Feeds:
Posts
Comments

Posts Tagged ‘#endcancer’


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Minisymposium on Drugging Undrugged Cancer Targets 1:30 pm – 5:00 pm

SESSION VMS.ET01.01 – Drugging Undrugged Cancer Targets

April 27, 2020, 1:30 PM – 3:30 PM
Virtual Meeting: All Session Times Are U.S. EDT

Session Type
Virtual Minisymposium
Track(s)
Experimental and Molecular Therapeutics,Drug Development
18 Presentations
1:30 PM – 1:30 PM
– ChairpersonPeter C. Lucas. University of Pittsburgh School of Medicine, Pittsburgh, PA

1:30 PM – 1:30 PM
– ChairpersonJohn S. Lazo. University of Virginia, Charlottesville, VA

1:30 PM – 1:35 PM
– IntroductionPeter C. Lucas. University of Pittsburgh School of Medicine, Pittsburgh, PA

1:35 PM – 1:45 PM
3398 – PTPN22 is a systemic target for augmenting antitumor immunityWon Jin Ho, Jianping Lin, Ludmila Danilova, Zaw Phyo, Soren Charmsaz, Aditya Mohan, Todd Armstrong, Ben H. Park, Elana J. Fertig, Zhong-Yin Zhang, Elizabeth M. Jaffee. Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD, Purdue University, Baltimore, MD, Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD, Vanderbilt University Medical Center, Baltimore, MD

Abstract: Remarkable progress in cancer immunology has revolutionized cancer therapy. The majority of patients, however, do not respond to immunotherapeutic options, warranting the ongoing search for better strategies. Leveraging the established role of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in autoimmune diseases, we hypothesized that PTPN22 is a novel target for cancer immunotherapy. PTPN22 is a physiologic regulator of T cell receptor (TCR) signaling acting by dephosphorylating activating tyrosine residues in Lck and Zap70. We first confirmed the relevance of PTPN22 expression by exploring its expression in multiple human cancer types using The Cancer Genome Atlas (TCGA). PTPN22 expression positively correlated with T cell and M1 macrophage gene signatures and immune regulatory genes, especially inflamed tumor types. Next, we directly investigated the role of PTPN22 in antitumor immunity by comparing in vivo tumor characteristics in wild-type (WT) and PTPN22 knockout (KO) mice. Consistent with our hypothesis, PTPN22 KO mice resisted MC38 and EG7 tumors significantly compared with WT. Mass cytometry (CyTOF) profiling of the immune tumor microenvironment demonstrated that MC38 tumors in PTPN22 KO mice were infiltrated with greater numbers of T cells, particularly CD8+ T cells expressing granzyme B and PD1. To further delineate the effects of PTPN22 KO on TCR signaling, we established an optimized CyTOF panel of 9 phosphorylation sites involved in the TCR signaling pathway, including two enzymatic substrates of PTPN22 (Lck Y394 and Zap70 Y493) and 15 immune subtyping markers. CyTOF phospho-profiling of CD8 T cells from tumor-bearing mouse spleens and the peripheral blood of immunotherapy-naïve cancer patients showed that the phosphorylated state of Zap70 Y493 correlated strongly with granzyme B expression. Furthermore, phospho-profiling of tumor-infiltrating CD8+ T cells (a measure of T cell activation) revealed the highest TCR-pathway phosphorylation levels in memory CD8+ T cells that express PD1. The difference in phosphorylation levels between WT and PTPN22 KO was most pronounced for Lck Y394. Based on these findings, we then hypothesized that PD1 inhibition will further enhance the antitumor immune responses promoted by the lack of PTPN22. Indeed, PTPN22 KO mice bearing MC38 and EG7 tumors responded more significantly to anti-PD1 therapy when compared with tumor-bearing WT mice. Finally, we treated WT tumor bearing mice with two different small molecule inhibitors of PTPN22, one previously published compound, LTV1, and one novel compound, L1 (discovered through structure based synthesis). While both inhibitors phenocopied the PTPN22 KO mice in resisting MC38 tumor growth, L1 treatment gave an immune profile that resembled what was observed in tumor-bearing PTPN22 KO mice. Taken together, our results demonstrate that PTPN22 is a novel systemic target for augmenting antitumor immunity.

  • can they leverage autoimmune data to look at new targets for checkpoint inhibition; we have a long way to go in immunooncology as only less than 30-40% of cancer types respond
  • using Cancer Genome Atlas PTPN22 is associated with autoimmune disorders
  • PTPN22 KO increases many immune cells; macrophages t-cells and when KO in tumors get more t cell infiltrate
  • PTP KO enhances t cell response, and may be driving t cells to exhaustion
  • made a inhibitor or PTPN22; antitumor phenotype when given inhibitor was like KO mice; a PDL1 inhibitor worked in KO mice
  • PTPN22 only in select hematopoetic cells

1:45 PM – 1:50 PM
– Discussion

1:50 PM – 2:00 PM
3399 – Preclinical evaluation of eFT226, a potent and selective eIF4A inhibitor with anti-tumor activity in FGFR1,2 and HER2 driven cancers. Peggy A. Thompson, Nathan P. Young, Adina Gerson-Gurwitz, Boreth Eam, Vikas Goel, Craig R. Stumpf, Joan Chen, Gregory S. Parker, Sarah Fish, Maria Barrera, Eric Sung, Jocelyn Staunton, Gary G. Chiang, Kevin R. Webster. eFFECTOR Therapeutics, San Diego, CA @RuggeroDavide

Abstract: Mutations or amplifications affecting receptor tyrosine kinases (RTKs) activate the RAS/MAPK and PI3K/AKT signaling pathways thereby promoting cancer cell proliferation and survival. Oncoprotein expression is tightly controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex consisting of eIF4A, eIF4E, and eIF4G. eIF4A functions to catalyze the unwinding of secondary structure in the 5’-untranslated region (5’-UTR) of mRNA facilitating ribosome scanning and translation initiation. The activation of oncogenic signaling pathways, including RAS and PI3K, facilitate formation of eIF4F and enhance eIF4A activity promoting the translation of oncogenes with highly structured 5’-UTRs that are required for tumor cell proliferation, survival and metastasis. eFT226 is a selective eIF4A inhibitor that converts eIF4A into a sequence specific translational repressor by increasing the affinity between eIF4A and 5’-UTR polypurine motifs leading to selective downregulation of mRNA translation. The polypurine element is highly enriched in the 5’-UTR of eFT226 target genes, many of which are known oncogenic drivers, including FGFR1,2 and HER2, enabling eFT226 to selectively inhibit dysregulated oncogene expression. Formation of a ternary complex [eIF4A-eFT226-mRNA] blocks ribosome scanning along the 5’-UTR leading to dose dependent inhibition of RTK protein expression. The 5’-UTR sequence dependency of eFT226 translational inhibition was evaluated in cell-based reporter assays demonstrating 10-45-fold greater sensitivity for reporter constructs containing an RTK 5’-UTR compared to a control. In solid tumor cell lines driven by alterations in FGFR1, FGFR2 or HER2, downregulation of RTK expression by eFT226 resulted in decreased MAPK and AKT signaling, potent inhibition of cell proliferation and an induction of apoptosis suggesting that eFT226 could be effective in treating tumor types dependent on these oncogenic drivers. Solid tumor xenograft models harboring FGFR1,2 or HER2 amplifications treated with eFT226 resulted in significant in vivo tumor growth inhibition and regression at well tolerated doses in breast, non-small cell lung and colorectal cancer models. Treatment with eFT226 also decreased RTK protein levels supporting the potential to use these eFT226 target genes as pharmacodynamic markers of target engagement. Further evaluation of predictive markers of sensitivity or resistance showed that RTK tumor models with mTOR mediated activation of eIF4A are most sensitive to eFT226. The association of eFT226 activity in RTK tumor models with mTOR pathway activation provides a means to further enrich for sensitive patient subsets during clinical development. Clinical trials with eFT226 in patients with solid tumor malignancies have initiated.
  • ternary complex formed blocks transcription selectively downregulating RTKs
  • drug binds in 5′ UTR and inhibits translation
  • RTKs activate eIF4 and are also transcribed through them so inhibition destroys this loop;  also with KRAS too
  • main antitumor activity are by an apoptotic mechanisms; refractory tumors are not sensitive to drug induced apoptosis
  • drug inhibits FGFR2 in colorectal cancer
  • drug also effective in HER2+ tumors
  • mTOR mediated eIF4 inhibited by drug
  • they get prolonged antitumor activity after washout of drug because forms this tight terniary complex

2:00 PM – 2:05 PM
– Discussion

2:05 PM – 2:15 PM
3400 – Adenosine receptor antagonists exhibit potent and selective off-target killing of FOXA1-high cancers: Steven M. Corsello, Ryan D. Spangler, Ranad Humeidi, Caitlin N. Harrington, Rohith T. Nagari, Ritu Singh, Vickie Wang, Mustafa Kocak, Jordan Rossen, Amael Madec, Nancy Dumont, Todd R. Golub. Dana-Farber Cancer Institute, Boston, MA, Broad Institute of MIT and Harvard, Cambridge, MA @corsellos

Abstract: Drugs targeting adenosine receptors were originally developed for the treatment of Parkinson’s disease and are now being tested in immuno-oncology clinical trials in combination with checkpoint inhibitors. We recently reported the killing activity of 4,518 drugs against 578 diverse cancer cell lines determined using the PRISM molecular barcoding approach. Surprisingly, three established adenosine receptor antagonists (CGS-15943, MRS-1220, and SCH-58261) showed potent and selective killing of FOXA1-high cancer cell lines without the need for immune cells. FOXA1 is a lineage-restricted transcription factor in luminal breast cancer, hepatocellular carcinoma, and prostate cancer without known small molecule inhibitors. We find that cytotoxic activity is limited to adenosine antagonists with a three-member aromatic core bound to a furan group, thus indicating a potential off-target mechanism of action. To identify genomic modulators of drug response, we performed genome-wide CRISPR/Cas9 knockout modifier screens. Killing by CGS-15943 and MRS-1220 was rescued by knockout of the aryl hydrocarbon receptor (AHR) and its nuclear partner ARNT. In confirmatory studies, knockout of AHR completely rescued killing by CGS-15943 in multiple cell types. Co-treatment with an AHR small molecule antagonist also rescued cell viability. Knockout of adenosine receptors did not alter drug response. Given that AHR is a known transcriptional regulator, we performed global mRNA sequencing to assess transcriptional changes induced by CGS-15943. The top two genes induced were the p450 enzymes CYP1A1 and CYP1B1. To determine sufficiency, we overexpressed CYP1A1 in a resistant cell line. Ectopic CYP1A1 expression sensitized to CGS-15943-mediated killing. Mass spectrometry revealed covalent trapping of a reactive metabolite by glutathione and potassium cyanide following in vitro incubation with liver microsomes. In addition, treatment of breast cancer cells with CGS-15943 for 24 hours resulted in increased γ-H2AX phosphorylation by western blot, indicative of DNA double stranded breaks. In summary, we identified off-target anti-cancer activity of multiple established adenosine receptor antagonists mediated by activation of AHR. Future studies will evaluate the functional contribution of FOXA1 and activity in vivo. Starting from a phenotypic screening hit, we leverage functional genomics to unlock the underlying mechanism of action. This project will pave the way for developing more effective therapies for biomarker-selected cancers, with potential to improve the care of patients with liver, breast, and prostate cancer.

