exceptional diving skills is the Weddell seal, which can stay submerged for at least 73 minutes at a time at depths up to 600 m. The length and depth of whale dives depends on the species. Baleen whales feed on plankton near the surface of the water and have no need to dive deeply so they are rarely seen diving deeper than 100 m external link. Toothed whales seek larger prey at deeper depths and some can stay down for hours at depths of up to 2,250 m external link.

http://marinebio.org/oceans/marine-mammals/

Human Experience

Albert Behnke: Nitrogen Narcosis

Casey A. Grover and David H. Grover
The Journal of Emergency Medicine, 2014; 46(2):225–227
http://dx.doi.org/10.1016/j.jemermed.2013.08.080

As early as 1826, divers diving to great depths noted that descent often resulted in a phenomenon of intoxication and euphoria. In 1935, Albert Behnke discovered nitrogen as the cause of this clinical syndrome, a condition now known as nitrogen narcosis. Nitrogen narcosis consists of the development of euphoria, a false sense of security, and impaired judgment upon underwater descent using compressed air below 34 atmospheres (99 to 132 feet). At greater depths, symptoms can progress to loss of consciousness. The syndrome remains relatively unchanged in modern diving when compressed air is used. Behnke’s use of non-nitrogencontaining gas mixtures subsequent to his discovery during the 1939 rescue of the wrecked submarine USS Squalus pioneered the use of non-nitrogencontaining gas mixtures, which are used by modern divers when working at great depth to avoid the effects of nitrogen narcosis.

Behnke’s first duty station as a licensed physician was as assistant medical officer for Submarine Division 20 in San Diego, which was then commanded by one of the Navy’s rising stars, Captain Chester W. Nimitz of World War II fame.
In this setting, Dr. Behnke spent his free time constructively by learning to dive, using the traditional ‘‘hard-hat’’ gear aboard the USS Ortalon, a submarine rescue vessel to which he also rotated. Diving was not a notable specialty of the Navy at the time, and the service was slow in developing the infrastructure for it. Dr. Behnke devoted his efforts to research on the topic of diving medicine, as well as developing a more sound understanding of the biophysics of diving. In 1932, he wrote a letter to the Surgeon General describing some of his observations on arterial gas embolism, which earned him some accolades from the Navy and resulted in his transfer to Harvard’s School of Public Health as a graduate fellow. After 2 years at Harvard, the Navy assigned duty to Dr. Behnke at the Navy’s submarine escape training tower at Pearl Harbor. He worked extensively here on developing techniques for rescuing personnel from disabled submarines on the sea floor. In 1937, he was one of three Navy physicians assigned to the Navy’s Experimental Diving Unit. This team worked on improving the rescue system, plus updating the diving recompression tables originally developed by the British in 1908.

The intoxicating effects of diving were first described by a French physician named Colladon in 1826, who reported that descent in a diving bell resulted in his feeling a ‘‘state of excitement as though I had drunk some alcoholic liquor’’.
The etiology of this phenomenon remained largely unknown until the 1930s, when the British military researcher Damant again highlighted the issue, and reported very unpredictable behavior in his divers during descents as deep as 320 feet during the British Admiralty Deep Sea diving trials. Two initial theories arose as to the etiology for this effect, the first being from psychological causes by Hill and Phillip in 1932, and the second being from oxygen toxicity by Haldane in 1935.

Dr. Behnke and his colleagues at the Harvard School of Public Health had another idea as to the etiology of this phenomenon. In 1935, based on observation of individuals in experiments with a pressure chamber, Dr. Behnke published an article in the American Journal of Physiology in which he posited that nitrogen was the etiology of the intoxicating effects of diving.

Nitrogen narcosis, described as ‘‘rapture of the deep’’ by Jacques Cousteau, still remains a relatively common occurrence in modern diving, despite major advances in diving technology since Behnke’s initial description of the pathophysiologic cause of the condition in 1935. The development of symptoms of this condition varies from diver to diver, but usually begins when a depth of 4 atmospheres (132 feet) is reached in divers using compressed air. More sensitive divers can develop symptoms at only 3 atmospheres (99 feet), and other divers may not be affected up to depths as high as 6 atmospheres (198 feet). Interestingly, tolerance to nitrogen narcosis can be developed by frequent diving and exposure to the effects of compressed air at depth.

  1. Acott C. A brief history of diving and decompression illness. SPUMS J 1999;29:98–109.
    2. Bornmann R. Dr. Behnke, founder of UHMS, dies. Pressure 1992; 21:14.
    3. Behnke AR, Thomson RM, Motley P. The psychologic effects from breathing air at 4 atmospheric pressures. Am J Physiol 1935; 112:554–8.
    4. Behnke AR, Johnson FS, Poppen JR, Motley P. The effect of oxygen on man at pressures from 1 to 4 atmospheres. AmJ Physiol 1934; 110:565–72.

Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?

J.-M. Pontier, Buzzacott, J. Nastorg, A.T. Dinh-Xuan, K. Lambrechts
Nitric Oxide 39 (2014) 29–34
http://dx.doi.org/10.1016/j.niox.2014.04.005

Introduction: Previous studies have highlighted a decreased exhaled nitric oxide concentration (FE NO) in divers after hyperbaric exposure in a dry chamber or following a wet dive. The underlying mechanisms of this decrease remain however unknown. The aim of this study was to quantify the separate effects of submersion, hyperbaric hyperoxia exposure and decompression-induced bubble formation on FE NO after a wet dive.
Methods: Healthy experienced divers (n = 31) were assigned to either

  • a group making a scuba-air dive (Air dive),
  • a group with a shallow oxygen dive protocol (Oxygen dive) or

a group making a deep dive breathing a trimix gas mixture (deep-dive).
Bubble signals were graded with the KISS score. Before and after each dive FE NO values were measured using a hand-held electrochemical analyzer.
Results: There was no change in post-dive values of FE NO values (expressed in ppb = parts per billion) in the Air dive group (15.1 ± 3.6 ppb vs. 14.3 ± 4.7 ppb, n = 9, p = 0.32). There was a significant decrease in post-dive values of FE NO in the Oxygen dive group (15.6 ± 6 ppb vs. 11.7 ± 4.7 ppb, n = 9, p = 0.009). There was an even more pronounced decrease in the deep dive group (16.4 ± 6.6 ppb vs. 9.4 ± 3.5 ppb, n = 13, p < 0.001) and a significant correlation between KISS bubble score >0 (n = 13) and percentage decrease in post-dive FE NO values (r = -0.53, p = 0.03). Discussion: Submersion and hyperbaric hyperoxia exposure cannot account entirely for these results suggesting the possibility that, in combination, one effect magnifies the other. A main finding of the present study is a significant relationship between reduction in exhaled NO concentration and dive-induced bubble formation. We postulate that exhaled NO concentration could be a useful index of decompression severity in healthy human divers.

Brain Damage in Commercial Breath-Hold Divers

Kiyotaka Kohshi, H Tamaki, F Lemaıtre, T Okudera, T Ishitake, PJ Denoble
PLoS ONE 9(8): e105006 http://dx.doi.org:/10.1371/journal.pone.0105006

Background: Acute decompression illness (DCI) involving the brain (Cerebral DCI) is one of the most serious forms of diving related injuries which may leave residual brain damage. Cerebral DCI occurs in compressed air and in breath-hold divers, likewise. We conducted this study to investigate whether long-term breath-hold divers who may be exposed to repeated symptomatic and asymptomatic brain injuries, show brain damage on magnetic resonance imaging (MRI).
Subjects and Methods: Our study subjects were 12 commercial breath-hold divers (Ama) with long histories of diving work in a district of Japan. We obtained information on their diving practices and the presence or absence of medical problems, especially DCI events. All participants were examined with MRI to determine the prevalence of brain lesions.
Results: Out of 12 Ama divers (mean age: 54.965.1 years), four had histories of cerebral DCI events, and 11 divers demonstrated ischemic lesions of the brain on MRI studies. The lesions were situated in the cortical and/or subcortical area (9 cases), white matters (4 cases), the basal ganglia (4 cases), and the thalamus (1 case). Subdural fluid collections were seen in 2 cases. Conclusion: These results suggest that commercial breath-hold divers are at a risk of clinical or subclinical brain injury which may affect the long-term neuropsychological health of divers.

Decompression illness

Richard D Vann, Frank K Butler, Simon J Mitchell, Richard E Moon
Lancet 2010; 377: 153–64

Decompression illness is caused by intravascular or extravascular bubbles that are formed as a result of reduction in environmental pressure (decompression). The term covers both arterial gas embolism, in which alveolar gas or venous gas emboli (via cardiac shunts or via pulmonary vessels) are introduced into the arterial circulation, and decompression sickness, which is caused by in-situ bubble formation from dissolved inert gas. Both syndromes can occur in divers, compressed air workers, aviators, and astronauts, but arterial gas embolism also arises from iatrogenic causes unrelated to decompression. Risk of decompression illness is
affected by immersion, exercise, and heat or cold. Manifestations range from itching and minor pain to neurological symptoms, cardiac collapse, and death. First aid treatment is 100% oxygen and definitive treatment is recompression to increased pressure, breathing 100% oxygen. Adjunctive treatment, including fluid administration and prophylaxis against venous thromboembolism in paralyzed patients, is also recommended. Treatment is, in most cases, effective although residual deficits can remain in serious cases, even after several recompressions.

Bubbles can have mechanical, embolic, and biochemical effects with manifestations ranging from trivial to fatal. Clinical manifestations can be caused by direct effects from extravascular (autochthonous) bubbles such as mechanical distortion of tissues causing pain, or vascular obstruction causing stroke-like signs and symptoms. Secondary effects can cause delayed symptom onset up to 24 h after surfacing. Endothelial damage by intravascular bubbles can cause capillary leak, extravasation of plasma, and haemoconcentration. Impaired endothelial function, as measured by decreased effects of vasoactive compounds, has been reported in animals and might occur in man. Hypotension can occur in severe cases. Other effects include platelet activation and deposition, leucocyte-endothelial adhesion, and possibly consequences of vascular occlusion believed to occur in thromboembolic stroke such as ischaemia-reperfusion injury, and apoptosis.

Classification of initial and of all eventual manifestations of decompression illness in 2346 recreational diving accidents reported to the Divers Alert Network from 1998 to 2004 For all instances of pain, 58% consisted of joint pain, 35% muscle pain, and 7% girdle pain. Girdle pain often portends spinal cord involvement. Constitutional symptoms included headache, lightheadedness, inappropriate fatigue, malaise, nausea or vomiting, and anorexia. Muscular discomfort included stiffness, pressure, cramps, and spasm but excluded pain. Pulmonary manifestations included dyspnoea and cough.

Other than depth and time, risk of decompression sickness is affected by other factors that affect inert gas exchange and bubble formation, such as immersion (vs dry hyperbaric chamber exposure), exercise, and temperature. Immersion decreases venous pooling and increases venous return and cardiac output. Warm environments improve peripheral perfusion by promoting vasodilation, whereas cool temperatures decrease perfusion through vasoconstriction. Exercise increases both peripheral perfusion and temperature. The effect of environmental conditions on risk of decompression sickness is dependent on the phase of the pressure exposure. Pressure, exercise, immersion, or a hot environment increase inert gas uptake and risk of decompression sickness. During decom-pression these factors increase inert gas elimination and therefore decrease the risk of decompression sickness. Conversely, uptake is reduced during rest or in a cold environment, hence a diver resting in a cold environment on the bottom has decreased risk of decompression sickness. Rest or low temperatures during decompression increase the risk. If exercise occurs after decompression when super-saturation is present, bubble formation increases and risk of decompression sickness rises.

Exercise at specific times before a dive can decrease the risk of serious decompression sickness in animals and incidence of venous gas emboli in both animals and man. The mechanisms of these effects are unknown but might involve modulation of nitric oxide production and effects on endothelium. Venous gas emboli and risk of decompression sickness increase slightly with age and body-mass index.

Arterial gas embolism should be suspected if a diver has a new onset of altered consciousness, confusion, focal cortical signs, or seizure during ascent or within a few minutes after surfacing from a compressed gas dive.

If the diver spends much time at depth and might have absorbed substantial inert gas before surfacing, arterial gas embolism and serious decompression sickness can coexist, and in such cases, spinal cord manifestations can predominate. Other organ systems, such as the heart, can also be affected, but the clinical diagnosis of gas embolism is not reliable without CNS manifestations. Arterial gas embolism is rare in altitude exposure; if cerebral symptoms occur after altitude exposure, the cause is usually decompression sickness.

Nondermatomal hypoaesthesia and truncal ataxia are common in neurological decompression sickness and can be missed by cursory examination. Pertinent information includes level of consciousness and mental status, cranial nerve function, and motor strength. Coordination can be affected disproportionately, and abnormalities can be detected by assessment of finger-nose movement, and, with eyes open and closed, ability to stand and walk and do heel-toe walking backwards and forwards. Many of these simple tests can be done on the scene by untrained companions.

Panel: Differential diagnosis of decompression illness
Inner-ear barotrauma
Middle-ear or maxillary sinus overinfl ation
Contaminated diving gas and oxygen toxic effects
Musculoskeletal strains or trauma sustained before, during, or after diving
Seafood toxin ingestion (ciguatera, pufferfish, paralytic shellfish poisoning)
Immersion pulmonary edema
Water aspiration
Decompression chamber

Decompression chamber

Decompression chamber. fluidic or pneumatic ventilator is shown at the left. The infusion pump is contained within a plastic cover, in which 100% nitrogen is used to decrease the fi re risk in the event of an electrical problem. The monitor screen is outside the chamber and can be seen through the viewing port. Photo from Duke University Medical Center, with permission.

Long-term outcomes of 69 divers with spinal cord decompressionsickness, by manifestation
n %
No residual symptoms 34 49·3
Any residual symptom 35 50·7
Mild paraesthesias, weakness, or pain 14 20·3
Some impairment of daily activities 21 30·4
Difficulty walking 11 15·9
Impaired micturition 13 18·8
Impaired defecation 15 21·7
Impaired sexual function 15 21·7

Decompression illness occurs in a small population but is an international problem that few physicians are trained to recognise or manage. Although its manifestations are often mild, the potential for permanent injury exists in severe cases, especially if unrecognised or inadequately treated. Emergency medical personnel should be aware of manifestations of decompression illness in the setting of a patient with a history of recent diving or other exposure to substantial pressure change, and should contact an appropriate consultation service for advice.

Diving Medicine: Contemporary Topics and Their Controversies

Michael B. Strauss and Robert C. Borer, Jr
Am J Emerg Med 2001; 19:232-238
http://dx.doi.org:/10.1053/ajem.2001.22654

SCUBA diving is a popular recreational sport. Although serious injuries occur infrequently, when they do knowledge of diving medicine and/or where to obtain appropriate consultation is essential. The emergency physician is likely to be the first physician contact the injured diver has. We discuss 8 subjects
in diving medicine which are contemporary, yet may have controversies associated with them. From this information the physician dealing primarily with the injured diver will have a basis for understanding and managing, as
well as where to find additional help, for his/her patients’ diving injuries.

Over the past 10 years, new knowledge and equipment improvements have made diving safer and more enjoyable. Estimates of actively participating sports divers show a striking increase over this time interval while the number of SCUBA diving deaths annually has remained nearly level at approximately 100. A further indicator of recreational diving safety is that reflected in the nearly constant number of diving injuries (1000 per annum) over the most recent 5 reported years, or approximately 0.53 to 3.4 incidents/10,000 dives.

Divers Alert Network.
The Divers Alert Network (DAN) is a nonprofit organization directed and staffed by experts in the specialty of diving medicine.6 DAN provides immediate consultation for both divers and physicians in the diagnosis and initial management of diving injuries. This 24-hour service is available free world-wide through a dedicated emergency telephone line: 1-919-684-4326. The DAN staff will also identify the nearest appropriate recompression treatment facility and knowledgeable physicians for an expedient referral. General diving medical inquiries can be answered during normal weekday hours either through an information telephone line: 1-919-684-2948 or through an interactive web site http://www.diversalertnetwork.org.

Use of 100% Oxygen for Initial, on the Scene, Management of Diving Accidents
The breathing of pure oxygen is crucial for the initial management of the diving related problems of arterial gas embolism (AGE), decompression sickness (DCS), pulmonary barotrauma (thoracic squeeze), aspiration pneumonitis, and hypoxic encephalopathy associated with near drowning. In 1985, Dick reported that in many cases the neurologic symptoms of AGE and DCS were resolved with the immediate breathing of pure oxygen on the surface. The breathing of pure oxygen reduces bubble size by increasing the differential pressure for the inert gas to diffuse out of the bubble and it also speeds the washout of inert gas from body tissues. The early elimination of the bubble prevents hypoxia and the interaction of the bubble with the blood vessel lining. This interaction leads to secondary problems of capillary leak, bleeding, inflammation, ischemia, and cell death. These secondary problems are the reasons not all DCS symptoms resolve with recompression chamber treatment. The immediate use of pure oxygen for the medical management of these diving problems is analogous to the use of cardiopulmonary resuscitation for the witnessed cardiac arrest; the sooner initiated the better the results.

Diving Education

Medical Fitness for Diving

Asthma has the potential risk for AGE. Neuman reviewed the subject of asthma and diving. He and his coauthors recommend that asthmatics who are asymptomatic, not on medications and have no exercised induced abnormality on pulmonary function studies be allowed to dive.

Conditions leading to loss of consciousness, such as insulin dependent diabetes and epilepsy, can result in drowning. Carefully controlled diving studies in diabetics, who are free from complications, are now defining the safe requirements for diving. Epilepsy remains as a disqualification except in individuals with a history of febrile seizures ending prior to 5 years of age.

Availability of Hyperbaric Oxygen Treatment Facilities

The availability of these chambers makes it possible for divers who become symptomatic after SCUBA diving to readily receive recompression treatment. This is important because the closer the initiation of recompression treatment to the onset of DCS (and AGE) signs and symptoms, the greater the likelihood of full recovery.

Improved Diving Equipment

Mixed and Rebreather Gas Diving
Mixed gas diving involves changing the breathing gas from air which has 20% oxygen to higher oxygen percentages (nitrox). As the amount of oxygen is increased in the gas mixture, the amount of the inert gas (nitrogen) is reduced. With oxygen enriched air there is less tissue deposition of inert gas per unit of time under water for any given depth. However, because of increased oxygen partial pressures, the seizure threshold for oxygen toxicity is lowered. For normal sports diving activities, oxygen toxicity with mixed gas diving is only a theoretical concern.

Decompression Illness is More Than Bubbles

When AGE occurs, DCS symptoms may be concurrent or appear during or after recompression treatment even though the decompression tables were not violated on the dive. When DCS occurs in this situation it appears resistant to recompression treatment (Neuman) perhaps because of the inflammatory reaction generated by the bubble-blood vessel interaction from the AGE. In cases of DCI where components of both DCS and AGE are suspected, the diver should be observed for a minimum of 24 hours after the recompression treatment is completed for the delayed onset of DCS.

No theory of DCS discounts the primary role of bubbles in this condition. However, new information suggests that there are precursors to bubble formation and post-bubbling events that occur as a consequence of the bubbles. As mentioned earlier, venous gas emboli are a common occurrence diving ascent and ordinarily are filtered out harmlessly by the lungs. Precursors to DCS include stasis, dehydration and too rapid of ascents. These conditions allow the ubiquitous VGE to enlarge, coalesce and occlude the venous side of the circulation. Massive venous bubbling to the lungs can cause pulmonary vessel obstruction described as the chokes. If right to left shunts occur in the heart, VGE can become AGE to the brain. If the arterial flow is slow enough and/or the gradients large enough, autochthonus (ie, spontaneous) bubbles can form in the arterial circulation and lead to any of the consequences of AGE. In such situations it could be difficult to determine whether the DCI event was from AGE or DCS even after careful analysis of the dive profile. Hollenbeck’s model for diving paraplegia includes the setting of venous stasis (Batson’s plexus of veins) in the spinal canal, bubble formation, bubble enlargement possibly from off gassing of the spinal cord, blood vessel occlusion, and venous side infarctions of the spinal cord.
Contemporary Management of DCS

Problem Intervention Effect
Bubble Recompression
with HBO
Reduce bubble size
1. Washout inert gas.
2. Change bubble composition by diffusion.
Stasis and dehydration Hydration: oral fluids if alert, IV fluids otherwise. Improve blood flow.
InflammationCell Ischemia ? Anti-inflammatory medicationsHBO Reduce interaction between bubble and blood vessel endothelium.
Improve oxygen availability to hypoxic tissues, reduce edema and also reduces the interaction between bubble and blood vessel endothelium.

.

Conclusions

We anticipate that in the future there will be further improvements for the safety and enjoyment of the recreational SCUBA diver. For example, the dive computer of the future will be able to individualize dive profiles for different personal medical parameters such as age, body composition and fitness level. Diver locators could quickly target a missing diver and save time and gas consumption as well as prevent serious diving mishaps. Drugs may be developed that would minimize the effect of bubbles interacting with body tissues and prevent DCS and AGE.

Extracorporeal membrane oxygenation therapy for pulmonary decompression illness

Yutaka Kondo, Masataka Fukami and Ichiro Kukita
Kondo et al. Critical Care 2014; 18:438 http://ccforum.com/content/18/3/438/10.1186/cc13935

Pulmonary decompression illness is rarely observed in clinical settings, and most patients die prior to hospitalization. We administered ECMO therapy to rescue a patient, even though this therapy has rarely been reported with good outcome in patients with decompression illness. In addition, we had to select venovenous ECMO even with the patient showing right ventricular failure. A lot of physicians may select venoarterial ECMO if the patient shows right ventricular failure, but the important physiological mechanism of pulmonary decompression illness is massive air embolism in the pulmonary arteries, and the bubbles diminish within the first 24 hours. The management of decompression illness therefore differs substantially from the usual right-sided heart failure.

Extremes of barometric pressure

Jane E Risdall, David P Gradwell
Anaesthesia and Intensive Care Medicine 16:2
Ascent to elevated altitude, commonly achieved through flight, by climbing or by residence in highland regions, exposes the individual to reduced ambient pressure. Although there are physical manifestations of this exposure as a consequence of Boyle’s law, the primary physiological challenge is of hypobaric hypoxia. The acute physiological and longer-term adaptive responses of the cardiovascular, respiratory, hematological and neurological systems to altitude are described, together with an outline of the presentation and management of acute mountain sickness, high-altitude pulmonary edema and high-altitude cerebral edema. While many millions experience modest exposure to altitude as a result of flight in pressurized aircraft, fewer individuals are exposed to increased ambient pressure. The pressure changes during diving and hyperbaric exposures result in greater changes in gas load and gas toxicity. Physiological effects include the consequences of increased work of breathing and redistribution of circulating volume. Neurological manifestations may be the direct result of pressure or a consequence of gas toxicity at depth. Increased tissue gas loads may result in decompression illness on return to surface or subsequent ascent in flight.

  • understand the physical effects of changes in ambient pressure and the physiological consequences on the cardiovascular respiratory and neurological systems
  • gain an awareness that exposure to reduced ambient pressure produces both acute and more chronic effects, with differing signs, symptoms and time to onset at various altitudes
  • develop an awareness of the toxic effects of ‘inert’ gases at increased ambient pressures and the pathogenesis and management of decompression illness

Decompression illness According to Henry’s law, at a constant temperature the amount of gas which dissolves in a liquid is proportional to the pressure of that gas or its partial pressure, if it is part of a mixture of gases. Breathing gases at increased ambient pressure will increase the amount of each gas dissolved in the fluid phases of body tissues. On ascent this excess gas has to be given up. If the ascent is controlled at a sufficiently slow rate, elimination will be via the respiratory system. If the ascent is too fast, excess gas may come out of solution and form free bubbles in the tissues or circulation. Bubbles may contain any of the gases in the breathing mixture, but it is the presence of inert gas bubbles (nitrogen or helium) that are thought most likely to give rise to problems, since the elimination of excess oxygen is achieved by metabolism as well as ventilation. These bubbles may act as venous emboli or may trigger inflammatory tissue responses giving rise to symptoms of decompression illness (DCI). Signs and symptoms of DCI may appear up to 48 hours after exposure to increased ambient pressure and include joint pains, motor and sensory deficits, dyspnoea, cough and skin rashes.

Neurological effects of deep diving

Marit Grønning, Johan A. Aarli
Journal of the Neurological Sciences 304 (2011) 17–21
http://dx.doi.org:/10.1016/j.jns.2011.01.021

Deep diving is defined as diving to depths more than 50 m of seawater (msw), and is mainly used for occupational and military purposes. A deep dive is characterized by the compression phase, the bottom time and the decompression phase. Neurological and neurophysiologic effects are demonstrated in divers during the compression phase and the bottom time. Immediate and transient neurological effects after deep dives have been shown in some divers. However, the results from the epidemiological studies regarding long term neurological effects from deep diving are conflicting and still not conclusive.

Possible immediate neurological effects of deep diving
Syndrome Pressure
Hyperoxia/oxygen seizures >152 kPa (5 msw)
HypoxiaHypercapnia
Nitrogen narcosis >354 kPa (25 msw)
High pressure nervous syndrome >1.6 MPa (150 msw)
Neurological decompression sickness

Neurological effects have been demonstrated, both clinically and neurophysiologically in divers during the compression phase and the bottom time. Studies of divers before and after deep dives have shown immediate and transient neurological effects in some divers. However, the results from the epidemiological and clinical studies regarding long term neurological effects from deep diving are conflicting and still not conclusive. Prospective clinical studies with sufficient power and sensitivity are needed to solve this important issue.

Today deep diving to more than 100 msw is routinely performed globally in the oil- and gas industry. In the North Sea remote underwater intervention and maintenance is performed by the use of remotely operated vehicles (ROV), both in conjunction to and as an alternative to manned underwater operations. There will, however, always be a need for human divers in the technically more advanced underwater operations and for contingency repair operations.

P300 latency indexes nitrogen narcosis

Barry Fowler, Janice Pogue and Gerry Porlier
Electroencephalography, and clinical Neurophysiology, 1990, 75:221-229

This experiment investigated the effects of nitrogen narcosis on reaction time (RT) and P300 latency and amplitude, Ten subjects breathed either air or a non-narcotic 20% oxygen-80% helium (heliox) mixture in a hyperbaric chamber at 6.5, 8.3 and 10 atmospheres absolute (ATA), The subjects responded under controlled accuracy conditions to visually presented male or female names in an oddball paradigm. Single-trial analysis revealed a strong relationship between RT and P300 latency, both of which were slowed in a dose-related manner by hyperbaric air but not by heliox. A clear-cut dose-response relationship could not be established for P300 amplitude. These results indicate that P300 latency indexes nitrogen narcosis and are interpreted as support for the slowed processing model of inert gas narcosis.

