Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘lifestyle’


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A heart-healthy diet has been the basis of atherosclerotic cardiovascular disease (ASCVD) prevention and treatment for decades. The potential cardiovascular (CV) benefits of specific individual components of the “food-ome” (defined as the vast array of foods and their constituents) are still incompletely understood, and nutritional science continues to evolve.

 

The scientific evidence base in nutrition is still to be established properly. It is because of the complex interplay between nutrients and other healthy lifestyle behaviours associated with changes in dietary habits. However, several controversial dietary patterns, foods, and nutrients have received significant media exposure and are stuck by hype.

 

Decades of research have significantly advanced our understanding of the role of diet in the prevention and treatment of ASCVD. The totality of evidence includes randomized controlled trials (RCTs), cohort studies, case-control studies, and case series / reports as well as systematic reviews and meta-analyses. Although a robust body of evidence from RCTs testing nutritional hypotheses is available, it is not feasible to obtain meaningful RCT data for all diet and health relationships.

 

Studying preventive diet effects on ASCVD outcomes requires many years because atherosclerosis develops over decades and may be cost-prohibitive for RCTs. Most RCTs are of relatively short duration and have limited sample sizes. Dietary RCTs are also limited by frequent lack of blinding to the intervention and confounding resulting from imperfect diet control (replacing 1 nutrient or food with another affects other aspects of the diet).

 

In addition, some diet and health relationships cannot be ethically evaluated. For example, it would be unethical to study the effects of certain nutrients (e.g., sodium, trans fat) on cardiovascular disease (CVD) morbidity and mortality because they increase major risk factors for CVD. Epidemiological studies have suggested associations among diet, ASCVD risk factors, and ASCVD events. Prospective cohort studies yield the strongest observational evidence because the measurement of dietary exposure precedes the development of the disease.

 

However, limitations of prospective observational studies include: imprecise exposure quantification; co-linearity among dietary exposures (e.g., dietary fiber tracks with magnesium and B vitamins); consumer bias, whereby consumption of a food or food category may be associated with non-dietary practices that are difficult to control (e.g., stress, sleep quality); residual confounding (some non-dietary risk factors are not measured); and effect modification (the dietary exposure varies according to individual/genetic characteristics).

 

It is important to highlight that many healthy nutrition behaviours occur with other healthy lifestyle behaviours (regular physical activity, adequate sleep, no smoking, among others), which may further confound results. Case-control studies are inexpensive, relatively easy to do, and can provide important insight about an association between an exposure and an outcome. However, the major limitation is how the study population is selected or how retrospective data are collected.

 

In nutrition studies that involve keeping a food diary or collecting food frequency information (i.e., recall or record), accurate memory and recording of food and nutrient intake over prolonged periods can be problematic and subject to error, especially before the diagnosis of disease.

 

The advent of mobile technology and food diaries may provide opportunities to improve accuracy of recording dietary intake and may lead to more robust evidence. Finally, nutrition science has been further complicated by the influences of funding from the private sector, which may have an influence on nutrition policies and practices.

 

So, the future health of the global population largely depends on a shift to healthier dietary patterns. Green leafy vegetables and antioxidant suppliments have significant cardio-protective properties when consumed daily. Plant-based proteins are significantly more heart-healthy compared to animal proteins.

 

However, in the search for the perfect dietary pattern and foods that provide miraculous benefits, consumers are vulnerable to unsubstantiated health benefit claims. As clinicians, it is important to stay abreast of the current scientific evidence to provide meaningful and effective nutrition guidance to patients for ASCVD risk reduction.

 

Available evidence supports CV benefits of nuts, olive oil and other liquid vegetable oils, plant-based diets and plant-based proteins, green leafy vegetables, and antioxidant-rich foods. Although juicing may be of benefit for individuals who would otherwise not consume adequate amounts of fresh fruits and vegetables, caution must be exercised to avoid excessive calorie intake. Juicing of fruits / vegetables with pulp removal increases calorie intake. Portion control is necessary to avoid weight gain and thus cardiovascular health.