  • developed a chemical library of over 6000 compounds (QC’d) to determine drugs that have antitumor effects
  • used a PRISM barcoded library to make cell lines to screen genotype-phenotype screens
  • for nononcology drugs fourteen drugs had activity in the PRISM assay
  • FOXA1 transcription factor high cancer cells seemed to be inhibited best with adenosine receptor inhibitor found in PRISM assay

2:15 PM – 2:20 PM
– Discussion

2:20 PM – 2:30 PM
3401 – Targeting lysosomal homeostasis in ovarian cancer through drug repurposing: Stefano Marastoni, Aleksandra Pesic, Sree Narayanan Nair, Zhu Juan Li, Ali Madani, Benjamin Haibe-Kains, Bradly G. Wouters, Anthony Joshua. University Health Network, Toronto, ON, Canada, Janssen Inc, Toronto, ON, Canada, The Kinghorn Cancer Centre, Sydney, Australia

Background: Drug repurposing has become increasingly attractive as it avoids the long processes and costs associated with drug discovery. Itraconazole (Itra) is a broad-spectrum anti-fungal agent which has an established broad spectrum of activity in human cell lines including cholesterol antagonism and inhibition of Hedgehog and mTOR pathways. Many in vitro, in vivo and clinical studies have suggested anti-proliferative activity both alone and in combination with other chemotherapeutic agents, in particular in ovarian cancer. This study is aimed at supporting the therapeutic potential of Itra and discovering and repurposing new drugs that can increase Itra anticancer activity as well as identifying new targets in the treatment of ovarian cancer.
Methods: We tested a panel of 32 ovarian cancer cell lines with different doses of Itra and identified a subset of cells which showed significant sensitivity to the drug. To identify genetic vulnerabilities and find new therapeutic targets to combine with Itra, we performed a whole genome sensitivity CRISPR screen in 2 cell lines (TOV1946 and OVCAR5) treated with non-toxic (IC10) concentrations of Itra.
Results: Pathway analysis on the top hits from both the screens showed a significant involvement of lysosomal compartments, and in particular dynamics between trans Golgi network and late endosomes/lysosomes, pathways that are affected by the autophagy inhibitor Chloroquine (CQ). We subsequently demonstrated that the combination of Itra and CQ had a synergistic effect in many ovarian cancer cell lines, even in those resistant to Itra. Further, genetic and pharmacological manipulation of autophagy indicated that upstream inhibition of autophagy is not a key mediator of the Itra/CQ mechanism of action. However, combination of Itra with other lysosomotropic agents (Concanamycin A, Bafilomycin A and Tamoxifen) displayed overlapping activity with Itra/CQ, supporting the lysosomal involvement in sensitizing cells to Itra resulted from the CRISPR screens. Analysis of lysosomal pattern and function showed a combined effect of Itra and CQ in targeting lysosomes and neutralizing their activity.
Conclusion: We identified two FDA approved drugs – CQ and Tamoxifen – that can be used in combination with Itra and exert a potent anti-tumor effect in ovarian cancer by affecting lyosomal function and suggesting a likely dependency of these cells on lysosomal biology. Further studies are in progress.

  • repurposing itraconozole in ovarian cancer potential mechanism of action is pleitropic
  • increasing doses of chloroquine caused OVCA cell death by accumulating in Golgi

2:30 PM – 2:35 PM
– Discussion

2:35 PM – 2:45 PM
3402 – BCAT1 as a druggable target in immuno-oncologyAdonia E. Papathanassiu, Francesca Lodi, Hagar Elkafrawy, Michelangelo Certo, Hong Vu, Jeong Hun Ko, Jacques Behmoaras, Claudio Mauro, Diether Lambrechts. Ergon Pharmaceuticals, Washington, DC, VIB Cancer Centre-KULeuven, Leuven, Belgium, Alexandria University, Alexandria, Egypt, University of Birmingham, Birmingham, United Kingdom, Ergon Pharmaceuticals, Washington, DC, Imperial College London, London, United Kingdom

2:45 PM – 2:50 PM
– Discussion

2:50 PM – 3:00 PM
3403 – Drugging the undruggable: Lessons learned from protein phosphatase 2A: Derek Taylor, Goutham Narla. Case Western Reserve University, Cleveland, OH, University of Michigan, Ann Arbor, MI @gouthamnarla

Abstract: Protein phosphatase 2A (PP2A) is a key tumor suppressor responsible for the dephosphorylation of many oncogenic signaling pathways. The PP2A holoenzyme is comprised of a scaffolding subunit (A), which serves as the structural platform for the catalytic subunit (C) and for an array of regulatory subunits (B) to assemble. Impairment of PP2A is essential for the pathogenesis of many diseases including cancer. In cancer, PP2A is inactivated through a variety of mechanisms including somatic mutation of the Aαsubunit. Our studies show that the most recurrent Aαmutation, P179R, results in an altered protein conformation which prevents the catalytic subunit from binding. Additionally, correcting this mutation, by expressing wild type PP2A Aαin cell lines harboring the P179R mutation, causes a reduction in tumor growth and metastasis. Given its central role in human disease pathogenesis, many strategies have been developed to therapeutically target PP2A.Our lab developed a series of small molecules activators of protein phosphatase 2A. One of our more advanced analogs in this series, DT-061, drives dephosphorylation and degradation of select pathogenic substrates of PP2A such as c-MYC in cellular and in vivo systems. Additionally, we have demonstrated the phosphomimetics of MYC that prevent PP2A mediated dephosphorylation and degradation markedly reduce the anti-tumorigenic activity of this series of PP2A activators further validating the target-substrate specificity of this approach. Specific mutations in the site of drug interaction or overexpression of the DNA tumor virus small T antigen which has been shown to specifically bind to and inactivate PP2A abrogate the in vivo activity of this small molecule series further validating the PP2A specificity of this approach. Importantly, treatment with DT-061 results in tumor growth inhibition in an array of in vivocancer models and marked regressions in combination with MEKi and PARPi.To further define the mechanism of action of this small molecule series, we have used cryo-electron microscopy (cryo-EM) to visualize directly theinteraction between DT-061 and a PP2A heterotrimeric complex. We have identified molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme through the marked prolongation of the kOFF of the native complex. Furthermore, we demonstrate that DT-061 specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate oncogenic targets such as c-MYC in both cellular and in vivo systems. This 3.6 Å structure identifies dynamic molecular interactions between the three distinct PP2A subunits and highlight the inherent mechanisms of PP2A complex assembly and disassembly in both cell free and cellular systems. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for the therapeutic targeting of previously undruggable proteins, and aid in the development of phosphatase-based therapeutics tailored against disease specific phosphor-protein targets. The marriage of multidisciplinary scientific practices has allowed us to present here a previously unrecognized therapeutic strategy of complex stabilization for the activation of endogenous disease combating enzymes.

  • Reactivating PP2A; dephosphorylation of proteins (serine/threonine phosphatases); regulates multiple processes in the cell
  • SV40T has an antigen that inactivates PP2A; recurrent mutations in high grade endometrial cancers
  • P179R mutation promotes uterine tumor formation (also in a distal tubule ligation model)
  • project started in a phenotypic screen that tricyclic antidepressants could have an off target which was phosphatase activators (uncoupling GPCR from anticancer activity)
  • small T antigen block the activity of these small molecule activators;
  • acts as a molecular glue to bring the activators with a heterotrimer of phosphatases
  • so their small molecule activators effective in triple negative breast cancers;  one of targets of PP2A is MYC
  • question: have not yet seen resistance to these compounds but are currently looking at this

 

3:00 PM – 3:05 PM
– Discussion

3:05 PM – 3:15 PM
3404 – Inhibition of BCL10-MALT1 interaction to treat diffuse large B-cell lymphomaH: eejae Kang, Dong Hu, Marcelo Murai, Ahmed Mady, Bill Chen, Zaneta Nikolovska-Coleska, Linda M. McAllister-Lucas, Peter C. Lucas. University of Pittsburgh School of Medicine, Pittsburgh, PA, Merck, Kenilworth, NJ, University of Michigan School of Medicine, Ann Arbor, MI, University of Pittsburgh School of Medicine, Pittsburgh, PA, University of Michigan School of Medicine, Ann Arbor, MI, UPMC Children’s Hospital, Pittsburgh, PA

Abstract: The CARMA1/BCL10/MALT1 (CBM) signaling complex mediates antigen receptor-induced activation of NF-kB in lymphocytes to support normal adaptive immunity. As the effector protein of the complex, MALT1 exhibits two activities: protease and scaffolding activities. Gain-of-function mutations in the CARMA1 moiety or its upstream regulators trigger antigen-independent assembly of oligomeric CBM complexes, leading to constitutive activation of MALT1, unregulated NF-kB activity, and development of Activated B-Cell subtype of Diffuse Large B-Cell Lymphoma (ABC-DLBCL). Existing MALT1 inhibitors block only MALT1 protease activity, causing incomplete and unbalanced inhibition of MALT1, and have the potential for inducing autoimmune side effects. Since MALT1 is recruited to the CBM complex via its interaction with BCL10, we sought to identify inhibitors of BCL10-MALT1 interaction in order to target both the protease and scaffolding activities of MALT1 to treat ABC-DLBCL.
Our previous work suggested that an antibody-epitope-like interface governs the interaction between BCL10 and MALT1, so that a therapeutic opportunity exists for developing a small molecule inhibitor of the interaction to terminate inappropriate CBM activity. Using co-immunoprecipitation studies, a mammalian two-hybrid system, and surface plasmon resonance (SPR), we confirmed that BCL10 residues 107-119 and the tandem Ig-like domains of MALT1 are critical for this interaction. We then performed a structure-guided in silico screen of 3 million compounds, based on a computational model of the BCL10-MALT1 interaction interface, to identify compounds with potential for disrupting the interaction.
Compound 1 from the initial screening hits showed dose-responsive inhibition of BCL10-MALT1 interaction in both SPR and ELISA-based assays. Functionally, Compound 1 inhibits both MALT1 protease and scaffolding activities in Jurkat T cells, as demonstrated by its inhibition of CD3/CD28-induced RelB and N4BP1 cleavage, and inhibition of IKK phosphorylation, respectively. Compound 1 also blocks IL-2 transcription and IL-2 secretion by PMA/ionomycin-treated Jurkat T cells, as well as constitutive CBM-dependent secretion of IL-6 and IL-10 by ABC-DLBCL cells. Accordingly, Compound 1 selectively suppresses the growth of ABC-DLBCL cell lines, but does not affect the growth of MALT1-independent GCB-DLBCL cell lines.
In conclusion, we have identified an early-stage small molecule compound that inhibits the BCL10-MALT1 interaction, MALT1 protease and scaffolding activities, downstream CBM-dependent signaling, and ABC-DLBCL cell growth. Structure-guided modification of this lead compound is underway to further develop a new class of protein-protein interaction inhibitors that could provide more efficacious blockade of MALT1, while offering protection from undesirable autoimmune side effects in the treatment of this aggressive form of lymphoma.

3:15 PM – 3:20 PM
– Discussion

3:20 PM – 3:30 PM
– Closing RemarksJohn S. Lazo. University of Virginia, Charlottesville, VA

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Opening Remarks and Clinical Session 9 am

Reporter: Stephen J. Williams, PhD.

9:00 AM Opening Session

9:00 AM – 9:05 AM
– Opening Video

9:05 AM – 9:15 AM
– AACR President: Opening Remarks Elaine R. Mardis. Nationwide Children’s Hospital, Columbus, OH

 

Dr. Mardis is the Robert E. and Louise F. Dunn Distinguished Professor of Medicine @GenomeInstitute at Washington University of St. Louis School of Medicine.

Opening remarks:  Dr. Mardis gave her welcome from her office.  She expressed many thanks to healthcare workers and the hard work of scientists and researchers.  She also expressed some regret for the many scientists who had wonderful research to present and how hard it was to make the decision to go virtual however she feels there now more than ever still needs a venue to discuss scientific and clinical findings.  Some of the initiatives that she has had the opportunity to engage in the areas of groundbreaking discoveries and clinical trials.  606,000 lives will be lost in US this year from cancer.  AACR is being vigilant as also an advocacy platform and public policy platform in Congress and Washington.  The AACR has been at the front of public policy on electronic cigarettes.  Blood Cancer Discovery is their newest journal.  They are going to host joint conferences with engineers, mathematicians and physicists to discuss how they can help to transform oncology.  Cancer Health Disparity Annual Conference is one of the fastest growing conferences.  They will release a report later this year about the scope of the problem and policy steps needed to alleviate these disparities.  Lack of racial and ethnic minorities in cancer research had been identified an issue and the AACR is actively working to reduce the disparities within the ranks of cancer researchers.   Special thanks to Dr. Margaret Foti for making the AACR the amazing organization it is.

 

9:15 AM – 9:30 AM- AACR Annual Meeting Program Chair: Review of Program for AACR Virtual Annual Meeting Antoni Ribas. UCLA Medical Center, Los Angeles, CA

Antoni Ribas, MD PhD is Professor, Medicine, Surgery, Molecular and Medical Pharmacology; Director, Parker Institute for Cancer Immunotherapy Center at UCLA; Director, UCLA Jonsson Comprehensive Cancer Center Tumor Immunology Program aribas@mednet.ucla.edu

The AACR felt it was important to keep the discourse in the cancer research field as the Annual AACR meeting is the major way scientists and clinicians discuss the latest and most pertinent results.  A three day virtual meeting June 22-24 will focus more on the translational and basic research while this meeting is more focused on clinical trials.  There will be educational programs during the June virtual meeting.  The COVID in Cancer part of this virtual meeting was put in specially for this meeting and there will be a special meeting on this in July.  They have created an AACR COVID task force.  The AACR has just asked Congress and NIH to extend the grants due to the COVID induced shutdown of many labs.