Adaptation to Deep Water Habitat

Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis

Chun-Yen Huang, Hui-Chen Lina, Cheng-Huang Lin
Comparative Biochemistry and Physiology, Part A 179 (2015) 25–34
http://dx.doi.org/10.1016/j.cbpa.2014.09.001

We examined the hypothesis that Trichogaster microlepis, a fish with an accessory air-breathing organ, uses a compensatory strategy involving changes in both behavior and protein levels to enhance its gas exchange ability. This compensatory strategy enables the gill ion-regulatory metabolism to maintain homeostasis during exposure to hypoxia. The present study aimed to determinewhether ionic regulation, glycogen utilization and antioxidant activity differ in terms of expression under hypoxic stresses; fish were sampled after being subjected to 3 or 12 h of hypoxia and 12 h of recovery under normoxia. The air-breathing behavior of the fish increased under hypoxia. No morphological modification of the gills was observed. The expression of carbonic anhydrase II did not vary among the treatments. The Na+/K+-ATPase enzyme activity did not decrease, but increases in Na+/K+-ATPase protein expression and ionocyte levels were observed. The glycogen utilization increased under hypoxia as measured by glycogen phosphorylase protein expression and blood glucose level, whereas the glycogen content decreased. The enzyme activity of several components of the antioxidant system in the gills, including catalase, glutathione peroxidase, and superoxidase dismutase, increased in enzyme activity. Based on the above data, we concluded that T. microlepis is a hypoxia-tolerant species that does not exhibit ion-regulatory suppression but uses glycogen to maintain energy utilization in the gills under hypoxic stress. Components of the antioxidant system showed increased expression under the applied experimental treatments.

Divergence date estimation and a comprehensive molecular tree of extant cetaceans

Michael R. McGowen , Michelle Spaulding, John Gatesy
Molecular Phylogenetics and Evolution 53 (2009) 891–906
http://dx.doi.org/10.1016/j.ympev.2009.08.018

Cetaceans are remarkable among mammals for their numerous adaptations to an entirely aquatic existence, yet many aspects of their phylogeny remain unresolved. Here we merged 37 new sequences from the nuclear genes RAG1 and PRM1 with most published molecular data for the group (45 nuclear loci, transposons, mitochondrial genomes), and generated a supermatrix consisting of 42,335 characters. The great majority of these data have never been combined. Model-based analyses of the supermatrix produced a solid, consistent phylogenetic hypothesis for 87 cetacean species. Bayesian analyses corroborated odontocete (toothed whale) monophyly, stabilized basal odontocete relationships, and completely resolved branching events within Mysticeti (baleen whales) as well as the problematic speciose clade Delphinidae (oceanic dolphins). Only limited conflicts relative to maximum likelihood results were recorded, and discrepancies found in parsimony trees were very weakly supported. We utilized the Bayesian supermatrix tree to estimate divergence dates among lineages using relaxed-clock methods. Divergence estimates revealed rapid branching of basal odontocete lineages near the Eocene–Oligocene boundary, the antiquity of river dolphin lineages, a Late Miocene radiation of balaenopteroid mysticetes, and a recent rapid radiation of Delphinidae beginning [1]10 million years ago. Our comprehensive,  time calibrated tree provides a powerful evolutionary tool for broad-scale comparative studies of Cetacea.

Mitogenomic analyses provide new insights into cetacean origin and evolution

Ulfur Arnason, Anette Gullberg, Axel Janke
Gene 333 (2004) 27–34
http://dx.doi.org:/10.1016/j.gene.2004.02.010

The evolution of the order Cetacea (whales, dolphins, porpoises) has, for a long time, attracted the attention of evolutionary biologists. Here we examine cetacean phylogenetic relationships on the basis of analyses of complete mitochondrial genomes that represent all extant cetacean families. The results suggest that the ancestors of recent cetaceans had an explosive evolutionary radiation 30–35 million years before present. During this period, extant cetaceans divided into the two primary groups, Mysticeti (baleen whales) and Odontoceti (toothed whales). Soon after this basal split, the Odontoceti diverged into the four extant lineages, sperm whales, beaked whales, Indian river dolphins and delphinoids (iniid river dolphins, narwhals/belugas, porpoises and true dolphins). The current data set has allowed test of two recent morphological hypotheses on cetacean origin. One of these hypotheses posits that Artiodactyla and Cetacea originated from the extinct group Mesonychia, and the other that Mesonychia/Cetacea constitutes a sister group to Artiodactyla. The current results are inconsistent with both these hypotheses. The findings suggest that the claimed morphological similarities between Mesonychia and Cetacea are the result of evolutionary convergence rather than common ancestry.

The order Cetacea traditionally includes three suborders: the extinct Archaeoceti and the recent Odontoceti and Mysticeti. It is commonly believed that the evolution of ancestral cetaceans from terrestrial to marine (aquatic) life was accompanied by a fast and radical morphological adaptation. Such a scenario may explain why it was, for a long time, difficult to morphologically establish the position of Cetacea in the mammalian tree and even to settle whether Cetacea constituted a monophyletic group.

Biochemical analyses in the 1950s  and 1960s had shown a closer relationship between cetaceans and artiodactyls (even-toed hoofed mammals) than between cetaceans and any other eutherian order and karyological studies in the late 1960s and early 1970s unequivocally supported cetacean monophyly (Arnason, 1969, 1974). The nature of the relationship between cetaceans and artiodactyls was resolved in phylogenetic studies of mitochondrial (mt) cytochrome b (cytb) genes (Irwin and Arnason, 1994; Arnason and Gullberg, 1996) that placed Cetacea within the order Artiodactyla itself as the sister group of the Hippopotamidae (see also Sarich, 1993). The Hippopotamidae/ Cetacea relationship was subsequently supported in studies of nuclear data (Gatesy et al., 1996; Gatesy, 1997) and statistically established in analysis of complete mt genomes (Ursing and Arnason, 1998). The relationship has also been confirmed in analyses of combined nuclear and mt sequences (Gatesy et al., 1999; Cassens et al., 2000) and in studies of short interspersed repetitive elements (SINEs). Artiodactyla and Cetacea are now commonly referred to as Cetartiodactyla.

Previous analyses of the complete cytb gene of more than 30 cetacean species (Arnason and Gullberg, 1996) identified five primary lineages of recent cetaceans, viz., Mysticeti and the four odontocete lineages Physeteridae (sperm whales), Platanistidae (Indian river dolphins), Ziphiidae (beaked whales) and Delphinoidea (iniid river dolphins, porpoises, narwhals and dolphins). However, these studies left unresolved the relationships of the five lineages as well as those between the three delphinoid families Monodontidae (narwhals, belugas), Phocoenidae (porpoises) and Delphinidae (dolphins). Similarly, the relationships between the four mysticete families Balaenidae (right whales), Neobalaenidae (pygmy right whales), Eschrichtiidae (gray whales) and Balaenopteridae (rorquals) were not conclusively resolved in analyses of cytb genes.

Fig. (not shown). Cetartiodactyl relationships and the estimated times of their divergences. The tree was established on the basis of maximum likelihood analysis of the concatenated amino acid (aa) sequences of 12 mt protein-coding genes. Length of alignment 3610 aa. Support values for branches A–H are shown in the insert.
Cetruminantia (branch A) receives moderate support and Cetancodonta (B) strong support. Cetacea (C) splits into monophyletic Mysticeti (baleen whales) and monophyletic Odontoceti (toothed whales). Odontoceti has four basal lineages, Physeteridae (sperm whales: represented by the sperm and pygmy sperm whales), Ziphiidae (beaked whales: bottlenose and Baird’s beaked whales), Platanistidae (Indian river dolphins: Indian river dolphin) and Delphinoidea. Delphinoidea encompasses the families Iniidae (iniid river dolphins: Amazon river dolphin, La Plata dolphin), Monodontidae (narwhals/belugas: narwhal), Phocoenidae (porpoises: harbour porpoise) and Delphinidae (dolphins: white-beaked dolphin). The common odontocete branch and the branches separating the four cetacean lineages are short. These relationships are therefore somewhat unstable (cf. Section 3.1 and Table 1). Iniid river dolphins (F) are solidly nested within the Delphinoidea (E). Thus, traditional river dolphins (Platanistidae + Iniidae) do not form a monophyletic unit. Molecular estimates of divergence times (Sanderson 2002) were based on two calibration points, A/C-60 and O/M-35 (cf. Section 3.2). Due to the short lengths of internal branches, some estimates for these divergences overlap. NJ: neighbor joining; MP: maximum parsimony; LBP: local bootstrap probability; QP: quartet puzzling. The bar shows the number of aa substitutions per site.

The limited molecular resolution among basal cetacean lineages has been known for some time. Studies of hemoglobin and myoglobin (Goodman, 1989; Czelusniak et al., 1990) have either joined Physeteridae and Mysticeti to the exclusion of Delphinoidea (myoglobin data) or Mysticeti and Delphinoidea to the exclusion of Physeteridae (hemoglobin data). Thus, neither of the data sets identified monophyletic Odontoceti by joining the two odontocete lineages (Physeteridae and Delphinoidea) to the exclusion of Mysticeti. A similar instability was recognized and cautioned against in analyses of some mt data, notably, sequences of rRNA genes (Arnason et al., 1993b). The suggestion (Milinkovitch et al., 1993) of a sister group relationship between Physeteridae and the mysticete family Balaenopteridae (rorquals) was based on a myoglobin data set (which joins Physeteridae and Mysticeti to the exclusion of Delphinoidea) that was complemented with partial data of the mt 16S rRNA gene.

The cetancodont divergence times calculated using A/C-60 and O/M-35 as references have been included in Fig. 1. As a result of the short branches separating several cetacean lineages, the estimates of these divergences overlap. The same observation has been made in calculations based on SINE flanking sequences (Nikaido et al., 2001). There is a general consistency between the current and the flanking sequence datings, except for those involving the Balaenopteridae, which are somewhat younger in our analysis than in the SINEs study. The currently estimated age of the divergence between Hippopotamus and Cetacea (c53.5 MYBP) is consistent with the age (>50 MY) of the oldest archaeocete fossils identified so far (Bajpai and Gingerich, 1998). This suggests that the ages allocated to the two references, A/C-60 (the divergence between ruminant artiodactyls and cetancodonts) and O/M-35 (the divergence between odontocetes and mysticetes) are reasonably accurate.

The dating of the divergence between the blue and fin whales is of interest regarding hybridization between closely related mammalian species. Previous molecular analyses (Arnason et al., 1991b; Spilliaert et al., 1991) demonstrated the occurrence of hybridization between these two species. These studies, which were based on three hybrids (one female and two males), showed that either species could be the mother or father in these hybridizations. The two male hybrids had rudimentary testes, whereas the female hybrid was in her second pregnancy. This suggests that the blue and fin whales may be close to the limit for permissible species hybridization among mammals.

The current data set has allowed examination of the coherence between the molecular results and two prevalent morphological hypotheses related to cetacean evolution. The first hypothesis, which in essence originates from Van Valen (1966, 1968), postulates that monophyletic Artiodactyla and monophyletic Cetacea evolved separately from the extinct Palaeocene group Mesonychia. This hypothesis was recently reinforced in a morphological study (Thewissen et al., 2001) that included mesonychians, two archaeocete taxa (Ambuloocetus and Pakicetus) and some extant and fossil artiodactyls. The study of Thewissen et al. (2001) showed a sister group relationship between monophyletic Artiodactyla and monophyletic Cetacea, with Mesonychia as the basal sister group of Artiodactyla/Cetacea, a conclusion consistent with the palaeontological age of Mesonychia relative to that of Artiodactyla and Cetacea. The second hypothesis favours a sister group relationship between Mesonychia and Cetacea with the Mesonychia/Cetacea clade as the sister group of monophyletic Artiodactyla (O’Leary and Geisler, 1999; see also Gatesy and O’Leary, 2001).

Although the position of Mesonychia differs in the two morphological hypotheses, both correspond to a sister group relationship between Cetacea and monophyletic Artiodactyla among extant cetartiodactyls. Thus, both hypotheses can be tested against the current data set. The result of such a test has been included in Table 1, topology (m)(not shown). As evident, both these morphological hypotheses are incongruent with the mitogenomic findings.

Morphological studies have not provided an answer to the question whether mysticetes and odontocetes had separate origins among the archaeocetes (Fordyce and de Muizon, 2001). However, the long common cetacean branch and the short branches separating the five extant cetacean lineages strongly suggest an origin of modern cetaceans from the same archaeocete group (probably the Dorudontidae).

The limbs of Ambulocetus constitute somewhat of an evolutionary enigma. As evident in Thewissen et al.’s (1994) paper, Ambulocetus has very large hind limbs compared to its forelimbs, a difference that is less pronounced in later silhouette drawings of the animal. It is nevertheless evident that evolution from the powerful hindlimbs of Ambulocetus to their rudimentation in archaeocetes constitutes a remarkable morphological reversal if Ambulocetus is connected to the cetacean branch after the separation of the hippopotamid and cetacean lineages.

For natural reasons, systematic schemes have traditionally been based on external morphological characteristics. The rates of morphological and molecular evolution are rarely (if ever) strictly correlated, however, and this may give rise to inconsistency between traditional systematics and molecular findings. The emerging consensus that the order Cetacea resides within another traditional order, Artiodactyla, makes apparent the incongruity in cetartiodactyl nomenclature (Graur and Higgins, 1994). In this instance, a possible solution for maintaining reasonable consistency between nomenclature and phylogeny would be to recognize Cetartiodactyla as an order with three suborders: Suina, Tylopoda and Cetruminantia. According to such a scheme, Cetacea would (together with the Hippopotamidae) constitute a parvorder within the infraorder Cetancodonta.

Cytochrome b and Bayesian inference of whale phylogeny

Laura May-Collado, Ingi Agnarsson
Molecular Phylogenetics and Evolution 38 (2006) 344–354
http://dx.doi.org//10.1016/j.ympev.2005.09.019

In the mid 1990s cytochrome b and other mitochondrial DNA data reinvigorated cetacean phylogenetics by proposing many novel

and provocative hypotheses of cetacean relationships. These results sparked a revision and reanalysis of morphological datasets, and the collection of new nuclear DNA data from numerous loci. Some of the most controversial mitochondrial hypotheses have now become benchmark clades, corroborated with nuclear DNA and morphological data; others have been resolved in favor of more traditional views. That major conflicts in cetacean phylogeny are disappearing is encouraging. However, most recent papers aim specifically to resolve higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve lower-level relationships. No molecular study to date has included more than 33 cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary studies. Until more genes are available for a high number of taxa, can we rely on readily available single gene mitochondrial data? Here, we estimate the phylogeny of 66 cetacean taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian phylogenetic analysis recovered all benchmark clades and for the Wrst time supported Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The results recover the monophyly, with the exception of only one taxa within Cetacea, and the most recently proposed super- and subfamilies. In contrast, parsimony never recovered all benchmark clades and was sensitive to a priori weighting decisions. These results provide the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian methodology in general, and of Cytb in cetacean phylogenetics. They furthermore suggest that dense taxon sampling, like dense character sampling, can overcome problems in phylogenetic reconstruction.

Some long standing debates are all but resolved: our understanding of deeper level cetacean phylogeny has grown strong. However, the strong focus of most recent studies, aiming specifically to resolve these higher level conflicts by adding mostly characters rather than taxa, has left our understanding of lower level relationships among whale species lagging behind. Mitogenomic data, for example, is available only for 16 cetacean species, and no molecular study to date has included more than 33 cetaceans. It seems timely to focus on more detailed (genus, and species level) molecular phylogenies. These will provide better tools for detailed evolutionary studies, and are necessary to test existing morphological phylogenetic hypotheses, and current cetacean classification.

We judge the reliability of our phylogeny based on the recovery of the previously mentioned benchmark clades, in addition to the less controversial clades Perissodactyla, Euungulata (sensu Waddell et al., 2001; Perissodactyla+ Cetartiodactyla), Cetacea, and Mysticeti. Because Cytb is thought to be most reliable at lower taxonomic levels (due to high substitution rates), recovering ‘known’ deeper clades gives credibility to these new findings which have not been addressed by studies using few taxa. We compare the performance of Bayesian analyses versus parsimony under four different models, and briefly examine the sensitivity of the results to taxon sampling. We use our results to discuss agreement and remaining conflict in cetacean phylogenetics, and provide comments on current classification.

The Bayesian analysis recovered all seven benchmark clades. Support for five of the benchmark clades is high (100 posterior probabilities) but rather low for Cetancodonta (79) and marginal for the monophyly of Odontoceti. The analysis also recovered all but one family level, and most sub- and superfamily level cetacean taxa. The results broadly corroborate current cetacean classiffcation, while also pointing to some lower-level groups that may need redefinition.

Many recent cetacean phylogenetic studies include relatively few taxa, in part due to a focus on generating more characters to resolve higher level phylogenetics. While addressing crucial questions and providing the backbone for lower level phylogenies, such studies have limited utility for classification, and for comparative evolutionary studies. In some cases sparse taxon sampling may also confound the results. Of course, taxon sampling is usually simply constrained by the availability of character data, but for some reason many studies have opted to include only one, or a few outgroup taxa, even if many are available.

We find that as long as outgroup taxon sampling was extensive, Bayesian analyses of Cytb recovered all the a priori identified benchmark clades. When only a few outgroups were chosen, however, the Bayesian analysis negated Odontoceti monophyly, as have many previous parsimony analyses of mitochondrial DNA. Furthermore, in almost every detailed comparison possible our results mirror the findings O’Leary et al. (2004), the most ‘character-complete’ (but including relatively few cetacean taxa) analysis to date (37,000 characters from morphology, SINE, and 51 gene fragments). This result gives credibility to our findings, including previously untested lower level clades.

  • Monophyly and placement of Mysticeti (baleen whales).
  • Monophyly of Odontoceti (toothed whales)
  • Delphinoids
  • River Dolphins
  • Beaked and sperm whales

A major goal of phylogenetics is a phylogeny of life (i.e., many taxa), based on multiple lines of evidence (many characters of many types). However, when phylogenies based on relatively few characters can be judged reliable based on external evidence (taxonomic congruence with other phylogenies using many characters, but few taxa), they seem like very promising and useful ‘first guess’ hypotheses. The evolution of sexual dimorphism, echolocation, social behavior, and whistles and other communicative signals, and major ecological shifts (e.g., transition to fresh water) are among the numerous interesting questions in cetacean biology that this phylogeny can help answer.

Deep-diving sea lions exhibit extreme bradycardia in long duration dives

Birgitte I. McDonald1, and Paul J. Ponganis
The Journal of Experimental Biology (2014) 217, 1525-1534 http://dx.doi.org:/10.1242/jeb.098558

Heart rate and peripheral blood flow distribution are the primary determinants of the rate and pattern of oxygen store utilization and ultimately breath-hold duration in marine endotherms. Despite this, little is known about how otariids (sea lions and fur seals) regulate heart rate (fH) while diving. We investigated dive fH in five adult female California sea lions (Zalophus californianus) during foraging trips by instrumenting them with digital electrocardiogram (ECG) loggers and time depth recorders. In all dives, dive fH (number of beats/duration; 50±9 beats min−1) decreased compared with surface rates (113±5 beats min−1), with all dives exhibiting an instantaneous fH below resting (<54 beats min−1) at some point during the dive. Both dive fH and minimum instantaneous fH significantly decreased with increasing dive duration. Typical instantaneous fH profiles of deep dives (>100 m) consisted of:

(1) an initial rapid decline in fH resulting in the lowest instantaneous fH of the dive at the end of descent, often below 10 beats min−1 in dives longer than 6 min in duration;
(2) a slight increase in fH to ~10–40 beats min−1 during the bottom portion of the dive; and
(3) a gradual increase in fH during ascent with a rapid increase prior to surfacing.

Thus, fH regulation in deep-diving sea lions is not simply a progressive bradycardia. Extreme bradycardia and the presumed associated reductions in pulmonary and peripheral blood flow during late descent of deep dives should

(a) contribute to preservation of the lung oxygen store,
(b) increase dependence of muscle on the myoglobin-bound oxygen store,
(c) conserve the blood oxygen store and
(d) help limit the absorption of nitrogen at depth.

This fH profile during deep dives of sea lions may be characteristic of deep-diving marine endotherms that dive on inspiration as similar fH profiles have been recently documented in the emperor penguin, another deep diver that dives on inspiration.

The resting ƒH measured in this study (54±6 beats min−1) was lower than predicted for an animal of similar size (~80 beats min−1 for an 80 kg mammal). In part, this may be due to the fact that the sea lions were probably sleeping. The resting ƒH in our study was also lower than previous measurements in captive juvenile California sea lions (87±17 beats min−1, average mass 30 kg)  and wild Antarctic fur seals (78±5 beats min−1, body mass 30–50 kg). However, we found a significant negative relationship between mass and resting ƒH even with our small sample size of five sea lions (resting ƒH = –0.58 Mb +100.26, r2=0.81, F1,3=12.37, P=0.039). For a 30 kg sea lion, this equation predicts a resting ƒH of 83 beats min−1, which is similar to what was measured previously in juvenile sea lions, suggesting this equation may be useful in estimating resting ƒH in sea lions.

The sea lions exhibited a distinct sinus arrhythmia fluctuating between a minimum of 42±9 and a maximum of 87±12 beats min−1, comparable to the sinus arrhythmias described in other diving birds and mammals, including sea lions. The minimum instantaneous ƒH during the sinus arrhythmia was similar to the mean minimum ƒH in dives less than 3 min (37±7 beats min−1), indicating that in dives less than 3 min (estimated cADL), ƒH only decreased to levels observed during exhalation at rest. This is consistent with observations in emperor penguins and elephant seals, where it was proposed that in dives shorter than the aerobic dive limit (ADL) the reduction in ƒH is regulated by a mechanism of cardiorespiratory control similar to that governing the respiratory sinus arrhythmia, with a further reduction only occurring in dives longer than the ADL.

Fig. 3. (not shown) Instantaneous fH and dive depth profiles of a California sea lion (CSL12_2). Data are from (A) a short, shallow dive (1.3 min, 45 m), (B) a mid-duration dive (4.8 min, 239 m) and (C) a long-duration dive (8.5 min, 305 m). Minimum instantaneous fH reached 37 beats min−1 in the short dive
(A) 19 beats min−1 in the mid-duration dive
(B) and 7 beats min−1 in the long duration dive
(C) Prominent features typical of mid- and long-duration dives include

  • a surface interval tachycardia (pre- and post-dive);
  • a steady rapid decrease in fH during initial descent;
  • a gradual decline in fH towards the end of descent with the lowest fH of the dive at the end of descent;
  • a slight increase and sometimes variable fH during the bottom portion of the dive; and
  • a slow increase in fH during ascent,
  • often ending in a rapid increase just before surfacing.

We obtained the first diving ƒH data from wild sea lions on natural foraging trips, demonstrating how they regulate ƒH over a range of dive durations. Sea lions always decreased dive ƒH from surface ƒH values; however, individual sea lions exhibited different dive ƒH, accounting for a significant amount of the variation in the relationship between dive duration and ƒH (intra-individual correlation: 75–81%)). The individual differences in dive ƒH exhibited in this study suggest that different dive capacities of individual sea lions may partially account for the range of dive strategies exhibited in a previous study (Villegas-Amtmann et al., 2011). Despite the individual differences in ƒH, the pattern of the dive ƒH response was similar in all the sea lions. As predicted, sea lions only consistently displayed a true bradycardia on mid- to long- duration dives (>4 min) (Fig. 5A). Additionally, as seen in freely diving phocids, dive ƒH and minimum ƒH were negatively related to dive duration, with the longest duration dives having the lowest dive ƒH and displaying the most intense bradycardia, often below 10 beats min−1 (Fig. 5A,B).

Profiles of mean fH at 10 s intervals of dives

Profiles of mean fH at 10 s intervals of dives

Fig 4.  Profiles of mean fH at 10 s intervals of dives for (A) six duration categories and (B) five depth categories. Standard error bars are shown. Data were pooled from 461 dives performed by five sea lions. The number of dives in each category and the number of sea lions performing the dives in each category are provided in the keys.

The mild bradycardia and the dive ƒH profiles observed in the shorter duration dives (<3 min) were similar to those observed in trained juvenile California sea lions and adult Stellar sea lions, but much more intense than ƒH observed in freely diving Antarctic fur seals. Surprisingly, although dive ƒH of trained Steller sea lions was similar, Steller sea lions regularly exhibited lower minimum ƒH, with minimum ƒH almost always less than 20 beats min−1 in dives less than 2 min in duration. In the wild, California sea lions rarely exhibited a minimum ƒH less than 20 beats min−1 in similar duration dives (Fig. 5B), suggesting greater blood oxygen transport during these natural short-duration dives.

Fig. 5. (not shown)  fH decreases with increasing dive duration. Dive duration versus (A) dive fH (total number of beats/dive duration), (B) minimum instantaneous fH and (C) bottom fH (total beats at bottom of dive/bottom time) for California sea lions (461 dives from five sea lions).

Although California sea lions are not usually considered exceptional divers, they exhibited extreme bradycardia, comparable to that of the best diving phocids, during their deep dives. In dives greater than 6 min in duration, minimum ƒH was usually less than 10 beats min−1 and sometimes as low as 6 beats mins−1 (Fig. 5B), which is similar to extreme divers such as emperor penguins (3 beats min−1), elephant seals (3 beats min−1), grey seals (2 beats min−1) and Weddell seals (<10 beats min−1), and even as low as what was observed in forced submersion studies. Thus, similar to phocids, the extreme bradycardia exhibited during forced submersions is also a routine component of the sea lion’s physiological repertoire, allowing them to perform long-duration dives.

While the degree of bradycardia observed in long dives of California sea lions was similar to the extreme bradycardia observed in phocids, the ƒH profiles were quite different. In general, phocid ƒH decreases abruptly upon submergence. The intensity of the initial phocid bradycardia either remains relatively stable or intensifies as the dive progresses, and does not start to increase until the seal begins its ascent. In contrast, the ƒH profiles of sea lions were more complex, showing a more gradual decrease during descent, with the minimum ƒH of the dive usually towards the end of descent (Figs 3, 6). There was often a slight increase in ƒH during the bottom portion of the dive, and as soon as the sea lions started to ascend, the ƒH slowly started to increase, often becoming irregular during the middle of ascent, before increasing rapidly as the sea lion approached the surface.

Fig. 6. (not shown) Instantaneous fH and dive depth profiles of the longest dive (10.0 min, 385 m) from a California sea lion (CSL12_1). During this dive, instantaneous fH reached 7 beats min−1 and was less than 20 beats min−1 for over 5.5 min. Post-dive fH was high in the first 0.5–1 min after surfacing, but then declined to ~100 beats min−1 towards the end of the surface interval.

Implications for pulmonary gas exchange

The moderate dive ƒH in short, shallow dives compared with the much slower ƒH of deep long-duration dives suggests more pulmonary blood flow and greater potential for reliance on lung O2. Most of these dives were to depths of less than 100 m (well below the estimated depth of lung collapse near 200 m), so maintenance of a moderate ƒH during these dives may allow sea lions to maximise use of the potentially significant lung O2 stores (~16% of total body O2 stores) throughout the dive. This is supported by venous blood O2 profiles, where, occasionally, there was no decrease in venous blood O2 between the beginning and end of the dive; this can only occur if pulmonary gas exchange continues throughout the dive. Greater utilization of the lung O2 store in sea lions is consistent with higher dive ƒH in other species that both dive on inspiration and typically perform shallow dives (dolphins, porpoises, some penguin species), and in deeper diving species when they perform shallow dives (emperor penguins).