 

There is currently no evidence to supplement regular intake of antioxidant dietary supplements. Gluten is an issue for those with gluten-related disorders, and it is important to be mindful of this in routine clinical practice; however, there is no evidence for CV or weight loss benefits, apart from the potential caloric restriction associated with a gluten free diet.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/28254181

 

https://www.sciencedirect.com/science/article/pii/S0735109713060294?via%3Dihub

 

http://circ.ahajournals.org/content/119/8/1161

 

http://refhub.elsevier.com/S0735-1097(17)30036-0/sref6

 

https://www.scopus.com/record/display.uri?eid=2-s2.0-0031709841&origin=inward&txGid=af40773f7926694c7f319d91efdcd40c

 

https://www.magonlinelibrary.com/doi/10.12968/hosp.2000.61.4.1875

 

https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548255

 

https://pharmaceuticalintelligence.com/2018/05/31/supplements-offer-little-cv-benefit-and-some-are-linked-to-harm-in-j-am-coll-cardiol/

Advertisements

Read Full Post »


Decline in Sperm Count – Epigenetics, Well-being and the Significance for Population Evolution and Demography

 

Dr. Marc Feldman, Expert Opinion on the significance of Sperm Count Decline on the Future of Population Evolution and Demography

Dr. Sudipta Saha, Effects of Sperm Quality and Quantity on Human Reproduction

Dr. Aviva Lev-Ari, Psycho-Social Effects of Poverty, Unemployment and Epigenetics on Male Well-being, Physiological Conditions affecting Sperm Quality and Quantity

 

UPDATED on 2/3/2018

Nobody Really Knows What Is Causing the Overdose Epidemic, But Here Are A Few Theories

https://www.buzzfeed.com/danvergano/whats-causing-the-opioid-crisis?utm_term=.kbJPMgaQo4&utm_source=BrandeisNOW%2BWeekly&utm_campaign=58ada49a84-EMAIL_CAMPAIGN_2018_01_29&utm_medium=email#.uugW6mx1dG

 

Recent studies concluded via rigorous and comprehensive analysis found that Sperm Count (SC) declined 52.4% between 1973 and 2011 among unselected men from western countries, with no evidence of a ‘leveling off’ in recent years. Declining mean SC implies that an increasing proportion of men have sperm counts below any given threshold for sub-fertility or infertility. The high proportion of men from western countries with concentration below 40 million/ml is particularly concerning given the evidence that SC below this threshold is associated with a decreased monthly probability of conception.

1.Temporal trends in sperm count: a systematic review and meta-regression analysis 

Hagai Levine, Niels Jørgensen, Anderson Martino‐Andrade, Jaime Mendiola, Dan Weksler-Derri, Irina Mindlis, Rachel Pinotti, Shanna H SwanHuman Reproduction Update, July 25, 2017, doi:10.1093/humupd/dmx022.

Link: https://academic.oup.com/humupd/article-lookup/doi/10.1093/humupd/dmx022.

2. Sperm Counts Are Declining Among Western Men – Interview with Dr. Hagai Levine

https://news.afhu.org/news/sperm-counts-are-declining-among-western-men?utm_source=Master+List&utm_campaign=dca529d919-EMAIL_CAMPAIGN_2017_07_27&utm_medium=email&utm_term=0_343e19a421-dca529d919-92801633

3. Trends in Sperm Count – Biological Reproduction Observations

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4. Long, mysterious strips of RNA contribute to low sperm count – Long non-coding RNAs can be added to the group of possible non-structural effects, possibly epigenetic, that might regulate sperm counts.

http://casemed.case.edu/cwrumed360/news-releases/release.cfm?news_id=689

https://scienmag.com/long-mysterious-strips-of-rna-contribute-to-low-sperm-count/