9:30  Open Clinical Plenary Session (there are 17 sessions today but will only cover a few of these)

9:30 AM – 9:31 AM
– Chairperson Nilofer S. Azad. Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD @noza512

9:30 AM – 9:31 AM
– Chairperson Manuel Hidalgo. Weill Cornell Medicine, New York, NY

9:30 AM – 9:35 AM
– Introduction Nilofer S. Azad. Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD

9:35 AM – 9:45 AM
CT011 – Evaluation of durvalumab in combination with olaparib and paclitaxel in high-risk HER2 negative stage II/III breast cancer: Results from the I-SPY 2 TRIAL Lajos Pusztai, et al

see https://www.abstractsonline.com/pp8/#!/9045/presentation/10593

AbstractBackground: I-SPY2 is a multicenter, phase 2 trial using response-adaptive randomization within molecular subtypes defined by receptor status and MammaPrint risk to evaluate novel agents as neoadjuvant therapy for breast cancer. The primary endpoint is pathologic complete response (pCR, ypT0/is ypN0)). DNA repair deficiency in cancer cells can lead to immunogenic neoantigens, activation of the STING pathway, and PARP inhibition can also upregulate PD-L1 expression. Based on these rationales we tested the combination of durvalumab (anti-PDL1), olaparib (PARP inhibitor) and paclitaxel in I-SPY2.
Methods: Women with tumors ≥ 2.5 cm were eligible for screening. Only HER2 negative (HER2-) patients were eligible for this treatment, hormone receptor positive (HR+) patients had to have MammaPrint high molecular profile. Treatment included durvalumab 1500 mg every 4 weeks x 3, olaparib 100 mg twice daily through weeks 1-11 concurrent with paclitaxel 80 mg/m2 weekly x 12 (DOP) followed by doxorubicin/cyclophosphamide (AC) x 4. The control arm was weekly paclitaxel x 12 followed by AC x 4. All patients undergo serial MRI imaging and imaging response at 3 & 12 weeks combined with accumulating pCR data are used to estimate, and continuously update, predicted pCR rate for the trial arm. Regimens “graduation with success” when the Bayesian predictive probability of success in a 300-patient phase 3 neoadjuvant trial in the appropriate biomarker groups reaches > 85%.
Results: A total of 73 patients received DOP treatment including 21 HR- tumors (i.e. triple-negative breast cancer, TNBC) and 52 HR+ tumors between May 2018 – June 2019. The control group included 299 patients with HER2- tumors. The DOP arm graduated in June 2019, 13 months after enrollment had started, for all HER2- negative and the HR+/HER2- cohorts with > 0.85% predictive probabilities of success. 72 patient completed surgery and evaluable for pCR, the final predicted probabilities of success in a future phase III trial to demonstrate higher pCR rate with DOP compared to control are 81% for all HER2- cancers (estimated pCR rate 37%), 80% for TNBC (estimated pCR rate 47%) and 74.5% for HR+/HER2- patients (estimated pCR rate 28%). Association between pCR and germline BRCA status and immune gene expression including PDL1 will be presented at the meeting. No unexpected toxicities were seen, but 10 patients (14%) had possibly immune or olaparib related grade 2/3 AEs (3 pneumonitis, 2 adrenal insufficiency, 1 colitis, 1 pancreatitis, 2 elevated LFT, 1 skin toxicity, 2 hypothyroidism, 1 hyperthyroidism, 1 esophagitis).
Conclusion: I-SPY2 demonstrated a significant improvement in pCR with durvalumab and olaparib included with paclitaxel compared to chemotherapy alone in women with stage II/III high-risk, HER2-negative breast cancer, improvement was seen in both the HR+ and TNBC subsets.

  • This combination of durvalumab and olaparib is safe in triple negative breast cancer
  • expected synergy between PARP inhibitors and PDL1 inhibitors as olaparib inhibits DNA repair and would increase the mutational burden, which is in lung cancer shown to be a biomarker for efficacy of immune checkpoint inhibitors such as Opdivio
  • three subsets of breast cancers were studied: her2 negative, triple negative and ER+ tumors
  • MRI imaging tumor size was used as response
  • olaparib arm had elevation of liver enzymes and there was a pancreatitis
  • however paclitaxel was used within the combination as well as a chemo arm but the immuno arm alone may not be better than chemo alone but experimental arm with all combo definitely better than chemo alone
  • they did not look at BRCA1/2 status, followup talk showed that this is a select group that may see enhanced benefit; PARP inhibitors were seen to be effective only in BRCA1/2 mutant ovarian cancer previously

 

10:10 AM – 10:20 AM
CT012 – Evaluation of atezolizumab (A), cobimetinib (C), and vemurafenib (V) in previously untreated patients with BRAFV600 mutation-positive advanced melanoma: Primary results from the phase 3 IMspire150 trial Grant A. McArthur,

for abstract please see https://www.abstractsonline.com/pp8/#!/9045/presentation/10594

AbstractBackground: Approved systemic treatments for advanced melanoma include immune checkpoint inhibitor therapy (CIT) and targeted therapy with BRAF plus MEK inhibitors for BRAFV600E/K mutant melanoma. Response rates with CITs are typically lower than those observed with targeted therapy, but CIT responses are more durable. Preclinical and clinical data suggest a potential for synergy between CIT and BRAF plus MEK inhibitors. We therefore evaluated whether combining CIT with targeted therapy could improve efficacy vs targeted therapy alone. Methods: Treatment-naive patients with unresectable stage IIIc/IV melanoma (AJCC 7th ed), measurable disease by RECIST 1.1, and BRAFV600 mutations in their tumors were randomized to the anti­-programmed death-ligand 1 antibody A + C + V or placebo (Pbo) + C + V. A or Pbo were given on days 1 and 15 of each 28-day cycle. Treatment was continued until disease progression or unacceptable toxicity. The primary outcome was investigator-assessed progression-free survival (PFS). Results: 514 patients were enrolled (A + C + V = 256; Pbo + C + V = 258) and followed for a median of 18.9 months. Investigator-assessed PFS was significantly prolonged with A + C + V vs Pbo + C + V (15.1 vs 10.6 months, respectively; hazard ratio: 0.78; 95% confidence interval: 0.63-0.97; P=0.025), an effect seen in all prognostic subgroups. While objective response rates were similar in the A + C + V and Pbo + C + V groups, median duration of response was prolonged with A + C + V (21.0 months) vs Pbo + C + V (12.6 months). Overall survival data were not mature at the time of analysis. Common treatment-related adverse events (AEs; >30%) in the A + C + V and Pbo + C + V groups were blood creatinine phosphokinase (CPK) increase (51.3% vs 44.8%), diarrhea (42.2% vs 46.6%), rash (40.9% in both arms), arthralgia (39.1% vs 28.1%), pyrexia (38.7% vs 26.0%), alanine aminotransferase (ALT) increase (33.9% vs 22.8%), and lipase increase (32.2% vs 27.4%). Common treatment-related grade 3/4 AEs (>10%) that occurred in the A + C + V and Pbo + C + V groups were lipase increase (20.4% vs 20.6%), blood CPK increase (20.0% vs 14.9%), ALT increase (13.0% vs 8.9%), and maculopapular rash (12.6% vs 9.6%). The incidence of treatment-related serious AEs was similar between the A + C + V (33.5%) and Pbo + C + V (28.8%) groups. 12.6% of patients in the A + C + V group and 15.7% in the Pbo + C + V group stopped all treatment because of AEs. The safety profile of the A + C + V regimen was generally consistent with the known profiles of the individual components. Conclusion: Combination therapy with A + C + V was tolerable and manageable, produced durable responses, and significantly increased PFS vs Pbo + C + V. Thus, A + C + V represents a viable treatment option for BRAFV600 mutation-positive advanced melanoma. ClinicalTrials.gov ID: NCT02908672

 

 

10:25 AM – 10:35 AM
CT013 – SWOG S1320: Improved progression-free survival with continuous compared to intermittent dosing with dabrafenib and trametinib in patients with BRAF mutated melanoma Alain Algazi,

for abstract and more author information please see https://www.abstractsonline.com/pp8/#!/9045/presentation/10595

AbstractBackground: BRAF and MEK inhibitors yield objective responses in the majority of BRAFV600E/K mutant melanoma patients, but acquired resistance limits response durations. Preclinical data suggests that intermittent dosing of these agents may delay acquired resistance by deselecting tumor cells that grow optimally in the presence of these agents. S1320 is a randomized phase 2 clinical trial designed to determine whether intermittent versus continuous dosing of dabrafenib and trametinib improves progression-free survival (PFS) in patients with advanced BRAFV600E/K melanoma.
Methods: All patients received continuous dabrafenib and trametinib for 8-weeks after which non-progressing patients were randomized to receive either continuous treatment or intermittent dosing of both drugs on a 3-week-off, 5-week-on schedule. Unscheduled treatment interruptions of both drugs for > 14 days were not permitted. Responses were assessed using RECIST v1.1 at 8-week intervals scheduled to coincide with on-treatment periods for patients on the intermittent dosing arm. Adverse events were assessed using CTCAE v4 monthly. The design assumed exponential PFS with a median of 9.4 months using continuous dosing, 206 eligible patients and 156 PFS events. It had 90% power with a two-sided α = 0.2 to detect a change to a median with an a priori hypothesis that intermittent dosing would improve the median PFS to 14.1 months using a Cox model stratified by the randomization stratification factors.
Results: 242 patients were treated and 206 patients without disease progression after 8 weeks were randomized, 105 to continuous and 101 to intermittent treatment. 70% of patients had not previously received immune checkpoint inhibitors. There were no significant differences between groups in terms of baseline patient characteristics. The median PFS was statistically significantly longer, 9.0 months from randomization, with continuous dosing vs. 5.5 months from randomization with intermittent dosing (p = 0.064). There was no difference in overall survival between groups (median OS = 29.2 months in both arms p = 0.93) at a median follow up of 2 years. 77% of patient treated continuously discontinued treatment due to disease progression vs. 84% treated intermittently (p = 0.34).
Conclusions: Continuous dosing with the BRAF and MEK inhibitors dabrafenib and trametinib yields superior PFS compared with intermittent dosing.

  • combo of MEK and BRAF inhibitors can attract immune cells like TREGs so PDL1 inhibitor might help improve outcome
  • PFS was outcome endpoint
  • LDH was elevated in three patients (why are they seeing liver tox?  curious like previous study); are seeing these tox with the PDL1 inhibitors
  • there was marked survival over placebo group and PFS was statistically  with continuous dosing however intermittent dosing shows no improvement

Dr. Wafik el Diery gave a nice insight as follows

Follow on Twitter at:

@pharma_BI

@AACR

@GenomeInstitute

@CureCancerNow

@UCLAJCCC

#AACR20

#AACR2020

#curecancernow

#pharmanews

 

 

 

Read Full Post »


Live Conference Coverage of AACR 2020 Annual Virtual Meeting; April 27-28, 2020

Reporter: Stephen J. Williams, Ph.D.

The American Association for Cancer Research (AACR) will hold its Annual Meeting as a Virtual Online Format.  Registration is free and open to all, including non members.  Please go to

https://www.aacr.org/meeting/aacr-annual-meeting-2020/aacr-virtual-annual-meeting-i/?utm_source=Salesforce%20Marketing%20Cloud&utm_medium=Email&utm_campaign=&sfmc_s=0031I00000WsBJxQAN

to register for this two day meeting.  Another two day session will be held in June 2020 and will focus more on basic cancer research.

Please follow @pharma_BI who will be live Tweeting Real Time Notes from this meeting using the hashtag

#AACR20

And @StephenJWillia2

The following is a brief summary of the schedule.  Please register and go to AACR for detailed information on individual sessions.