In deeper dives of sea lions, although ƒH was lower and bradycardia more extreme, the diving ƒH profiles suggest that pulmonary gas exchange is also important. In long-duration dives, even though ƒH started to decrease upon or shortly after submergence, the decrease was not as abrupt as in phocids. Additionally, in long deep dives, despite having overall low dive ƒH, there were more heart beats before resting ƒH was reached compared with short, shallow dives. In dives less than 3 min in duration, there were ~10–15 beats until instantaneous ƒH reached resting values. In longer duration dives (>3 min), there were usually ~30–40 beats before instantaneous ƒH reached resting values. We suggest the greater number of heart beats early in these deeper dives enables more gas exchange and blood O2 uptake at shallow depths, thus allowing utilisation of the postulated larger respiratory O2 stores in deeper dives The less abrupt decline in ƒH we observed in sea lions is similar to the more gradual declines documented in emperor penguins and porpoises, where it has also been proposed that the gradual decrease in ƒH allows them to maximise pulmonary gas exchange at shallower depths. However, as sea lions swam deeper, ƒH decreased further (Figs 3, 6), and by 200 m depth (the approximate depth of lung collapse, instantaneous ƒH was 14 beats min−1. Such an extreme decline in ƒH in conjunction with increased pulmonary shunting due to lung compression at greater depths will result in minimization of both O2 and N2 uptake by blood, even before the depth of full lung collapse (100% pulmonary shunt) is reached.

Implications for blood flow

ƒH is often used as a proxy to estimate blood flow and perfusion during diving because of the relative ease of its measurement. This is based on the assumption that stroke volume does not change during diving in sea lions, and, hence, changes in ƒH directly reflect changes in cardiac output. As breath-hold divers maintain arterial pressure while diving, changes in cardiac output should be associated with changes in peripheral vascular resistance and changes in blood flow to tissues. In Weddell seals, a decrease in cardiac output of ~85% during forced submersions resulted in an 80–100% decrease in tissue perfusion in all tissues excluding the brain, adrenal glands and lung. Sea lions exhibited extremely low instantaneous ƒH values that often remained low for significant portions of the dive (Figs 4, 6), suggesting severe decreases in tissue perfusion in dives greater than 5 min in duration. In almost all dives greater than 6 min in duration, instantaneous ƒH reached 10 beats min−1, and stayed below 20 beats min−1 for more than a minute. At a ƒH of 20 beats min−1, cardiac output will be ~36% of resting cardiac output and only about 18% of average surface cardiac output. At these levels of cardiac suppression, most of this flow should be directed towards the brain and heart.

Conclusions

We successfully obtained diving ƒH profiles from a deep-diving otariid during natural foraging trips. We found that

(1) ƒH decreases during all dives, but true and more intense bradycardia only occurred in longer duration dives and
(2) in the longest duration dives, ƒH and presumed cardiac output were as low as 20% of resting values.

We conclude that, although initial high ƒH promotes gas exchange early in deep dives, the extremely low ƒH in late descent of deep dives (a) preserves lung O2, (b) conserves blood O2, (c) increases the dependence of muscle on myoglobin-bound O2 and (d) limits N2 absorption at depth. This ƒH profile, especially during the late descent/early bottom phase of deep dives is similar to that of deep-diving emperor penguins, and may be characteristic of deep diving endotherms that dive on inspiration.

Dive duration was the fixed effect in all models, and to account for the lack of independence caused by having many dives from the same individual, individual (sea lion ID) was included as a random effect. Covariance and random effect structures of the full models were evaluated using Akaike’s information criterion (AIC) and examination of residual plots. AICs from all the tested models are presented with the best model in bold.

Additionally, dives were classified as short-duration (less than 3 min, minimum cADL), mid-duration (3–5 min, range of cADLs) or long-duration (>5 min) dives. Differences in pre-dive ƒH, dive ƒH, minimum ƒH, post-dive ƒH, and heart beats to resting between the categories were investigated using mixed effects ANOVA, followed by post hoc Tukey tests. In all models, dive duration category was the fixed effect and individual (sea lion ID) was included as a random effect. Model fit was accessed by examination of the residuals. All means are expressed ±s.d. and results of the Tukey tests were considered significant at P<0.05. Statistical analysis was performed in R.

Investigating Annual Diving Behaviour by Hooded Seals (Cystophora cristata) within the Northwest Atlantic Ocean

Julie M. Andersen, Mette Skern-Mauritzen, Lars Boehme
PLoS ONE 8(11): e80438. http://dx.doi.org:/10.1371/journal.pone.0080438

With the exception of relatively brief periods when they reproduce and molt, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behavior during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during icebound fasting periods (200422008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyze how bathymetry, seasonality and FPT influence the hooded seals’ diving behavior described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend .20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behavior. We found that male and female hooded seals are spatially segregated and that diving behavior varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-molt) and August–October (post-molt/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-molt/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods.

Novel locomotor muscle design in extreme deep-diving whales

P. Velten, R. M. Dillaman, S. T. Kinsey, W. A. McLellan and D. A. Pabst
The Journal of Experimental Biology 216, 1862-1871
http://dx.doi.org:/10.1242/jeb.081323

Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (Vmt). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they

(1) shared muscle design features with other deep divers and
(2) performed dives within their calculated ADLs.

Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinterʼs fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low Vmt. Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

Serial cross-sections of the m. longissimus dorsi of Mesoplodon densirostris

Serial cross-sections of the m. longissimus dorsi of Mesoplodon densirostris

Fig. Serial cross-sections of the m. longissimus dorsi of Mesoplodon densirostris (A–D) and Globicephala macrorhynchus (E–H). Scale bars, 50μm. Muscle sections stained for the alkaline (A,E) and acidic (B,F) preincubations of myosin ATPase were used to distinguish Type I and II fibers. Muscle sections stained for succinate dehydrogenase (C,G) and α-glycerophosphate dehydrogenase (D,H) were used to distinguish glycolytic (gl), oxidative (o) and intermediate (i) fibers.

Previous studies of the locomotor muscles of deep-diving marine mammals have demonstrated that these species share a suite of adaptations that increase onboard oxygen stores while slowing the rate at which these stores are utilized, thus extending ADL. Their locomotor muscles display elevated myoglobin concentrations and are composed predominantly of large Type I fibers. Vmt are also lower in deep divers than in shallow divers or athletic terrestrial species. The results of this study indicate that beaked whales and short-finned pilot whales do not uniformly display these characteristics and that each possesses a novel fiber profile compared with those of other deep divers.

The phylogeny of Cetartiodactyla: The importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies

Ingi Agnarsson, Laura J. May-Collado
Molecular Phylogenetics and Evolution 48 (2008) 964–985
http://dx.doi.org:/10.1016/j.ympev.2008.05.046

We perform Bayesian phylogenetic analyses on cytochrome b sequences from 264 of the 290 extant cetartiodactyl mammals (whales plus even-toed ungulates) and two recently extinct species, the ‘Mouse Goat’ and the ‘Irish Elk’. Previous primary analyses have included only a small portion of the species diversity within Cetartiodactyla, while a complete supertree analysis lacks resolution and branch lengths limiting its utility for comparative studies. The benefits of using a single-gene approach include rapid phylogenetic estimates for a large number of species. However, single-gene phylogenies often differ dramatically from studies involving multiple datasets suggesting that they often are unreliable. However, based on recovery of benchmark clades—clades supported in prior studies based on multiple independent datasets—and recovery of undisputed traditional taxonomic groups, Cytb performs extraordinarily well in resolving cetartiodactyl phylogeny when taxon sampling is dense. Missing data, however, (taxa with partial sequences) can compromise phylogenetic accuracy, suggesting a tradeoff between the benefits of adding taxa and introducing question marks. In the full data, a few species with a short sequences appear misplaced, however, sequence length alone seems a poor predictor of this phenomenon as other taxa.

The mammalian superorder Cetartiodactyla (whales and eventoed ungulates) contains nearly 300 species including many of immense commercial importance (cow, pig, and sheep) and of conservation interest and aesthetic value (antelopes, deer, giraffe, dolphins, and whales) (MacDonald, 2006). Certain members of this superorder count among the best studied organisms on earth, whether speaking morphologically, behaviorally, physiologically or genetically. Understanding the interrelationships among cetartiodactyl species, therefore, is of obvious importance with equally short sequences were not conspicuously misplaced. Although we recommend awaiting a better supported phylogeny based on more character data to reconsider classification and taxonomy within Cetartiodactyla, the new phylogenetic hypotheses provided here represent the currently best available tool for comparative species-level studies within this group. Cytb has been sequenced for a large percentage of mammals and appears to be a reliable phylogenetic marker as long as taxon sampling is dense. Therefore, an opportunity exists now to reconstruct detailed phylogenies of most of the major mammalian clades to rapidly provide much needed tools for species-level comparative studies.

Our results support the following relationship among the four major cetartiodactylan lineages (((Tylopoda ((Cetancodonta (Ruminantia + Suina))), with variable support. This arrangement has not been suggested previously, to our knowledge (see review in O’Leary and Gatesy, 2008 and discussion).

Relationships among clades within Cetancodonta are identical to those found by May-Collado and Agnarsson (2006).

Within Ruminantia all our analyzes suggest the following relationships among families: (((((Tragulidae((((Antilocapridae(((Giraffidae(( Cervidae(Moschidae + Bovidae))))) with relatively high support, supporting the subdivision of Ruminantia into Tragulina and Pecora.
In the rare cases where our results are inconsistent with benchmark clades, ad hoc explanations seem reasonable. The placement of M. meminna (Tragulidae) within Bovidae is likely an artifact of missing data, although remarkably it is the only conspicuous misplacement of a species across the whole phylogeny at the family level (while three species appear to be misplaced at the subfamily level within Cervidae in the full analysis, see Fig. 5a). This is supported by the fact that the placement of Moschiola receives low support, and the removal of Moschiola prior to analysis increases dramatically the support for clades close to where it nested (not shown, analysis available from authors), suggesting it had a tendency to ‘jump around’. Two other possibilities cannot be ruled out, however. One, that possibly the available sequence in Genbank may be mislabeled. And second, it should be kept in mind that the validity of Tragulidae has never been tested with molecular data including more than two species.

Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic–hypercapnic stresses

Imad Shams, Aaron Avivi, Eviatar Nevo
Comparative Biochemistry and Physiology, Part A 142 (2005) 376 – 382
http://dx.doi.org:/10.1016/j.cbpa.2005.09.003

The composition of oxygen (O2), carbon dioxide (CO2), and soil humidity in the underground burrows from three species of the Israeli subterranean mole rat Spalax ehrenbergi superspecies were studied in their natural habitat. Two geographically close populations of each species from contrasting soil types were probed. Maximal CO2 levels (6.1%) and minimal O2 levels (7.2%) were recorded in northern Israel in the breeding mounds of S. carmeli in a flooded, poor drained field of heavy clay soil with very high volumetric water content. The patterns of gas fluctuations during the measurement period among the different Spalax species studied were similar. The more significant differentiation in gas levels was not among species, but between neighboring populations inhabiting heavy soils or light soils: O2 was lower and CO2 was higher in the heavy soils (clay and basaltic) compared to the relatively light soils (terra rossa and rendzina). The extreme values of gas concentration, which occurred during the rainy season, seemed to fluctuate with partial flooding of the tunnels, animal digging activity, and over-crowded breeding mounds inhabited by a nursing female and her offspring. The gas composition and soil water content in neighboring sites with different soil types indicated large differences in the levels of hypoxic–hypercapnic stress in different populations of the same species. A growing number of genes associated with hypoxic stress have been shown to exhibit structural and functional differences between the subterranean Spalax and the aboveground rat (Rattus norvegicus), probably reflecting the molecular adaptations that Spalax went through during 40 million years of evolution to survive efficiently in the severe fluctuations in gas composition in the underground habitat.

map of the studied sites

map of the studied sites

Schematic map of the studied sites: S. galili (2n =52): 1— Rehania (chalk); 2— Dalton (basaltic); S. golani (2n =54): 3— Majdal Shams (terra tossa); 4—Masa’ada (basaltic soils); S. carmeli (2n =58): 5— Al-Maker (heavy clay); 6— Muhraqa (terra rossa).

Comparison of gas composition (O2 and CO2) and water content between light and heavy soils inhabited by S. carmeli

Comparison of gas composition (O2 and CO2) and water content between light and heavy soils inhabited by S. carmeli

Comparison of gas composition (O2 and CO2) and water content between light and heavy soils inhabited by S. carmeli, Al-Maker (heavy soil) and Muhraqa (light soil). AverageTSD of measurements in the burrows of approximately 10 animals at a given date is presented. **p <0.01, T-test and Mann– Whitney test).

Subterranean mammals, which live in closed underground burrow systems, experience an atmosphere that is different from the atmosphere above-ground. Gas exchange between these two atmospheres depends on diffusion through the soil, which in turn, depends on soil particle size, water content, and burrow depth. Heavy soils (clay and basaltic), hold water and have little air space for gas diffusion. A large deviation from external gas composition is found in the burrows of Spalax living in these soil types. The maximal measured concentration of CO2 was 6.1% in Spalax breeding mounds, which is one of the highest concentrations among studied mammals in natural conditions. At the same time 7.2% O2 was measured in water saturated heavy clay soil

seasonal variation from August to March in mean O2, CO2, and soil water content

seasonal variation from August to March in mean O2, CO2, and soil water content

Example of seasonal variation from August to March in mean O2, CO2, and soil water content (VWC) in the Al-Maker population (2n =58, heavy soil). Values are presented as mean TSD.

In this study new data were presented for a wild mammal that survives in an extreme hypoxic–hypercapnic environment. Interestingly, the very low concentrations of O2 experienced by Spalax are correlated with the expression pattern of hypoxia related genes.  So far, we have shown higher and longer-term mRNA expression of erythropoietin, the main factor that regulates the level of circulating red blood cells, in subterranean Spalax compared to the above-ground rat in response to hypoxic stress, as well as differences in the response of erythropoietin to hypoxia in different populations of Spalax experiencing different hypoxic stress in nature. We also demonstrated that erythropoietin pattern of expression is different in Spalax than in Rattus throughout development, a pattern suggesting more efficient hypoxic tolerance in Spalax starting as early as in the embryonic stages. Furthermore, vascular endothelial growth factor (VEGF), which is a critical angiogenic factor that responds to hypoxia, is constitutively expressed at maximal levels in Spalax muscles, the most energy consuming tissue during digging. This level is 1.6-fold higher than in Rattus muscles and is correlated with significantly higher blood vessel concentration in the Spalax muscles compared to the Rattus muscles. Likewise, myoglobin the globin involved in oxygen homeostasis in skeletal muscles, exhibits different expression pattern under normoxia and in response to hypoxia in Spalax muscles compared to rat muscles as well as between different populations of Spalax exposed to different hypoxic stress in nature (unpublished results). Similarly, neuroglobin, a brain-specific globin involved in reversible oxygen binding, i.e., presumably in cellular homeostasis, is expressed differently in the Spalax brain compared to Rattus brain. Like erythropoietin and myoglobin also neuroglobin is expressed differently in Spalax populations experiencing different oxygen supply (unpublished results). Furthermore, Spalax p53 harbors two amino acid substitutions in its binding domain, which are identical to mutations found in p53 of human cancer cells. These substitutions endow Spalax p53 with several-fold higher activation of cell arrest and DNA repair genes compared to human p53 and favor activation of DNA repair genes over apoptotic genes. The study of specific tumoral variants indicates that such preference of growth arrest over apoptosis possibly results as a response to the hypoxic environmental stress known in tumors. Differences in the structure of other molecules related to homeostasis, namely, hemoglobin, haptoglobin (Nevo, 1999), and cytoglobin (unpublished) were also observed in Spalax.

Stress, adaptation, and speciation in the evolution of the blind mole rat, Spalax, in Israel

Eviatar Nevo
Molecular Phylogenetics and Evolution 66 (2013) 515–525
http://dx.doi.org/10.1016/j.ympev.2012.09.008

Environmental stress played a major role in the evolution of the blind mole rat superspecies Spalax ehrenbergi, affecting its adaptive evolution and ecological speciation underground. Spalax is safeguarded all of its life underground from aboveground climatic fluctuations and predators. However, it encounters multiple stresses in its underground burrows including darkness, energetics, hypoxia, hypercapnia, food scarcity, and pathogenicity. Consequently, it evolved adaptive genomic, proteomic, and phenomic complexes to cope with those stresses. Here I describe some of these adaptive complexes, and their theoretical and applied perspectives. Spalax mosaic molecular and organismal evolution involves reductions or regressions coupled with expansions or progressions caused by evolutionary tinkering and natural genetic engineering. Speciation of Spalax in Israel occurred in the Pleistocene, during the last 2.00–2.35 Mya, generating four species associated intimately with four climatic regimes with increasing aridity stress southwards and eastwards representing an ecological speciational adaptive trend: (Spalax golani, 2n = 54?S. galili, 2n = 52?S. carmeli, 2n = 58?S. judaei, 2n = 60). Darwinian ecological speciation occurred gradually with relatively little genetic change by Robertsonian chromosomal and genic mutations. Spalax genome sequencing has just been completed. It involves multiple adaptive complexes to life underground and is an evolutionary model to a few hundred underground mammals. It involves great promise in the future for medicine, space flight, and deep-sea diving.

Stress is a major driving force of evolution (Parsons, 2005; Nevo, 2011). Parsons defined stress as the ‘‘environmental factor causing potential injurious changes to biological systems with a potential for impacts on evolutionary processes’’. The global climatic transition from the middle Eocene to the early Oligocene (45–35 Ma = Million years ago) led to extensive convergent evolution underground of small subterranean mammals across the planet (Nevo, 1999; Lacey et al., 2000; Bennett and Faulkes, 2000; Begall et al., 2007). The subterranean ecotope provided small mammals with shelter from predators and extreme aboveground climatic stressful fluctuations of temperature and humidity. However, they had to evolve genomic adaptive complexes for the immense underground stresses of darkness, energy for burrowing in solid soil, low productivity and food scarcity, hypoxia, hypercapnia, and high infectivity. These stresses have been described in Nevo (1999, 2011) and Nevo et al. (2001); and Nevo list of Spalax publication at http://evolution.haifa.ac.il with many cited references relevant to these stresses).

blind subterranean mole rat of the Spalax ehrenbergi superspecies

blind subterranean mole rat of the Spalax ehrenbergi superspecies

The blind subterranean mole rat of the Spalax ehrenbergi superspecies in Israel. An extreme example of adaptation to life underground

Circadian rhythm and genes

adaptive circadian genes. We identified the circadian rhythm of Spalax
(Nevo et al., 1982) and described, cloned, sequenced, and expressed several circadian genes in Spalax. These include Clock, MOP3, three Period (Per), and cryptochromes (Avivi et al., 2001, 2002, 2003). The Spalax circadian genes are differentially conserved, yet characterized by a significant number of amino acid substitutions. The glutamine-rich area of Clock, which is assumed to function in circadian rhythmicity, is expanded in Spalax compared with that of mice and humans and is different in amino acid composition from that of rats. All three Per genes of Spalax oscillate with a periodicity of 24 h in the suprachaismatic nucleus, eye, and Harderian gland and are expressed in peripheral organs. Per genes are involved in clock resetting. Spalax Per 3 is unique in mammals though its function is still unresolved. The Spalax Per genes contribute to the unique adaptive circadian rhythm to life underground. The cryptochrome (Cry) genes, found in animals and plants, act both as photoreceptors and as ingredients of the negative feedback mechanism of the biological Clock. The CRY 1 protein is significantly closer to the human homolog than to that of mice, as was also shown in parts of the immunogenetic system. Both Cry 1 and Cry 2 mRNAs were found in the SCN, eye, harderian gland, and in peripheral tissues. Remarkably, the distinctly hypertrophied harderian gland is central in Spalax’s unique underground circadian rhythmicity (Pevet et al., 1984).

  • Spalax eye mosaic evolution
  • Gene expression in the eye of Spalax
  • Brain evolution in Spalax to underground stresses
  • Spalax: four species in Israel

The morphological, physiological, and behavioral Spalax eye patterns are underlain by gene expression representing regressive and progressive associated transcripts. Regressive transcripts involve B-2 microglobulin, transketolase, four keratins, alpha enolase, and different heat shock proteins. Several proteins may be involved in eye degeneration. These include heat shock protein 90alpha (hsp90alpha), found also in the blind fish Astyanax mexicanus, two transcripts of programmed cell death proteins, oculospanin, and peripherin 2, both belonging to the Tetraspanin family, in which 60 different mutations cause eye degeneration in humans. Several progressive transcripts in the Spalax eye are found in the retina of many mammals involving gluthatione, peroxidase 4, B spectrin, and Ankyrin; the last two characterize rod cells in the retina. Some transcripts are involved in metabolic processing of retinal, a vertebrate key component in phototransduction, and a relative of vitamin A.

cross section of the developing eye of the mole rat

cross section of the developing eye of the mole rat

Light micrographs showing cross section of the developing eye of the mole rat Spalax ehrenbergi. (A) Optic cup and lens vesicle initially develop normally (x100). (B) Eye at a later embryonic stage. Note appearance of iris-ciliary body rudiment (arrows), and development of the lens nucleus (L). ON, optic nerve (x100). (C) Eye at a still later fetal stage. Note massive growth of the iris-ciliary body complex colobomatous opening (arrow) (x100). (D) Early postnatal stage. The iris-ciliary body complex completely fills the chamber. The lens is vascularized and vacuolated (x100). (E) Adult eye. Eyelids are completely closed and pupil is absent. Note atrophic appearance of the optic disc region (arrow) (x65). (F) Higher magnification of the adult retina. The different retinal layers are retained: PE, pigment epithelium: RE, receptor layer; ON, outer nuclear layer: IN, inner nuclear layer; GC, ganglion cell layer (x500) (from Sanyal et al., 1990, Fig. 1).

The brains of subterranean mammals underwent dramatic evolution in accordance with underground stresses for digging and photoperiodic perception associated with vibrational, tactile, vocal, olfactory, and magnetic communication systems replacing sight, as is seen in Spalax. The brain of Spalax is twice as large as that of the laboratory rat of the same body size. The somatosensory region in the isocortex of Spalax is 1.7 times, the thalamic nuclei 1.3 times, and the motor cortex 3.1 times larger than in the sighted laboratory rat Rattus norvegicus matched to body size.

The ecological stress determinant in Spalax brain evolution is highlighted by the four species of the Spalax ehrenbergi superspecies in Israel. They differentiated chromosomally (by means of Robertsonian mutations and fission), allopatrically, and clinally southwards into four species associated with different climatic regimes, following the gradient of increasing aridity stress and decreasing predictability southwards towards the desert: Spalax galili (2n = 52) ->S. golani (2n = 54)->S. carmeli (2n = 58)->S. judaei (2n = 60), and eastwards S. galili ->S. golani (2n = 52–>54) (Fig. 2). This chromosomal speciation trend southwards is associated with the regional aridity stress southwards (and eastwards) in Israel, budding new species adapted genomically, proteomically, and phenomically (i.e., in morphology, physiology, and behavior) to increasing stresses of higher solar radiation, temperature, and drought southwards (Nevo, 1999; Nevo et al., 2001; Nevo
list of Spalax at http://evolution.haifa.ac.il). A uniquely recent discovery of incipient sympatric ecological speciation at a microscale in Spalax triggered by local stresses occurs within Spalax galili.

retinal input to primary visual structures in Spalax

retinal input to primary visual structures in Spalax

Relative degree of retinal input to primary visual structures in Spalax, hamster, rat, and Spalacopus cyanus (South American Octodontidae, ‘‘coruro’’). These rodents are of similar body size (120–140 g). B. Relative degree of change in the proportions of retinal input to different primary visual structures in Spalax compared with measures obtained in other rodents. A relative progressive development in Spalax is seen in structures involved in photoperiodic and neuroendocrine functions (SCN, BNST).The main regressive feature is the drastic relative reduction of retinal input to the superior colliculus. The main regressive feature is the drastic reduction of retinal input to the superior colliculus. The relative size of other visual structures in Spalax is modified compared to that of the other species. c. Comparison of the absolute size (volume, mm3 x 10-4) of visual structures in Spalax and other rodents. The size of the SCN is equivalent in all species. The vLGN and dLGN are reduced by 87–93% in Spalax. The retino-recipient layers of the superior colliculus are reduced by 97%. Abbreviations: SCN: suprachiasmatic nucleus; BNST: bed nucleus of the stria terminalis; dLGN: dorsal lateral geniculate nucleus; SC: superior colliculus [From Cooper et al., 1993 (Fig 3)].

Subterranean life has a high energetic cost if an animal has to burrow in order to obtain its food. For a 150 g Thomomys bottae, burrowing 1 m may be 360–3400 times more expensive energetically than moving the same distance on the surface (Vleck, 1979). Mean rates of oxygen consumption during burrowing at 22 oC are from 2.8 to 7.1 times the RMR. Vleck developed a model examining the energetics of foraging by burrowing and found that, in the desert, Thomomys adjusts the burrow segment length to minimize the cost of burrowing. Since burrowing becomes less economic as body size increases, Vleck (1981) predicted that the maximum possible body size that a subterranean mammal can attain depends on a balance between habitat productivity and the cost of burrowing in local soils. Vleck’s cost of burrowing hypothesis has been verified in multiple cases. Heth (1989) demonstrated longer burrows in the rendzina soil and shorter ones in the terra rossa soil, associating lower productivity in the former for Spalax.

Food is a limiting factor for subterranean mammals. The abundance and distribution of food explain some of the ecological, physiological, and behavioral characteristics of subterranean mammals. In a field test of Spalax foraging strategy, we concluded that Spalax was a generalist due to the constraints of the subterranean ecotope. Restricted foraging time primarily during the winter when soil is wet, and the high energetic investment of tunneling to get to food items is significantly reduced than in summertime.
We also identified a decrease in the basic metabolic rate towards the desert, i.e., economizing energetics. The maintenance of adequate O2 transport in a subterranean mammal confronting hypoxia requires adaptation along the O2 transport system, achieved by increasing the flow of O2 in the convection systems (ventilation and perfusion) and by reduction of oxygen pressure (PO2) gradients at the diffusion barriers (lung blood, blood-tissue (Arieli, 1990). The PO2 gradient between blood capillaries and respiring mitochondria capillaries is large, and any adaptation at this level could be significant for O2 transport. Reduction of diffusion distance in a muscle can be achieved, like in Spalax, by increasing the number of capillaries that surround muscle fiber or by reducing fiber areas.

Geographic distribution in Israel of the four chromosomal species belonging to the S. ehrenbergi superspecies

Geographic distribution in Israel of the four chromosomal species belonging to the S. ehrenbergi superspecies

Geographic distribution in Israel of the four chromosomal species belonging to the S. ehrenbergi superspecies that are separated by narrow hybrid zones (2n = 52, 54, 58, and 60, now named as S. galili, S. golani, S. carmeli, and S. judaei, respectively; see Nevo et al., 2001).

Spalacid evolution, based on mtDNA, is driven by climatic oscillations and stresses. The underground ecotope provided subterranean mammals with shelter from extreme climate (temperature and humidity) fluctuations, and predators. However, they had to extensively and intensively adapt to the multiple underground stresses (darkness, energetic, low productivity and
food scarcity, hypoxia, hypercapnia, and high infectivity). All subterranean mammals, including spalacids as an extreme case, share convergent molecular and organismal adaptations to their shared unique underground ecotope. Evolution underground, as exemplified here in spalacids, led to mosaic molecular and organismal evolutionary syndromes to cope with multiple stresses.

Speciation involves all rates – from gradual to rapid. Subterranean mammals, with the spalacid example discussed above, provide uniquely rich evolutionary global tests of speciation and adaptation, convergence, regression, progression, and mosaic evolutionary processes. Adaptation and speciation underground was one of the most dramatic natural experiments verifying Darwinian evolution.

