Feeds:
Posts
Comments

Posts Tagged ‘Lung cancer’


Live Notes from Town Hall for Patients with Leading Oncologists on Lung Cancer and COVID19 3_28_20

Reporter: Stephen J. Williams, PhD

UPDATED 3/31/2020

Leading Thoracic Oncologists from the United States and Milan, Italy shared their opinions and views on treating lung cancer patients during this COVID-19 pandemic.  Included in the panel is a thoracic oncologist from Milan Italy who gave special insights into the difficulties and the procedures they are using to help control the spread of infection within this high at-risk patient population and changes to current treatment strategy in light of this current virus outbreak.  Please see live notes and can follow on Twitter at #LungCancerandCOVID19.  Included below is the recording of the Zoom session.

 

UPDATED 3/29/2020

Leading Lung Cancer Oncologists from around the world are meeting and discussing concerns for lung cancer patients and oncologist during the novel coronavirus (SARS-COV2; COVID19) pandemic.  The town hall “COVID-19 and the Impact on Thoracic Oncology” will be held on Zoom on Saturday March 28, 2020 at 10:00 – 11:30 AM EST. sponsored by Axiom Healthcare Strategies . You can register at

Please join this virtual Town Hall

Zoom link: https://us04web.zoom.us/j/846752048

Zoom Webinar ID: 846-752-048

eSpeakers

Anne Chiang, MD, PhD, Associate Professor; Chief Network Officer and Deputy Chief Medical Officer, Smilow Cancer Network

Roy S. Herbst, MD, PhD, Ensign Professor of Medicine (Medical Oncology) and Professor of Pharmacology; Chief of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital; Associate Cancer Center Director for Translational Research, Yale Cancer Center

 Kurt Schalper, MD, PhD Assistant Professor of Pathology; Director, Translational Immuno-oncology Laboratory

Martin J. Edelman, MD, Chair, Department of Hematology/Oncology, Fox Chase Cancer Center

Corey J. Langer, MD , Professor of Medicine, University of Pennsylvania

Hossain Borghaei, DO, MS , Chief of Thoracic Medical Oncology and Director of Lung Cancer Risk Assessment, Fox Chase Cancer Center

Marina Garassino, MD, Fondazione IRCCS Instituto Nazionale del Tumori

Kristen Ashley Marrone, MD, Thoracic Medical Oncologist. Johns Hopkins Bayview Medical Center

Taofeek Owonikoko, MD, PhD, MSCR, Medical Oncologist, Emory University School of Medicine

Jeffrey D. BradleyMD, FACR, FASTRO , Emory University School of Medicine

Brendon Stiles, M.D, Weil Cornell

@pharma_BI will be Live Tweeting in Real Time this Town Hall

Please follow at the following # (hashtags)

#LungCancerandCOVID19

#Livingwithcancer

#LungCancer

#NoOneAlone

and

UPDATED 3/29/2020

Below is a collection of live Tweets from this meeting as well as some notes and comments from each of the speakers and panelists.  The recording of this Town Hall will be posted on this site when available.  The Town Hall was well attended with over 250 participants

Town Hall Notes

The following represent some notes taken at this Town Hall.

Dr. Owonkiko: 1-2% lethality in China; for patients newly diagnosed with lung cancer 1) limit contact between patient, physician and healthcare facility = telemedicine and oral chemo suggested 2) for immunotherapy if i.v. must monitor health carefully

Dr. Kurt Schalper: on COVID19 testing: Three types of tests each having pros and cons.

  •     viral culture: not always practical as you need lots of specimen
  • ELISA: looking for circulating antibodies but not always specific for type of coronavirus
  • RT-PCR: most sensitive but right now not much clarity on best primers to use; he noted that there is a 15% variance in test results using different primers to different targeted COVID19 genes