 

AACR VIRTUAL ANNUAL MEETING I: SCHEDULE AT A GLANCE

AACR Virtual Annual Meeting I is available free Register Now

VIRTUAL MEETING I: BROWSER REQUIREMENTS AND ACCESSVIRTUAL MEETING I: FAQVIRTUAL MEETING I: MEETING PLANNER (ABSTRACT TITLES)

Presentation titles are available through the online meeting planner. The program also includes six virtual poster sessions consisting of brief slide videos. Poster sessions will not be presented live but will be available for viewing on demand. Poster session topics are as follows:

  • Phase I Clinical Trials
  • Phase II Clinical Trials
  • Phase III Clinical Trials
  • Phase I Trials in Progress
  • Phase II Trials in Progress
  • Phase III Trials in Progress

Schedule updated April 24, 2020

MONDAY, APRIL 27

Channel 1 Channel 2 Channel 3
9:00 a.m.-9:30 a.m.
Opening Session
_______________________
9:30 a.m.-11:40 a.m.
Opening Clinical Plenary
_______________________
11:40 a.m.-2:00 p.m.
Clinical Plenary: Immunotherapy Clinical Trials 1
_______________________
___ 11:45 a.m.-1:30 p.m.
Minisymposium: Emerging Signaling Vulnerabilities in Cancer
_______________________
___ 11:45 a.m.-1:15 p.m.
Minisymposium: Advances in Cancer Drug Design and Discovery
__________________________
2:00 p.m.-4:50 p.m.
Clinical Plenary: Lung Cancer Targeted Therapy
_______________________
___ 1:55 p.m.-4:15 p.m.
Clinical Plenary: Breast Cancer Therapy
_______________________
___ 1:30 p.m.-3:30 p.m.
Minisymposium: Drugging Undrugged Cancer Targets
__________________________
4:50 p.m.-6:05 p.m.
Symposium: New Drugs on the Horizon 1_______________________
___ 4:50 p.m.-5:50 p.m.
Minisymposium: Therapeutic Modification of the Tumor Microenvironment or Microbiome
_______________________
___ 4:00 p.m.-6:00 p.m.
Minisymposium: Advancing Cancer Research Through An International Cancer Registry: AACR Project GENIE Use Cases__________________________

All session times are EDT.

TUESDAY, APRIL 28

Channel 1 Channel 2 Channel 3
9:00 a.m.-101:00 a.m.
Clinical Plenary: COVID-19 and Cancer
__________________________
11:00 a.m.-1:35 p.m.
Clinical Plenary: Adoptive Cell Transfer Therapy__________________________
___ 10:45 a.m.-12:30 p.m.
Symposium: New Drugs on the Horizon 2_________________________
___ 10:45 a.m.-12:30 p.m.
Minisymposium: Translational Prevention Studies
______________________
___ 12:30 p.m.-1:25 p.m.
Symposium: New Drugs on the Horizon 3
_________________________
___ 12:30 p.m.-2:15 p.m.
Minisymposium: Non-coding RNAs in Cancer
______________________
1:35 p.m.-3:35 p.m.
Clinical Plenary: Early Detection and ctDNA__________________________
___ 1:30 p.m.-3:50 p.m.
Clinical Plenary: Immunotherapy Clinical
Trials 2
_________________________
___ 2:15 p.m.-3:45 p.m.
Minisymposium: Novel Targets and Therapies______________________
3:35 p.m.-5:50 p.m.
Minisymposium: Predictive Biomarkers for Immunotherapeutics__________________________
___ 3:50 p.m.-5:35 p.m.
Minisymposium: Evaluating Cancer Genomics from Normal Tissues through Evolution to Metastatic Disease
_________________________
___ 4:00 p.m.-4:55 p.m.
Clinical Plenary: Targeted Therapy______________________
5:00 p.m.-5:45 p.m.
Symposium: NCI Activities– COVID-19 and Cancer Research
Dinah Singer, NCI
______________________
5:45 p.m.-6:00 p.m.
Closing Session
______________________

All session times are EDT.

 

 

 

Day

 

Session Type

Topic Tracks

For more on @pharma_BI and LPBI Group Conference Coverage in Real Time please go to

https://pharmaceuticalintelligence.com/press-coverage/

and

 

 

Read Full Post »


Opinion Articles from the Lancet: COVID-19 and Cancer Care in China and Africa

Reporter: Stephen J. Williams, PhD

Cancer Patients in SARS-CoV-2 infection: a nationwide analysis in China

Wenhua Liang, Weijie Guan, Ruchong Chen, Wei Wang, Jianfu Li, Ke Xu, Caichen Li, Qing Ai, Weixiang Lu, Hengrui Liang, Shiyue Li, Jianxing He

Lancet Oncol. 2020 Mar; 21(3): 335–337. Published online 2020 Feb 14. doi: 10.1016/S1470-2045(20)30096-6

PMCID: PMC7159000

 

The National Clinical Research Center for Respiratory Disease and the National Health Commission of the People’s Republic of China collaborated to establish a prospective cohort to monitor COVID-19 cases in China.  As on Jan31, 20202007 cases have been collected and analyzed with confirmed COVID-19 infection in these cohorts.

Results: 18 or 1% of COVID-19 cases had a history of cancer (the overall average cancer incidence in the overall China population is 0.29%) {2015 statistics}.  It appeared that cancer patients had an observable higher risk of COVID related complications upon hospitalization. However, this was a higher risk compared with the general population.  There was no comparison between cancer patients not diagnosed with COVID-19 and an assessment of their risk of infection.  Interestingly those who were also cancer survivors showed an increased incidence of COVID related severe complications compared to the no cancer group.

Although this study could have compared the risk within a cancer group, the authors still felt the results warranted precautions when dealing with cancer patients and issued recommendations including:

  1. Postponing of adjuvant chemotherapy or elective surgery for stable cancer should be considered
  2. Stronger personal protection for cancer patients
  3. More intensive surveillance or treatment should be considered when patients with cancer are infected, especially in older patients

Further studies will need to address the risk added by specific types of chemotherapy: cytolytic versus immunotherapy e.g.

 

Preparedness for COVID-19 in the oncology community in Africa

Lancet Oncology, Verna Vanderpuye, Moawia Mohammed,Ali Elhassan

Hannah Simonds: Published:April 03, 2020DOI:https://doi.org/10.1016/S1470-2045(20)30220-5

Africa has a heterogeneity of cultures, economies and disease patterns however fortunately it is one of the last countries to be hit by the COVID-19 pandemic, which allows some time for preparation by the African nations.  The authors note that with Africa’s previous experiences with epidemics, namely ebola and cholera, Africa should be prepared for this pandemic.

However, as a result of poor economic discipline, weak health systems, and poor health-seeking behaviors across the continent, outcomes could be dismal. Poverty, low health literacy rates, and cultural practices that negatively affect cancer outcomes will result in poor assimilation of COVID-19 containment strategies in Africa.”

In general African oncologists are following COVID-19 guidelines from other high-income countries, but as this writer acknowledges in previous posts, there was a significant lag from first cases in the United States to the concrete formulation of guidelines for both oncologists and patients with regard to this pandemic.  African oncologist are delaying the start of adjuvant therapies and switching more to oral therapies and rethink palliative care.

However the authors still have many more questions than answers, however even among countries that have dealt with this pandemic before Africa (like Italy and US), oncologists across the globe still have not been able to answer questions like: what if my patient develops a fever, what do I do during a period of neutropenia, to their satisfaction or the satisfaction of the patient.  These are questions even oncologists who are dealing in COVID hotspots are still trying to answer including what constitutes a necessary surgical procedure? As I have highlighted in recent posts, oncologists in New York have all but shut down all surgical procedures and relying on liquid biopsies taken in the at-home setting. But does Africa have this capability of access to at home liquid biopsy procedures?

In addition, as I had just highlighted in a recent posting, there exists extreme cancer health disparities across the African continent, as well as the COVID responses. In West Africa, COVID-19 protocols are defined at individual institutions.  This is more like the American system where even NCI designated centers were left to fashion some of their own guidelines initially, although individual oncologists had banded together to do impromptu meetings to discuss best practices. However this is fine for big institutions, but as in the US, there is a large rural population on the African continent with geographical barriers to these big centers. Elective procedures have been cancelled and small number of patients are seen by day.  This remote strategy actually may be well suited for African versus more developed nations, as highlighted in a post I did about mobile health app use in oncology, as this telemedicine strategy is rather new among US oncologists (reference my posts with the Town Hall meetings).

The situation is more complicated in South Africa where they are dealing with an HIV epidemic, where about 8 million are infected with HIV. Oncology services here are still expecting to run at full capacity as the local hospitals deal with the first signs of the COVID outbreak. In Sudan, despite low COVID numbers, cancer centers have developed contingency plans. and are deferring new referrals except for emergency cases.  Training sessions for staff have been developed.

For more articles in this online open access journal on Cancer and COVID-19 please see our

Coronovirus Portal
Responses to the #COVID-19 outbreak from Oncologists, Cancer Societies and the NCI: Important information for cancer patients

 

Read Full Post »


Personalized Medicine, Omics, and Health Disparities in Cancer:  Can Personalized Medicine Help Reduce the Disparity Problem?

Curator: Stephen J. Williams, PhD

In a Science Perspectives article by Timothy Rebbeck, health disparities, specifically cancer disparities existing in the sub-Saharan African (SSA) nations, highlighting the cancer incidence disparities which exist compared with cancer incidence in high income areas of the world [1].  The sub-Saharan African nations display a much higher incidence of prostate, breast, and cervix cancer and these cancers are predicted to double within the next twenty years, according to IARC[2].  Most importantly,

 the histopathologic and demographic features of these tumors differ from those in high-income countries

meaning that the differences seen in incidence may reflect a true health disparity as increases rates in these cancers are not seen in high income countries (HIC).

Most frequent male cancers in SSA include prostate, lung, liver, leukemia, non-Hodgkin’s lymphoma, and Kaposi’s sarcoma (a cancer frequently seen in HIV infected patients [3]).  In SSA women, breast and cervical cancer are the most common and these display higher rates than seen in high income countries.  In fact, liver cancer is seen in SSA females at twice the rate, and in SSA males almost three times the rate as in high income countries.

 

 

 

 

 

 

Reasons for cancer disparity in SSA

Patients with cancer are often diagnosed at a late stage in SSA countries.  This contrasts with patients from high income countries, which have their cancers usually diagnosed at an earlier stage, and with many cancers, like breast[4], ovarian[5, 6], and colon, detecting the tumor in the early stages is critical for a favorable outcome and prognosis[7-10].  In addition, late diagnosis also limits many therapeutic options for the cancer patient and diseases at later stages are much harder to manage, especially with respect to unresponsiveness and/or resistance of many therapies.  In addition, treatments have to be performed in low-resource settings in SSA, and availability of clinical lab work and imaging technologies may be limited.

Molecular differences in SSA versus HIC cancers which may account for disparities

Emerging evidence suggests that there are distinct molecular signatures with SSA tumors with respect to histotype and pathology.  For example Dr. Rebbeck mentions that Nigerian breast cancers were defined by increased mutational signatures associated with deficiency of the homologous recombination DNA repair pathway, pervasive mutations in the tumor suppressor gene TP53, mutations in GATA binding protein 3 (GATA3), and greater mutational burden, compared with breast tumors from African Americans or Caucasians[11].  However more research will be required to understand the etiology and causal factors related to this molecular distinction in mutational spectra.

It is believed that there is a higher rate of hereditary cancers in SSA. And many SSA cancers exhibit the more aggressive phenotype than in other parts of the world.  For example breast tumors in SSA black cases are twice as likely than SSA Caucasian cases to be of the triple negative phenotype, which is generally more aggressive and tougher to detect and treat, as triple negative cancers are HER2 negative and therefore are not a candidate for Herceptin.  Also BRCA1/2 mutations are more frequent in black SSA cases than in Caucasian SSA cases [12, 13].

Initiatives to Combat Health Disparities in SSA

Multiple initiatives are being proposed or in action to bring personalized medicine to the sub-Saharan African nations.  These include:

H3Africa empowers African researchers to be competitive in genomic sciences, establishes and nurtures effective collaborations among African researchers on the African continent, and generates unique data that could be used to improve both African and global health.

There is currently a global effort to apply genomic science and associated technologies to further the understanding of health and disease in diverse populations. These efforts work to identify individuals and populations who are at risk for developing specific diseases, and to better understand underlying genetic and environmental contributions to that risk. Given the large amount of genetic diversity on the African continent, there exists an enormous opportunity to utilize such approaches to benefit African populations and to inform global health.