The Spalax genome sequencing has just been completed. It is being analyzed and will soon be published in 2012. This will be a milestone in understanding how numerous mammals across the globe, who found underground shelter from climatic fluctuations and stresses above ground, cope with the new suite of stresses they encountered underground, demanding a new engineering overhaul on all organizational levels, selecting for adaptive complexes to cope with the new underground stresses. The main current and future challenges are to compare and contrast genome sequences and identify the genomic basis of adaptation and speciation.

This global Cenozoic experiment could answer the following open questions: How heterozygous is the whole genome? How prevalent are retrotransposons and what is their functional role? How many genes are involved in the Spalax genome and how are they regulated? What are the genic and regulatory networks resisting the multiple stresses underground? How much of the Spalax genome is conserved and how much is reorganized to cope with the underground stresses? How is the solitary blind mole rat, Spalax, different from the social naked mole rat Heterocephalus? How are the processes of reduction, expansion, and genetic tinkering and engineering reflected across the genome? How effective is copy number variation in regulation? Is there similarity in the transcriptomes of subterranean mammals? How could we harness the rich genome repertoire of Spalax to revolutionize medicine, especially in the realm of hypoxia tolerance and the related major diseases of the western world, e.g., cancer, stroke, and cardiovascular diseases? What is the phylogenetic origin of Spalax? How much of the Spalax genome represents its phylogenetic roots and how much of coding and noncoding genomic regions are shared with other subterranean mammals across the globe in adapting to life underground?

The Atmospheric Environment of the Fossorial Mole Rat (Spalax Ehrenbergi): Effects of Season, Soil Texture, Rain, Temperature and Activity

  1. Arieli
    Comp Biochen Physiol. 1978; 63A:569-5151. The fossorial mole rat (Spalax ehrenbergi) may inhabit heavy soil with low gas permeability.
  2. Air composition in burrows in heavy soil deviates from atmospheric air more than that of burrows in light soil.
  3. In winter and spring O2 and CO2 concentrations in breeding mounds were 16.5% O2 and 2.5-3x CO2 and the extreme values measured were 14.0% O2 and 4.8% Cot.
  4. Hypoxia and hypercapnia in the burrow develop shortly after rain and when ambient temperature drops.
  5. Composition of the burrows air is influenced by the solubility of CO2 in soil water and by faster penetration of oxygen than outflowing of CO2.

Hypo-osmotic stress-induced physiological and ion-osmoregulatory responses in European sea bass (Dicentrarchus labrax) are modulated differentially by nutritional status

Amit Kumar Sinha, AF Dasan, R Rasoloniriana, N Pipralia, R Blust, G De Boeck
Comparative Biochemistry and Physiology, Part A 181 (2015) 87–99
http://dx.doi.org/10.1016/j.cbpa.2014.11.024

We investigated the impact of nutritional status on the physiological, metabolic and ion-osmoregulatory performance of European sea bass (Dicentrarchus labrax)when acclimated to seawater (32 ppt), brackishwater (20 and 10 ppt) and hyposaline water (2.5 ppt) for 2 weeks. Following acclimation to different salinities, fish were either fed or fasted (unfed for 14 days). Plasma osmolality, [Na+], [Cl−] and muscle water contentwere severely altered in fasted fish acclimated to 10 and 2.5 ppt in comparison to normal seawater-acclimated fish, suggesting ion regulation and acid–base balance disturbances. In contrast to feed-deprived fish, fed fish were able to avoid osmotic perturbation more effectively. This was accompanied by an increase in Na+/K+-ATPase expression and activity, transitory activation of H+-ATPase (only at 2.5 ppt) and down-regulation of Na+/K+/2Cl− gene expression. Ammonia excretion rate was inhibited to a larger extent in fasted fish acclimated to low salinities while fed fish were able to excrete efficiently. Consequently, the build-up of ammonia in the plasma of fed fish was relatively lower. Energy stores, especially glycogen and lipid, dropped in the fasted fish at low salinities and progression towards the anaerobic metabolic pathway became evident by an increase in plasma lactate level. Overall, the results indicate no osmotic stress in both feeding treatments within the salinity range of 32 to 20 ppt. However, at lower salinities (10–2.5 ppt) feed deprivation tends to reduce physiological, metabolic, ion-osmo-regulatory and molecular compensatory mechanisms and thus limits the fish’s abilities to adapt to a hypo-osmotic environment.

The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress

Chun-Yen Huang, Hsueh-Hsi Lin, Cheng-Huang Lin, Hui-Chen Lin
Comparative Biochemistry and Physiology, Part A 179 (2015) 7–16
http://dx.doi.org/10.1016/j.cbpa.2014.08.017

The strategy for most teleost to survive in hypoxic or anoxic conditions is to conserve energy expenditure, which can be achieved by suppressing energy-consuming activities such as ion regulation. However, an air-breathing fish can cope with hypoxic stress using a similar adjustment or by enhancing gas exchange ability, both behaviorally and physiologically. This study examined Trichogaster lalius, an air-breathing fish without apparent gill modification, for their gill ion-regulatory abilities and glycogen utilization under a hypoxic  treatment. We recorded air-breathing frequency, branchial morphology, and the expression of ion-regulatory proteins (Na+/K+-ATPase and vacuolar-type H+-ATPase) in the 1st and 4th gills and labyrinth organ (LO), and the expression of glycogen utilization (GP, glycogen phosphorylase protein expression and glycogen content) and other protein responses (catalase, CAT; carbonic anhydrase II, CAII; heat shock protein 70, HSP70; hypoxia-inducible factor-1α, HIF-1α; proliferating cell nuclear antigen, PCNA; superoxidase dismutase, SOD) in the gills of T. lalius after 3 days in hypoxic and restricted conditions. No morphological modification of the 1st and 4th gills was observed. The air breathing behavior of the fish and CAII protein expression both increased under hypoxia. Ion-regulatory abilities were not suppressed in the hypoxic or restricted groups, but glycogen utilization was enhanced within the groups. The expression of HIF-1α, HSP70 and PCNA did not vary among the treatments. Regarding the antioxidant system, decreased CAT enzyme activity was observed among the groups. In conclusion, during hypoxic stress, T. lalius did not significantly reduce energy consumption but enhanced gas exchange ability and glycogen expenditure.

The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio)

Sofie Moyson, HJ Liew, M Diricx, AK Sinha, R Blusta, G De Boeck
Comparative Biochemistry and Physiology, Part A 179 (2015) 133–143
http://dx.doi.org/10.1016/j.cbpa.2014.09.017

In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5–1.8mgO2 L−1) at or slightly above their critical oxygen concentration during 1, 3 or 7 days followed by a 7 day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na+/K+-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation.

The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L.

Bjørn Tirsgaard, Jane W. Behrens, John F. Steffensen
Comparative Biochemistry and Physiology, Part A 179 (2015) 89–94
http://dx.doi.org/10.1016/j.cbpa.2014.09.033

Changes in ambient temperature affect the physiology and metabolism and thus the distribution of fish. In this study we used intermittent flow respirometry to determine the effect of temperature (2, 5, 10, 15 and 20 °C) and wet body mass (BM) (~30–460 g) on standard metabolic rate (SMR, mg O2 h−1), maximum metabolic rate (MMR, mg O2 h−1) and metabolic scope (MS, mg O2 h−1) of juvenile Atlantic cod. SMR increased with BM irrespectively of temperature, resulting in an average scaling exponent of 0.87 (0.82–0.92). Q10 values were 1.8–2.1 at temperatures between 5 and 15 °C but higher (2.6–4.3) between 2 and 5 °C and lower (1.6–1.4) between 15 and 20 °C in 200 and 450 g cod. MMR increased with temperature in the smallest cod (50 g) but in the larger cod MMR plateaued between 10, 15 and 20 °C. This resulted in a negative correlation between the optimal temperature for MS (Topt) and BM, Topt being respectively 14.5, 11.8 and 10.9 °C in a 50, 200 and 450 g cod. Irrespective of BM cold water temperatures resulted in a reduction (30–35%) of MS whereas the reduction of MS at warm temperatures was only evident for larger fish (200 and 450 g), caused by plateauing of MMR at 10 °C and above. Warm temperatures thus seem favorable for smaller (50 g) juvenile cod, but not for larger conspecifics (200 and 450 g).

Read Full Post »

Neonatal Pathophysiology


Neonatal Pathophysiology

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

This curation deals with a large and specialized branch of medicine that grew since the mid 20th century in concert with the developments in genetics and as a result of a growing population, with large urban populations, increasing problems of premature deliveries.  The problems of prematurity grew very preterm to very low birth weight babies with special problems.  While there were nurseries, the need for intensive care nurseries became evident in the 1960s, and the need for perinatal care of pregnant mothers also grew as a result of metabolic problems of the mother, intrauterine positioning of the fetus, and increasing numbers of teen age pregnancies as well as nutritional problems of the mother.  There was also a period when the manufacturers of nutritional products displaced the customary use of breast feeding, which was consequential.  This discussion is quite comprehensive, as it involves a consideration of the heart, the lungs, the brain, and the liver, to a large extent, and also the kidneys and skeletal development.

It is possible to outline, with a proportionate emphasis based on frequency and severity, this as follows:

  1. Genetic and metabolic diseases
  2. Nervous system
  3. Cardiovascular
  4. Pulmonary
  5. Skeletal – bone and muscle
  6. Hematological
  7. Liver
  8. Esophagus, stomach, and intestines
  9. Kidneys
  10. Immune system

Fetal Development

Gestation is the period of time between conception and birth when a baby grows and develops inside the mother’s womb. Because it’s impossible to know exactly when conception occurs, gestational age is measured from the first day of the mother’s last menstrual cycle to the current date. It is measured in weeks. A normal gestation lasts anywhere from 37 to 41 weeks.

Week 5 is the start of the “embryonic period.” This is when all the baby’s major systems and structures develop. The embryo’s cells multiply and start to take on specific functions. This is called differentiation. Blood cells, kidney cells, and nerve cells all develop. The embryo grows rapidly, and the baby’s external features begin to form.

Week 6-9:   Brain forms into five different areas. Some cranial nerves are visible. Eyes and ears begin to form. Tissue grows that will the baby’s spine and other bones. Baby’s heart continues to grow and now beats at a regular rhythm. Blood pumps through the main vessels. Your baby’s brain continues to grow. The lungs start to form. Limbs look like paddles. Essential organs begin to grow.

Weeks 11-18: Limbs extended. Baby makes sucking motion. Movement of limbs. Liver and pancreas produce secretions. Muscle and bones developing.

Week 19-21: Baby can hear. Mom feels baby – and quickening.

http://www.nlm.nih.gov/medlineplus/ency/article/002398.htm

fetal-development

fetal-development

https://polination.files.wordpress.com/2014/02/abortion-new-research-into-fetal-development.jpg

Inherited Metabolic Disorders

The original cause of most genetic metabolic disorders is a gene mutation that occurred many, many generations ago. The gene mutation is passed along through the generations, ensuring its preservation.

Each inherited metabolic disorder is quite rare in the general population. Considered all together, inherited metabolic disorders may affect about 1 in 1,000 to 2,500 newborns. In certain ethnic populations, such as Ashkenazi Jews (Jews of central and eastern European ancestry), the rate of inherited metabolic disorders is higher.

Hundreds of inherited metabolic disorders have been identified, and new ones continue to be discovered. Some of the more common and important genetic metabolic disorders include:

Lysosomal storage disorders : Lysosomes are spaces inside cells that break down waste products of metabolism. Various enzyme deficiencies inside lysosomes can result in buildup of toxic substances, causing metabolic disorders including:

  • Hurler syndrome (abnormal bone structure and developmental delay)
  • Niemann-Pick disease (babies develop liver enlargement, difficulty feeding, and nerve damage)
  • Tay-Sachs disease (progressive weakness in a months-old child, progressing to severe nerve damage; the child usually lives only until age 4 or 5)
  • Gauchers disease and others

Galactosemia: Impaired breakdown of the sugar galactose leads to jaundice, vomiting, and liver enlargement after breast or formula feeding by a newborn.

Maple syrup urine disease: Deficiency of an enzyme called BCKD causes buildup of amino acids in the body. Nerve damage results, and the urine smells like syrup.

Phenylketonuria (PKU): Deficiency of the enzyme PAH results in high levels of phenylalanine in the blood. Mental retardation results if the condition is not recognized.

Glycogen storage diseases: Problems with sugar storage lead to low blood sugar levels, muscle pain, and weakness.

Metal metabolism disorders: Levels of trace metals in the blood are controlled by special proteins. Inherited metabolic disorders can result in protein malfunction and toxic accumulation of metal in the body:

Wilson disease (toxic copper levels accumulate in the liver, brain, and other organs)

Hemochromatosis (the intestines absorb excessive iron, which builds up in the liver, pancreas, joints, and heart, causing damage)

Organic acidemias: methylmalonic acidemia and propionic acidemia.

Urea cycle disorders: ornithine transcarbamylase deficiency and citrullinemia

Hemoglobinopathies – thalassemias, sickle cell disease

Red cell enzyme disorders – glucose-6-phosphate dehydrogenase, pyruvate kinase

This list is by no means complete.

http://www.webmd.com/a-to-z-guides/inherited-metabolic-disorder-types-and-treatments

New variations in the galactose-1-phosphate uridyltransferase (GALT) gene

Clinical and molecular spectra in galactosemic patients from neonatal screening in northeastern Italy: Structural and functional characterization of new variations in the galactose-1-phosphate uridyltransferase (GALT) gene

E Viggiano, A Marabotti, AP Burlina, C Cazzorla, MR D’Apice, et al.
Gene 559 (2015) 112–118
http://dx.doi.org/10.1016/j.gene.2015.01.013
Galactosemia (OMIM 230400) is a rare autosomal recessive inherited disorder caused by deficiency of galactose-1-phosphate uridyltransferase (GALT; OMIM 606999) activity. The incidence of galactosemia is 1 in 30,000–60,000, with a prevalence of 1 in 47,000 in the white population. Neonates with galactosemia can present acute symptoms, such as severe hepatic and renal failure, cataract and sepsis after milk introduction. Dietary restriction of galactose determines the clinical improvement in these patients. However, despite early diagnosis by neonatal screening and dietary treatment, a high percentage of patients develop long-term complications such as cognitive disability, speech problems, neurological and/or movement disorders and, in females, ovarian dysfunction.

With the benefit of early diagnosis by neonatal screening and early therapy, the acute presentation of classical galactosemia can be prevented. The objectives of the current study were to report our experience with a group of galactosemic patients identified through the neonatal screening programs in northeastern Italy during the last 30 years.

No neonatal deaths due to galactosemia complications occurred after the introduction of the neonatal screening program. However, despite the early diagnosis and dietary treatment, the patients with classical galactosemia showed one or more long-term complications.

A total of 18 different variations in the GALT gene were found in the patient cohort: 12 missense, 2 frameshift, 1 nonsense, 1 deletion, 1 silent variation, and 1 intronic. Six (p.R33P, p.G83V, p.P244S, p.L267R, p.L267V, p.E271D) were new variations. The most common variation was p.Q188R (12 alleles, 31.5%), followed by p.K285N (6 alleles, 15.7%) and p.N314D (6 alleles, 15.7%). The other variations comprised 1 or 2 alleles. In the patients carrying a new mutation, the biochemical analysis of GALT activity in erythrocytes showed an activity of < 1%. In silico analysis (SIFT, PolyPhen-2 and the computational analysis on the static protein structure) showed potentially damaging effects of the six new variations on the GALT protein, thus expanding the genetic spectrum of GALT variations in Italy. The study emphasizes the difficulty in establishing a genotype–phenotype correlation in classical galactosemia and underlines the importance of molecular diagnostic testing prior to making any treatment.

Diagnosis and Management of Hereditary Hemochromatosis

Reena J. Salgia, Kimberly Brown
Clin Liver Dis 19 (2015) 187–198
http://dx.doi.org/10.1016/j.cld.2014.09.011

Hereditary hemochromatosis (HH) is a diagnosis most commonly made in patients with elevated iron indices (transferrin saturation and ferritin), and HFE genetic mutation testing showing C282Y homozygosity.

The HFE mutation is believed to result in clinical iron overload through altering hepcidin levels resulting in increased iron absorption.

The most common clinical complications of HH include cirrhosis, diabetes, nonischemic cardiomyopathy, and hepatocellular carcinoma.

Liver biopsy should be performed in patients with HH if the liver enzymes are elevated or serum ferritin is greater than 1000 mg/L. This is useful to determine the degree of iron overload and stage the fibrosis.

Treatment of HH with clinical iron overload involves a combination of phlebotomy and/or chelation therapy. Liver transplantation should be considered for patients with HH-related decompensated cirrhosis.

Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann–Pick Type C disease among intellectually disabled using discrete event simulation

CDM van Karnebeek, Tima Mohammadi, Nicole Tsaod, Graham Sinclair, et al.
Molecular Genetics and Metabolism 114 (2015) 226–232
http://dx.doi.org/10.1016/j.ymgme.2014.07.004

Background: Recently a less invasive method of screening and diagnosing Niemann–Pick C (NP-C) disease has emerged. This approach involves the use of a metabolic screening test (oxysterol assay) instead of the current practice of clinical assessment of patients suspected of NP-C (review of medical history, family history and clinical examination for the signs and symptoms). Our objective is to compare costs and outcomes of plasma oxysterol screening versus current practice in diagnosis of NP-C disease among intellectually disabled (ID) patients using decision-analytic methods.
Methods: A discrete event simulation model was conducted to follow ID patients through the diagnosis and treatment of NP-C, forecast the costs and effectiveness for a cohort of ID patients and compare the outcomes and costs in two different arms of the model: plasma oxysterol screening and routine diagnosis procedure (anno 2013) over 5 years of follow up. Data from published sources and clinical trials were used in simulation model. Unit costs and quality-adjusted life-years (QALYs) were discounted at a 3% annual rate in the base case analysis. Deterministic and probabilistic sensitivity analyses were conducted.
Results: The outcomes of the base case model showed that using plasma oxysterol screening for diagnosis of NP-C disease among ID patients is a dominant strategy. It would result in lower total cost and would slightly improve patients’ quality of life. The average amount of cost saving was $3642 CAD and the incremental QALYs per each individual ID patient in oxysterol screening arm versus current practice of diagnosis NP-C was 0.0022 QALYs. Results of sensitivity analysis demonstrated robustness of the outcomes over the wide range of changes in model inputs.
Conclusion: Whilst acknowledging the limitations of this study, we conclude that screening ID children and adolescents with oxysterol tests compared to current practice for the diagnosis of NP-C is a dominant strategy with clinical and economic benefits. The less costly, more sensitive and specific oxysterol test has potential to save costs to the healthcare system while improving patients’ quality of life and may be considered as a routine tool in the NP-C diagnosis armamentarium for ID. Further research is needed to elucidate its effectiveness in patients presenting characteristics other than ID in childhood and adolescence.

Neurological and Behavioral Disorders

Estrogen receptor signaling during vertebrate development

Maria Bondesson, Ruixin Hao, Chin-Yo Lin, Cecilia Williams, Jan-Åke Gustafsson
Biochimica et Biophysica Acta 1849 (2015) 142–151
http://dx.doi.org/10.1016/j.bbagrm.2014.06.005

Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affectingboth the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

 

Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults

Synne Aanes, Knut Jørgen Bjuland, Jon Skranes, Gro C.C. Løhaugen
NeuroImage 105 (2015) 76–83
http://dx.doi.org/10.1016/j.neuroimage.2014.10.023

The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure–function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19–20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural–functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth.

The relation of infant attachment to attachment and cognitive and behavioural outcomes in early childhood

Yan-hua Ding, Xiu Xua, Zheng-yan Wang, Hui-rong Li, Wei-ping Wang
Early Human Development 90 (2014) 459–464
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.004

Background: In China, research on the relation of mother–infant attachment to children’s development is scarce.
Aims: This study sought to investigate the relation of mother–infant attachment to attachment, cognitive and behavioral development in young children.                                                                                                                            Study design: This study used a longitudinal study design.
Subjects: The subjects included healthy infants (n=160) aged 12 to 18 months.
Outcome measures: Ainsworth’s “Strange Situation Procedure” was used to evaluate mother–infant attachment types. The attachment Q-set (AQS) was used to evaluate the attachment between young children and their mothers. The Bayley scale of infant development-second edition (BSID-II) was used to evaluate cognitive developmental level in early childhood. Achenbach’s child behavior checklist (CBCL) for 2- to 3-year-oldswas used to investigate behavioral problems.
Results: In total, 118 young children (73.8%) completed the follow-up; 89.7% of infants with secure attachment and 85.0% of infants with insecure attachment still demonstrated this type of attachment in early childhood (κ = 0.738, p b 0.05). Infants with insecure attachment collectively exhibited a significantly lower mental development index (MDI) in early childhood than did infants with secure attachment, especially the resistant type. In addition, resistant infants were reported to have greater social withdrawal, sleep problems and aggressive behavior in early childhood.
Conclusion: There is a high consistency in attachment development from infancy to early childhood. Secure mother–infant attachment predicts a better cognitive and behavioral outcome; whereas insecure attachment, especially the resistant attachment, may lead to a lower cognitive level and greater behavioral problems in early childhood.

representations of the HPA axis

representations of the HPA axis

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

Fetal programming of schizophrenia: Select mechanisms

Monojit Debnatha, Ganesan Venkatasubramanian, Michael Berk
Neuroscience and Biobehavioral Reviews 49 (2015) 90–104
http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.

NMDA receptor dysfunction in autism spectrum disorders

Eun-Jae Lee, Su Yeon Choi and Eunjoon Kim
Current Opinion in Pharmacology 2015, 20:8–13
http://dx.doi.org/10.1016/j.coph.2014.10.007

Autism spectrum disorders (ASDs) represent neurodevelopmental disorders characterized by two core symptoms;

(1)  impaired social interaction and communication, and
(2)  restricted and repetitive behaviors, interests, and activities.

ASDs affect ~ 1% of the population, and are considered to be highly genetic in nature. A large number (~600) of ASD-related genetic variations have been identified (sfari.org), and target gene functions are apparently quite diverse. However, some fall onto common pathways, including synaptic function and chromosome remodeling, suggesting that core mechanisms may exist.

Abnormalities and imbalances in neuronal excitatory and inhibitory synapses have been implicated in diverse neuropsychiatric disorders including autism spectrum disorders (ASDs). Increasing evidence indicates that dysfunction of NMDA receptors (NMDARs) at excitatory synapses is associated with ASDs. In support of this, human ASD-associated genetic variations are found in genes encoding NMDAR subunits. Pharmacological enhancement or suppression of NMDAR function ameliorates ASD symptoms in humans. Animal models of ASD display bidirectional NMDAR dysfunction, and correcting this deficit rescues ASD-like behaviors. These findings suggest that deviation of NMDAR function in either direction contributes to the development of ASDs, and that correcting NMDAR dysfunction has therapeutic potential for ASDs.

Among known synaptic proteins implicated in ASD are metabotropic glutamate receptors (mGluRs). Functional enhancement and suppression of mGluR5 are associated with fragile X syndrome and tuberous sclerosis, respectively, which share autism as a common phenotype. More recently, ionotropic glutamate receptors, namely NMDA receptors (NMDARs) and AMPA receptors (AMPARs), have also been implicated in ASDs. In this review, we will focus on NMDA receptors and summarize evidence supporting the hypothesis that NMDAR dysfunction contributes to ASDs, and, by extension, that correcting NMDAR dysfunction has therapeutic potential for ASDs. ASD-related human NMDAR genetic variants.

Chemokines roles within the hippocampus

Chemokines roles within the hippocampus

IL-1 mediates stress-induced activation of the HPA axis

IL-1 mediates stress-induced activation of the HPA axis

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

Three Classes of Glutamate Receptors

Three Classes of Glutamate Receptors

Clinical studies on ASDs have identified genetic variants of NMDAR subunit genes. Specifically, de novo mutations have been identified in the GRIN2B gene, encoding the GluN2B subunit. In addition, SNP analyses have linked both GRIN2A (GluN2A subunit) and GRIN2B with ASDs. Because assembled NMDARs contain four subunits, each with distinct properties, ASD-related GRIN2A/ GRIN2B variants likely alter the functional properties of NMDARs and/or NMDAR-dependent plasticity.

Pharmacological modulation of NMDAR function can improve ASD symptoms. D-cycloserine (DCS), an NMDAR agonist, significantly ameliorates social withdrawal and repetitive behavior in individuals with ASD. These results suggest that reduced NMDAR function may contribute to the development of ASDs in humans.

We can divide animal studies into two groups. The first group consists of animals in which NMDAR modulators were shown to normalize both NMDAR dysfunction and ASD-like behaviors, establishing strong association between NMDARs and ASD phenotypes (Fig.). In the second group, NMDAR modulators were shown to rescue ASD-like behaviors, but NMDAR dysfunction and its correction have not been demonstrated.

ASD models with data showing rescue of both NMDAR dysfunction and ASD like behaviors Mice lacking neuroligin-1, an excitatory postsynaptic adhesion molecule, show reduced NMDAR function in the hippocampus and striatum, as evidenced by a decrease in NMDA/AMPA ratio and long-term potentiation (LTP). Neuroligin-1 is thought to enhance synaptic NMDAR function, by directly interacting with and promoting synaptic localization of NMDARs.

Fig not shown.

Bidirectional NMDAR dysfunction in animal models of ASD. Animal models of ASD with bidirectional NMDAR dysfunction can be positioned on either side of an NMDAR function curve. Model animals were divided into two groups.

Group 1: NMDAR modulators normalize both NMDAR dysfunction and ASD-like behaviors (green).

Group 2: NMDAR modulators rescue ASD-like behaviors, but NMDAR dysfunction and its rescue have not been demonstrated (orange). Note that Group 2 animals are tentatively placed on the left-hand side of the slope based on the observed DCS rescue of their ASD-like phenotypes, but the directions of their NMDAR dysfunctions remain to be experimentally determined.

ASD models with data showing rescue of ASD-like behaviors but no demonstrated NMDAR dysfunction

Tbr1 is a transcriptional regulator, one of whose targets is the gene encoding the GluN2B subunit of NMDARs. Mice haploinsufficient for Tbr1 (Tbr1+/-) show structural abnormalities in the amygdala and limited GluN2B induction upon behavioral stimulation. Both systemic injection and local amygdalar infusion of DCS rescue social deficits and impaired associative memory in Tbr1+/- mice. However, reduced NMDAR function and its DCS-dependent correction have not been demonstrated.

Spatial working memory and attention skills are predicted by maternal stress during pregnancy

André Plamondon, Emis Akbari, Leslie Atkinson, Meir Steiner
Early Human Development 91 (2015) 23–29
http://dx.doi.org/10.1016/j.earlhumdev.2014.11.004

Introduction: Experimental evidence in rodents shows that maternal stress during pregnancy (MSDP) negatively impacts spatial learning and memory in the offspring. We aim to investigate the association between MSDP (i.e., life events) and spatial working memory, as well as attention skills (attention shifting and attention focusing), in humans. The moderating roles of child sex, maternal anxiety during pregnancy and postnatal care are also investigated.  Methods: Participants were 236mother–child dyads that were followed from the second trimester of pregnancy until 4 years postpartum. Measurements included questionnaires and independent observations.
Results: MSDP was negatively associated with attention shifting at 18monthswhen concurrent maternal anxiety was low. MSDP was associated with poorer spatial working memory at 4 years of age, but only for boys who experienced poorer postnatal care.
Conclusion: Consistent with results observed in rodents, MSDP was found to be associated with spatial working memory and attention skills. These results point to postnatal care and maternal anxiety during pregnancy as potential targets for interventions that aim to buffer children from the detrimental effects of MSDP.