Dynamic expression of long non-coding RNAs reveals their potential roles in spermatogenesis and fertility

Published: 29 July 2017
Thus, we postulated that some lncRNAs may also impact mammalian spermatogenesis and fertility. In this study, we identified a dynamic expression pattern of lncRNAs during murine spermatogenesis. Importantly, we identified a subset of lncRNAs and very few mRNAs that appear to escape meiotic sex chromosome inactivation (MSCI), an epigenetic process that leads to the silencing of the X- and Y-chromosomes at the pachytene stage of meiosis. Further, some of these lncRNAs and mRNAs show strong testis expression pattern suggesting that they may play key roles in spermatogenesis. Lastly, we generated a mouse knock out of one X-linked lncRNA, Tslrn1 (testis-specific long non-coding RNA 1), and found that males carrying a Tslrn1 deletion displayed normal fertility but a significant reduction in spermatozoa. Our findings demonstrate that dysregulation of specific mammalian lncRNAs is a novel mechanism of low sperm count or infertility, thus potentially providing new biomarkers and therapeutic strategies.

This article presents two perspectives on the potential effects of Sperm Count decline.

One Perspective identifies Epigenetics and male well-being conditions

  1. as a potential explanation to the Sperm Count decline, and
  2. as evidence for decline in White male longevity in certain geographies in the US since the mid 80s.

The other Perspective, evaluates if Sperm Count Decline would have or would not have a significant long term effects on Population Evolution and Demography.

The Voice of Prof. Marc Feldman, Stanford University – Long term significance of Sperm Count Decline on Population Evolution and Demography

Poor sperm count appears to be associated with such demographic statistics as life expectancy (1), infertility (2), and morbidity (3,4). The meta-analysis by Levine et al. (5) focuses on the change in sperm count of men from North America, Europe, Australia, and New Zealand, and shows a more than 50% decline between 1973 and 2011. Although there is no analysis of potential environmental or lifestyle factors that could contribute to the estimated decline in sperm count, Levine et al. speculate that this decline could be a signal for other negative changes in men’s health.

Because this study focuses mainly on Western men, this remarkable decline in sperm count is difficult to associate with any change in actual fertility, that is, number of children born per woman. The total fertility rate in Europe, especially Italy, Spain, and Germany, has slowly declined, but age at first marriage has increased at the same time, and this increase may be more due to economic factors than physiological changes.

Included in Levine et al.’s analysis was a set of data from “Other” countries from South America, Asia, and Africa. Sperm count in men from these countries did not show significant trends, which is interesting because there have been strong fertility declines in Asia and Africa over the same period, with corresponding increases in life expectancy (once HIV is accounted for).

What can we say about the evolutionary consequences for humans of this decrease? The answer depends on the minimal number of sperm/ml/year that would be required to maintain fertility (per woman) at replacement level, say 2.1 children, over a woman’s lifetime. Given the smaller number of ova produced per woman, a change in the ovulation statistics of women would be likely to play a larger role in the total fertility rate than the number of sperm/ejaculate/man. In other words, sperm count alone, absent other effects on mortality during male reproductive years, is unlikely to tell us much about human evolution.

Further, the major declines in fertility over the 38-year period covered by Levine et al. occurred in China, India, and Japan. Chinese fertility has declined to less than 1.5 children per woman, and in Japan it has also been well below 1.5 for some time. These declines have been due to national policies and economic changes, and are therefore unlikely to signal genetic changes that would have evolutionary ramifications. It is more likely that cultural changes will continue to be the main drivers of fertility change.

The fastest growing human populations are in the Muslim world, where fertility control is not nearly as widely practiced as in the West or Asia. If this pattern were to continue for a few more generations, the cultural evolutionary impact would swamp any effects of potentially declining sperm count.