The Human Heredity and Health in Africa (H3Africa) consortium facilitates fundamental research into diseases on the African continent while also developing infrastructure, resources, training, and ethical guidelines to support a sustainable African research enterprise – led by African scientists, for the African people. The initiative consists of 51 African projects that include population-based genomic studies of common, non-communicable disorders such as heart and renal disease, as well as communicable diseases such as tuberculosis. These studies are led by African scientists and use genetic, clinical, and epidemiologic methods to identify hereditary and environmental contributions to health and disease. To establish a foundation for African scientists to continue this essential work into the future work, the consortium also supports many crucial capacity building elements, such as: ethical, legal, and social implications research; training and capacity building for bioinformatics; capacity for biobanking; and coordination and networking.

The World Economic Forum’s Leapfrogging with Precision Medicine project 

This project is part of the World Economic Forum’s Shaping the Future of Health and Healthcare Platform

The Challenge

Advancing precision medicine in a way that is equitable and beneficial to society means ensuring that healthcare systems can adopt the most scientifically and technologically appropriate approaches to a more targeted and personalized way of diagnosing and treating disease. In certain instances, countries or institutions may be able to bypass, or “leapfrog”, legacy systems or approaches that prevail in developed country contexts.

The World Economic Forum’s Leapfrogging with Precision Medicine project will develop a set of tools and case studies demonstrating how a precision medicine approach in countries with greenfield policy spaces can potentially transform their healthcare delivery and outcomes. Policies and governance mechanisms that enable leapfrogging will be iterated and scaled up to other projects.

Successes in personalized genomic research in SSA

As Dr. Rebbeck states:

 Because of the underlying genetic and genomic relationships between Africans and members of the African diaspora (primarily in North America and Europe), knowledge gained from research in SSA can be used to address health disparities that are prevalent in members of the African diaspora.

For example members of the West African heritage and genomic ancestry has been reported to confer the highest genomic risk for prostate cancer in any worldwide population [14].

 

PERSPECTIVEGLOBAL HEALTH

Cancer in sub-Saharan Africa

  1. Timothy R. Rebbeck

See all authors and affiliations

Science  03 Jan 2020:
Vol. 367, Issue 6473, pp. 27-28
DOI: 10.1126/science.aay474

Summary/Abstract

Cancer is an increasing global public health burden. This is especially the case in sub-Saharan Africa (SSA); high rates of cancer—particularly of the prostate, breast, and cervix—characterize cancer in most countries in SSA. The number of these cancers in SSA is predicted to more than double in the next 20 years (1). Both the explanations for these increasing rates and the solutions to address this cancer epidemic require SSA-specific data and approaches. The histopathologic and demographic features of these tumors differ from those in high-income countries (HICs). Basic knowledge of the epidemiology, clinical features, and molecular characteristics of cancers in SSA is needed to build prevention and treatment tools that will address the future cancer burden. The distinct distribution and determinants of cancer in SSA provide an opportunity to generate knowledge about cancer risk factors, genomics, and opportunities for prevention and treatment globally, not only in Africa.

 

References

  1. Rebbeck TR: Cancer in sub-Saharan Africa. Science 2020, 367(6473):27-28.
  2. Parkin DM, Ferlay J, Jemal A, Borok M, Manraj S, N’Da G, Ogunbiyi F, Liu B, Bray F: Cancer in Sub-Saharan Africa: International Agency for Research on Cancer; 2018.
  3. Chinula L, Moses A, Gopal S: HIV-associated malignancies in sub-Saharan Africa: progress, challenges, and opportunities. Current opinion in HIV and AIDS 2017, 12(1):89-95.
  4. Colditz GA: Epidemiology of breast cancer. Findings from the nurses’ health study. Cancer 1993, 71(4 Suppl):1480-1489.
  5. Hamilton TC, Penault-Llorca F, Dauplat J: [Natural history of ovarian adenocarcinomas: from epidemiology to experimentation]. Contracept Fertil Sex 1998, 26(11):800-804.
  6. Garner EI: Advances in the early detection of ovarian carcinoma. J Reprod Med 2005, 50(6):447-453.
  7. Brockbank EC, Harry V, Kolomainen D, Mukhopadhyay D, Sohaib A, Bridges JE, Nobbenhuis MA, Shepherd JH, Ind TE, Barton DP: Laparoscopic staging for apparent early stage ovarian or fallopian tube cancer. First case series from a UK cancer centre and systematic literature review. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2013, 39(8):912-917.
  8. Kolligs FT: Diagnostics and Epidemiology of Colorectal Cancer. Visceral medicine 2016, 32(3):158-164.
  9. Rocken C, Neumann U, Ebert MP: [New approaches to early detection, estimation of prognosis and therapy for malignant tumours of the gastrointestinal tract]. Zeitschrift fur Gastroenterologie 2008, 46(2):216-222.
  10. Srivastava S, Verma M, Henson DE: Biomarkers for early detection of colon cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2001, 7(5):1118-1126.
  11. Pitt JJ, Riester M, Zheng Y, Yoshimatsu TF, Sanni A, Oluwasola O, Veloso A, Labrot E, Wang S, Odetunde A et al: Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features. Nature communications 2018, 9(1):4181.
  12. Zheng Y, Walsh T, Gulsuner S, Casadei S, Lee MK, Ogundiran TO, Ademola A, Falusi AG, Adebamowo CA, Oluwasola AO et al: Inherited Breast Cancer in Nigerian Women. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2018, 36(28):2820-2825.
  13. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, Olah E, Olopade OI, Solano AR, Teo SH et al: Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Human mutation 2018, 39(5):593-620.
  14. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR: Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent. Cancer research 2018, 78(9):2432-2443.

Other articles on Cancer Health Disparities and Genomics on this Online Open Access Journal Include:

Gender affects the prevalence of the cancer type
The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally
Breast Cancer Disparities to be Sponsored by NIH: NIH Launches Largest-ever Study of Breast Cancer Genetics in Black Women
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert
Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk
Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org
Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind
Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test
Study Finds that Both Women and their Primary Care Physicians Confusion over Ovarian Cancer Symptoms May Lead to Misdiagnosis

 

Read Full Post »


Live Notes from Town Hall for Patients with Leading Oncologists on Lung Cancer and COVID19 3_28_20

Reporter: Stephen J. Williams, PhD

UPDATED 3/31/2020

Leading Thoracic Oncologists from the United States and Milan, Italy shared their opinions and views on treating lung cancer patients during this COVID-19 pandemic.  Included in the panel is a thoracic oncologist from Milan Italy who gave special insights into the difficulties and the procedures they are using to help control the spread of infection within this high at-risk patient population and changes to current treatment strategy in light of this current virus outbreak.  Please see live notes and can follow on Twitter at #LungCancerandCOVID19.  Included below is the recording of the Zoom session.

 

UPDATED 3/29/2020

Leading Lung Cancer Oncologists from around the world are meeting and discussing concerns for lung cancer patients and oncologist during the novel coronavirus (SARS-COV2; COVID19) pandemic.  The town hall “COVID-19 and the Impact on Thoracic Oncology” will be held on Zoom on Saturday March 28, 2020 at 10:00 – 11:30 AM EST. sponsored by Axiom Healthcare Strategies . You can register at

Please join this virtual Town Hall

Zoom link: https://us04web.zoom.us/j/846752048

Zoom Webinar ID: 846-752-048

eSpeakers

Anne Chiang, MD, PhD, Associate Professor; Chief Network Officer and Deputy Chief Medical Officer, Smilow Cancer Network

Roy S. Herbst, MD, PhD, Ensign Professor of Medicine (Medical Oncology) and Professor of Pharmacology; Chief of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital; Associate Cancer Center Director for Translational Research, Yale Cancer Center

 Kurt Schalper, MD, PhD Assistant Professor of Pathology; Director, Translational Immuno-oncology Laboratory

Martin J. Edelman, MD, Chair, Department of Hematology/Oncology, Fox Chase Cancer Center

Corey J. Langer, MD , Professor of Medicine, University of Pennsylvania

Hossain Borghaei, DO, MS , Chief of Thoracic Medical Oncology and Director of Lung Cancer Risk Assessment, Fox Chase Cancer Center

Marina Garassino, MD, Fondazione IRCCS Instituto Nazionale del Tumori

Kristen Ashley Marrone, MD, Thoracic Medical Oncologist. Johns Hopkins Bayview Medical Center

Taofeek Owonikoko, MD, PhD, MSCR, Medical Oncologist, Emory University School of Medicine

Jeffrey D. BradleyMD, FACR, FASTRO , Emory University School of Medicine

Brendon Stiles, M.D, Weil Cornell

@pharma_BI will be Live Tweeting in Real Time this Town Hall

Please follow at the following # (hashtags)

#LungCancerandCOVID19

#Livingwithcancer

#LungCancer

#NoOneAlone

and

UPDATED 3/29/2020

Below is a collection of live Tweets from this meeting as well as some notes and comments from each of the speakers and panelists.  The recording of this Town Hall will be posted on this site when available.  The Town Hall was well attended with over 250 participants

Town Hall Notes

The following represent some notes taken at this Town Hall.

Dr. Owonkiko: 1-2% lethality in China; for patients newly diagnosed with lung cancer 1) limit contact between patient, physician and healthcare facility = telemedicine and oral chemo suggested 2) for immunotherapy if i.v. must monitor health carefully

Dr. Kurt Schalper: on COVID19 testing: Three types of tests each having pros and cons.

  •     viral culture: not always practical as you need lots of specimen
  • ELISA: looking for circulating antibodies but not always specific for type of coronavirus
  • RT-PCR: most sensitive but right now not much clarity on best primers to use; he noted that there is a 15% variance in test results using different primers to different targeted COVID19 genes

Dr. Marina Garassino: The Lombardi outbreak was 1st in Italy and took them by surprise.  She admits they were about one month behind in preparation where they did not have enough masks as late as January 31.  It was impractical to socially distance given Italian customs in greeting each other.  In addition, they had to determine which facilities would be COVID negative and COVID positive an this required access to testing.  Right now they are only testing symptomatic patients and healthcare workers have to test negative multiple times.  As concerning therapy with lung cancer patients, they have been delaying as much as possible the initiation of therapy.  Patients that are on immunotherapy and immunosuppresive drugs are being monitored by CT scan more often during this pandemic so as instances of pneumotitis began increasing they were unsure if these patients are at increased risk of infection to COVID19 or just a bias in that they are screening more often so their risk to COVID 19 is unclear.  Dr. Garissino also felt we need to move from hospital based to community based measures of prevention against COVID infection (social distancing, citizens more vigilant).  She noted that usually the cancer patients are more careful with respect to preventative measures than the general populace.  Healthcare workers have to test negative twice in three days if they had been in close contact with a COVID postitive patient.  However her hospital is still running at 80% capacity so patients are getting treated. However there are ethical issues as to who gets treated, who gets respirators, and other ethical issues related to unfortunate rationing of care.

Dr. Anne Chiang: Scheduled visits have notably decreased.  They have seen patients visits decrease from 4500 down to 2300 in two weeks but telemedicine visits or virtual visits have increased to 1000 so are replacing the on site visits.  She also said they are trying to reduce or eliminate the extremely immuno-suppressive drugs from chemotherapy regimens.  For example they are removing pemetrexemed from standard regimens and also considering neoadjuvant chemotherapy.  As far as biopsies, liquid biopsies can be obtained in the home so more preferred as patients do not have to come in for biopsy.

Dr. Edelman: Fox Chase is somewhat unique in being an NCI center which only does oncology so they rely on neighboring Jeanes Hospital of the Temple University Health System for a lot of their outpatient and surgical and general medicine needs.  Patients who will be transferred back to Fox Chase are screened for COVID19.

Brenden Stiles: Lung cancer surgeries have ground to a halt.  He did only one last week.  The hospital wants to conserve resources and considers lung cancer surgery to great a COVID risk.  They have shut down elective surgeries and there are no clinical trials being conducted.  He said that lung cancer research will be negatively impacted by the pandemic as resources are shuttled to COVID research efforts.

 Live Tweets

 

Other article of note on Coronavirus (COVID19) please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

 

 

 

Read Full Post »


Real Time Coverage @BIOConvention #BIO2019: Keynote: Siddhartha Mukherjee, Oncologist and Pulitzer Author; June 4 9AM Philadelphia PA

Reporter: Stephen J. Williams, PhD. @StephenJWillia2

 

Hematologist and oncologist Siddhartha Mukherjee was born in New Delhi, India. He holds a BS in biology from Stanford University, a DPhil in immunology from Oxford University (where he was a Rhodes Scholar), and an MD from Harvard Medical School. He completed his internal medicine residency and an oncology fellowship at Massachusetts General Hospital. Dr. Murkherjee is an assistant professor of medicine at Columbia University Medical Center. He lives in Manhattan with his wife, artist Sarah Sze, and their two daughters. His Pulitzer Prize-winning book, The Emperor of All Maladies: A Biography of Cancer, tells the story of cancer from its first description in an ancient Egyptian scroll to the gleaming laboratories of modern research institutions. A three-part documentary series based on the book, directed by Barak Goodman and executive produced by Ken Burns, debuts on PBS stations March 30 and continues on March 31 and April 1. The film interweaves a sweeping historical narrative with intimate stories about contemporary patients and an investigation into the latest scientific breakthroughs. He has also written the award winning book “The Gene: An Intimate History” and is Founder of Vor Biopharma, who had just published on their CD33 engineered hematopoetic stem cells as an immunooncology therapy VOR33.