Acute and massive bleeding from placenta previa and infants’ brain damage

Ken Furuta, Shuichi Tokunaga, Seishi Furukawa, Hiroshi Sameshima
Early Human Development 90 (2014) 455–458
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.002

Background: Among the causes of third trimester bleeding, the impact of placenta previa on cerebral palsy is not well known.
Aims: To clarify the effect ofmaternal bleeding fromplacenta previa on cerebral palsy, and in particular when and how it occurs.
Study design: A descriptive study.
Subjects: Sixty infants born to mothers with placenta previa in our regional population-based study of 160,000 deliveries from 1998 to 2012. Premature deliveries occurring atb26 weeks of gestation and placenta accrete were excluded.
Outcome measures: Prevalence of cystic periventricular leukomalacia (PVL) and cerebral palsy (CP).
Results: Five infants had PVL and 4 of these infants developed CP (1/40,000 deliveries). Acute and massive bleeding (>500 g) within 8 h) occurred at around 30–31 weeks of gestation, and was severe enough to deliver the fetus. None of the 5 infants with PVL underwent antenatal corticosteroid treatment, and 1 infant had mild neonatal hypocapnia with a PaCO2 < 25 mm Hg. However, none of the 5 PVL infants showed umbilical arterial academia with pH < 7.2, an abnormal fetal heart rate monitoring pattern, or neonatal hypotension.
Conclusions: Our descriptive study showed that acute and massive bleeding from placenta previa at around 30 weeks of gestation may be a risk factor for CP, and requires careful neonatal follow-up. The underlying process connecting massive placental bleeding and PVL requires further investigation.

Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes

Courtney J. Wusthoff, Irene M. Loe
Seminars in Fetal & Neonatal Medicine 20 (2015) 52e57
http://dx.doi.org/10.1016/j.siny.2014.12.003

Extreme neonatal hyperbilirubinemia has long been known to cause the clinical syndrome of kernicterus, or chronic bilirubin encephalopathy (CBE). Kernicterus most usually is characterized by choreoathetoid cerebral palsy (CP), impaired upward gaze, and sensorineural hearing loss, whereas cognition is relatively spared. The chronic condition of kernicterus may be, but is not always, preceded in the acute stage by acute bilirubin encephalopathy (ABE). This acute neonatal condition is also due to hyperbilirubinemia, and is characterized by lethargy and abnormal behavior, evolving to frank neonatal encephalopathy, opisthotonus, and seizures. Less completely defined is the syndrome of bilirubin-induced neurologic dysfunction (BIND).

Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and the neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism.

As noted in a technical report by the American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “it is apparent that the use of a single total serum bilirubin level to predict long-term outcomes is inadequate and will lead to conflicting results”. As described above, this has certainly been the case in research to date. To clarify how hyperbilirubinemia influences neurodevelopmental outcome, more sophisticated consideration is needed both of how to assess bilirubin exposure leading to neurotoxicity, and of those comorbid conditions which may lower the threshold for brain injury.

For example, premature infants are known to be especially susceptible to bilirubin neurotoxicity, with kernicterus reported following TB levels far lower than the threshold expected in term neonates. Similarly, among extremely preterm neonates, BBC is proportional to gestational age, meaning that the most premature infants have the highest UB, even for similar TB levels. Thus, future studies must be adequately powered to examine preterm infants separately from term infants, and should consider not just peak TB, but also BBC, as independent variables in neonates with hyperbilirubinemia. Similarly, an analysis by the NICHD NRN found that, among ELBW infants, higher UB levels were associated with a higher risk of death or NDI. However, increased TB levels were only associated with death or NDI in unstable infants. Again, UB or BBC appeared to be more useful than TB.

Are the neuromotor disabilities of bilirubin-induced neurologic dysfunction disorders related to the cerebellum and its connections?

Jon F. Watchko, Michael J. Painter, Ashok Panigrahy
Seminars in Fetal & Neonatal Medicine 20 (2015) 47e51
http://dx.doi.org/10.1016/j.siny.2014.12.004

Investigators have hypothesized a range of subcortical neuropathology in the genesis of bilirubin induced neurologic dysfunction (BIND). The current review builds on this speculation with a specific focus on the cerebellum and its connections in the development of the subtle neuromotor disabilities of BIND. The focus on the cerebellum derives from the following observations:
(i) the cerebellum is vulnerable to bilirubin-induced injury; perhaps the most vulnerable region within the central nervous system;
(ii) infants with cerebellar injury exhibit a neuromotor phenotype similar to BIND; and                                                       (iii) the cerebellum has extensive bidirectional circuitry projections to motor and non-motor regions of the brain-stem and cerebral cortex that impact a variety of neurobehaviors.
Future study using advanced magnetic resonance neuroimaging techniques have the potential to shed new insights into bilirubin’s effect on neural network topology via both structural and functional brain connectivity measurements.

Bilirubin-induced neurologic damage is most often thought of in terms of severe adverse neuromotor (dystonia with or without athetosis) and auditory (hearing impairment or deafness) sequelae. Observed together, they comprise the classic neurodevelopmental phenotype of chronic bilirubin encephalopathy or kernicterus, and may also be seen individually as motor or auditory predominant subtypes. These injuries reflect both a predilection of bilirubin toxicity for neurons (relative to glial cells) and the regional topography of bilirubin-induced neuronal damage characterized by prominent involvement of the globus pallidus, subthalamic nucleus, VIII cranial nerve, and cochlear nucleus.

It is also asserted that bilirubin neurotoxicity may be associated with other less severe neurodevelopmental disabilities, a condition termed “subtle kernicterus” or “bilirubin-induced neurologic dysfunction” (BIND). BIND is defined by a constellation of “subtle neurodevelopmental disabilities without the classical findings of kernicterus that, after careful evaluation and exclusion of other possible etiologies, appear to be due to bilirubin neurotoxicity”. These purportedly include:

(i) mild-to-moderate disorders of movement (e.g., incoordination, clumsiness, gait abnormalities, disturbances in static and dynamic balance, impaired fine motor skills, and ataxia);                                                                                             (ii) disturbances in muscle tone; and
(iii) altered sensorimotor integration. Isolated disturbances of central auditory processing are also included in the spectrum of BIND.

  • Cerebellar vulnerability to bilirubin-induced injury
  • Cerebellar injury phenotypes and BIND
  • Cerebellar projections
Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brain-stem from a 34 gestational-week premature kernicteric infant formalin-fixed for two weeks. Yellow staining is evident in the cerebellar dentate nuclei (upper arrow) and vestibular nuclei at the pontomedullary junction (lower arrowhead). Photo is courtesy of Mahmdouha Ahdab-Barmada and reprinted with permission from Taylor-Francis Group (Ahdab Barmada M. The neuropathology of kernicterus: definitions and debate. In: Maisel MJ, Watchko JF editors. Neonatal jaundice. Amsterdam: Harwood Academic Publishers; 2000. p. 75e88

Whether cerebellar injury is primal or an integral part of disturbed neural circuitry in bilirubin-induced CNS damage is unclear. Movement disorders, however, are increasingly recognized to arise from abnormalities of neuronal circuitry rather than localized, circumscribed lesions. The cerebellum has extensive bidirectional circuitry projections to an array of brainstem nuclei and the cerebral cortex that modulate and refine motor activities. In this regard, the cerebellum is characteristically subdivided into three lobes based on neuroanatomic and phylogenetic criteria as well as by their primary afferent and efferent connections. They include:
(i) flocculonodular lobe (archicerebellum);
(ii) anterior lobe (paleocerebellum); and
(iii) posterior lobe (neocerebellum).

The archicerebellum, the oldest division phylogenically, receives extensive input from the vestibular system and is therefore also known as the vestibulocerebellum and is important for equilibrium control. The paleocerebellum, also a primitive region, receives extensive somatosensory input from the spinal cord, including the anterior and posterior spinocerebellar pathways that convey unconscious proprioception, and is therefore also known as the spinocerebellum. The neocerebellum is the most recently evolved region, receives most of the input from the cerebral cortex, and is thus termed the cerebrocerebellum. This area has greatly expanded in association with the extensive development of the cerebral cortex in mammals and especially primates. To cause serious longstanding dysfunction, cerebellar injury must typically involve the deep cerebellar nuclei and their projections.

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other brain regions including the cerebral cortex. Most cerebro-cerebellar afferent projections pass through the basal (anterior or ventral) pontine nuclei and intermediate cerebellar peduncle, whereas most cerebello-cerebral efferent projections pass through the dentate and ventrolateral thalamic nuclei. DCN, deep cerebellar nuclei; RN, red nucleus; ATN, anterior thalamic nucleus; PFC, prefrontal cortex; MC, motor cortex; PC, parietal cortex; TC, temporal cortex; STN, subthalamic nucleus; APN, anterior pontine nuclei. Reprinted under the terms of the Creative Commons Attribution License from D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit to cognition. Front Neural Circuits 2013; 6:116.

Given the vulnerability of the cerebellum to bilirubin-induced injury, cerebellar involvement should also be evident in classic kernicterus, contributing to neuromotor deficits observed therein. It is of interest, therefore, that cerebellar damage may play a role in the genesis of bilirubin-induced dystonia, a prominent neuromotor feature of chronic bilirubin encephalopathy in preterm and term neonates alike. This complex movement disorder is characterized by involuntary sustained muscle contractions that result in abnormal position and posture. Moreover, dystonia that is brief in duration results in chorea, and, if brief and repetitive, leads to athetosis ‒ conditions also classically observed in kernicterus. Recent evidence suggests that dystonic movements may depend on disruption of both basal ganglia and cerebellar neuronal networks, rather than isolated dysfunction of only one motor system.

Dystonia is also a prominent feature in Gunn rat pups and neonatal Ugt1‒/‒-deficient mice both robust models of kernicterus. The former is used as an experimental model of dystonia. Although these models show basal ganglia injury, the sine qua non of bilirubin-induced murine neuropathology is cerebellar damage and resultant cerebellar hypoplasia.

Studies are needed to define more precisely the motor network abnormalities in kernicterus and BIND. Magnetic resonance imaging (MRI) has been widely used in evaluating infants at risk for bilirubin-induced brain injury using conventional structural T1-and T2-weighted imaging. Infants with chronic bilirubin encephalopathy often demonstrate abnormal bilateral, symmetric, high-signal intensity on T2-weighted MRI of the globus pallidus and subthalamic nucleus, consistent with the neuropathology of kernicterus. Early postnatal MRI of at-risk infants, although frequently showing increased T1-signal in these regions, may give false-positive findings due to the presence of myelin in these structures.

Diffusion tensor imaging and tractography could be used to delineate long-term changes involving specific white matter pathways, further elucidating the neural basis of long-term disability in infants and children with chronic bilirubin encephalopathy and BIND. It will be equally valuable to use blood oxygen level-dependent (BOLD) “resting state” functional MRI to study intrinsic connectivity in order to identify vulnerable brain networks in neonates with kernicterus and BIND. Structural networks of the CNS (connectome) and functional network topology can be characterized in infants with kernicterus and BIND to determine disease-related pattern(s) with respect to both long- and short-range connectivity. These findings have the potential to shed novel insights into the pathogenesis of these disorders and their impact on complex anatomical connections and resultant functional deficits.

Audiologic impairment associated with bilirubin-induced neurologic damage

Cristen Olds, John S. Oghalai
Seminars in Fetal & Neonatal Medicine 20 (2015) 42e46
http://dx.doi.org/10.1016/j.siny.2014.12.006

Hyperbilirubinemia affects up to 84% of term and late preterm infants in the first week of life. The elevation of total serum/plasma bilirubin (TB) levels is generally mild, transitory, and, for most children, inconsequential. However, a subset of infants experiences lifelong neurological sequelae. Although the prevalence of classic kernicterus has fallen steadily in the USA in recent years, the incidence of jaundice in term and premature infants has increased, and kernicterus remains a significant problem in the global arena. Bilirubin-induced neurologic dysfunction (BIND) is a spectrum of neurological injury due to acute or sustained exposure of the central nervous system(CNS) to bilirubin. The BIND spectrum includes kernicterus, acute bilirubin encephalopathy, and isolated neural pathway dysfunction.

Animal studies have shown that unconjugated bilirubin passively diffuses across cell membranes and the blood‒brain barrier (BBB), and bilirubin not removed by organic anion efflux pumps accumulates within the cytoplasm and becomes toxic. Exposure of neurons to bilirubin results in increased oxidative stress and decreased neuronal proliferation and presynaptic neuro-degeneration at central glutaminergic synapses. Furthermore, bilirubin administration results in smaller spiral ganglion cell bodies, with decreased cellular density and selective loss of large cranial nerve VIII myelinated fibers. When exposed to bilirubin, neuronal supporting cells have been found to secrete inflammatory markers, which contribute to increased BBB permeability and bilirubin loading.

The jaundiced Gunn rat is the classic animal model of bilirubin toxicity. It is homozygous for a premature stop codon within the gene for UDP-glucuronosyltransferase family 1 (UGT1). The resultant gene product has reduced bilirubin-conjugating activity, leading to a state of hyperbilirubinemia. Studies with this rat model have led to the concept that impaired calcium homeostasis is an important mechanism of neuronal toxicity, with reduced expression of calcium-binding proteins in affected cells being a sensitive index of bilirubin-induced neurotoxicity. Similarly, application of bilirubin to cultured auditory neurons from brainstem cochlear nuclei results in hyperexcitability and excitotoxicity.

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brain-stem response (ABR). The ipsilateral (green) and contralateral (blue) auditory pathways are shown, with structures that are known to be affected by hyperbilirubinemia highlighted in red. Roman numerals in parentheses indicate corresponding waves in the normal human ABR (inset). Illustration adapted from the “Ear Anatomy” series by Robert Jackler and Christine Gralapp, with permission.

Bilirubin-induced neurologic dysfunction (BIND)

Vinod K. Bhutani, Ronald Wong
Seminars in Fetal & Neonatal Medicine 20 (2015) 1
http://dx.doi.org/10.1016/j.siny.2014.12.010

Beyond the traditional recognized areas of fulminant injury to the globus pallidus as seen in infants with kernicterus, other vulnerable areas include the cerebellum, hippocampus, and subthalamic nuclear bodies as well as certain cranial nerves. The hippocampus is a brain region that is particularly affected by age related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive deficits. Lower grey matter volumes within the limbic-striato-thalamic circuitry are common to other etiological mechanisms of subtle neurologic injury. Lower grey matter volumes in the amygdala, caudate, frontal and medial gyrus are found in schizophrenia and in the putamen in autism. Thus, in terms of brain volumetrics, schizophrenia and autism spectrum disorders have a clear degree of overlap that may reflect shared etiological mechanisms. Overlap with injuries observed in infants with BIND raises the question about how these lesions are arrived at in the context of the impact of common etiologies.

Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health

Olena Babenko, Igor Kovalchuk, Gerlinde A.S. Metz
Neuroscience and Biobehavioral Reviews 48 (2015) 70–91
http://dx.doi.org/10.1016/j.neubiorev.2014.11.013

Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.

Sensitive time-windows for susceptibility in neurodevelopmental disorders

Rhiannon M. Meredith, Julia Dawitz and Ioannis Kramvis
Trends in Neurosciences, June 2012; 35(6): 335-344
http://dx.doi.org:/10.1016/j.tins.2012.03.005

Many neurodevelopmental disorders (NDDs) are characterized by age-dependent symptom onset and regression, particularly during early postnatal periods of life. The neurobiological mechanisms preceding and underlying these developmental cognitive and behavioral impairments are, however, not clearly understood. Recent evidence using animal models for monogenic NDDs demonstrates the existence of time-regulated windows of neuronal and synaptic impairments. We propose that these developmentally-dependent impairments can be unified into a key concept: namely, time-restricted windows for impaired synaptic phenotypes exist in NDDs, akin to critical periods during normal sensory development in the brain. Existence of sensitive time-windows has significant implications for our understanding of early brain development underlying NDDs and may indicate vulnerable periods when the brain is more susceptible to current therapeutic treatments.

Fig (not shown)

Misregulated mechanisms underlying spine morphology in NDDs. Several proteins implicated in monogenic NDDs (highlighted in red) are linked to the regulation of the synaptic cytoskeleton via F-actin through different Rho-mediated signaling pathways (highlighted in green). Mutations in OPHN1, TSC1/2, FMRP, p21-activated kinase (PAK) are directly linked to human NDDs of intellectual disability. For instance, point mutations in OPHN1 and a PAK isoform are linked to non-syndromic mental retardation, whereas mutations or altered expression of TSC1/2 and FMRP are linked to TSC and FXS, respectively. Cytoplasmic interacting protein (CYFIP) and LIM-domain kinase 1 (LIMK1) are known to interact with FMRP and PAK, respectively [105]. LIMK1 is one of many dysregulated proteins contributing to the NDD Williams syndrome. Mouse models are available for all highlighted (red) proteins and reveal specific synaptic and behavioral deficits. Local protein synthesis in synapses, dendrites and glia is also regulated by proteins such as TSC1/2 and the FMRP/CYFIP complex. Abbreviations: 4EBP, 4E binding protein; eIF4E, eukaryotic translation initiation factor 4E.

Fig (not shown)

Sensitive time-windows, synaptic phenotypes and NDD gene targets. Sensitive time-windows exist in neural circuits, during which gene targets implicated in NDDs are normally expressed. Misregulation of these genes can affect multiple synaptic phenotypes during a restricted developmental period. The effect upon synaptic phenotypes is dependent upon the temporal expression of these NDD genes and their targets. (a) Expression outside a critical period of development will have no effect upon synaptic phenotypes. (b,c) A temporal expression pattern that overlaps with the onset (b) or closure (c) of a known critical period can alter the synaptic phenotype during that developmental time-window.

Outstanding questions

(1) Can treatment at early presymptomatic stages in animal models for NDDs prevent or ease the later synaptic, neuronal, and behavioral impairments?

(2) Are all sensory critical periods equally misregulated in mouse models for a specific NDD? Are there different susceptibilities for auditory, visual and somatosensory neurocircuits that reflect the degree of impairments observed in patients?

(3) If one critical period is missed or delayed during formation of a layer-specific connection in a network, does the network overcome this misregulated connectivity or plasticity window?

(4) In monogenic NDDs, does the severity of misregulating one particular time-window for synaptic establishment during development correlate with the importance of that gene for that synaptic circuit?

(5) Why do critical periods close in brain development?

(6) What underlies the regression of some altered synaptic phenotypes in Fmr1-KO mice?

(7) Can the concept of susceptible time-windows be applied to other NDDs, including schizophrenia and Tourette’s syndrome?

Cardiovascular

Cardiac output monitoring in newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 143–148
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.032

There is an increased interest in methods of objective cardiac output measurement in critically ill patients. Several techniques are available for measurement of cardiac output in children, although this remains very complex in newborns. Cardiac output monitoring could provide essential information to guide hemodynamic management. An overview is given of various methods of cardiac output monitoring with advantages and major limitations of each technology together with a short explanation of the basic principles.

Fick principle

According to the Fick principle the volume of blood flow in a given period equals the amount of substance entering the blood stream in the same period divided by the difference in concentrations of the substrate upstream respectively downstream to the point of entry in the circulation. This substance can be oxygen (O2-Fick) or carbon dioxide (CO2-FICK), so cardiac output can be calculated by dividing measured pulmonary oxygen uptake by the arteriovenous oxygen concentration difference. The direct O2-Fick method is regarded as gold standard in cardiac output monitoring in a research setting, despite its limitations. When the Fick principle is applied for carbon dioxide (CO2 Fick), the pulmonary carbon dioxide exchange is divided by the venoarterial CO2 concentration difference to calculate cardiac output.

In the modified CO2 Fick method pulmonary CO2 exchange is measured at the endotracheal tube. Measurement of total CO2 concentration in blood is more complex and simultaneous sampling of arterial and central venous blood is required. However, frequent blood sampling will result in an unacceptable blood loss in the neonatal population.

Blood flow can be calculated if the change in concentration of a known quantity of injected indicator is measured in time distal to the point of injection, so an indicator dilution curve can be obtained. Cardiac output can then be calculated with the use of the Stewart–Hamilton equation. Several indicators are used, such as indocyanine green, Evans blue and brilliant red in dye dilution, cold solutions in thermodilution, lithium in lithium dilution, and isotonic saline in ultrasound dilution.

Cardiovascular adaptation to extra uterine life

Alice Lawford, Robert MR Tulloh
Paediatrics And Child Health 2014; 25(1): 1-6.

The adaptation to extra uterine life is of interest because of its complexity and the ability to cause significant health concerns. In this article we describe the normal changes that occur and the commoner abnormalities that are due to failure of normal development and the effect of congenital cardiac disease. Abnormal development may occur as a result of problems with the mother, or with the fetus before birth. After birth it is essential to determine whether there is an underlying abnormality of the fetal pulmonary or cardiac development and to determine the best course of management of pulmonary hypertension or congenital cardiac disease. Causes of underdevelopment, maldevelopment and maladaptation are described as are the causes of critical congenital heart disease. The methods of diagnosis and management are described to allow the neonatologist to successfully manage such newborns.

Fetal vascular structures that exist to direct blood flow

Fetal structure Function
Arterial duct Connects pulmonary artery to the aorta and shunts blood right to left; diverting flow away from fetal lungs
Foramen ovale Opening between the two atria thatdirects blood flow returning to right

atrium through the septal wall into the left atrium bypassing lungs

Ductus venosus Receives oxygenated blood fromumbilical vein and directs it to the

inferior vena cava and right atrium

Umbilical arteries Carrying deoxygenated blood fromthe fetus to the placenta
Umbilical vein Carrying oxygenated blood from theplacenta to the fetus

Maternal causes of congenital heart disease

Maternal disorders rubella, SLE, diabetes mellitus
Maternal drug use Warfarin, alcohol
Chromosomal abnormality Down, Edward, Patau, Turner, William, Noonan

 

Fetal and Neonatal Circulation  The fetal circulation is specifically adapted to efficiently exchange gases, nutrients, and wastes through placental circulation. Upon birth, the shunts (foramen ovale, ductus arteriosus, and ductus venosus) close and the placental circulation is disrupted, producing the series circulation of blood through the lungs, left atrium, left ventricle, systemic circulation, right heart, and back to the lungs.

Clinical monitoring of systemic hemodynamics in critically ill newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 137–141
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.031

Circulatory failure is a major cause of mortality and morbidity in critically ill newborn infants. Since objective measurement of systemic blood flow remains very challenging, neonatal hemodynamics is usually assessed by the interpretation of various clinical and biochemical parameters. An overview is given about the predictive value of the most used indicators of circulatory failure, which are blood pressure, heart rate, urine output, capillary refill time, serum lactate concentration, central–peripheral temperature difference, pH, standard base excess, central venous oxygen saturation and color.

Key guidelines

➢ The clinical assessment of cardiac output by the interpretation of indirect parameters of systemic blood flow is inaccurate, irrespective of the level of experience of the clinician

➢ Using blood pressure to diagnose low systemic blood flow will consequently mean that too many patients will potentially be undertreated or overtreated, both with substantial risk of adverse effects and iatrogenic damage.

➢ Combining different clinical hemodynamic parameters enhances the predictive value in the detection of circulatory failure, although accuracy is still limited.

➢ Variation in time (trend monitoring) might possibly be more informative than individual, static values of clinical and biochemical parameters to evaluate the adequacy of neonatal circulation.

Monitoring oxygen saturation and heart rate in the early neonatal period

J.A. Dawson, C.J. Morley
Seminars in Fetal & Neonatal Medicine 15 (2010) 203e207
http://dx.doi.org:/10.1016/j.siny.2010.03.004

Pulse oximetry is commonly used to assist clinicians in assessment and management of newly born infants in the delivery room (DR). In many DRs, pulse oximetry is now the standard of care for managing high risk infants, enabling immediate and dynamic assessment of oxygenation and heart rate. However, there is little evidence that using pulse oximetry in the DR improves short and long term outcomes. We review the current literature on using pulse oximetry to measure oxygen saturation and heart rate and how to apply current evidence to management in the DR.

Practice points

  • Understand how SpO2 changes in the first minutes after birth.
  • Apply a sensor to an infant’s right wrist as soon as possible after birth.
  • Attach sensor to infant then to oximeter cable.
  • Use two second averaging and maximum sensitivity.

Using pulse oximetry assists clinicians:

  1. Assess changes in HR in real time during transition.
  2. Assess oxygenation and titrate the administration of oxygen to maintain oxygenation within the appropriate range for SpO2 during the first minutes after birth.

Research directions

  • What are the appropriate centiles to target during the minutes after birth to prevent hypoxia and hyperoxia: 25th to 75th, or 10th to 90th, or just the 50th (median)?
  • Can the inspired oxygen be titrated against the SpO2 to keep the SpO2 in the ‘normal range’?
  • Does the use of centile charts in the DR for HR and oxygen saturation reduce the rate of hyperoxia when infants are treated with oxygen.
  • Does the use of pulse oximetry immediately after birth improve short term outcomes, e.g. efficacy of immediate respiratory support, intubation rates in the DR, percentage of inspired oxygen, rate of use of adrenalin or chest compressions, duration of hypoxia/hyperoxia and bradycardia.
  • Does the use of pulse oximetry in the DR improve short term respiratory and long term neurodevelopmental outcomes for preterm infants, e.g. rate of intubation, use of surfactant, and duration of ventilation, continuous positive airway pressure, or supplemental oxygen?
  • Can all modern pulse oximeters be used effectively in the DR or do some have a longer delay before giving an accurate signal and more movement artefact?
  • Would a longer averaging time result in more stable data?

Peripheral haemodynamics in newborns: Best practice guidelines

Michael Weindling, Fauzia Paize
Early Human Development 86 (2010) 159–165
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.033

Peripheral hemodynamics refers to blood flow, which determines oxygen and nutrient delivery to the tissues. Peripheral blood flow is affected by vascular resistance and blood pressure, which in turn varies with cardiac function. Arterial oxygen content depends on the blood hemoglobin concentration (Hb) and arterial pO2; tissue oxygen delivery depends on the position of the oxygen-dissociation curve, which is determined by temperature and the amount of adult or fetal hemoglobin. Methods available to study tissue perfusion include near-infrared spectroscopy, Doppler flowmetry, orthogonal polarization spectral imaging and the peripheral perfusion index. Cardiac function, blood gases, Hb, and peripheral temperature all affect blood flow and oxygen extraction. Blood pressure appears to be less important. Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing the intrathoracic pressure.

graphic

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation. Taken from Yoxall and Weindling

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

graphic

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue.  (a) oxygen delivery (DO2). (b) As DO2 decreases, VO2 is dependent on DO2. The slope of the line indicates the FOE, which in this case is about 0.50. (c) The slope of the line indicates the FOE in the normal situation where oxygenation is DO2 independent, usually < 0.35

The oxygen-dissociation curve

The oxygen-dissociation curve

graphic

The oxygen-dissociation curve

Considerable information about the response of the peripheral circulation has been obtained using NIRS with venous occlusion. Although these measurements were validated against blood co-oximetry in human adults and infants, they can only be made intermittently by a trained operator and are thus not appropriate for general clinical use. Further research is needed to find other better measures of peripheral perfusion and oxygenation which may be easily and continuously monitored, and which could be useful in a clinical setting.