On the other hand, if the decline in sperm count were to be discovered to be associated with genetic and/or epigenetic phenotypic effects on fetuses, newborns, or pre-reproductive humans, for example, due to stress or obesity, then there would be cause to worry about long-term evolutionary problems. As Levine et al. remark, “decline in sperm count might be considered as a ‘canary in the coal mine’ for male health across the lifespan”. But to date, there is little evidence that the evolutionary trajectory of humans constitutes such a “coal mine”.

References

  1. Jensen TK, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. 2009. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol 170: 559-565.
  2. Eisenberg ML, Li S, Behr B, Cullen MR, Galusha D, Lamb DJ, Lipshultz LI. 2014. Semen quality, infertility and mortality in the USA. Hum Reprod 29: 1567-1574.
  3. Eisenberg ML, Li S, Cullen MR, Baker LC. 2016. Increased risk of incident chronic medical conditions in infertile men: analysis of United States claims data. Fertil Steril 105: 629-636.
  4. Latif T, Kold Jensen T, Mehlsen J, Holmboe SA, Brinth L, Pors K, Skouby SO, Jorgensen N, Lindahl-Jacobsen R. Semen quality is a predictor of subsequent morbidity. A Danish cohort study of 4,712 men with long-term follow-up. Am J Epidemiol. Doi: 10.1093/aje/kwx067. (Epub ahead of print]
  5. Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, Pinotti R, Swan SH. 2017. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update pp. 1-14. Doi: 10.1093/humupd/dmx022.

SOURCE

From: Marcus W Feldman <mfeldman@stanford.edu>

Date: Monday, July 31, 2017 at 8:10 PM

To: Aviva Lev-Ari <aviva.lev-ari@comcast.net>

Subject: Fwd: text of sperm count essay

Psycho-Social Effects of Poverty, Unemployment and Epigenetics on Male Well-being, Physiological Conditions as POTENTIAL effects on Sperm Quality and Quantity and Evidence of its effects on Male Longevity

The Voice of Carol GrahamSergio Pinto, and John Juneau II , Monday, July 24, 2017, Report from the Brookings Institute

  1. The IMPACT of Well-being, Stress induced by Worry, Pain, Perception of Hope related to Employment and Lack of employment on deterioration of Physiological Conditions as evidence by Decrease Longevity

  2. Epigenetics and Environmental Factors

The geography of desperation in America

Carol GrahamSergio Pinto, and John Juneau II Monday, July 24, 2017, Report from the Brookings Institute

In recent work based on our well-being metrics in the Gallup polls and on the mortality data from the Centers for Disease Control and Prevention, we find a robust association between lack of hope (and high levels of worry) among poor whites and the premature mortality rates, both at the individual and metropolitan statistical area (MSA) levels. Yet we also find important differences across places. Places come with different economic structures and identities, community traits, physical environments and much more. In the maps below, we provide a visual picture of the differences in in hope for the future, worry, and pain across race-income cohorts across U.S. states. We attempted to isolate the specific role of place, controlling for economic, socio-demographic, and other variables.

One surprise is the low level of optimism and high level of worry in the minority dense and generally “blue” state of California, and high levels of pain and worry in the equally minority dense and “blue” states of New York and Massachusetts. High levels of income inequality in these states may explain these patterns, as may the nature of jobs that poor minorities hold.

We cannot answer many questions at this point. What is it about the state of Washington, for example, that is so bad for minorities across the board? Why is Florida so much better for poor whites than it is for poor minorities? Why is Nevada “good” for poor white optimism but terrible for worry for the same group? One potential issue—which will enter into our future analysis—is racial segregation across places. We hope that the differences that we have found will provoke future exploration. Readers of this piece may have some contributions of their own as they click through the various maps, and we welcome their input. Better understanding the role of place in the “crisis” of despair facing our country is essential to finding viable solutions, as economic explanations, while important, alone are not enough.

https://www.brookings.edu/research/the-geography-of-desperation-in-america/?utm_medium=social&utm_source=facebook&utm_campaign=global

 

Read Full Post »


Trends in Sperm Count

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

There has been a genuine decline in semen quality over the past 50 years. There is lot of controversy about this as there are limitations in studies that have attempted to address it. Sperm count is of considerable public health importance for several reasons. First, sperm count is closely linked to male fecundity and is a crucial component of semen analysis, the first step to identify male factor infertility.