Hon. James C. Greenwood- former Congressional representative and Founder CEO of BIO: moderator

Greenwood: Never have the threats from DC to innovation in the biotech field been so great.  Focused on some great recent innovations and successes in gene therapy.  Although the cost high, father of two LMR retinopathy patients said if his sons had to go through a lifetime of constant care it would cost much more than the gene therapy from Spark cost.  Politicians need to realize that medicines that completely cure diseases are worth much more.  They should meet in the middle with respect to developing a new payer model that will not hurt innovation.

Dr. Mukherjee:  He go into oncology from a virology PhD because he liked to understand the human aspect

of disease.  As an oncologist he gets to interact more closely with patients.  The oncology horizon is always changing.  He likened his view of oncology and cancer as a pyramid with prevention the base, then early detection then therapy at top.

We haven’t found preventable human carcinogens, none that is highly proven causal

This will be the next challenge for cancer researchers, to figure out why we can’t identify these preventable carcinogens.

 

 

 

 

Please follow on Twitter using these @ handles and # hashtags

@Handles

@DrSidMukherjee

@pharma_BI

@AVIVA1950

@BIOConvention

# Hashtags

#BIO2019 (official meeting hashtag)

 

Other Articles on this Open Access Journal on Interviews with Scientific Leaders Include:

Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders at https://www.amazon.com/dp/B078313281 – electronic Table of Contents

Jennifer Doudna and NPR science correspondent Joe Palca, several interviews

Practicing Oncology: Medscape Editor-in-Chief Eric J. Topol, MD interviews Siddhartha Mukherjee, MD, PhD

Eric Topol interviews Al Gore on Genomics and Privacy

Dr. Mercola Interviews Dr. Saul About Beta-Blockers

Volume Two: Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders

 

Read Full Post »


A Nonlinear Methodology to Explain Complexity of the Genome and Bioinformatic Information

Reporter: Stephen J. Williams, Ph.D.

Multifractal bioinformatics: A proposal to the nonlinear interpretation of genome

The following is an open access article by Pedro Moreno on a methodology to analyze genetic information across species and in particular, the evolutionary trends of complex genomes, by a nonlinear analytic approach utilizing fractal geometry, coined “Nonlinear Bioinformatics”.  This fractal approach stems from the complex nature of higher eukaryotic genomes including mosaicism, multiple interdispersed  genomic elements such as intronic regions, noncoding regions, and also mobile elements such as transposable elements.  Although seemingly random, there exists a repetitive nature of these elements. Such complexity of DNA regulation, structure and genomic variation is felt best understood by developing algorithms based on fractal analysis, which can best model the regionalized and repetitive variability and structure within complex genomes by elucidating the individual components which contributes to an overall complex structure rather than using a “linear” or “reductionist” approach looking at individual coding regions, which does not take into consideration the aforementioned factors leading to genetic complexity and diversity.

Indeed, many other attempts to describe the complexities of DNA as a fractal geometric pattern have been described.  In a paper by Carlo Cattani “Fractals and Hidden Symmetries in DNA“, Carlo uses fractal analysis to construct a simple geometric pattern of the influenza A virus by modeling the primary sequence of this viral DNA, namely the bases A,G,C, and T. The main conclusions that

fractal shapes and symmetries in DNA sequences and DNA walks have been shown and compared with random and deterministic complex series. DNA sequences are structured in such a way that there exists some fractal behavior which can be observed both on the correlation matrix and on the DNA walks. Wavelet analysis confirms by a symmetrical clustering of wavelet coefficients the existence of scale symmetries.

suggested that, at least, the viral influenza genome structure could be analyzed into its basic components by fractal geometry.
This approach has been used to model the complex nature of cancer as discussed in a 2011 Seminars in Oncology paper
Abstract: Cancer is a highly complex disease due to the disruption of tissue architecture. Thus, tissues, and not individual cells, are the proper level of observation for the study of carcinogenesis. This paradigm shift from a reductionist approach to a systems biology approach is long overdue. Indeed, cell phenotypes are emergent modes arising through collective non-linear interactions among different cellular and microenvironmental components, generally described by “phase space diagrams”, where stable states (attractors) are embedded into a landscape model. Within this framework, cell states and cell transitions are generally conceived as mainly specified by gene-regulatory networks. However, the system s dynamics is not reducible to the integrated functioning of the genome-proteome network alone; the epithelia-stroma interacting system must be taken into consideration in order to give a more comprehensive picture. Given that cell shape represents the spatial geometric configuration acquired as a result of the integrated set of cellular and environmental cues, we posit that fractal-shape parameters represent “omics descriptors of the epithelium-stroma system. Within this framework, function appears to follow form, and not the other way around.

As authors conclude

” Transitions from one phenotype to another are reminiscent of phase transitions observed in physical systems. The description of such transitions could be obtained by a set of morphological, quantitative parameters, like fractal measures. These parameters provide reliable information about system complexity. “

Gene expression also displays a fractal nature. In a Frontiers in Physiology paper by Mahboobeh Ghorbani, Edmond A. Jonckheere and Paul Bogdan* “Gene Expression Is Not Random: Scaling, Long-Range Cross-Dependence, and Fractal Characteristics of Gene Regulatory Networks“,

the authors describe that gene expression networks display time series display fractal and long-range dependence characteristics.

Abstract: Gene expression is a vital process through which cells react to the environment and express functional behavior. Understanding the dynamics of gene expression could prove crucial in unraveling the physical complexities involved in this process. Specifically, understanding the coherent complex structure of transcriptional dynamics is the goal of numerous computational studies aiming to study and finally control cellular processes. Here, we report the scaling properties of gene expression time series in Escherichia coliand Saccharomyces cerevisiae. Unlike previous studies, which report the fractal and long-range dependency of DNA structure, we investigate the individual gene expression dynamics as well as the cross-dependency between them in the context of gene regulatory network. Our results demonstrate that the gene expression time series display fractal and long-range dependence characteristics. In addition, the dynamics between genes and linked transcription factors in gene regulatory networks are also fractal and long-range cross-correlated. The cross-correlation exponents in gene regulatory networks are not unique. The distribution of the cross-correlation exponents of gene regulatory networks for several types of cells can be interpreted as a measure of the complexity of their functional behavior.

 

Given that multitude of complex biomolecular networks and biomolecules can be described by fractal patterns, the development of bioinformatic algorithms  would enhance our understanding of the interdependence and cross funcitonality of these mutiple biological networks, particularly in disease and drug resistance.  The article below by Pedro Moreno describes the development of such bioinformatic algorithms.

Pedro A. Moreno
Escuela de Ingeniería de Sistemas y Computación, Facultad de Ingeniería, Universidad del Valle, Cali, Colombia
E-mail: pedro.moreno@correounivalle.edu.co

Eje temático: Ingeniería de sistemas / System engineering
Recibido: 19 de septiembre de 2012
Aceptado: 16 de diciembre de 2013


 

 


Abstract

The first draft of the human genome (HG) sequence was published in 2001 by two competing consortia. Since then, several structural and functional characteristics for the HG organization have been revealed. Today, more than 2.000 HG have been sequenced and these findings are impacting strongly on the academy and public health. Despite all this, a major bottleneck, called the genome interpretation persists. That is, the lack of a theory that explains the complex puzzles of coding and non-coding features that compose the HG as a whole. Ten years after the HG sequenced, two recent studies, discussed in the multifractal formalism allow proposing a nonlinear theory that helps interpret the structural and functional variation of the genetic information of the genomes. The present review article discusses this new approach, called: “Multifractal bioinformatics”.

Keywords: Omics sciences, bioinformatics, human genome, multifractal analysis.


1. Introduction

Omic Sciences and Bioinformatics

In order to study the genomes, their life properties and the pathological consequences of impairment, the Human Genome Project (HGP) was created in 1990. Since then, about 500 Gpb (EMBL) represented in thousands of prokaryotic genomes and tens of different eukaryotic genomes have been sequenced (NCBI, 1000 Genomes, ENCODE). Today, Genomics is defined as the set of sciences and technologies dedicated to the comprehensive study of the structure, function and origin of genomes. Several types of genomic have arisen as a result of the expansion and implementation of genomics to the study of the Central Dogma of Molecular Biology (CDMB), Figure 1 (above). The catalog of different types of genomics uses the Latin suffix “-omic” meaning “set of” to mean the new massive approaches of the new omics sciences (Moreno et al, 2009). Given the large amount of genomic information available in the databases and the urgency of its actual interpretation, the balance has begun to lean heavily toward the requirements of bioinformatics infrastructure research laboratories Figure 1 (below).

The bioinformatics or Computational Biology is defined as the application of computer and information technology to the analysis of biological data (Mount, 2004). An interdisciplinary science that requires the use of computing, applied mathematics, statistics, computer science, artificial intelligence, biophysical information, biochemistry, genetics, and molecular biology. Bioinformatics was born from the need to understand the sequences of nucleotide or amino acid symbols that make up DNA and proteins, respectively. These analyzes are made possible by the development of powerful algorithms that predict and reveal an infinity of structural and functional features in genomic sequences, as gene location, discovery of homologies between macromolecules databases (Blast), algorithms for phylogenetic analysis, for the regulatory analysis or the prediction of protein folding, among others. This great development has created a multiplicity of approaches giving rise to new types of Bioinformatics, such as Multifractal Bioinformatics (MFB) that is proposed here.

1.1 Multifractal Bioinformatics and Theoretical Background

MFB is a proposal to analyze information content in genomes and their life properties in a non-linear way. This is part of a specialized sub-discipline called “nonlinear Bioinformatics”, which uses a number of related techniques for the study of nonlinearity (fractal geometry, Hurts exponents, power laws, wavelets, among others.) and applied to the study of biological problems (https://pharmaceuticalintelligence.com/tag/fractal-geometry/). For its application, we must take into account a detailed knowledge of the structure of the genome to be analyzed and an appropriate knowledge of the multifractal analysis.

1.2 From the Worm Genome toward Human Genome

To explore a complex genome such as the HG it is relevant to implement multifractal analysis (MFA) in a simpler genome in order to show its practical utility. For example, the genome of the small nematode Caenorhabditis elegans is an excellent model to learn many extrapolated lessons of complex organisms. Thus, if the MFA explains some of the structural properties in that genome it is expected that this same analysis reveals some similar properties in the HG.

The C. elegans nuclear genome is composed of about 100 Mbp, with six chromosomes distributed into five autosomes and one sex chromosome. The molecular structure of the genome is particularly homogeneous along with the chromosome sequences, due to the presence of several regular features, including large contents of genes and introns of similar sizes. The C. elegans genome has also a regional organization of the chromosomes, mainly because the majority of the repeated sequences are located in the chromosome arms, Figure 2 (left) (C. elegans Sequencing Consortium, 1998). Given these regular and irregular features, the MFA could be an appropriate approach to analyze such distributions.

Meanwhile, the HG sequencing revealed a surprising mosaicism in coding (genes) and noncoding (repetitive DNA) sequences, Figure 2 (right) (Venter et al., 2001). This structure of 6 Gbp is divided into 23 pairs of chromosomes (diploid cells) and these highly regionalized sequences introduce complex patterns of regularity and irregularity to understand the gene structure, the composition of sequences of repetitive DNA and its role in the study and application of life sciences. The coding regions of the genome are estimated at ~25,000 genes which constitute 1.4% of GH. These genes are involved in a giant sea of various types of non-coding sequences which compose 98.6% of HG (misnamed popularly as “junk DNA”). The non-coding regions are characterized by many types of repeated DNA sequences, where 10.6% consists of Alu sequences, a type of SINE (short and dispersed repeated elements) sequence and preferentially located towards the genes. LINES, MIR, MER, LTR, DNA transposons and introns are another type of non-coding sequences which form about 86% of the genome. Some of these sequences overlap with each other; as with CpG islands, which complicates the analysis of genomic landscape. This standard genomic landscape was recently clarified, the last studies show that 80.4% of HG is functional due to the discovery of more than five million “switches” that operate and regulate gene activity, re-evaluating the concept of “junk DNA”. (The ENCODE Project Consortium, 2012).