Peripheral oxygenation and management in the perinatal period

Michael Weindling
Seminars in Fetal & Neonatal Medicine 15 (2010) 208e215
http://dx.doi.org:/10.1016/j.siny.2010.03.005

The mechanisms for the adequate provision of oxygen to the peripheral tissues are complex. They involve control of the microcirculation and peripheral blood flow, the position of the oxygen dissociation curve including the proportion of fetal and adult hemoglobin, blood gases and viscosity. Systemic blood pressure appears to have little effect, at least in the non-shocked state. The adequate delivery of oxygen (DO2) depends on consumption (VO2), which is variable. The balance between VO2 and DO2 is given by fractional oxygen extraction (FOE ¼ VO2/DO2). FOE varies from organ to organ and with levels of activity. Measurements of FOE for the whole body produce a range of about 0.15-0.33, i.e. the body consumes 15-33% of oxygen transported.

Fig (not shown)

Biphasic relationship between oxygen delivery (DO2) and oxygen consumption (VO2) in tissue. Dotted lines show fractional oxygen extraction (FOE). ‘A’ indicates the normal situation when VO2 is independent ofDO2 and FOE is about 0.30. AsDO2 decreases in the direction of the arrow, VO2 remains independent of DO2 until the critical point is reached at ‘B’; in this illustration, FOE is about 0.50. The slope of the dotted line indicates the FOE (¼ VO2/DO2), which increases progressively as DO2 decreases.

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Graphic
(A)Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction in anaemic and control infants. (From Wardle et al.)  (B) HbF synthesis and concentration. (From Bard and Widness.) (C) Oxygen dissociation curve.

Peripheral fractional oxygen extraction in babies

Peripheral fractional oxygen extraction in babies

graphic

Peripheral fractional oxygen extraction in babies with asymptomatic or symptomatic anemia compared to controls. Bars represent the median for each group. (From Wardle et al.)

Practice points

  • Peripheral tissue DO2 is complex: cardiac function, blood gases, Hb concentration and the proportion of HbF, and peripheral temperature all play a part in determining blood flow and oxygen extraction in the sick, preterm infant. Blood pressure appears to be less important.
  • Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing intrathoracic pressure.
  • Central blood pressure is a poor surrogate measurement for the adequacy of DO2 to the periphery. Direct measurement, using NIRS, laser Doppler flowmetry or other means, may give more useful information.
  • Reasons for total hemoglobin concentration (Hb) being a relatively poor indicator of the adequacy of the provision of oxygen to the tissues:
  1. Hb is only indirectly related to red blood cell volume, which may be a better indicator of the body’s oxygen delivering capacity.
  2. Hb-dependent oxygen availability depends on the position of the oxygen-hemoglobin dissociation curve.
  3. An individual’s oxygen requirements vary with time and from organ to organ. This means that DO2 also needs to vary.
  4. It is possible to compensate for a low Hb by increasing cardiac output and ventilation, and so the ability to compensate for anemia depends on an individual’s cardio-respiratory reserve as well as Hb.
  5. The normal decrease of Hb during the first few weeks of life in both full-term and preterm babies usually occurs without symptoms or signs of anemia or clinical consequences.

The relationship between VO2 and DO2 is complex and various factors need to be taken into account, including the position of the oxygen dissociation curve, determined by the proportion of HbA and HbF, temperature and pH. Furthermore, diffusion of oxygen from capillaries to the cell depends on the oxygen tension gradient between erythrocytes and the mitochondria, which depends on microcirculatory conditions, e.g. capillary PO2, distance of the cell from the capillary (characterized by intercapillary distances) and the surface area of open capillaries. The latter can change rapidly, for example, in septic shock where arteriovenous shunting occurs associated with tissue hypoxia in spite of high DO2 and a low FOE.

Changes in local temperature deserve particular consideration. When the blood pressure is low, there may be peripheral vasoconstriction with decreased local perfusion and DO2. However, the fall in local tissue temperature would also be expected to be associated with a decreased metabolic rate and a consequent decrease in VO2. Thus a decreased DO2 may still be appropriate for tissue needs.

Pulmonary

Accurate Measurements of Oxygen Saturation in Neonates: Paired Arterial and Venous Blood Analyses

Shyang-Yun Pamela K. Shiao
Newborn and Infant Nurs Rev,  2005; 5(4): 170–178
http://dx.doi.org:/10.1053/j.nainr.2005.09.001

Oxygen saturation (So2) measurements (functional measurement, So2; and fractional measurement, oxyhemoglobin [Hbo2]) and monitoring are commonly investigated as a method of assessing oxygenation in neonates. Differences exist between the So2 and Hbo2 when blood tests are performed, and clinical monitors indicate So2 values. Oxyhemoglobin will decrease with the increased levels of carbon monoxide hemoglobin (Hbco) and methemo-globin (MetHb), and it is the most accurate measurements of oxygen (O2) association of hemoglobin (Hb). Pulse oximeter (for pulse oximetry saturation [Spo2] measurement) is commonly used in neonates. However, it will not detect the changes of Hb variations in the blood for accurate So2 measurements. Thus, the measurements from clinical oximeters should be used with caution. In neonates, fetal hemoglobin (HbF) accounts for most of the circulating Hb in their blood. Fetal hemoglobin has a high O2 affinity, thus releases less O2 to the body tissues, presenting a left-shifted Hbo2 dissociation curve.5,6 To date, however, limited data are available with HbF correction, for accurate arterial and venous (AV) So2 measurements (arterial oxygen saturation [Sao2] and venous oxygen saturation [Svo2]) in neonates, using paired AV blood samples.

In a study of critically ill adult patients, increased pulmonary CO production and elevation in arterial Hbco but not venous Hbco were documented by inflammatory stimuli inducing pulmonary heme oxygenase–1. In normal adults, venous Hbco level might be slightly higher than or equal to arterial Hbco because of production of CO by enzyme heme oxygenase–2, which is predominantly produced in the liver and spleen. However, hypoxia or pulmonary inflammation could induce heme oxygenase–1 to increase endogenous CO, thus elevating pulmonary arterial and systemic arterial Hbco levels in adults. Both endogenous and exogenous CO can suppress proliferation of pulmonary smooth muscles, a significant consideration for the prevention of chronic lung diseases in newborns. Despite these considerations, a later study in healthy adults indicated that the AV differences in Hbco were from technical artifacts and perhaps from inadequate control of different instruments. Thus, further studies are needed to provide more definitive answers for the AV differences of Hbco for adults and neonates with acute and chronic lung diseases.

Methemoglobin is an indicator of Hb oxidation and is essential for accurate measurement of Hbo2, So2, and oxygenation status. No evidence exists to show the AV MetHb difference, although this difference was elucidated with the potential changes of MetHb with different O2 levels.  Methemoglobin can be increased with nitric oxide (NO) therapy, used in respiratory distress syndrome (RDS) to reduce pulmonary hypertension and during heart surgery. Nitric oxide, in vitro, is an oxidant of Hb, with increased O2 during ischemia reperfusion. In hypoxemic conditions in vivo, nitrohemoglobin is a product generated by vessel responsiveness to nitrovasodilators. Nitro-hemoglobin can be spontaneously reversible in vivo, requiring no chemical agents or reductase. However, when O2 levels were increased experimentally in vitro following acidic conditions (pH 6.5) to simulate reperfusion conditions, MetHb levels were increased for the hemolysates (broken red cells). Nitrite-induced oxidation of Hb was associated with an increase in red blood cell membrane rigidity, thus contributing to Hb breakdown. A newer in vitro study of whole blood cells, however, concluded that MetHb formation is not dependent on increased O2 levels. Additional studies are needed to examine in vivo reperfusion of O2 and MetHb effects.

Purpose: The aim of this study was to examine the accuracy of arterial oxygen saturation (Sao2) and venous oxygen saturation (Svo2) with paired arterial and venous (AV) blood in relation to pulse oximetry saturation (Spo2) and oxyhemoglobin (Hbo2) with fetal hemoglobin determination, and their Hbo2 dissociation curves. Method: Twelve preterm neonates with gestational ages ranging from 27 to 34 weeks at birth, who had umbilical AV lines inserted, were investigated. Analyses were performed with 37 pairs of AV blood samples by using a blood volume safety protocol. Results: The mean differences between Sao2 and Svo2, and AV Hbo2 were both 6 percent (F6.9 and F6.7 percent, respectively), with higher Svo2 than those reported for adults. Biases were 2.1 – 0.49 for Sao2, 2.0 – 0.44 for Svo2, and 3.1 – 0.45 for Spo2, compared against Hbo2. With left-shifted Hbo2 dissociation curves in neonates, for the critical values of oxygen tension values between 50 and 75 millimeters of mercury, Hbo2 ranged from 92 to 93.4 percent; Sao2 ranged from 94.5 to 95.7 percent; and Spo2 ranged from 93.7 to 96.3 percent (compared to 85–94 percent in healthy adults). Conclusions: In neonates, both left-shifted Hbo2 dissociation curve and lower AV differences of oxygen saturation measurements indicated low flow of oxygen to the body tissues. These findings demonstrate the importance of accurate assessment of oxygenation statues in neonates.

In these neonates, the mean AV blood differences for both So2 and Hbo2 were about 6 percent, which was much lower than those reported for healthy adults (23 percent) for O2 supply and demand. In addition, with very high levels of HbF releasing less O2 to the body tissue, the results of blood analyses are worrisome for these critically ill neonates for low systemic oxygen states.  O’Connor and Hall determined AV So2 in neonates without HbF determination. Much of the AV So2 difference is dependent on Svo2 measurement. The ranges of Svo2 spanned for 35 percent, and the ranges of Sao2 spanned 6 percent in these neonates. The greater intervals for Svo2 measurements contribute to greater sensitivity for the measurements (than Sao2 measurements) in responding to nursing care and changes of O2 demand. Thus, Svo2 measurement is essential for better assessment of oxygenation status in neonates.

The findings of this study on AV differences of So2 were limited with very small number of paired AV blood samples. However, critically ill neonates need accurate assessment of oxygenation status because of HbF, which releases less O2 to the tissues. Decreased differences of AV So2 measurements added further possibilities of lower flow of O2 to the body tissues and demonstrated the greater need to accurately assess the proper oxygenation in the neonates. The findings of this study continued to clarify the accuracy of So2 measurements for neonates. Additional studies are needed to examine So2 levels in neonates to further validate these findings by using larger sample sizes.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal  ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

Scott A. Sands, BA Edwards, VJ Kelly, MR Davidson, MH Wilkinson, PJ Berger
PLoS Comput Biol 5(12): e1000588
http://dx.doi.org:/10.1371/journal.pcbi.1000588

Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea (_SSaO2 ) is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates _SSaO2 throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar PO2 causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates _SSaO2 during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines _SSaO2 during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia.

A novel approach to study oxidative stress in neonatal respiratory distress syndrome

Reena Negi, D Pande, K Karki, A Kumar, RS Khanna, HD Khanna
BBA Clinical 3 (2015) 65–69
http://dx.doi.org/10.1016/j.bbacli.2014.12.001

Oxidative stress is an imbalance between the systemic manifestation of reactive oxygen species and a biological system’s ability to readily detoxify the reactive intermediates or to repair the resulting damage. It is a physiological event in the fetal-to-neonatal transition, which is actually a great stress to the fetus. These physiological changes and processes greatly increase the production of free radicals, which must be controlled by the antioxidant defense system, the maturation of which follows the course of the gestation. This could lead to several functional alterations with important repercussions for the infants. Adequately mature and healthy infants are able to tolerate this drastic change in the oxygen concentration. A problem occurs when the intrauterine development is incomplete or abnormal. Preterm or intrauterine growth retarded (IUGR) and low birth weight neonates are typically of this kind. An oxidant/antioxidant imbalance in infants is implicated in the pathogenesis of the major complications of prematurity including respiratory distress syndrome (RDS), necrotizing enterocolitis (NEC), chronic lung disease, retinopathy of prematurity and intraventricular hemorrhage (IVH).

Background: Respiratory distress syndrome of the neonate (neonatal RDS) is still an important problem in treatment of preterm infants. It is accompanied by inflammatory processes with free radical generation and oxidative stress. The aim of study was to determine the role of oxidative stress in the development of neonatal RDS. Methods: Markers of oxidative stress and antioxidant activity in umbilical cord blood were studied in infants with neonatal respiratory distress syndrome with reference to healthy newborns. Results: Status of markers of oxidative stress (malondialdehyde, protein carbonyl and 8-hydroxy-2-deoxy guanosine) showed a significant increase with depleted levels of total antioxidant capacity in neonatal RDS when compared to healthy newborns. Conclusion: The study provides convincing evidence of oxidative damage and diminished antioxidant defenses in newborns with RDS. Neonatal RDS is characterized by damage of lipid, protein and DNA, which indicates the augmentation of oxidative stress. General significance: The identification of the potential biomarker of oxidative stress consists of a promising strategy to study the pathophysiology of neonatal RDS.

Neonatal respiratory distress syndrome represents the major lung complications of newborn babies. Preterm neonates suffer from respiratory distress syndrome (RDS) due to immature lungs and require assisted ventilation with high concentrations of oxygen. The pathogenesis of this disorder is based on the rapid formation of the oxygen reactive species, which surpasses the detoxification capacity of antioxidative defense system. The high chemical reactivity of free radical leads to damage to a variety of cellular macro molecules including proteins, lipids and nucleic acid. This results in cell injury and may induce respiratory cell death.

Malondialdehyde (MDA) is one of the final products of polyunsaturated fatty acids peroxidation. The present study showed increased concentration of MDA in neonates with respiratory disorders than that of control in consonance with the reported study.

Anemia, Apnea of Prematurity, and Blood Transfusions

Kelley Zagol, Douglas E. Lake, Brooke Vergales, Marion E. Moorman, et al
J Pediatr 2012;161:417-21
http://dx.doi.org:/10.1016/j.jpeds.2012.02.044

The etiology of apnea of prematurity is multifactorial; however, decreased oxygen carrying capacity may play a role. The respiratory neuronal network in neonates is immature, particularly in those born preterm, as demonstrated by their paradoxical response to hypoxemia. Although adults increase the minute ventilation in response to hypoxemia, newborns have a brief increase in ventilation followed by periodic breathing, respiratory depression, and occasionally cessation of respiratory effort. This phenomenon may be exacerbated by anemia in preterm newborns, where a decreased oxygen carrying capacity may result in decreased oxygen delivery to the central nervous system, a decreased efferent output of the respiratory neuronal network, and an increase in apnea.

Objective Compare the frequency and severity of apneic events in very low birth weight (VLBW) infants before and after blood transfusions using continuous electronic waveform analysis. Study design We continuously collected waveform, heart rate, and oxygen saturation data from patients in all 45 neonatal intensive care unit beds at the University of Virginia for 120 weeks. Central apneas were detected using continuous computer processing of chest impedance, electrocardiographic, and oximetry signals. Apnea was defined as respiratory pauses of >10, >20, and >30 seconds when accompanied by bradycardia (<100 beats per minute) and hypoxemia (<80% oxyhemoglobin saturation as detected by pulse oximetry). Times of packed red blood cell transfusions were determined from bedside charts. Two cohorts were analyzed. In the transfusion cohort, waveforms were analyzed for 3 days before and after the transfusion for all VLBW infants who received a blood transfusion while also breathing spontaneously. Mean apnea rates for the previous 12 hours were quantified and differences for 12 hours before and after transfusion were compared. In the hematocrit cohort, 1453 hematocrit values from all VLBW infants admitted and breathing spontaneously during the time period were retrieved, and the association of hematocrit and apnea in the next 12 hours was tested using logistic regression. Results Sixty-seven infants had 110 blood transfusions during times when complete monitoring data were available. Transfusion was associated with fewer computer-detected apneic events (P < .01). Probability of future apnea occurring within 12 hours increased with decreasing hematocrit values (P < .001). Conclusions Blood transfusions are associated with decreased apnea in VLBW infants, and apneas are less frequent at higher hematocrits.

Bronchopulmonary dysplasia: The earliest and perhaps the longest lasting obstructive lung disease in humans

Silvia Carraro, M Filippone, L Da Dalt, V Ferraro, M Maretti, S Bressan, et al.
Early Human Development 89 (2013) S3–S5
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.015

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy, an umbrella term for a number of different diseases that evolve as a consequence of a neonatal respiratory disorder. BPD is defined as the need for supplemental oxygen for at least 28 days after birth, and its severity is graded according to the respiratory support required at 36 post-menstrual weeks.

BPD was initially described as a chronic respiratory disease occurring in premature infants exposed to mechanical ventilation and oxygen supplementation. This respiratory disease (later named “old BPD”) occurred in relatively large premature newborn and, from a pathological standpoint, it was characterized by intense airway inflammation, disruption of normal pulmonary structures and lung fibrosis.

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy. From a clinical standpoint BPD subjects are characterized by recurrent respiratory symptoms, which are very frequent during the first years of life and, although becoming less severe as children grow up, they remain more common than in term-born controls throughout childhood, adolescence and into adulthood. From a functional point of view BPD subjects show a significant airflow limitation that persists during adolescence and adulthood and they may experience an earlier and steeper decline in lung function during adulthood. Interestingly, patients born prematurely but not developing BPD usually fare better, but they too have airflow limitations during childhood and later on, suggesting that also prematurity per se has life-long detrimental effects on pulmonary function. For the time being, little is known about the presence and nature of pathological mechanisms underlying the clinical and functional picture presented by BPD survivors. Nonetheless, recent data suggest the presence of persistent neutrophilic airway inflammation and oxidative stress and it has been suggested that BPD may be sustained in the long term by inflammatory pathogenic mechanisms similar to those underlying COPD. This hypothesis is intriguing but more pathological data are needed.  A better understanding of these pathogenetic mechanisms, in fact, may be able to orient the development of novel targeted therapies or prevention strategies to improve the overall respiratory health of BPD patients.

We have a limited understanding of the presence and nature of pathological mechanisms in the lung of BPD survivors. The possible role of asthma-like inflammation has been investigated because BPD subjects often present with recurrent wheezing and other symptoms resembling asthma during their childhood and adolescence. But BPD subjects have normal or lower than normal exhaled nitric oxide levels and exhaled air temperatures, whereas they are higher than normal in asthmatic patients.

Of all obstructive lung diseases in humans, BPD has the earliest onset and is possibly the longest lasting. Given its frequent association with other conditions related to preterm birth (e.g. growth retardation, pulmonary hypertension, neurodevelopmental delay, hearing defects, and retinopathy of prematurity), it often warrants a multidisciplinary management.

Effects of Sustained Lung Inflation, a lung recruitment maneuver in primary acute respiratory distress syndrome, in respiratory and cerebral outcomes in preterm infants

Chiara Grasso, Pietro Sciacca, Valentina Giacchi, Caterina Carpinato, et al.
Early Human Development 91 (2015) 71–75
http://dx.doi.org/10.1016/j.earlhumdev.2014.12.002

Background: Sustained Lung Inflation (SLI) is a maneuver of lung recruitment in preterm newborns at birth that can facilitate the achieving of larger inflation volumes, leading to the clearance of lung fluid and formation of functional residual capacity (FRC). Aim: To investigate if Sustained Lung Inflation (SLI) reduces the need of invasive procedures and iatrogenic risks. Study design: 78 newborns (gestational age ≤ 34 weeks, weighing ≤ 2000 g) who didn’t breathe adequately at birth and needed to receive SLI in addition to other resuscitation maneuvers (2010 guidelines). Subjects: 78 preterm infants born one after the other in our department of Neonatology of Catania University from 2010 to 2012. Outcome measures: The need of intubation and surfactant, the ventilation required, radiological signs, the incidence of intraventricular hemorrhage (IVH), periventricular leukomalacia, retinopathy in prematurity from III to IV plus grades, bronchopulmonary dysplasia, patent ductus arteriosus, pneumothorax and necrotizing enterocolitis. Results: In the SLI group infants needed less intubation in the delivery room (6% vs 21%; p b 0.01), less invasive mechanical ventilation (14% vs 55%; p ≤ 0.001) and shorter duration of ventilation (9.1 days vs 13.8 days; p ≤ 0.001). There wasn’t any difference for nasal continuous positive airway pressure (82% vs 77%; p = 0.43); but there was less surfactant administration (54% vs 85%; p ≤ 0.001) and more infants received INSURE (40% vs 29%; p=0.17). We didn’t found any differences in the outcomes, except for more mild intraventricular hemorrhage in the SLI group (23% vs 14%; p = 0.15; OR= 1.83). Conclusion: SLI is easier to perform even with a single operator, it reduces the necessity of more complicated maneuvers and surfactant without statistically evident adverse effects.

Long-term respiratory consequences of premature birth at less than 32 weeks of gestation

Anne Greenough
Early Human Development 89 (2013) S25–S27
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.004

Chronic respiratory morbidity is a common adverse outcome of very premature birth, particularly in infants who had developed bronchopulmonary dysplasia (BPD). Prematurely born infants who had BPD may require supplementary oxygen at home for many months and affected infants have increased healthcare utilization until school age. Chest radiograph abnormalities are common; computed tomography of the chest gives predictive information in children with ongoing respiratory problems. Readmission to hospital is common, particularly for those who have BPD and suffer respiratory syncytial virus lower respiratory infections (RSV LRTIs). Recurrent respiratory symptoms requiring treatment are common and are associated with evidence of airways obstruction and gas trapping. Pulmonary function improves with increasing age, but children with BPD may have ongoing airflow limitation. Lung function abnormalities may be more severe in those who had RSV LRTIs, although this may partly be explained by worse premorbid lung function. Worryingly, lung function may deteriorate during the first year. Longitudinal studies are required to determine if there is catch up growth.

Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia

Anita Bhandari and Sharon McGrath-Morrow
Seminars in Perinatology 37 (2013)132–137
http://dx.doi.org/10.1053/j.semperi.2013.01.010

Bronchopulmonary dysplasia (BPD) is the commonest cause of chronic lung disease in infancy. The incidence of BPD has remained unchanged despite many advances in neonatal care. BPD starts in the neonatal period but its effects can persist long term. Premature infants with BPD have a greater incidence of hospitalization, and continue to have a greater respiratory morbidity and need for respiratory medications, compared to those without BPD. Lung function abnormalities, especially small airway abnormalities, often persist. Even in the absence of clinical symptoms, BPD survivors have persistent radiological abnormalities and presence of emphysema has been reported on chest computed tomography scans. Concern regarding their exercise tolerance remains. Long-term effects of BPD are still unknown, but given reports of a more rapid decline in lung function and their susceptibility to develop chronic obstructive pulmonary disease phenotype with aging, it is imperative that lung function of survivors of BPD be closely monitored.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

Prediction of neonatal respiratory distress syndrome in term pregnancies by assessment of fetal lung volume and pulmonary artery resistance index

Mohamed Laban, GM Mansour, MSE Elsafty, AS Hassanin, SS EzzElarab
International Journal of Gynecology and Obstetrics 128 (2015) 246–250
http://dx.doi.org/10.1016/j.ijgo.2014.09.018

Objective: To develop reference cutoff values for mean fetal lung volume (FLV) and pulmonary artery resistance index (PA-RI) for prediction of neonatal respiratory distress syndrome (RDS) in low-risk term pregnancies. Methods: As part of a cross-sectional study, women aged 20–35 years were enrolled and admitted to a tertiary hospital in Cairo, Egypt, for elective repeat cesarean at 37–40 weeks of pregnancy between January 1, 2012, and July 31, 2013. FLV was calculated by virtual organ computer-aided analysis, and PA-RI was measured by Doppler ultrasonography before delivery. Results: A total of 80 women were enrolled. Neonatal RDS developed in 11 (13.8%) of the 80 newborns. Compared with neonates with RDS, healthy neonates had significantly higher FLVs (P b 0.001) and lower PA-RIs (P b 0.001). Neonatal RDS is less likely with FLV of at least 32 cm3 or PA-RI less than or equal to 0.74. Combining these two measures improved the accuracy of prediction. Conclusion: The use of either FLV or PA-RI predicted neonatal RDS. The predictive value increased when these two measures were combined

Pulmonary surfactant - a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary surfactant – a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary hypertension in bronchopulmonary dysplasia

Sara K.Berkelhamer, Karen K.Mestan, and Robin H. Steinhorn
Seminars In  Perinatology 37 (2013)124–131
http://dx.doi.org/10.1053/j.semperi.2013.01.009

Pulmonary hypertension (PH) is a common complication of neonatal respiratory diseases, including bronchopulmonary dysplasia (BPD), and recent studies have increased aware- ness that PH worsens the clinical course, morbidity and mortality of BPD. Recent evidence indicates that up to 18% of all extremely low-birth-weight infants will develop some degree of PH during their hospitalization, and the incidence rises to 25–40% of the infants with established BPD. Risk factors are not yet well understood, but new evidence shows that fetal growth restriction is a significant predictor of PH. Echocardiography remains the primary method for evaluation of BPD-associated PH, and the development of standardized screening timelines and techniques for identification of infants with BPD-associated PH remains an important ongoing topic of investigation. The use of pulmonary vasodilator medications, such as nitric oxide, sildenafil, and others, in the BPD population is steadily growing, but additional studies are needed regarding their long-term safety and efficacy.
An update on pharmacologic approaches to bronchopulmonary dysplasia

Sailaja Ghanta, Kristen Tropea Leeman, and Helen Christou
Seminars In Perinatology 37 (2013)115–123
http://dx.doi.org/10.1053/j.semperi.2013.01.008

Bronchopulmonary dysplasia (BPD) is the most prevalent long-term morbidity in surviving extremely preterm infants and is linked to increased risk of reactive airways disease, pulmonary hypertension, post-neonatal mortality, and adverse neurodevelopmental outcomes. BPD affects approximately 20% of premature newborns, and up to 60% of premature infants born before completing 26 weeks of gestation. It is characterized by the need for assisted ventilation and/or supplemental oxygen at 36 weeks postmenstrual age. Approaches to prevention and treatment of BPD have evolved with improved understanding of its pathogenesis. This review will focus on recent advancements and detail current research in pharmacotherapy for BPD. The evidence for both current and potential future experimental therapies will be reviewed in detail. As our understanding of the complex and multifactorial pathophysiology of BPD changes, research into these current and future approaches must continue to evolve.

Methylxanthines
Diuretics and bronchodilators
Corticosteroids
Macrolide antibiotics
Recombinant human Clara cell 10-kilodalton protein(rhCC10)
Vitamin A
Surfactant
Leukotriene receptor antagonist
Pulmonary vasodilators

Skeletal and Muscle

Skeletal Stem Cells in Space and Time

Moustapha Kassem and Paolo Bianco
Cell  Jan 15, 2015; 160: 17-19
http://dx.doi.org/10.1016/j.cell.2014.12.034

The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice and demonstrate its role in skeletal tissue maintenance and regeneration.