Reduced sperm count is associated with cryptorchidism, hypospadias and testicular cancer. It may be associated with multiple environmental influences, including endocrine disrupting chemicals, pesticides, heat and lifestyle factors, including diet, stress, smoking and BMI. Therefore, sperm count may sensitively reflect the impacts of the modern environment on male health throughout the life span.

This study provided a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group. Analyzing trends by birth cohorts instead of year of sample collection may aid in assessing the causes of the decline (prenatal or in adult life) but was not feasible owing to lack of information.

This rigorous and comprehensive analysis found that SC declined 52.4% between 1973 and 2011 among unselected men from western countries, with no evidence of a ‘leveling off’ in recent years. Declining mean SC implies that an increasing proportion of men have sperm counts below any given threshold for sub-fertility or infertility. The high proportion of men from western countries with concentration below 40 million/ml is particularly concerning given the evidence that SC below this threshold is associated with a decreased monthly probability of conception.

Declines in sperm count have implications beyond fertility and reproduction. The decline reported in this study is consistent with reported trends in other male reproductive health indicators, such as testicular germ cell tumors, cryptorchidism, onset of male puberty and total testosterone levels. The public health implications are even wider. Recent studies have shown that poor sperm count is associated with overall morbidity and mortality. While the current study is not designed to provide direct information on the causes of the observed declines, sperm count has been plausibly associated with multiple environmental and lifestyle influences, both prenatally and in adult life. In particular, endocrine disruption from chemical exposures or maternal smoking during critical windows of male reproductive development may play a role in prenatal life, while lifestyle changes and exposure to pesticides may play a role in adult life.

These findings strongly suggest a significant decline in male reproductive health, which has serious implications beyond fertility concerns. Research on causes and implications of this decline is urgently needed.

 

REFERENCES

Temporal trends in sperm count: a systematic review and meta-regression analysis 

Hagai Levine, Niels Jørgensen, Anderson Martino‐Andrade, Jaime Mendiola, Dan Weksler-Derri, Irina Mindlis, Rachel Pinotti, Shanna H Swan. Human Reproduction Update, July 25, 2017, doi:10.1093/humupd/dmx022.

Link: https://academic.oup.com/humupd/article-lookup/doi/10.1093/humupd/dmx022.

Sperm Counts Are Declining Among Western Men – Interview with Dr. Hagai Levine

https://news.afhu.org/news/sperm-counts-are-declining-among-western-men?utm_source=Master+List&utm_campaign=dca529d919-EMAIL_CAMPAIGN_2017_07_27&utm_medium=email&utm_term=0_343e19a421-dca529d919-92801633

J Urol. 1983 Sep;130(3):467-75.

A critical method of evaluating tests for male infertility.

https://www.ncbi.nlm.nih.gov/pubmed/6688444

Hum Reprod. 1993 Jan;8(1):65-70.

Estimating fertility potential via semen analysis data.

https://www.ncbi.nlm.nih.gov/pubmed/8458929

Lancet. 1998 Oct 10;352(9135):1172-7.

Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners.

https://www.ncbi.nlm.nih.gov/pubmed/9777833

Hum Reprod Update. 2010 May-Jun;16(3):231-45. doi: 10.1093/humupd/dmp048. Epub 2009 Nov 24.

World Health Organization reference values for human semen characteristics.

https://www.ncbi.nlm.nih.gov/pubmed/19934213

J Nutr. 2016 May;146(5):1084-92. doi: 10.3945/jn.115.226563. Epub 2016 Apr 13.

Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men.

https://www.ncbi.nlm.nih.gov/pubmed/27075904

Reprod Toxicol. 2003 Jul-Aug;17(4):451-6.

Semen quality of Indian welders occupationally exposed to nickel and chromium.

https://www.ncbi.nlm.nih.gov/pubmed/12849857

Fertil Steril. 1996 May;65(5):1009-14.

Semen analyses in 1,283 men from the United States over a 25-year period: no decline in quality.

https://www.ncbi.nlm.nih.gov/pubmed/8612826

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Cancer is one of the most devastating and widespread diseases today. The development of cancer is a multi-step process involving genetic or epigenetic changes often occurring over a longer period of time. Moreover, cancer occurs in more or less all organs and tissues and is characterized by extensive heterogeneity both concerning the type and aggressiveness of the disease. Although some substantial progress in some areas has been made, there are still huge unmet needs in treatment methods and the efficacy of currently available drugs. The pharmaceutical industry has struggled with the ever increasing costs in drug development and unfortunately novel drugs have not seldom demonstrated only marginal improvement in efficacy often at the cost of quality of life of the patients. For these reasons, new approaches are focusing on disease prevention instead of only treating the symptoms. Recently, much attention has been paid to prevention of the disease in parallel to continuous drug discovery.

Intervention in food intake has been demonstrated to play an enormous role in both prevention as well as treatment of diseases. Numerous studies indicate a clear link between cancer and diet. The substantial development of sequencing technologies has resulted in access to enormous amounts of genomics information, which resulted in the establishment of nutrigenomics as an emerging approach to link genomics research to studies on nutrition. Increased understanding has demonstrated how nutrition can influence human health both at genetic and epigenetic levels. It investigates the effects of nutrition and bioactive food compounds on gene expression. This approach has allowed the investigation of the effect on nutrition on individuals with specific genetic features. Moreover, it has provided the basis for nutritional intervention in prevention and treatment of disease and the inauguration of personalized nutrition. However, differences in types of cancer, the level of aggressiveness, and their occurrence at different stages of life have seriously complicated the understanding of the effect of nutrition on cancer prevention and treatment. Other individual variations such as the amounts of food consumed, digestion, metabolism and other factors like geographical, ethnic and sociological diversity has hampered the identification of which food components are most important for human health. Dramatic dietary modifications have proven essential in reducing risk and even prevention of cancer. Moreover, intense revision of diet in cancer patients has revealed significant changes in gene expression and also has provided therapeutic efficacy even after short-term application.

Obviously, a multitude of diets have been evaluated, but probably the common factor for achieving both prophylactic and therapeutic responses is to consume predominantly diets rich in fruits, vegetables, fish and fibers and reduced quantities of especially red meat. There are numerous examples of how dietary intake can promote health on both a preventive as well as therapeutic level. Radical change in diet has resulted in dramatic changes in gene expression in prostate cancer patients revealing that many of those genes involved in cancer development were down-regulated. The importance of nutrigenomics as a multi-task approach involving genomics, proteomics, metabolomics, et cetera has further provided novel possibilities to address the effect of nutrition on human health. Despite encouraging findings on how dietary modifications can prevent disease and restore health, there are a number of factors which complicate the outcome. There are variations in response to dietary changes depending on age and gender. However, the vast amount of accumulated nutrigenomics data should not overshadow the needs to take into account other important factors such as lifestyle, social, geographical and economic factors affecting diet and health.

Source References:

http://www.lifescienceglobal.com/home/cart?view=product&id=121

http://www.frontiersin.org/Nutrigenomics/10.3389/fgene.2011.00091/abstract

http://www.sciencedirect.com/science/article/pii/S0002822308021871

http://ajcn.nutrition.org/content/89/5/1553S

http://www.sciencedirect.com/science/article/pii/S030438350800390X

Read Full Post »