Dr. Marina Garassino: The Lombardi outbreak was 1st in Italy and took them by surprise.  She admits they were about one month behind in preparation where they did not have enough masks as late as January 31.  It was impractical to socially distance given Italian customs in greeting each other.  In addition, they had to determine which facilities would be COVID negative and COVID positive an this required access to testing.  Right now they are only testing symptomatic patients and healthcare workers have to test negative multiple times.  As concerning therapy with lung cancer patients, they have been delaying as much as possible the initiation of therapy.  Patients that are on immunotherapy and immunosuppresive drugs are being monitored by CT scan more often during this pandemic so as instances of pneumotitis began increasing they were unsure if these patients are at increased risk of infection to COVID19 or just a bias in that they are screening more often so their risk to COVID 19 is unclear.  Dr. Garissino also felt we need to move from hospital based to community based measures of prevention against COVID infection (social distancing, citizens more vigilant).  She noted that usually the cancer patients are more careful with respect to preventative measures than the general populace.  Healthcare workers have to test negative twice in three days if they had been in close contact with a COVID postitive patient.  However her hospital is still running at 80% capacity so patients are getting treated. However there are ethical issues as to who gets treated, who gets respirators, and other ethical issues related to unfortunate rationing of care.

Dr. Anne Chiang: Scheduled visits have notably decreased.  They have seen patients visits decrease from 4500 down to 2300 in two weeks but telemedicine visits or virtual visits have increased to 1000 so are replacing the on site visits.  She also said they are trying to reduce or eliminate the extremely immuno-suppressive drugs from chemotherapy regimens.  For example they are removing pemetrexemed from standard regimens and also considering neoadjuvant chemotherapy.  As far as biopsies, liquid biopsies can be obtained in the home so more preferred as patients do not have to come in for biopsy.

Dr. Edelman: Fox Chase is somewhat unique in being an NCI center which only does oncology so they rely on neighboring Jeanes Hospital of the Temple University Health System for a lot of their outpatient and surgical and general medicine needs.  Patients who will be transferred back to Fox Chase are screened for COVID19.

Brenden Stiles: Lung cancer surgeries have ground to a halt.  He did only one last week.  The hospital wants to conserve resources and considers lung cancer surgery to great a COVID risk.  They have shut down elective surgeries and there are no clinical trials being conducted.  He said that lung cancer research will be negatively impacted by the pandemic as resources are shuttled to COVID research efforts.

 Live Tweets

 

Other article of note on Coronavirus (COVID19) please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

 

 

 

Read Full Post »


New Mutant KRAS Inhibitors Are Showing Promise in Cancer Clinical Trials: Hope For the Once ‘Undruggable’ Target

Curator: Stephen J. Williams, Ph.D.

The November 1st issue of Science highlights a series of findings which give cancer researchers some hope in finally winning a thirty year war with the discovery of drugs that target KRAS, one of the most commonly mutated oncogenes  (25% of cancers), and thought to be a major driver of tumorigenesis. Once considered an undruggable target, mainly because of the smooth surface with no obvious pockets to fit a drug in, as well as the plethora of failed attempts to develop such an inhibitor, new findings with recently developed candidates, highlighted in this article and other curated within, are finally giving hope to researchers and oncologists who have been hoping for a clinically successful inhibitor of this once considered elusive target.

 

For a great review on development of G12C KRas inhibitors please see Dr. Hobb’s and Channing Der’s review in Cell Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It’s Down

Figure 1Mechanism of Action of ARS853 showing that the inhibitors may not need bind to the active conformation of KRAS for efficacy

Abstract: Two recent studies evaluated a small molecule that specifically binds to and inactivates the KRAS G12C mutant. The new findings argue that the perception that mutant KRAS is persistently frozen in its active GTP-bound form may not be accurate.

 

Although the development of the KRASG12C-specific inhibitor, compound 12 (Ostrem et al., 2013), was groundbreaking, subsequent studies found that the potency of compound 12 in cellular assays was limited (Lito et al., 2016, Patricelli et al., 2016). A search for more-effective analogs led to the development of ARS853 (Patricelli et al., 2016), which exhibited a 600-fold increase of its reaction rate in vitro over compound 12 and cellular activities in the low micromolar range.