The groundbreaking concept that bone, cartilage, marrow adipocytes, and hematopoiesis-supporting stroma could originate from a common progenitor and putative stem cell was surprising at the time when it was formulated (Owen and Friedenstein, 1988). The putative stem cell, nonhematopoietic in nature, would be found in the postnatal bone marrow stroma, generate tissues previously thought of as foreign to each other, and support the turnover of tissues and organs that self-renew at a much slower rate compared to other tissues associated with stem cells (blood, epithelia). This concept also connected bone and bone marrow as parts of a single-organ system, implying their functional interplay. For many years, the evidence underpinning the concept has been incomplete.

While multipotency of stromal progenitors has been demonstrated by in vivo transplantation experiments, self-renewal, the defining property of a stem cell, has not been easily demonstrated until recently in humans (Sacchetti et al., 2007) and mice (Mendez-Ferrer et al., 2010). Meanwhile, a confusing and plethoric terminology has been introduced into the literature, which diverted and confounded the search for a skeletal stem cell and its physiological significance (Bianco et al., 2013).

Two studies in this issue of Cell (Chan et al., 2015; Worthley et al., 2015), using a combination of rigorous single-cell analyses and lineage tracing technologies, mark significant steps toward rectifying the course of skeletal stem cell discovery by making several important points, within and beyond skeletal physiology.

First, a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors can in fact be identified and linked to defined phenotype(s) in the mouse. The system is framed conceptually, and approached experimentally, similar to the hematopoietic system.

Second, based on its assayable functions and potential, the stem cell at the top of the hierarchy is defined as a skeletal stem cell (SSC). As noted earlier (Sacchetti et al., 2007) (Bianco et al., 2013), this term clarifies, well beyond semantics, that the range of tissues that the self-renewing stromal progenitor (originally referred to as an ‘‘osteogenic’’ or ‘‘stromal’’ stem cell) (Owen and Friedenstein, 1988) can actually generate in vivo, overlaps with the range of tissues that make up the skeleton.

Third, these cells are spatially restricted, local residents of the bone/bone marrow organ. The systemic circulation is not a sizable contributor to their recruitment to locally deployed functions.

Fourth, a native skeletogenic potential is inherent to the system of progenitor/ stem cells found in the skeleton, and internally regulated by bone morphogenetic protein (BMP) signaling. This is reflected in the expression of regulators and antagonists of BMP signaling within the system, highlighting potential feedback mechanisms modulating expansion or quiescence of specific cell compartments.

Fifth, in cells isolated from other tissues, an assayable skeletogenic potential is not inherent: it can only be induced de novo by BMP reprogramming. These two studies (Chan et al., 2015, Worthley et al., 2015) corroborate the classical concept of ‘‘determined’’ and ‘‘inducible’’ skeletal progenitors (Owen and Friedenstein, 1988): the former residing in the skeleton, the latter found in nonskeletal tissues; the former capable of generating skeletal tissues, in vivo and spontaneously, the latter requiring reprogramming signals in order to acquire a skeletogenic capacity; the former operating in physiological bone formation, the latter in unwanted, ectopic bone formation in diseases such as fibrodysplasia ossificans progressiva.

To optimize our ability to obtain specific skeletal tissues for medical application, the study by Chan et al. offers a glimpse of another facet of the biology of SSC lineages and progenitors. Chan et al. show that a homogeneous cell population inherently committed to chondrogenesis can alter its output to generate bone if cotransplanted with multipotent progenitors. Conversely, osteogenic cells can be shifted to a chondrogenic fate by blockade of vascular endothelial growth factor receptor, consistent with the avascular and hypoxic milieu of cartilage. This has two important implications:

  • commitment is flexible in the system;
  • the choir is as important as the soloist and can modulate the solo tune.

Reversibility and population behavior thus emerge as two features that may be characteristic, albeit not unique, of the stromal system, resonating with conceptually comparable evidence in the human system.

The two studies by Chan et al. and Worthely et al. emphasize the relevance not only of their new data, but also of a proper concept of a skeletal stem cell per se, for proper clinical use. Confusion arising from improper conceptualization of skeletal stem cells has markedly limited clinical development of skeletal stem cell biology.

Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

Daniel L. Worthley, Michael Churchill, Jocelyn T. Compton, Yagnesh Tailor, et al.
Cell, Jan 15, 2015; 160: 269–284
http://dx.doi.org/10.1016/j.cell.2014.11.042

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).

Identification and Specification of the Mouse Skeletal Stem Cell

Charles K.F. Chan, Eun Young Seo, James Y. Chen, David Lo, A McArdle, et al.
Cell, Jan 15, 2015; 160: 285–298
http://dx.doi.org/10.1016/j.cell.2014.12.002

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.

Bone mesenchymal development

Bone mesenchymal development

Bone mesenchymal development

The bone-remodeling cycle

The bone-remodeling cycle

Nuclear receptor modulation – Role of coregulators in selective estrogen receptor modulator (SERM) actions

Qin Feng, Bert W. O’Malley
Steroids 90 (2014) 39–43
http://dx.doi.org/10.1016/j.steroids.2014.06.008

Selective estrogen receptor modulators (SERMs) are a class of small-molecule chemical compounds that bind to estrogen receptor (ER) ligand binding domain (LBD) with high affinity and selectively modulate ER transcriptional activity in a cell- and tissue-dependent manner. The prototype of SERMs is tamoxifen, which has agonist activity in bone, but has antagonist activity in breast. Tamoxifen can reduce the risk of breast cancer and, at same time, prevent osteoporosis in postmenopausal women. Tamoxifen is widely prescribed for treatment and prevention of breast cancer. Mechanistically the activity of SERMs is determined by the selective recruitment of coactivators and corepressors in different cell types and tissues. Therefore, understanding the coregulator function is the key to understanding the tissue selective activity of SERMs.

Hematopoietic

Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche

Owen J. Tamplin, Ellen M. Durand, Logan A. Carr, Sarah J. Childs, et al.
Cell, Jan 15, 2015; 160: 241–252
http://dx.doi.org/10.1016/j.cell.2014.12.032

Hematopoietic stem and progenitor cells (HSPCs) can reconstitute and sustain the entire blood system. We generated a highly specific transgenic reporter of HSPCs in zebrafish. This allowed us to perform high resolution live imaging on endogenous HSPCs not currently possible in mammalian bone marrow. Using this system, we have uncovered distinct interactions between single HSPCs and their niche. When an HSPC arrives in the perivascular niche, a group of endothelial cells remodel to form a surrounding pocket. This structure appears conserved in mouse fetal liver. Correlative light and electron microscopy revealed that endothelial cells surround a single HSPC attached to a single mesenchymal stromal cell. Live imaging showed that mesenchymal stromal cells anchor HSPCs and orient their divisions. A chemical genetic screen found that the compound lycorine promotes HSPC-niche interactions during development and ultimately expands the stem cell pool into adulthood. Our studies provide evidence for dynamic niche interactions upon stem cell colonization.

Neonatal anemia

Sanjay Aher, Kedar Malwatkar, Sandeep Kadam
Seminars in Fetal & Neonatal Medicine (2008) 13, 239e247
http://dx.doi.org:/10.1016/j.siny.2008.02.009

Neonatal anemia and the need for red blood cell (RBC) transfusions are very common in neonatal intensive care units. Neonatal anemia can be due to blood loss, decreased RBC production, or increased destruction of erythrocytes. Physiologic anemia of the newborn and anemia of prematurity are the two most common causes of anemia in neonates. Phlebotomy losses result in much of the anemia seen in extremely low birthweight infants (ELBW). Accepting a lower threshold level for transfusion in ELBW infants can prevent these infants being exposed to multiple donors.

Management of anemia in the newborn

Naomi L.C. Luban
Early Human Development (2008) 84, 493–498
http://dx.doi.org:/10.1016/j.earlhumdev.2008.06.007

Red blood cell (RBC) transfusions are administered to neonates and premature infants using poorly defined indications that may result in unintentional adverse consequences. Blood products are often manipulated to limit potential adverse events, and meet the unique needs of neonates with specific diagnoses. Selection of RBCs for small volume (5–20 mL/kg) transfusions and for massive transfusion, defined as extracorporeal bypass and exchange transfusions, are of particular concern to neonatologists. Mechanisms and therapeutic treatments to avoid transfusion are another area of significant investigation. RBCs collected in anticoagulant additive solutions and administered in small aliquots to neonates over the shelf life of the product can decrease donor exposure and has supplanted the use of fresh RBCs where each transfusion resulted in a donor exposure. The safety of this practice has been documented and procedures established to aid transfusion services in ensuring that these products are available. Less well established are the indications for transfusion in this population; hemoglobin or hematocrit alone are insufficient indications unless clinical criteria (e.g. oxygen desaturation, apnea and bradycardia, poor weight gain) also augment the justification to transfuse. Comorbidities increase oxygen consumption demands in these infants and include bronchopulmonary dysplasia, rapid growth and cardiac dysfunction. Noninvasive methods or assays have been developed to measure tissue oxygenation; however, a true measure of peripheral oxygen offloading is needed to improve transfusion practice and determine the value of recombinant products that stimulate erythropoiesis. The development of such noninvasive methods is especially important since randomized, controlled clinical trials to support specific practices are often lacking, due at least in part, to the difficulty of performing such studies in tiny infants.
The Effect of Blood Transfusion on the Hemoglobin Oxygen Dissociation Curve of Very Early Preterm Infants During the First Week of Life

Virginie De HaUeux, Anita Truttmann, Carmen Gagnon, and Harry Bard
Seminars in Perinatology, 2002; 26(6): 411-415
http://dx.doi.org:/10.1053/sper.2002.37313

This study was conducted during the first week of life to determine the changes in Ps0 (PO2 required to achieve a saturation of 50% at pH 7.4 and 37~ and the proportions of fetal hemoglobin (I-IbF) and adult hemoglobin (HbA) prior to and after transfusion in very early preterm infants. Eleven infants with a gestational age <–27 weeks have been included in study. The hemoglobin dissociation curve and the Ps0 was determined by Hemox-analyser. Liquid chromatography was also performed to determine the proportions of HbF and HbA. The mean gestational age of the 11 infants was 25.1 weeks (-+1 weeks) and their mean birth weight was 736 g (-+125 g). They received 26.9 mL/kg of packed red cells. The mean Ps0 prior and after transfusion was 18.5 +- 0.8 and 21.0 + 1 mm Hg (P = .0003) while the mean percentage of HbF was 92.9 -+ 1.1 and 42.6 -+ 5.7%, respectively. The data of this study show a decrease of hemoglobin oxygen affinity as a result of blood transfusion in very early preterm infants prone to O 2 toxicity. The shift in HbO 2 curve after transfusion should be taken into consideration when oxygen therapy is being regulated for these infants.

Effect of neonatal hemoglobin concentration on long-term outcome of infants affected by fetomaternal hemorrhage

Mizuho Kadooka, H Katob, A Kato, S Ibara, H Minakami, Yuko Maruyama
Early Human Development 90 (2014) 431–434
http://dx.doi.org/10.1016/j.earlhumdev.2014.05.010

Background: Fetomaternal hemorrhage (FMH) can cause severe morbidity. However, perinatal risk factors for long-term poor outcome due to FMH have not been extensively studied.                                                                                 Aims: To determine which FMH infants are likely to have neurological sequelae.
Study design: A single-center retrospective observational study. Perinatal factors, including demographic characteristics, Kleihauer–Betke test, blood gas analysis, and neonatal blood hemoglobin concentration ([Hb]), were analyzed in association with long-term outcomes.
Subjects: All 18 neonates referred to a Neonatal Intensive Care Unit of Kagoshima City Hospital and diagnosed with FMH during a 15-year study period. All had a neonatal [Hb] b7.5 g/dL and 15 of 17 neonates tested had Kleihauer–Betke test result N4.0%.
Outcome measures: Poor long-term outcome was defined as any of the following determined at 12 month old or more: cerebral palsy, mental retardation, attention deficit/hyperactivity disorder, and epilepsy.
Results: Nine of the 18 neonates exhibited poor outcomes. Among demographic characteristics and blood variables compared between two groups with poor and favorable outcomes, significant differences were observed in [Hb] (3.6 ± 1.4 vs. 5.4 ± 1.1 g/dL, P = 0.01), pH (7.09 ± 0.11 vs. 7.25 ± 0.13, P = 0.02) and base deficits (17.5 ± 5.4 vs. 10.4 ± 6.0 mmol/L, P = 0.02) in neonatal blood, and a number of infants with [Hb] ≤ 4.5 g/dL (78%[7/9] vs. 22%[2/9], P= 0.03), respectively. The base deficit in neonatal arterial blood increased significantly with decreasing neonatal [Hb].
Conclusions: Severe anemia causing severe base deficit is associated with neurological sequelae in FMH infants

Clinical and hematological presentation among Indian patients with common hemoglobin variants

Khushnooma Italia, Dipti Upadhye, Pooja Dabke, Harshada Kangane, et al.
Clinica Chimica Acta 431 (2014) 46–51
http://dx.doi.org/10.1016/j.cca.2014.01.028

Background: Co-inheritance of structural hemoglobin variants like HbS, HbD Punjab and HbE can lead to a variable clinical presentation and only few cases have been described so far in the Indian population.
Methods: We present the varied clinical and hematological presentation of 22 cases (HbSD Punjab disease-15, HbSE disease-4, HbD Punjab E disease-3) referred to us for diagnosis.
Results: Two of the 15 HbSDPunjab disease patients had moderate crisis, one presented with mild hemolytic anemia; however, the other 12 patients had a severe clinical presentation with frequent blood transfusion requirements, vaso occlusive crisis, avascular necrosis of the femur and febrile illness. The 4 HbSE disease patients had a mild to moderate presentation. Two of the 3 HbD Punjab E patients were asymptomatic with one patient’s sibling having a mild presentation. The hemoglobin levels of the HbSD Punjab disease patients ranged from 2.3 to 8.5 g/dl and MCV from 76.3 to 111.6 fl. The hemoglobin levels of the HbD Punjab E and HbSE patients ranged from 10.8 to 11.9 and 9.8 to 10.0 g/dl whereas MCV ranged from 67.1 to 78.2 and 74.5 to 76.0 fl respectively.
Conclusions: HbSD Punjab disease patients should be identified during newborn screening programs and managed in a way similar to sickle cell disease. Couple at risk of having HbSD Punjab disease children may be given the option of prenatal diagnosis in subsequent pregnancies.

Sickle cell anemia is the most common hemoglobinopathy seen across the world. It is caused by a point mutation in the 6th codon of the beta (β) globin gene leading to the substitution of the amino acid glutamic acid to valine. The sickle gene is frequently seen in Africa, some Mediterranean countries, India, Middle East—Saudi Arabia and North America. In India the prevalence of hemoglobin S (HbS) carriers varies from 2 to 40% among different population groups and HbS is mainly seen among the scheduled tribe, scheduled caste and other backward class populations in the western, central and parts of eastern and southern India. Sickle cell anemia has a variable clinical presentation in India with the most severe clinical presentation seen in central India whereas patients in the western region show a mild to moderate clinical presentation.

Hemoglobin D Punjab (HbD Punjab) (also known as HbD Los-Angeles, HbD Portugal, HbD North Carolina, D Oak Ridge and D Chicago) is another hemoglobin variant due to a point mutation in codon 121 of the β globin gene resulting in the substitution of the amino acid glutamic acid to glycine. It is a widely distributed hemoglobin with a relatively low prevalence of 0.86% in the Indo-Pak subcontinent, 1–3% in north-western India, 1–3% in the Black population in the Caribbean and North America and has also been reported among the English. It accounts for 55.6% of all the Hb variants seen in the Xenjiang province of China.

Hemoglobin E (HbE) is the most common abnormal hemoglobin in Southeast Asia. In India, the frequency ranges from 4% to 51% in the north eastern region and 3% to 4% in West Bengal in the east. The HbE mutation (β26 GAG→AAG) creates an alternative splice site and the βE chain is insufficiently synthesized, hence the phenotype of this disorder is that of a mild form of β thalassemia.

Though these 3 structural variants are prevalent in different regions of India, their interaction is increasingly seen in all states of the country due to migration of people to different regions for a better livelihood. There are very few reports on interaction of these commonly seen Hb variants and the phenotypic–genotypic presentation of these cases is important for genetic counseling and management.

HbF of patients with HbSD Punjab disease with variable clinical severity. The HbF values of 4 patients are not included as they were post blood transfusion

The genotypes of the patients were confirmed by restriction enzyme digestion and ARMS (Fig). Patients 1 to 15 were characterized as compound heterozygous for HbS and HbD Punjab whereas patients 16 to 19 were characterized as compound heterozygous for HbS and HbE. Patient nos. 20 to 22 were characterized as compound heterozygous for HbE and HbD Punjab.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

The 3 common β globin gene variants of hemoglobin, HbS, HbE and HbD Punjab are commonly seen in India, with HbS having a high prevalence in the central belt and some parts of western, eastern and southern India, HbE in the eastern and north eastern region whereas HbD is mostly seen in the north western part of India. These hemoglobin variants have been reported in different population groups. However, with migration and intermixing of the different populations from different geographic regions, occasional cases of HbSD Punjab and HbSE are being reported. There are several HbD variants like HbD Punjab, HbD Iran, HbD Ibadan. However, of these only HbD Punjab interacts with HbS to form a clinically significant condition as the glutamine residue facilitates polymerization of HbS. HbD Iran and HbD Ibadan are non-interacting and produce benign conditions like the sickle cell trait. The first case of HbSD Punjab disease was a brother and sister considered to have atypical sickle cell disease in 1934. This family was further reinvestigated and reported as the first case of HbD Los Angeles which has the same mutation as the HbD Punjab. Serjeant et al. reported HbD Punjab in an English parent in 6 out of 11 HbSD-Punjab disease cases. This has been suggested to be due to the stationing of nearly 50,000 British troops on the Indian continent for a period of 200 y and the introduction into Britain of their Anglo-Indian children.

HbSD Punjab disease shows a similar pattern to HbS homozygous on alkaline hemoglobin electrophoresis but can be differentiated on acid agar gel electrophoresis and on HPLC. In HbSD Punjab disease cases, the peripheral blood films show anisocytosis, poikilocytosis, target cells and irreversibly sickled cells. Values of HbF and HbA2 are similar to those in sickle homozygous cases. HbSD Punjab disease is characterized by a moderately severe hemolytic anemia.

Twenty-one cases of HbSDPunjab were reported by Serjeant of which 16 were reported by different workers among patients originating from Caucasian, Spanish, Australian, Irish, English, Portuguese, Black, American, Venezuelan, Caribbean, Mexican, Turkish and Jamaican backgrounds. Yavarian et al. 2009 reported a multi centric origin of HbD Punjab which in combination with HbS results in sickle cell disease. Patel et al. 2010 have also reported 12 cases of HbSD Punjab from the Orissa state of eastern India. Majority of these cases were symptomatic, presenting with chronic hemolytic anemia and frequent painful crises.

HbF levels >20% were seen in 4 out of our 11 clinically severe patients of HbSD-Punjab disease with the mean HbF levels of 16.8% in 8 clinically severe patients, while 3 clinically severe patients were post transfused. However, the 3 patients with a mild to moderate clinical presentation showed a mean HbF level of 8.6%. This is in contrast to the relatively milder clinical presentation associated with high HbF seen in patients with sickle cell anemia. This was also reported by Adekile et al. 2010 in 5 cases of HbS-DLos Angeles where high HbF did not ameliorate the severe clinical presentation seen in these patients.

These 15 cases of HbSDPunjab disease give us an overall idea of the severe clinical presentation of the disease in different regions of India. However the HbDPunjabE cases were milder or asymptomatic and the HbSE cases were moderately symptomatic. Since most of the cases of HbSDPunjab disease were clinically severe, it is important to pick up these cases during newborn screening and enroll them into a comprehensive care program with the other sickle cell disease patients with introduction of therapeutic interventions such as penicillin prophylaxis if required and pneumococcal immunization. In fact, 2 of our cases (No. 6 and 7) were identified during newborn screening for sickle cell disorders. The parents can be given information on home care and educated to detect symptoms that may lead to serious medical emergencies. The parents of these patients as well as the couples who are at risk of having a child with HbSDPunjab disease could also be counseled about the option of prenatal diagnosis in subsequent pregnancies. It is thus important to document the clinical and hematological presentation of compound heterozygotes with these common β globin chain variants.

Common Hematologic Problems in the Newborn Nursery

Jon F. Watchko
Pediatr Clin N Am – (2015) xxx-xxx
http://dx.doi.org/10.1016/j.pcl.2014.11.011

Common RBC disorders include hemolytic disease of the newborn, anemia, and polycythemia. Another clinically relevant hematologic issue in neonates to be covered herein is thrombocytopenia. Disorders of white blood cells will not be reviewed.

KEY POINTS

(1)               Early clinical jaundice or rapidly developing hyperbilirubinemia are often signs of hemolysis, the differential diagnosis of which commonly includes immune-mediated disorders, red-cell enzyme deficiencies, and red-cell membrane defects.

(2)             Knowledge of the maternal blood type and antibody screen is critical in identifying non-ABO alloantibodies in the maternal serum that may pose a risk for severe hemolytic disease in the newborn.

(3)             Moderate to severe thrombocytopenia in an otherwise well-appearing newborn strongly suggests immune-mediated (alloimmune or autoimmune) thrombocytopenia.

Hemolytic conditions in the neonate

1. Immune-mediated (positive direct Coombs test)  a. Rhesus blood group: Anti-D, -c, -C, -e, -E, CW, and several others

  b. Non-Rhesus blood groups: Kell, Duffy, Kidd, Xg, Lewis, MNS, and others

  c. ABO blood group: Anti-A, -B

2. Red blood cell (RBC) enzyme defects

  a. Glucose-6-phosphate dehydrogenase (G6PD) deficiency

  b. Pyruvate kinase deficiency

  c. Others

3. RBC membrane defects

  a. Hereditary spherocytosis

  b. Elliptocytosis

  c. Stomatocytosis

  d. Pyknocytosis

  e. Others

4. Hemoglobinopathies

  a. alpha-thalassemia

  b. gamma-thalassemia

Standard maternal antibody screeningAlloantibody                                 Blood Group

D, C, c, E, e, f, CW, V                     Rhesus

K, k, Kpa, Jsa                                  Kell

Fya, Fyb                                          Duffy

Jka, Jkb                                           Kidd

Xga                                                  Xg

Lea, Leb                                          Lewis

S, s, M, N                                        MNS

P1                                                    P

Lub                                                  Lutheran

Non-ABO alloantibodies reported to cause moderate to severe hemolytic disease of the newbornWithin Rh system: Anti-D, -c, -C, -Cw, -Cx, -e, -E, -Ew, -ce, -Ces, -Rh29, -Rh32, -Rh42, -f, -G, -Goa, -Bea, -Evans, -Rh17, -Hro, -Hr, -Tar, -Sec, -JAL, -STEM

Outside Rh system:  Anti-LW, -K, -k, -Kpa, -Kpb, -Jka, -Jsa, -Jsb, -Ku, -K11, -K22, -Fya, -M, -N, -S, -s, -U, -PP1 pk, -Dib, -Far, -MUT, -En3, -Hut, -Hil, -Vel, -MAM, -JONES, -HJK, -REIT

 

Red Blood Cell Enzymopathies

G6PD9 and pyruvate kinase (PK) deficiency are the 2 most common red-cell enzyme disorders associated with marked neonatal hyperbilirubinemia. Of these, G6PD deficiency is the more frequently encountered and it remains an important cause of kernicterus worldwide, including the United States, Canada, and the United Kingdom, the prevalence in Western countries a reflection in part of immigration patterns and intermarriage. The risk of kernicterus in G6PD deficiency also relates to the potential for unexpected rapidly developing extreme hyperbilirubinemia in this disorder associated with acute severe hemolysis.

Red Blood Cell Membrane Defects

Establishing a diagnosis of RBC membrane defects is classically based on the development of Coombs-negative hyperbilirubinemia, a positive family history, and abnormal RBC smear, albeit it is often difficult because newborns normally exhibit a marked variation in red-cell membrane size and shape. Spherocytes, however, are not often seen on RBC smears of hematologically normal newborns and this morphologic abnormality, when prominent, may yield a diagnosis of hereditary spherocytosis (HS) in the immediate neonatal period. Given that approximately 75% of families affected with hereditary spherocytosis manifest an autosomal dominant phenotype, a positive family history can often be elicited and provide further support for this diagnosis. More recently, Christensen and Henry highlighted the use of an elevated mean corpuscular hemoglobin concentration (MCHC) (>36.0 g/dL) and/or elevated ratio of MCHC to mean corpuscular volume, the latter they term the “neonatal HS index” (>0.36, likely >0.40) as screening tools for HS. An index of greater than 0.36 had 97% sensitivity, greater than 99% specificity, and greater than 99% negative predictive value for identifying HS in neonates. Christensen and colleagues also provided a concise update of morphologic RBC features that may be helpful in diagnosing this and other underlying hemolytic conditions in newborns.

The diagnosis of HS can be confirmed using the incubated osmotic fragility test when coupled with fetal red-cell controls or eosin-5-maleimide flow cytometry. One must rule out symptomatic ABO hemolytic disease by performing a direct Coombs test, as infants so affected also may manifest prominent micro-spherocytosis. Moreover, HS and symptomatic ABO hemolytic disease can occur in the same infant and result in severe hyperbilirubinemia and anemia.  Of other red-cell membrane defects, only hereditary elliptocytosis,  stomato-cytosis, and infantile pyknocytosis have been reported to exhibit significant hemolysis in the newborn period. Hereditary elliptocytosis and stomatocytosis are both rare. Infantile pyknocytosis, a transient red-cell membrane abnormality manifesting itself during the first few months of life, is more common.

Risk factors for bilirubin neurotoxicityIsoimmune hemolytic disease

G6PD deficiency

Asphyxia

Sepsis

Acidosis

Albumin less than 3.0 g/dL
Data from Maisels MJ, Bhutani VK, Bogen D, et al. Hyperbilirubinemia in the newborn infant > or 535 weeks’ gestation: an update with clarifications. Pediatrics 2009; 124:1193–8.

Polycythemia

Polycythemia (venous hematocrit 65%) in seen in infants across a range of conditions associated with active erythropoiesis or passive transfusion.76,77 They include, among others, placental insufficiency, the infant of a diabetic mother, recipient in twin-twin transfusion syndrome, and several aneuploidies, including trisomy. The clinical concern related to polycythemia is the risk for microcirculatory complications of hyperviscosity. However, determining which polycythemic infants are hyperviscous and when to intervene is a challenge.

 

 

Liver

Metabolic disorders presenting as liver disease

Germaine Pierre, Efstathia Chronopoulou
Paediatrics and Child Health 2013; 23(12): 509-514
The liver is a highly metabolically active organ and many inherited metabolic disorders have hepatic manifestations. The clinical presentation in these patients cannot usually be distinguished from liver disease due to acquired causes like infection, drugs or hematological disorders. Manifestations include acute and chronic liver failure, cholestasis and hepatomegaly. Metabolic causes of acute liver failure in childhood can be as high as 35%. Certain disorders like citrin deficiency and Niemann-Pick C disease may present in infancy with self-limiting cholestasis before presenting in later childhood or adulthood with irreversible disease. This article reviews important details from the history and clinical examination when evaluating the pediatric patient with suspected metabolic disease, the specialist and genetic tests when investigating, and also discusses specific disorders, their clinical course and treatment. The role of liver transplantation is also briefly discussed. Increased awareness of this group of disorders is important as in many cases, early diagnosis leads to early intervention with improved outcome. Diagnosis also allows genetic counselling and future family planning.