Given that all these genomic variations both in worm and human produce regionalized genomic landscapes it is proposed that Fractal Geometry (FG) would allow measuring how the genetic information content is fragmented. In this paper the methodology and the nonlinear descriptive models for each of these genomes will be reviewed.

1.3 The MFA and its Application to Genome Studies

Most problems in physics are implicitly non-linear in nature, generating phenomena such as chaos theory, a science that deals with certain types of (non-linear) but very sensitive dynamic systems to initial conditions, nonetheless of deterministic rigor, that is that their behavior can be completely determined by knowing initial conditions (Peitgen et al, 1992). In turn, the FG is an appropriate tool to study the chaotic dynamic systems (CDS). In other words, the FG and chaos are closely related because the space region toward which a chaotic orbit tends asymptotically has a fractal structure (strange attractors). Therefore, the FG allows studying the framework on which CDS are defined (Moon, 1992). And this is how it is expected for the genome structure and function to be organized.

The MFA is an extension of the FG and it is related to (Shannon) information theory, disciplines that have been very useful to study the information content over a sequence of symbols. Initially, Mandelbrot established the FG in the 80’s, as a geometry capable of measuring the irregularity of nature by calculating the fractal dimension (D), an exponent derived from a power law (Mandelbrot, 1982). The value of the D gives us a measure of the level of fragmentation or the information content for a complex phenomenon. That is because the D measures the scaling degree that the fragmented self-similarity of the system has. Thus, the FG looks for self-similar properties in structures and processes at different scales of resolution and these self-similarities are organized following scaling or power laws.

Sometimes, an exponent is not sufficient to characterize a complex phenomenon; so more exponents are required. The multifractal formalism allows this, and applies when many subgroups of fractals with different scalar properties with a large number of exponents or fractal dimensions coexist simultaneously. As a result, when a spectrum of multifractal singularity measurement is generated, the scaling behavior of the frequency of symbols of a sequence can be quantified (Vélez et al, 2010).

The MFA has been implemented to study the spatial heterogeneity of theoretical and experimental fractal patterns in different disciplines. In post-genomics times, the MFA was used to study multiple biological problems (Vélez et al, 2010). Nonetheless, very little attention has been given to the use of MFA to characterize the content of the structural genetic information of the genomes obtained from the images of the Chaos Representation Game (CRG). First studies at this level were made recently to the analysis of the C. elegans genome (Vélez et al, 2010) and human genomes (Moreno et al, 2011). The MFA methodology applied for the study of these genomes will be developed below.

2. Methodology

The Multifractal Formalism from the CGR

2.1 Data Acquisition and Molecular Parameters

Databases for the C. elegans and the 36.2 Hs_ refseq HG version were downloaded from the NCBI FTP server. Then, several strategies were designed to fragment the genomic DNA sequences of different length ranges. For example, the C. elegans genome was divided into 18 fragments, Figure 2 (left) and the human genome in 9,379 fragments. According to their annotation systems, the contents of molecular parameters of coding sequences (genes, exons and introns), noncoding sequences (repetitive DNA, Alu, LINES, MIR, MER, LTR, promoters, etc.) and coding/ non-coding DNA (TTAGGC, AAAAT, AAATT, TTTTC, TTTTT, CpG islands, etc.) are counted for each sequence.

2.2 Construction of the CGR 2.3 Fractal Measurement by the Box Counting Method

Subsequently, the CGR, a recursive algorithm (Jeffrey, 1990; Restrepo et al, 2009) is applied to each selected DNA sequence, Figure 3 (above, left) and from which an image is obtained, which is quantified by the box-counting algorithm. For example, in Figure 3 (above, left) a CGR image for a human DNA sequence of 80,000 bp in length is shown. Here, dark regions represent sub-quadrants with a high number of points (or nucleotides). Clear regions, sections with a low number of points. The calculation for the D for the Koch curve by the box-counting method is illustrated by a progression of changes in the grid size, and its Cartesian graph, Table 1

The CGR image for a given DNA sequence is quantified by a standard fractal analysis. A fractal is a fragmented geometric figure whose parts are an approximated copy at full scale, that is, the figure has self-similarity. The D is basically a scaling rule that the figure obeys. Generally, a power law is given by the following expression:

Where N(E) is the number of parts required for covering the figure when a scaling factor E is applied. The power law permits to calculate the fractal dimension as:

The D obtained by the box-counting algorithm covers the figure with disjoint boxes ɛ = 1/E and counts the number of boxes required. Figure 4 (above, left) shows the multifractal measure at momentum q=1.

2.4 Multifractal Measurement

When generalizing the box-counting algorithm for the multifractal case and according to the method of moments q, we obtain the equation (3) (Gutiérrez et al, 1998; Yu et al, 2001):

Where the Mi number of points falling in the i-th grid is determined and related to the total number Mand ɛ to box size. Thus, the MFA is used when multiple scaling rules are applied. Figure 4 (above, right) shows the calculation of the multifractal measures at different momentum q (partition function). Here, linear regressions must have a coefficient of determination equal or close to 1. From each linear regression D are obtained, which generate an spectrum of generalized fractal dimensions Dfor all q integers, Figure 4 (below, left). So, the multifractal spectrum is obtained as the limit:

The variation of the q integer allows emphasizing different regions and discriminating their fractal a high Dq is synonymous of the structure’s richness and the properties of these regions. Negative values emphasize the scarce regions; a high Dindicates a lot of structure and properties in these regions. In real world applications, the limit Dqreadily approximated from the data using a linear fitting: the transformation of the equation (3) yields:

Which shows that ln In(Mi )= for set q is a linear function in the ln(ɛ), Dq can therefore be evaluated as q the slope of a fixed relationship between In(Mi )= and (q-1) ln(ɛ). The methodologies and approaches for the method of box-counting and MFA are detailed in Moreno et al, 2000, Yu et al, 2001; Moreno, 2005. For a rigorous mathematical development of MFA from images consult Multifractal system, wikipedia.

2.5 Measurement of Information Content

Subsequently, from the spectrum of generalized dimensions Dq, the degree of multifractality ΔDq(MD) is calculated as the difference between the maximum and minimum values of : ΔD qq Dqmax – Dqmin (Ivanov et al, 1999). When qmaxqmin ΔDis high, the multifractal spectrum is rich in information and highly aperiodic, when ΔDq is small, the resulting dimension spectrum is poor in information and highly periodic. It is expected then, that the aperiodicity in the genome would be related to highly polymorphic genomic aperiodic structures and those periodic regions with highly repetitive and not very polymorphic genomic structures. The correlation exponent t(q) = (– 1)DqFigure 4 (below, right ) can also be obtained from the multifractal dimension Dq. The generalized dimension also provides significant specific information. D(q = 0) is equal to the Capacity dimension, which in this analysis is the size of the “box count”. D(q = 1) is equal to the Information dimension and D(q = 2) to the Correlation dimension. Based on these multifractal parameters, many of the structural genomic properties can be quantified, related, and interpreted.

2.6 Multifractal Parameters and Statistical and Discrimination Analyses

Once the multifractal parameters are calculated (D= (-20, 20), ΔDq, πq, etc.), correlations with the molecular parameters are sought. These relations are established by plotting the number of genome molecular parameters versus MD by discriminant analysis with Cartesian graphs in 2-D, Figure 5 (below, left) and 3-D and combining multifractal and molecular parameters. Finally, simple linear regression analysis, multivariate analysis, and analyses by ranges and clusterings are made to establish statistical significance.

3 Results and Discussion

3.1 Non-linear Descriptive Model for the C. elegans Genome

When analyzing the C. elegans genome with the multifractal formalism it revealed what symmetry and asymmetry on the genome nucleotide composition suggested. Thus, the multifractal scaling of the C. elegans genome is of interest because it indicates that the molecular structure of the chromosome may be organized as a system operating far from equilibrium following nonlinear laws (Ivanov et al, 1999; Burgos and Moreno-Tovar, 1996). This can be discussed from two points of view:

1) When comparing C. elegans chromosomes with each other, the X chromosome showed the lowest multifractality, Figure 5 (above). This means that the X chromosome is operating close to equilibrium, which results in an increased genetic instability. Thus, the instability of the X could selectively contribute to the molecular mechanism that determines sex (XX or X0) during meiosis. Thus, the X chromosome would be operating closer to equilibrium in order to maintain their particular sexual dimorphism.

2) When comparing different chromosome regions of the C. elegans genome, changes in multifractality were found in relation to the regional organization (at the center and arms) exhibited by the chromosomes, Figure 5 (below, left). These behaviors are associated with changes in the content of repetitive DNA, Figure 5 (below, right). The results indicated that the chromosome arms are even more complex than previously anticipated. Thus, TTAGGC telomere sequences would be operating far from equilibrium to protect the genetic information encoded by the entire chromosome.

All these biological arguments may explain why C. elegans genome is organized in a nonlinear way. These findings provide insight to quantify and understand the organization of the non-linear structure of the C. elegans genome, which may be extended to other genomes, including the HG (Vélez et al, 2010).

3.2 Nonlinear Descriptive Model for the Human Genome

Once the multifractal approach was validated in C. elegans genome, HG was analyzed exhaustively. This allowed us to propose a nonlinear model for the HG structure which will be discussed under three points of view.

1) It was found that the HG high multifractality depends strongly on the contents of Alu sequences and to a lesser extent on the content of CpG islands. These contents would be located primarily in highly aperiodic regions, thus taking the chromosome far from equilibrium and giving to it greater genetic stability, protection and attraction of mutations, Figure 6 (A-C). Thus, hundreds of regions in the HG may have high genetic stability and the most important genetic information of the HG, the genes, would be safeguarded from environmental fluctuations. Other repeated elements (LINES, MIR, MER, LTRs) showed no significant relationship,

Figure 6 (D). Consequently, the human multifractal map developed in Moreno et al, 2011 constitutes a good tool to identify those regions rich in genetic information and genomic stability. 2) The multifractal context seems to be a significant requirement for the structural and functional organization of thousands of genes and gene families. Thus, a high multifractal context (aperiodic) appears to be a “genomic attractor” for many genes (KOGs, KEEGs), Figure 6 (E) and some gene families, Figure 6 (F) are involved in genetic and deterministic processes, in order to maintain a deterministic regulation control in the genome, although most of HG sequences may be subject to a complex epigenetic control.

3) The classification of human chromosomes and chromosome regions analysis may have some medical implications (Moreno et al, 2002; Moreno et al, 2009). This means that the structure of low nonlinearity exhibited by some chromosomes (or chromosome regions) involve an environmental predisposition, as potential targets to undergo structural or numerical chromosomal alterations in Figure 6 (G). Additionally, sex chromosomes should have low multifractality to maintain sexual dimorphism and probably the X chromosome inactivation.

All these fractals and biological arguments could explain why Alu elements are shaping the HG in a nonlinearly manner (Moreno et al, 2011). Finally, the multifractal modeling of the HG serves as theoretical framework to examine new discoveries made by the ENCODE project and new approaches about human epigenomes. That is, the non-linear organization of HG might help to explain why it is expected that most of the GH is functional.

4. Conclusions

All these results show that the multifractal formalism is appropriate to quantify and evaluate genetic information contents in genomes and to relate it with the known molecular anatomy of the genome and some of the expected properties. Thus, the MFB allows interpreting in a logic manner the structural nature and variation of the genome.

The MFB allows understanding why a number of chromosomal diseases are likely to occur in the genome, thus opening a new perspective toward personalized medicine to study and interpret the GH and its diseases.

The entire genome contains nonlinear information organizing it and supposedly making it function, concluding that virtually 100% of HG is functional. Bioinformatics in general, is enriched with a novel approach (MFB) making it possible to quantify the genetic information content of any DNA sequence and their practical applications to different disciplines in biology, medicine and agriculture. This novel breakthrough in computational genomic analysis and diseases contributes to define Biology as a “hard” science.

MFB opens a door to develop a research program towards the establishment of an integrative discipline that contributes to “break” the code of human life. (http://pharmaceuticalintelligence. com/page/3/).