 

A Summary and more in-depth curation of the Science article is given below:

After decades, progress against an ‘undruggable’ cancer target

Summary

Cancer researchers are making progress toward a goal that has eluded them for more than 30 years: shrinking tumors by shutting off a protein called KRAS that drives growth in many cancer types. A new type of drug aimed at KRAS made tumors disappear in mice and shrank tumors in lung cancer patients, two companies report in papers published this week. It’s not yet clear whether the drugs will extend patients’ lives, but the results are generating a wave of excitement. And one company, Amgen, reports an unexpected bonus: Its drug also appears to stimulate the immune system to attack tumors, suggesting it could be even more powerful if paired with widely available immunotherapy treatments.

Jocelyn Kaiser. After decades, progress against an ‘undruggable’ cancer target. Science  01 Nov 2019: Vol. 366, Issue 6465, pp. 561 DOI: 10.1126/science.366.6465.561

The article highlights the development of three inhibitors: by Wellspring Biosciences, Amgen, and Mirati Therapeutics.

Wellspring BioSciences

 

In 2013, Dr. Kevan Shokat’s lab at UCSF discovered a small molecule that could fit in the groove of the KRAS mutant G12C.  The G12C as well as the G12D is a common mutation found in KRAS in cancers. KRAS p.G12C mutations predominate in NSCLC comprising 11%–16% of lung adenocarcinomas (45%–50% of mutant KRAS is p.G12C) (Campbell et al., 2016; Jordan et al., 2017), as well as 1%–4% of pancreatic and colorectal adenocarcinomas, respectively (Bailey et al., 2016; Giannakis et al., 2016).  This inhibitor was effective in shrinking, in mouse studies conducted by Wellspring Biosciences,  implanted tumors containing this mutant KRAS.

 

See Wellspring’s news releases below:

March, 2016 – Publication – Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State

February, 2016 – Publication – Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism

Amgen

 

Amgen press release on AMG510 Clinical Trial at ASCO 2019

 

THOUSAND OAKS, Calif., June 3, 2019 /PRNewswire/ — Amgen (NASDAQ: AMGN) today announced the first clinical results from a Phase 1 study evaluating investigational AMG 510, the first KRASG12C inhibitor to reach the clinical stage. In the trial, there were no dose-limiting toxicities at tested dose levels. AMG 510 showed anti-tumor activity when administered as a monotherapy in patients with locally-advanced or metastatic KRASG12C mutant solid tumors. These data are being presented during an oral session at the 55th Annual Meeting of the American Society of Clinical Oncology (ASCO) in Chicago.

“KRAS has been a target of active exploration in cancer research since it was identified as one of the first oncogenes more than 30 years ago, but it remained undruggable due to a lack of traditional small molecule binding pockets on the protein. AMG 510 seeks to crack the KRAS code by exploiting a previously hidden groove on the protein surface,” said David M. Reese, M.D., executive vice president of Research and Development at Amgen. “By irreversibly binding to cysteine 12 on the mutated KRAS protein, AMG 510 is designed to lock it into an inactive state. With high selectivity for KRASG12C, we believe investigational AMG 510 has high potential as both a monotherapy and in combination with other targeted and immune therapies.”

The Phase 1, first-in-human, open-label multicenter study enrolled 35 patients with various tumor types (14 non-small cell lung cancer [NSCLC], 19 colorectal cancer [CRC] and two other). Eligible patients were heavily pretreated with at least two or more prior lines of treatment, consistent with their tumor type and stage of disease. 

Canon, J., Rex, K., Saiki, A.Y. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019) doi:10.1038/s41586-019-1694-1

Besides blocking tumor growth, AMG510 appears to stimulate T cells to attack the tumor, thus potentially supplying a two pronged attack to the tumor, inhibiting oncogenic RAS and stimulating anti-tumor immunity.

 

Mirati Therapeutics

 

Mirati’s G12C KRAS inhibitor (MRTX849) is being investigated in a variety of solid malignancies containing the KRAS mutation.

 

For recent publication on results in lung cancer see Patricelli M.P., et al. Cancer Discov. 2016; (Published online January 6, 2016)

For more information on Mirati’s KRAS G12C inhibitor see https://www.mirati.com/pipeline/kras-g12c/

 

KRAS G12C Inhibitor (MRTX849)

Study 849-001 – Phase 1b/2 of single agent MRTX849 for solid tumors with KRAS G12C mutation

Phase 1b/2 clinical trial of single agent MRTX849 in patients with advanced solid tumors that have a KRAS G12C mutation.