Adult liver disorders caused by inborn errors of metabolism: Review and update

Sirisak Chanprasert, Fernando Scaglia
Molecular Genetics and Metabolism 114 (2015) 1–10
http://dx.doi.org/10.1016/j.ymgme.2014.10.011

Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.

Inborn errors of metabolism (IEMs) are a group of genetic diseases characterized by abnormal processing of biochemical reactions, resulting in accumulation of toxic substances that could interfere with normal organ functions, and failure to synthesize essential compounds. IEMs are individually rare, but collectively numerous. The clinical presentations cover a broad spectrum and can involve almost any organ system. The age of onset is highly variable but IEMs afflict mostly the pediatric population.

Wilson disease is an autosomal recessive genetic disorder of copper metabolism. It is characterized by an abnormal accumulation of inorganic copper in various tissues, most notably in the liver and the brain, especially in the basal ganglia. The disease was first described in 1912 by Kinnier Wilson, and affects between 1 in 30,000 and 1 in 100,000 individuals. Clinical features are variable and depend on the extent  and the severity of copper deposition. Typically, patients tend to develop hepatic disease at a younger age than the neuropsychiatric manifestations. Individuals withWilson disease eventually succumb to complications of end stage liver disease or become debilitated from neurological problems, if they are left untreated.

The clinical presentations of Wilson disease are varied affecting many organ systems. However, the overwhelming majority of cases display hepatic and neurologic symptoms. In general, patients with hepatic disease present between the first and second decades of life although patients as young as 3 years old or over 50 years old have also been reported. The most common modes of presentations are acute self-limited hepatitis and chronic active hepatitis that are indistinguishable from other hepatic disorders although liver aminotransferases are generally much lower than in autoimmune or viral hepatitis. Acute fulminant hepatic failure is less common but is observed in approximately 3% of all cases of acute liver failure. Symptoms of acute liver failure include jaundice, coagulopathy, and hepatic encephalopathy. Cirrhosis can develop over time and may be clinically silent. Hepatocellular carcinoma (HCC) is rarely associated with Wilson disease, but may occur in the setting of cirrhosis and chronic inflammation.

Copper is an essential element, and is required for the proper functioning of various proteins and enzymes. The total body content of copper in a healthy adult individual is approximately 70–100 mg, while the daily requirements are estimated to be between 1 and 5 mg. Absorption occurs in the small intestine. Copper is taken up to the hepatocytes via the copper transporter hTR1. Once inside the cell, copper is bound to various proteins including metallothionein and glutathione, however, it is the metal chaperone, ATOX1 that helps direct copper to the ATP7B protein for intracellular transport and excretion. At the steady state, copper will be bound to ATP7B and is then incorporated to ceruloplasmin and secreted into the systemic circulation. When the cellular copper concentration arises, ATP7B protein will be redistributed from the trans-Golgi network to the prelysosomal vesicles facilitating copper excretion into the bile. The molecular defects in ATP7B lead to a reduction of copper excretion. Excess copper is accumulated in the liver causing tissue injury. The rate of accumulation of copper varies among individuals, and it may depend on other factors such as alcohol consumption, or viral hepatitis infections. If the liver damage is not severe, patients will accumulate copper in various tissues including the brain, the kidney, the eyes, and the musculoskeletal system leading to clinical disease. A failure of copper to incorporate into ceruloplasmin leads to secretion of the unsteady protein that has a shorter half-life, resulting in the reduced concentrations of ceruloplasmin seen in most patients with Wilson disease.

Wilson disease used to be a progressive fatal condition during the first half of the 20th century because there was no effective treatment available at that time. Penicillamine was the first pharmacologic agent introduced in 1956 for treating this condition. Penicillamine is a sulfhydryl-bearing amino acid cysteine doubly substituted with methyl groups. This drug acts as a chelating agent that promotes the urinary excretion of copper. It is rapidly absorbed in the gastrointestinal track, and over 80% of circulating penicillamine is excreted via the kidneys. Although it is very effective, approximately 10%–50% of Wilson disease patients with neuropsychiatric presentations may experience worsening of their symptoms, and often times the worsening symptoms may not be reversible.

Alpha1-antitrypsin deficiency

Alpha1-antitrypsin deficiency (AATD) is one of the most common genetic liver diseases in children and adults, affecting 1 in 2000 to 1 in 3000 live births worldwide. It is transmitted in an autosomal co-dominant fashion with variable expressivity. Alpha1 antitrypsin (A1AT) is a member of the serine protease inhibitor (SERPIN) family. Its function is to counteract the proteolytic effect of neutrophil elastase and other neutrophil proteases. Mutations in the SERPINA1, the gene encoding A1AT, result in changes in the protein structure with the PiZZ phenotype being the most common cause of liver and lung disease-associated AATDs. Although, it classically causes early onset chronic obstructive pulmonary disease (COPD) in adults, liver disease characterized by chronic inflammation, hepatic fibrosis, and cirrhosis is not uncommon in the adult population. Decreased plasma concentration of A1AT predisposes lung tissue to be more susceptible to injury from protease enzymes. However, the underlying mechanism of liver injury is different, and is believed to be caused by accumulation of polymerized mutant A1AT in the hepatocyte endoplasmic reticulum (ER). Currently, there is no specific treatment for liver disease-associated AATD, but A1AT augmentation therapy is available for patients affected with pulmonary involvement.

A1AT is a single-chain, 52-kDa polypeptide of approximately 394 amino acids [56]. It is synthesized in the liver, circulates in the plasma, and functions as an inhibitor of neutrophil elastase and other proteases such as cathepsin G, and proteinase 3. A1AT has a globular shape composed of two central β sheets surrounded by a small β sheet and nine α helices. The pathophysiology underlying liver disease is thought to be a toxic gain-of-function mutation associated with the PiZZ phenotypes. This hypothesis has been supported by the fact that null alleles which produce no detectable plasma A1AT, are not associated with liver disease. In addition, the transgenic mouse model of AATD PiZZ developed periodic acid-Schiff-positive diastase-resistant intrahepatic globule early in life similar to AATD patients. The PiZZ phenotype results in the blockade of the final processing of A1AT in the liver, as only 15% of the A1AT reaches the circulation whereas 85% of non-secreted protein is accumulated in the hepatocytes.

Citrin deficiency

Citrin deficiency is a relatively newly-defined autosomal recessive disease. It encompasses two different sub-groups of patients, neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), and adult onset citrullinemia type 2 (CTLN 2).

AGC2 exports aspartate out of the mitochondrial matrix in exchange for glutamate and a proton. Thus, this protein has an important role in ureagenesis and gluconeogenesis. In CTLN2, a defect in this protein is believed to limit the supply of aspartate for the formation of argininosuccinate in the cytosol resulting in impairment of ureagenesis. Interestingly, the mouse model of citrin deficiency (Ctrn−/−) fails to develop symptoms of CTLN2 suggesting that the mitochondrial aspartate is not the only source of ureagenesis. However, it should be noted that the rodent liver expresses higher glycerol-phosphate shuttle activity than the human counterpart. With the intact glycerol-phosphate dehydrogenase, it can compensate for the deficiency of AGC2, as demonstrated by the AGC2 and glycerol-phosphate dehydrogenase double knock-out mice that exhibit similar features to those observed in human CTLN2.

HFE-associated hemochromatosis

HFE-associated hemochromatosis is an inborn error of iron metabolism characterized by excessive iron storage resulting in tissue and organ damage. It is the most common autosomal recessive disorder in the Caucasian population, affecting 0.3%–0.5% of individuals of Northern European descent. The term “hemochromatosis” was coined in 1889 by the German pathologist Friedrich Daniel Von Recklinghausen, who described it as bronze stain of organs caused by a blood borne pigment.

The classic clinical triad of cirrhosis, diabetes, and bronze skin pigmentation is rarely observed nowadays given the early recognition, diagnosis, and treatment of this condition. The most common presenting symptoms are nonspecific including weakness, lethargy, and arthralgia.

The liver is a major site of iron storage in healthy individuals and as such it is the organ that is universally affected in HFE-associated hemochromatosis. Elevation of liver aminotransferases indicative of hepatocyte injury is the most common mode of presentation and it can be indistinguishable from other causes of hepatitis. Approximately 15%–40% of patients with HFE-associated hemochromatosis have other liver conditions, including chronic viral hepatitis B or C infection, nonalcoholic fatty liver disease, and alcoholic liver disease.

 

The liver in haemochromatosis

Rune J. Ulvik
Journal of Trace Elements in Medicine and Biology xxx (2014) xxx–xxx
http://dx.doi.org/10.1016/j.jtemb.2014.08.005

The review deals with genetic, regulatory and clinical aspects of iron homeostasis and hereditary hemochromatosis. Hemochromatosis was first described in the second half of the 19th century as a clinical entity characterized by excessive iron overload in the liver. Later, increased absorption of iron from the diet was identified as the pathophysiological hallmark. In the 1970s genetic evidence emerged supporting the apparent inheritable feature of the disease. And finally in 1996 a new “hemochromato-sis gene” called HFE was described which was mutated in about 85% of the patients. From the year2000 onward remarkable progress was made in revealing the complex molecular regulation of iron trafficking in the human body and its disturbance in hemochromatosis. The discovery of hepcidin and ferroportin and their interaction in regulating the release of iron from enterocytes and macrophages to plasma were important milestones. The discovery of new, rare variants of non-HFE-hemochromatosis was explained by mutations in the multicomponent signal transduction pathway controlling hepcidin transcription. Inhibited transcription induced by the altered function of mutated gene products, results in low plasma levels of hepcidin which facilitate entry of iron from enterocytes into plasma. In time this leads to progressive accumulation of iron and subsequently development of disease in the liver and other parenchymatous organs. Being the major site of excess iron storage and hepcidin synthesis the liver is a cornerstone in maintaining normal systemic iron homeostasis. Its central pathophysiological role in HFE-hemochromatosis with downgraded hepcidin synthesis, was recently shown by the finding that liver transplantation normalized the hepcidin levels in plasma and there was no sign of iron accumulation in the new liver.

Gastrointestinal

Decoding the enigma of necrotizing enterocolitis in premature infants

Roberto Murgas TorrazzaNan Li, Josef Neu
Pathophysiology 21 (2014) 21–27
http://dx.doi.org/10.1016/j.pathophys.2013.11.011

Necrotizing enterocolitis (NEC) is an enigmatic disease that affects primarily premature infants. It often occurs suddenly and when it occurs, treatment attempts at treatment often fail and results in death. If the infant survives, there is a significant risk of long term sequelae including neurodevelopmental delays. The pathophysiology of NEC is poorly understood and thus prevention has been difficult. In this review, we will provide an overview of why progress may be slow in our understanding of this disease, provide a brief review diagnosis, treatment and some of the current concepts about the pathophysiology of this disease.

Necrotizing enterocolitis (NEC) has been reported since special care units began to house preterm infants .With the advent of modern neonatal intensive care approximately 40 years ago, the occurrence and recognition of the disease markedly increased. It is currently the most common and deadly gastro-intestinal illness seen in preterm infants. Despite major efforts to better understand, treat and prevent this devastating disease, little if any progress has been made during these 4 decades. Underlying this lack of progress is the fact that what is termed “NEC” is likely more than one disease, or mimicked by other diseases, each with a different etiopathogenesis.

Human gut microbiome

Human gut microbiome

Term or near term infants with “NEC” when compared to matched controls usually have occurrence of their disease in the first week after birth, have a significantly higher frequency of prolonged rupture of membranes, chorio-amnionitis, Apgar score <7 at 1 and 5 min, respiratory problems, congenital heart disease, hypoglycemia, and exchange transfusions. When a “NEC” like illness presents in term or near term infants, it should be noted that these are likely to be distinct in pathogenesis than the most common form of NEC and should be differentiated as such.

The infants who suffer primary ischemic necrosis are term or near term infants (although this can occur in preterms) who have concomitant congenital heart disease, often related to poor left ventricular output or obstruction. Other factors that have been associated with primary ischemia are maternal cocaine use, hyperviscosity caused by polycythemia or a severe antecedent hypoxic–ischemic event. Whether the dis-ease entity that results from this should be termed NEC can be debated on historical grounds, but the etiology is clearly different from the NEC seen in most preterm infants.

The pathogenesis of NEC is uncertain, and the etiology seems to be multifactorial. The “classic” form of NEC is highly associated with prematurity; intestinal barrier immaturity, immature immune response, and an immature regulation of intestinal blood flow (Fig.). Although genetics appears to play a role, the environment, especially a dysbiotic intestinal microbiota acting in concert with host immaturities predisposes the preterm infant to disruption of the intestinal epithelia, increased permeability of tight junctions, and release of inflammatory mediators that leads to intestinal mucosa injury and therefore development of necrotizing enterocolitis.

NEC is a multifactorial disease

NEC is a multifactorial disease

What causes NEC? NEC is a multifactorial disease with an interaction of several etiophathologies

It is clear from this review that there are several entities that have been described as NEC. What is also clear is that despite having some overlap in the final parts of the pathophysiologic cascade that lead to necrosis, the disease that is most commonly seen in the preterm infant is likely to have an origin that differs markedly from that seen in term infants with congenital heart disease or severe hypoxic–ischemic injury. Thus, epidemiologic studies will need to differentiate these entities, if the aim is to dissect common features that are most highly associated with development of the disease. At this juncture, we areleft with more of a population based preventative approach, where the use of human milk, evidence based feeding guide-lines, considerations for microbial therapy once these are proved safe and effective and approved as such by regulatory authorities, and perhaps even measures that prevent prematurity will have a major impact on this devastating disease.

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines, including thymic stromal lymphoprotein (TSLP), transforming growthfactor (TGF), and interleukin-10 (IL-10), that can influence pro-inflammatory cytokine production by dendritic cells (DC) and macrophages present in the laminapropria (GALT) and Peyer’s patches. Signals from commensal organisms may influence tissue-specific functions, resulting in T-cell expansion and regulation of the numbers of Th-1,
Th-2, and Th-3 cells. Also modulated by the microbiota, other IEC derived factors, including APRIL (a proliferation-inducing ligand),B-cell activating factor (BAFF), secretory leukocyte peptidase inhibitor (SLPI), prostaglandin E2(PGE2), and other metabolites, directly regulate functions ofboth antigen presenting cells and lymphocytes in the intestinal ecosystem. NK: natural killer cell; LN: lymph node; DC: dendritic cells.Modified from R. Sharma, C. Young, M. Mshvildadze, J. Neu, Intestinal microbiota does it play a role in diseases of the neonate? NeoReviews 10 (4) (2009)e166, with permission

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Current Issues in the Management of Necrotizing Enterocolitis

Marion C. W. Henry and R. Lawrence Moss
Seminars in Perinatology, 2004; 28(3): 221-233
http://dx.doi.org:/10.1053/j.semperi.2004.03.010

Necrotizing enterocolitis is almost exclusively a disease of prematurity, with 90% of all cases occurring in premature infants and 90% of those infants weighing less than 2000 g. Prematurity is the only risk factor for necrotizing enterocolitis consistently identified in case control studies and the disease is rare in countries where prematurity is uncommon such as Japan and Sweden. When necrotizing enterocolitis does occur in full-term infants, it appears to by a somewhat different disease, typically associated with some predisposing condition.

NEC occurs in one to three in 1,000 live births and most commonly affects babies born between 30-32 weeks. It is most often diagnosed during the second week of life and occurs more often in previously fed infants. The mortality from NEC has been cited as 10% to 50% of all NEC cases. Surgical mortality has decreased over the last several decades from 70% to between 20 and 50%. The incremental cost per case of acute hospital care is estimated at $74 to 186 thousand compared to age matched controls, not including additional costs of long term care for the infants’ with lifelong morbidity. Survivors may develop short bowel syndrome, recurrent bouts of catheter-related sepsis, malabsorption, malnutrition, and TPN induced liver failure.

Although extensive research concerning the pathophysiology of necrotizing enterocolitis has occurred, a complete understanding has not been fully elucidated. The classic histologic finding is coagulation necrosis; present in over 90% of specimens. This finding suggests the importance of ischemia in the pathogenesis of NEC. Inflammation and bacterial overgrowth also are present. These findings support the assumptions by Kosloske that NEC occurs by the interaction of 3 events:

  • intestinal ischemia,
  • colonization by pathogenic bacteria and
  • excess protein substrate in the intestinal lumen.

Additionally, the immunologic immaturity of the neonatal gut has been implicated in the development of NEC. Reparative tissue changes including epithelial regeneration, formation of granulation tissue and fibrosis, and mixed areas of acute and chronic inflammatory changes suggest that the pathogenesis of NEC may involve a chronic process of injury and repair.

Premature newborns born prior to the 32nd week of gestational age may have compromised intestinal peristalsis and decreased motility. These motility problems may lead to poor clearance of bacteria, and subsequent bacterial overgrowth. Premature infants also have an immature intestinal tract in terms of immunologic immunity.

There are fewer functional B lymphocytes present and the ability to produce sufficient secretory IgA is reduced. Pepsin, gastric acid and mucus are also not produced as well in prematurity. All of these factors may contribute to the limited proliferation of intestinal flora and the decreased binding of these flora to mucosal cells (Fig).

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC.

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis.

As understanding of the pathophysiology of necrotizing enterocolitis continues to evolve, a unifying concept is emerging. Initially, there is likely a subclinical insult leading to NEC. This may arise from a brief episode of hypoxia or infection. With colonization of the intestines, bacteria bind to the injured mucosa eliciting an inflammatory response which leads to further inflammation.

Intestinal Microbiota Development in Preterm Neonates and Effect of Perinatal Antibiotics

Silvia Arboleya, Borja Sanchez,, Christian Milani, Sabrina Duranti, et al.
Pediatr 2014;-:—).  http://dx.doi.org/10.1016/j.jpeds.2014.09.041

Objectives Assess the establishment of the intestinal microbiota in very low birth-weight preterm infants and to evaluate the impact of perinatal factors, such as delivery mode and perinatal antibiotics.
Study design We used 16S ribosomal RNA gene sequence-based microbiota analysis and quantitative polymerase chain reaction to evaluate the establishment of the intestinal microbiota. We also evaluated factors affecting the microbiota, during the first 3 months of life in preterm infants (n = 27) compared with full-term babies (n = 13).
Results Immaturity affects the microbiota as indicated by a reduced percentage of the family Bacteroidaceae during the first months of life and by a higher initial percentage of Lactobacillaceae in preterm infants compared with full term infants. Perinatal antibiotics, including intrapartum antimicrobial prophylaxis, affects the gut microbiota, as indicated by increased Enterobacteriaceae family organisms in the infants.

Human gut microbiome

Human gut microbiome

Conclusions Prematurity and perinatal antibiotic administration strongly affect the initial establishment of microbiota with potential consequences for later health.

Ischemia and necrotizing enterocolitis: where, when, and how

Philip T. Nowicki
Seminars in Pediatric Surgery (2005) 14, 152-158
http://dx.doi.org:/10.1053/j.sempedsurg.2005.05.003

While it is accepted that ischemia contributes to the pathogenesis of necrotizing enterocolitis (NEC), three important questions regarding this role subsist. First, where within the intestinal circulation does the vascular pathophysiology occur? It is most likely that this event begins within the intramural microcirculation, particularly the small arteries that pierce the gut wall and the submucosal arteriolar plexus insofar as these represent the principal sites of resistance regulation in the gut. Mucosal damage might also disrupt the integrity or function of downstream villous arterioles leading to damage thereto; thereafter, noxious stimuli might ascend into the submucosal vessels via downstream venules and lymphatics. Second, when during the course of pathogenesis does ischemia occur? Ischemia is unlikely to the sole initiating factor of NEC; instead, it is more likely that ischemia is triggered by other events, such as inflammation at the mucosal surface. In this context, it is likely that ischemia plays a secondary, albeit critical role in disease extension. Third, how does the ischemia occur? Regulation of vascular resistance within newborn intestine is principally determined by a balance between the endothelial production of the vasoconstrictor peptide endothelin-1 (ET-1) and endothelial production of the vasodilator free radical nitric oxide (NO). Under normal conditions, the balance heavily favors NO-induced vasodilation, leading to a low resting resistance and high rate of flow. However, factors that disrupt endothelial cell function, eg, ischemia-reperfusion, sustained low-flow perfusion, or proinflammatory mediators, alter the ET-1:NO balance in favor of constriction. The unique ET-1–NO interaction thereafter might facilitate rapid extension of this constriction, generating a viscous cascade wherein ischemia rapidly extends into larger portions of the intestine.

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation. Small mesenteric arteries pierce the muscularis layers and terminate in the submucosa where they give rise to 1A (1st order) arterioles. 2A (2nd order) arterioles arise from the 1A. Although not shown here, these 2A arterioles connect merge with several 1A arterioles, thus generating an arteriolar plexus, or manifold that serves to pressurize the terminal downstream microvasculature. 3A (3rd order) arterioles arise from the 2A and proceed to the mucosa, giving off a 4A branch just before descent into the mucosa. This 4A vessel travels to the muscularis layers. Each 3A vessel becomes the single arteriole perfusing each villus.

Collectively, these studies indicate that disruption of endothelial cell function has the potential to disrupt the normal balance between NO and ET-1 within the newborn intestinal circulation, and that such an event can generate significant ischemia. In this context, it is important to note that NO and ET-1 each regulate the expression and activity of the other. An increased [NO] within the microvascular environment reduces ET-1 expression and compromises ligand binding to the ETA receptor (thus decreasing its contractile efficacy), while ET-1 compromises eNOS expression. Thus, factors that upset the balance between NO and ET-1 will have an immediate and direct effect on vascular tone, but also exert an additional indirect effect by extenuating the disruption of balance between these two factors.

It is not difficult to construct a hypothesis that links the perturbations of I/R and sustained low-flow perfusion with an initial inflammatory insult. Initiation of an inflammatory process at the mucosal–luminal interface could have a direct impact on villus and mucosal 3A arterioles, damaging arteriolar integrity and disrupting villus hemodynamics. Ascent of proinflammatory mediators to the submucosal 1A–2A arteriolar plexus could occur via draining venules and lymphatics, generating damage to vascular effector systems therein; these mediators might include cytokines and platelet activating factor, as these elements have been recovered from human infants with NEC. This event, coupled with a generalized loss of 3A flow throughout a large portion of the mucosal surface, could compromise flow rate within the submucosal arteriolar plexus.

Necrotizing enterocolitis: An update

Loren Berman, R. Lawrence Moss
Seminars in Fetal & Neonatal Medicine 16 (2011) 145e150
http://dx.doi.org:/10.1016/j.siny.2011.02.002

Necrotizing enterocolitis (NEC) is a leading cause of death among patients in the neonatal intensive care unit, carrying a mortality rate of 15e30%. Its pathogenesis is multifactorial and involves an over reactive response of the immune system to an insult. This leads to increased intestinal permeability, bacterial translocation, and sepsis. There are many inflammatory mediators involved in this process, but thus far none has been shown to be a suitable target for preventive or therapeutic measures. NEC usually occurs in the second week of life after the initiation of enteral feeds, and the diagnosis is made based on physical examination findings, laboratory studies, and abdominal radiographs. Neonates with NEC are followed with serial abdominal examinations and radiographs, and may require surgery or primary peritoneal drainage for perforation or necrosis. Many survivors are plagued with long term complications including short bowel syndrome, abnormal growth, and neurodevelopmental delay. Several evidence-based strategies exist that may decrease the incidence of NEC including promotion of human breast milk feeding, careful feeding advancement, and prophylactic probiotic administration in at-risk patients. Prevention is likely to have the greatest impact on decreasing mortality and morbidity related to NEC, as little progress has been made with regard to improving outcomes for neonates once the disease process is underway.

Immune Deficiencies

Primary immunodeficiencies: A rapidly evolving story

Nima Parvaneh, Jean-Laurent Casanova,  LD Notarangelo, ME Conley
J Allergy Clin Immunol 2013;131:314-23.
http://dx.doi.org/10.1016/j.jaci.2012.11.051

The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.

Combined Immunodeficiencies

  • T-cell receptor a gene mutation: T-cell receptor ab1 T-cell depletion

T cells comprise 2 distinct lineages that express either ab or gd T-cell receptor (TCR) complexes that perform different tasks in immune responses. During T-cell maturation, the precise order and efficacy of TCR gene rearrangements determine the fate of the cells. Productive β-chain gene rearrangement produces a pre-TCR on the cell surface in association with pre-Tα invariant peptide (β-selection). Pre-TCR signals promote α-chain recombination and transition to a double-positive stage (CD41CD81). This is the prerequisite for central tolerance achieved through positive and negative selection of thymocytes.

  • Ras homolog gene family member H deficiency: Loss of naive T cells and persistent human papilloma virus infections
  • MST1 deficiency: Loss of naive T cells

New insight into the role of MST1 as a critical regulator of T-cell homing and function was provided by the characterization of 8 patients from 4 unrelated families who had homozygous nonsense mutations in STK4, the gene encoding MST1. MST1 was originally identified as an ubiquitously expressed kinase with structural homology to yeast Ste. MST1 is the mammalian homolog of the Drosophila Hippo protein, controlling cell growth, apoptosis, and tumorigenesis. It has both proapoptotic and antiapoptotic functions.

  • Lymphocyte-specific protein tyrosine kinase deficiency: T-cell deficiency with CD41 lymphopenia

Defects in pre-TCR– and TCR-mediated signaling lead to aberrant T-cell development and function (Fig). One of the earliest biochemical events occurring after engagement of the (pre)-TCR is the activation of lymphocyte-specific protein tyrosine kinase (LCK), a member of the SRC family of protein tyrosine kinases. This kinase then phosphorylates immunoreceptor tyrosine-based activation motifs of intracellular domains of CD3 subunits. Phosphorylated immunoreceptor tyrosine-based activation motifs recruit z-chain associated protein kinase of 70 kDa, which, after being phosphorylated by LCK, is responsible for activation of critical downstream events. Major consequences include activation of the membrane-associated enzyme phospholipase Cg1, activation of the mitogen-activated protein kinase, nuclear translocation of nuclear factor kB (NFkB), and Ca21/Mg21 mobilization. Through these pathways, LCK controls T-cell development and activation. In mice lacking LCK, T-cell development in the thymus is profoundly blocked at an early double-negative stage.

TCR signaling

TCR signaling

TCR signaling. Multiple signal transduction pathways are stimulated through the TCR. These pathways collectively activate transcription factors that organize T-cell survival, proliferation, differentiation, homeostasis, and migration. Mutant molecules in patients with TCR-related defects are indicated in red.

  • Uncoordinated 119 deficiency: Idiopathic CD41 lymphopenia

Idiopathic CD41 lymphopenia (ICL) is a very heterogeneous clinical entity that is defined, by default, by persistent CD41 T-cell lymphopenia (<300 cells/mL or <20% of total T cells) in the absence of HIV infection or any other known cause of immunodeficiency.

Well-Defined Syndromes with Immunodeficiency

  • Wiskott-Aldrich syndrome protein–interacting protein deficiency: Wiskott-Aldrich syndrome-like phenotype

In hematopoietic cells Wiskott-Aldrich syndrome protein (WASP) is stabilized through forming a complex with WASP interacting protein (WIP).

  • Phospholipase Cg2 gain-of-function mutations: Cold urticaria, immunodeficie