5. Acknowledgements

Thanks to the directives of the EISC, the Universidad del Valle and the School of Engineering for offering an academic, scientific and administrative space for conducting this research. Likewise, thanks to co authors (professors and students) who participated in the implementation of excerpts from some of the works cited here. Finally, thanks to Colciencias by the biotechnology project grant # 1103-12-16765.


6. References

Blanco, S., & Moreno, P.A. (2007). Representación del juego del caos para el análisis de secuencias de ADN y proteínas mediante el análisis multifractal (método “box-counting”). In The Second International Seminar on Genomics and Proteomics, Bioinformatics and Systems Biology (pp. 17-25). Popayán, Colombia.         [ Links ]

Burgos, J.D., & Moreno-Tovar, P. (1996). Zipf scaling behavior in the immune system. BioSystem , 39, 227-232.         [ Links ]

C. elegans Sequencing Consortium. (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science , 282, 2012-2018.         [ Links ]

Gutiérrez, J.M., Iglesias A., Rodríguez, M.A., Burgos, J.D., & Moreno, P.A. (1998). Analyzing the multifractals structure of DNA nucleotide sequences. In, M. Barbie & S. Chillemi (Eds.) Chaos and Noise in Biology and Medicine (cap. 4). Hackensack (NJ): World Scientific Publishing Co.         [ Links ]

Ivanov, P.Ch., Nunes, L.A., Golberger, A.L., Havlin, S., Rosenblum, M.G., Struzikk, Z.R., & Stanley, H.E. (1999). Multifractality in human heartbeat dynamics. Nature , 399, 461-465.         [ Links ]

Jeffrey, H.J. (1990). Chaos game representation of gene structure. Nucleic Acids Research , 18, 2163-2175.         [ Links ]

Mandelbrot, B. (1982). La geometría fractal de la naturaleza. Barcelona. España: Tusquets editores.         [ Links ]

Moon, F.C. (1992). Chaotic and fractal dynamics. New York: John Wiley.         [ Links ]

Moreno, P.A. (2005). Large scale and small scale bioinformatics studies on the Caenorhabditis elegans enome. Doctoral thesis. Department of Biology and Biochemistry, University of Houston, Houston, USA.         [ Links ]

Moreno, P.A., Burgos, J.D., Vélez, P.E., Gutiérrez, J.M., & et al., (2000). Multifractal analysis of complete genomes. In P roceedings of the 12th International Genome Sequencing and Analysis Conference (pp. 80-81). Miami Beach (FL).         [ Links ]

Moreno, P.A., Rodríguez, J.G., Vélez, P.E., Cubillos, J.R., & Del Portillo, P. (2002). La genómica aplicada en salud humana. Colombia Ciencia y Tecnología. Colciencias , 20, 14-21.         [ Links ]

Moreno, P.A., Vélez, P.E., & Burgos, J.D. (2009). Biología molecular, genómica y post-genómica. Pioneros, principios y tecnologías. Popayán, Colombia: Editorial Universidad del Cauca.         [ Links ]

Moreno, P.A., Vélez, P.E., Martínez, E., Garreta, L., Díaz, D., Amador, S., Gutiérrez, J.M., et. al. (2011). The human genome: a multifractal analysis. BMC Genomics , 12, 506.         [ Links ]

Mount, D.W. (2004). Bioinformatics. Sequence and ge nome analysis. New York: Cold Spring Harbor Laboratory Press.         [ Links ]

Peitgen, H.O., Jürgen, H., & Saupe D. (1992). Chaos and Fractals. New Frontiers of Science. New York: Springer-Verlag.         [ Links ]

Restrepo, S., Pinzón, A., Rodríguez, L.M., Sierra, R., Grajales, A., Bernal, A., Barreto, E. et. al. (2009). Computational biology in Colombia. PLoS Computational Biology, 5 (10), e1000535.         [ Links ]

The ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature , 489, 57-74.         [ Links ]

Vélez, P.E., Garreta, L.E., Martínez, E., Díaz, N., Amador, S., Gutiérrez, J.M., Tischer, I., & Moreno, P.A. (2010). The Caenorhabditis elegans genome: a multifractal analysis. Genet and Mol Res , 9, 949-965.         [ Links ]

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., & et al. (2001). The sequence of the human genome. Science , 291, 1304-1351.         [ Links ]

Yu, Z.G., Anh, V., & Lau, K.S. (2001). Measure representation and multifractal analysis of complete genomes. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 64, 031903.         [ Links ]

 

Other articles on Bioinformatics on this Open Access Journal include:

Bioinformatics Tool Review: Genome Variant Analysis Tools

2017 Agenda – BioInformatics: Track 6: BioIT World Conference & Expo ’17, May 23-35, 2017, Seaport World Trade Center, Boston, MA

Better bioinformatics

Broad Institute, Google Genomics combine bioinformatics and computing expertise

Autophagy-Modulating Proteins and Small Molecules Candidate Targets for Cancer Therapy: Commentary of Bioinformatics Approaches

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics

Read Full Post »


Announcement 11AM- 5PM: Live Conference Coverage  from Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health @S.H.R.O. and Temple University October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

 

 The Sbarro Health Research Organization, in collaboration with the Consulate General of Italy in Philadelphia will sponsor a symposium on the Mediterranean Diet and Human Health on October 19, 2018 at Temple University in Philadelphia, PA.  This symposium will discuss recent finding concerning the health benefits derived from a Mediterranean-style diet discussed by the leaders in this field of research.

Mediterranean Diet

The description of the Mediterranean Diet stems from the nutritionist Ancel Keys, who in 1945, in the wake of the US Fifth Army, landed in Southern Italy, where he observed one of the highest concentrations of centenarians in the world. He also noticed that cardiovascular diseases, widespread in the USA, were less frequent there. In particular, among the Southern Italians, the prevalence of “wellness” diseases such as hypertension and diabetes mellitus, was particularly associated with fat consumption, suggesting that the main factor responsible for the observations was the type of diet traditionally consumed among people facing the Mediterranean Sea, which is low in animal fat, as opposed to the Anglo-Saxon diet. The link between serum cholesterol and coronary heart disease mortality was subsequently demonstrated by the Seven Countries Study. Later, the concept of Mediterranean Diet was extended to a diet rich in fruits, vegetables, legumes, whole grains, fish and olive oil as the main source of lipid, shared among people living in Spain, Greece, Southern Italy and other countries facing the Mediterranean basin …

Prof. Antonino De Lorenzo, MD, PhD.

   

 

The Symposium will be held at:

Biolife Science Building, Room 234

Temple University, 1900 North 12th street

Philadelphia, PA 19122

 

For further information, please contact:

Ms. Marinela Dedaj – Sbarro Institute,  Office #: 215-204-9521

 

11:00 Welcome

Prof. Antonio Giordano, MD, PhD.

Director and President of the Sbarro Health Research Organization, College of Science and Technology, Temple University

 

Greetings

Fucsia Nissoli Fitzgerald

Deputy elected in the Foreign Circumscription – North and Central America Division

 

Consul General, Honorable Pier Attinio Forlano

General Consul of Italy in Philadelphia

 

11:30 The Impact of Environment and Life Style in Human Disease

Prof. Antonio Giordano MD, PhD.

 

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

 

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

 

13:00 Lunch

 

2:30 Mediterranean Diet, Intangible Heritage and Sustainable Tourism?

Prof. Fabio Parasecoli, PhD.

Nutrition and Food Department, New York University

 

3.00 Italy as a Case Study: Increasing Students’ Level of Awareness of the Historical, Cultural, Political and Culinary Significance of Food

Prof. Lisa Sasson

Nutrition and Food Department, New York University

 

3:30 Italian Migration and Global Diaspora

Dr. Vincenzo Milione, PhD

Director of Demographics Studies, Calandra Institute, City University of New York

 

4:00 Pasta Arte: New Model of Circular Agricultural Economy: When an Innovated Tradition Takes Care of You and of the Environment

Dr. Massimo Borrelli

CEO and Founder of Arte

 

4:15 Conclusions

Prof. Antonio Giordano, MD, PhD.

 

Coordinator of the Symposium, Dr. Alessandra Moia, PhD.

 

Prof. Antonio Giordano, MD, PhD.

Professor of Molecular Biology at Temple University in Philadelphia, PA where he is also Director of the Sbarro Institute for Cancer Research and Molecular Medicine. He is also Professor of Pathology at the University of Siena, Italy. He has published over 500 articles, received over 40 awards for his contributions to cancer research and is the holder of 17 patents.

 

Prof. Antonino De Lorenzo, MD, PhD.

Full Professor of Human Nutrition and Director of the Specialization School in Food Science at the University of Rome “Tor Vergata”. He is the Coordinator of the Specialization Schools in Food Science at the National University Council and Coordinator of the PhD. School of “Applied Medical-Surgical Sciences” Director of UOSD “Service of Clinical Nutrition, Parenteral Therapy and Anorexia”. He also serves as President of “Istituto Nazionale per la Dieta Mediterranea e la Nutrigenomica”.

 

Dr. Iris Maria Forte, PhD.

Iris Maria Forte is an oncology researcher of INT G. Pascale Foundation of Naples, Italy. She majored in Medical Biotechnology at the “Federico II” University of Naples, earned a PhD. in “Oncology and Genetics” at the University of Siena in 2012 and a Master of II level in “Environment and Cancer” in 2014. Iris Maria Forte has worked with Antonio Giordano’s group since 2008 and her research interests include both molecular and translational cancer research. She published 21 articles mostly focused in understanding the molecular basis of human cancer. She worked on different kinds of human solid tumors but her research principally focused on pleural mesothelioma and on cell cycle deregulation in cancer.

 

Prof. Fabio Parasecoli, PhD.

Professor in the Department of Nutrition and Food Studies. He has a Doctorate in Agricultural Sciences (Dr.sc.agr.) from Hohenheim University, Stuttgart (Germany), MA in Political Sciences from the Istituto Universitario Orientale, Naples (Italy), BA/MA in Modern Foreign Languages and Literature from the Università La Sapienza, Rome (Italy). His research explores the intersections among food, media, and politics. His most recent projects focus on Food Design and the synergies between Food Studies and design.

 

Prof. Lisa Sasson, MS

Dietetic Internship Director and a Clinical Associate Professor in the department. She has interests in dietetic education, weight and behavior management, and problem-based learning. She also is a private practice nutritionist with a focus on weight management. She serves as co-director of the Food, Nutrition and Culture program in Florence Italy, the New York State Dietetic Association and the Greater New York Dietetic Association (past president and treasurer).

 

Dr. Vincenzo Milione, PhD.

Director of Demographic Studies for The John D. Calandra Italian American Institute, Queens College, City University of New York. He has conducted social science research on Italian Americans. His research has included the educational and occupational achievements; Italian language studies at the elementary and secondary levels, high school non-completion rates; negative media portrayals of ethnic populations including migration studies and global diaspora.

 

Dr. Massimo Borrelli

Agricultural entrepreneur, Manager of the Italian Consortium for Biogas (CIB) and delegate for the Bioeconomy National Department of Confagricoltura. He developed A.R.T.E based on a model of agricultural circular economy, beginning and ending in the ground. He constructed the first biogas plant in the territory creating a new way to make agriculture, investing in research and development, experimentation and most of all, in people. In a few short years, he succeeded to close the production chain producing goods characterized by their high quality and usage of renewable energy.

 

Dr. Alessandra Moia, PhD.

Vice-President for Institutional and International Relations of the Istituto Nazionale per la Dieta Mediterranea e la Nutrigenomica (I.N.D.I.M.). Has managed relations with the academic institutions to increase awareness and develops projects for the diffusion of the Mediterranean Diet. She served as Director of Finance for the National Institute of Nutrition, for the Ministry of Agriculture and Forestry.

 

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit www.shro.org

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

 

Read Full Post »


logo
facebook   twitter   youtube   linkedin   blog   donate
April 28, 2016
 

Dr. Foti Recognized With Honorary Member Award from Oncology Nursing Society

Margaret Foti, PhD, MD (hc), chief executive officer (CEO) of the American Association for Cancer Research (AACR), was honored this morning during the opening ceremony of the 41st Annual Congress of the Oncology Nursing Society (ONS) in San Antonio, TX, with the Honorary Member Award for her unwavering dedication to improving cancer care and her commitment to the prevention and cure of all cancers.
The Honorary Member Award is awarded by the ONS to thank and honor an individual who is not otherwise eligible for ONS membership for his or her contributions to oncology nursing, support of the ONS, and conduct consistent with the ONS mission and core values.

 

LEARN MORE
ABOUT THE AACR

Read Full Post »

Older Posts »