See details for this study at clinicaltrials.gov

 

Additional References:

Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.

Lito P et al. Science. (2016)

Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor.

Janes MR et al. Cell. (2018)

Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.

Zeng M et al. Cell Chem Biol. (2017)

Campbell, J.D., Alexandrov, A., Kim, J., Wala, J., Berger, A.H., Pedamallu, C.S., Shukla, S.A., Guo, G., Brooks, A.N., Murray, B.A., et al.; Cancer Genome Atlas Research Network (2016). Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet.48, 607–616

Jordan, E.J., Kim, H.R., Arcila, M.E., Barron, D., Chakravarty, D., Gao, J., Chang, M.T., Ni, A., Kundra, R., Jonsson, P., et al. (2017). Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 7, 596–609.

Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., Miller, D.K., Christ, A.N., Bruxner, T.J., Quinn, M.C., et al.; Australian Pancreatic Cancer Genome Initiative (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52.

Giannakis, M., Mu, X.J., Shukla, S.A., Qian, Z.R., Cohen, O., Nishihara, R., Bahl, S., Cao, Y., Amin-Mansour, A., Yamauchi, M., et al. (2016). Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865.

Read Full Post »


AI System Used to Detect Lung Cancer

Reporter: Irina Robu, PhD

Lung cancer is characterized by uncontrolled cell growth in tissues of the lung. The growth spreads beyond the lung by metastasis into nearby tissues. The most common symptoms are coughing (including coughing up blood), weight loss, shortness of breath, and chest pains. The two main types of lung cancer are small-cell lung carcinoma(SCLC) and non-small-cell lung carcinoma (NSCLC). Lung cancer may be seen on chest radiographs and computed tomography(CT) scans. However, computers seem to be as good or better than regular doctors at detecting tiny lung cancers on CT scans according to scientists from Google.

The AI designed by Google was able to interpret images using the same skills as humans to read microscope slides, X-rays, M.R.I.s and other medical scans by feeding huge amounts of data from medical imaging into the systems. It seems that the researchers were able to train computers to recognize patterns linked to a specific condition.
In a new Google study, the scientists applied artificial intelligence to CT scans used to screen people for lung cancer. Current studies have shown that screening can reduce the risk of dying from lung cancer and can also identify spots that might later become malignant.

The researchers created a neural network with multiple layers of processing and trained the AI by giving it many CT scans from patients whose diagnoses were known. This allows radiologists to sort patients into risk groups and decide whether biopsies are needed or follow up to keep track of the suspected regions. Even though the technology seems promising, but it can have pitfalls such as missing tumors, mistaken benign spots for malignancies and push patients into risky procedures.

Yet, the ability to process vast amounts of data may make it imaginable for artificial intelligence to recognize subtle patterns that humans simply cannot see. It is well understood that the systems should be studied extensively before using them for general public use. The lung-screening neural network is not ready for the clinic yet.

SOURCE

A.I. Took Test To Detect Lung Cancer And Smashed It

 

 

Read Full Post »


What about PDL-1 in oncotherapy diagnostics for NSCLC?

Larry H. Bernstein, MD, FCAP, Curator

LPBI

UPDATED 5/15/2019

Questions on PD-L1 Diagnostics for Immunotherapy in NSCLC
Alexander M. Castellino, PhD
http://www.medscape.com/viewarticle/862275

Two immunotherapies that target the cell programmed death (PD) pathway are now available, and both nivolumab (Opdivo, Bristol-Myers Squibb Company) and pembrolizumab (Keytruda, Merck Sharp & Dohme Corp) are approved for treating advanced, refractory, non–small cell lung cancer (NSCLC). Across several studies in patients with NSCLC, response to these agents has been correlated with PD-L1 staining, which determines PD-L1 levels in the tumor tissue. How do the available assays for PD-L1 compare?

The linear correlation between three commercially available assays is good across a range of cutoff points, concluded a presentation at the 2016 American Association for Clinical Research Annual Meeting.

Cutoffs are defined as the percentage of cells expressing PD-L1 when analyzed histochemically. “The dataset builds confidence that the assays may be used according to the cutoff clinically validated for the drug in question,” Marianne J. Radcliffe, MD, diagnostic associate director at AstraZeneca, toldMedscape Medical News.

“The correlation is good between the assays across the range examined,” she added.

However, a recently published study showed a high rate of discordance between another set of PD-L1 assays that were tested.

Dr Marianne Radcliffe

“Different diagnostic tests yield different results, depending on the cutoff for each assay. We need to harmonize the assays so clinicians are talking about the same thing,” Brendon Stiles, MD, associate professor of cardiothoracic surgery at Weill Cornell Medicine and New York-Presbyterian Hospital, New York City, told Medscape Medical News.

For Dr Stiles, these studies raise the issue that it is difficult to compare results of diagnostic testing across the different drugs and even with the same drug that are derived from different assays. “More importantly, it raises confusion in clinical practice when a patient’s sample stains positive for PD-L1 with one assay and negative with another,” he said.

“The commercial strategy for developing companion diagnostics for each drug is not in the best interests of the patients. It generates confusion among both clinicians and patients,” Dr Stiles commented. “We need to know if these assays can be used interchangeably,” he said.

As new agents come into the clinic, Dr Stiles believes there should be a universal yes-or-no answer, so that clinicians can use the assay to help decide on the use of immunotherapy.

Three Assays Tested

The study presented by Dr Radcliffe and colleagues investigated three commercially available assays, Ventana SP263, Dako 22C3, and Dako 28-8, with regard to how they compare at different cutoffs. Different studies use different cutoffs to express positivity.

Ventana SP263 was developed as a companion diagnostic for durvalumab (under development by AstraZeneca) using a rabbit monoclonal antibody. Positivity is defined as ≥25% staining of tumor cells.

Dako 22C3 was developed, and is approved, as a companion diagnostic for pembrolizumab. It uses a mouse monoclonal antibody. Positivity is defined as ≥1% and ≥50% staining of tumor cells.

Dako 28-8 was developed as a companion diagnostic for nivolumab and uses a rabbit monoclonal antibody (different from the one used in the Ventana SP263). In clinical practice, this assay is used as a complementary diagnostic for nivolumab, but the drug is approved for use regardless of PD-L1 expression. Positivity is defined as ≥1%, ≥5%, or ≥10% staining of tumor cells.

Ventana SP142 was not included in the study because it is not commercially available, Dr Ratcliffe indicated.
The three assays were used on consecutive sections of 500 archival NSCLC tumor samples obtained from commercial vendors. A single pathologist trained by the manufacturer read all samples in batches on an assay-by-assay basis. Samples were assessed per package inserts provided by Ventana and Dako in a Clinical Laboratory Improvement Amendments program-certified laboratory.

Dr Ratcliffe indicated that between reads of samples from the same patient, there was a washout period for the pathologist to remove bias.

The NSCLC samples included patients with stage I (38%), II (39%), III (20%), and IV (<1%) disease. Histologies included nonsquamous (54%) and squamous (43%) cancers.

All three PD-L1 assays showed similar patterns of staining in the range of 0% to 100%, Dr Ratcliffe indicated.

 

The correlation between any two of the assays was determined from tumor cell membrane staining. The correlation was linear with Spearman correlation of 0.911 for Ventana SP263 vs Dako 22C3; 0.935 for Ventana SP263 vs Dako 28-8; and 0.954 for Dako 28-8 vs Dako 22C3.

“With an overall predictive value of >90%, the assays have closely aligned dynamic ranges, but more work is needed,” Dr Ratcliffe said. “In general, scoring of immunohistochemical assays can be more variable between 1% and 10%, and we plan to look at this in more detail,” she said. These samples need to be reviewed by an independent pathologist, she added.

Dr Radcliffe said that currently, “Direct clinical efficacy data supporting a specific diagnostic test should still be considered as the highest standard of proof for diagnostic clinical utility.”

Why Correlations Are Needed

Pembrolizumab is approved for use only in patients with PD-L1-positive, previously treated NSCLC. A similar patient profile is being considered for nivolumab, for which testing for PD-L1 expression is not required.

For new PD-immunotherapy agents in clinical development, it is not clear whether PD-L1 testing will be mandated.

However, in clinical practice, it is clear that some patients respond to therapy, even if they are PD-L1 negative, as defined from the study. “Is it a failure of the assay, tumor heterogeneity, or is there another time point when PD-L1 expression is turned on?” Dr Stiles asked.

Dr Stiles also pointed out that a recent publication from Yale researchers showed a high a rate of discordance. In this study, PD-L1 expression was determined using two rabbit monoclonal antibodies. Both of these were different from the ones used in the Ventana SP263 and Dako 28-8 assays.

In this study, whole-tissue sections from 49 NSCLC samples were used, and a corresponding tissue microarray was also used with the same 49 samples. Researchers showed that in 49 NSCLC tissue samples, there was intra-assay variability, with results showing fair to poor concordance with the two antibodies. “Assessment of 588 serial section fields of view from whole tissue showed discordant expression at a frequency of 25%.

“Objective determination of PD-L1 protein levels in NSCLC reveals heterogeneity within tumors and prominent interassay variability or discordance. This could be due to different antibody affinities, limited specificity, or distinct target epitopes. Efforts to determine the clinical value of these observations are under way,” the study authors conclude.

The Blueprint Proposal

Coincidentally, a blueprint proposal was announced here at the AACR meeting at a workshop entitled FDA-AACR-ASCO Complexities in Personalized Medicine: Harmonizing Companion Diagnostics across a Class of Targeted Therapies.

The blueprint proposal was developed by four pharmaceutical giants (Bristol-Myers Squibb Company, Merck & Co, Inc, AstraZeneca PLC, and Genentech, Inc) and two diagnostic companies (Agilent Technologies, Inc/Dako Corp and Roche/Ventana Medical Systems, Inc).

In this proposal, the development of an evidence base for PD-1/PD-L1 companion diagnostic characterization for NSCLC would be built into studies conducted in the preapproval stage. Once the tests are approved, the information will lay the foundation for postapproval studies to inform stakeholders (eg, patients, physicians, pathologists) on how the test results can best be used to make treatment decisions.

The blueprint proposal is available online.

Dr Ratcliffe is an employee and shareholder of AstraZeneca. Dr Stiles has disclosed no relevant financial relationships.

 American Association for Cancer Research (AACR) 2016 Annual Meeting: Abstract LB-094, presented April 18, 2016.
Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non–Small-Cell Lung Cancer
Joseph McLaughlin, 1,2; Gang Han, 3; Kurt A. Schalper, 2; ….,  Roy Herbst, 1; Patricia LoRusso, 1; David L. Rimm, 2

JAMA Oncol. 2016;2(1):46-54.       http://dx.doi.org:/10.1001/jamaoncol.2015.3638.

Importance  Early-phase trials with monoclonal antibodies targeting PD-1 (programmed cell death protein 1) and PD-L1 (programmed cell death 1 ligand 1) have demonstrated durable clinical responses in patients with non–small-cell lung cancer (NSCLC). However, current assays for the prognostic and/or predictive role of tumor PD-L1 expression are not standardized with respect to either quantity or distribution of expression.

Objective  To demonstrate PD-L1 protein distribution in NSCLC tumors using both conventional immunohistochemistry (IHC) and quantitative immunofluorescence (QIF) and compare results obtained using 2 different PD-L1 antibodies.

Design, Setting, and Participants  PD-L1 was measured using E1L3N and SP142, 2 rabbit monoclonal antibodies, in 49 NSCLC whole-tissue sections and a corresponding tissue microarray with the same 49 cases. Non–small-cell lung cancer biopsy specimens from 2011 to 2012 were collected retrospectively from the Yale Thoracic Oncology Program Tissue Bank. Human melanoma Mel 624 cells stably transfected with PD-L1 as well as Mel 624 parental cells, and human term placenta whole tissue sections were used as controls and for antibody validation. PD-L1 protein expression in tumor and stroma was assessed using chromogenic IHC and the AQUA (Automated Quantitative Analysis) method of QIF. Tumor-infiltrating lymphocytes (TILs) were scored in hematoxylin-eosin slides using current consensus guidelines. The association between PD-L1 protein expression, TILs, and clinicopathological features were determined.

Main Outcomes and Measures  PD-L1 expression discordance or heterogeneity using the diaminobenzidine chromogen and QIF was the main outcome measure selected prior to performing the study.

Results  Using chromogenic IHC, both antibodies showed fair to poor concordance. The PD-L1 antibodies showed poor concordance (Cohen κ range, 0.124-0.340) using conventional chromogenic IHC and showed intra-assay heterogeneity (E1L3N coefficient of variation [CV], 6.75%-75.24%; SP142 CV, 12.17%-109.61%) and significant interassay discordance using QIF (26.6%). Quantitative immunofluorescence showed that PD-L1 expression using both PD-L1 antibodies was heterogeneous. Using QIF, the scores obtained with E1L3N and SP142 for each tumor were significantly different according to nonparametric paired test (P < .001). Assessment of 588 serial section fields of view from whole tissue showed discordant expression at a frequency of 25%. Expression of PD-L1 was correlated with high TILs using both E1L3N (P = .007) and SP142 (P = .02).

Conclusions and Relevance  Objective determination of PD-L1 protein levels in NSCLC reveals heterogeneity within tumors and prominent interassay variability or discordance. This could be due to different antibody affinities, limited specificity, or distinct target epitopes. Efforts to determine the clinical value of these observations are under way.

 

 
Introduction We are in an era of rapid incorporation of basic scientific discoveries into the drug development pipeline. Currently, numerous sponsors are developing therapeutic products that may use similar or identical biomarkers for therapeutic selection, measured or detected by an in vitro companion diagnostic device. The current practice is to independently develop a companion diagnostic for each therapeutic. Thus, the matrix of therapeutics and companion diagnostics, if each therapeutic were approved in conjunction with a companion diagnostic, may present a complex challenge for testing and decision making in the clinic, potentially putting patients at risk if inappropriate diagnostic tests were used to make treatment decisions. To address this challenge, there is a desire to understand assay comparability and/or standardize analytical and clinical performance characteristics supporting claims that are shared across companion diagnostic devices. Pathologists and oncologists also need clarity on how to interpret test results to inform downstream treatment options for their patients.
Clearly using each of the companion diagnostics to select one of the several available targeted therapies in the same class is not practical and may be impossible. Likewise, having a single test or assay as a sole companion test for all of the multiple therapeutic options within a class is also impractical since the individual therapies have differing modes of action, intended use populations, specificities, safety and efficacy outcomes. Thus, a single assay or test may not adequately capture the appropriate patient population that may benefit (or not) from each individual therapeutic option within a class of therapies. Furthermore, aligning multiple sponsors’ study designs and timelines in order that they all adopt a single companion test may inadvertently slow down development of critical therapeutic products and delay patient access to these life-saving products.
Any solution to this challenge will be multifaceted and will, by necessity, involve multiple stakeholders. Thus, the US Food and Drug Administration (FDA), the American Association for Cancer Research (AACR) and American Society of Clinical Oncology (ASCO) convened a workshop titled “Complexities in Personalized Medicine: Harmonizing Companion Diagnostics Across a Class of Targeted Therapies” to draw out and assess possible solutions. Recognizing that the complex scientific, regulatory and market forces at play here require a collaborative effort, an industry workgroup volunteered to develop a blueprint proposal of potential solutions using nonsmall cell lung cancer (NSCLC) as the use case indication.
Goal and Scope of Blueprint The imminent arrival to the market of multiple PD1 / PD-L1 compounds and the possibility of one or more associated companion diagnostics is unprecedented in the field of oncology. Some may assume that since these products target the same biological pathway, they are interchangeable; however, each PD1/PD-L1 compound is unique with respect to its clinical pharmacology and each compound is being developed in the context of a unique biological scientific hypothesis and registration strategy. Similarly, each companion diagnostic has been optimized within the individual therapeutic development programs to meet specific development goals, e.g., 1) validation for patient selection, 2) subgroup analysis as a prognostic variable, or 3) enrichment.
Further, each companion diagnostic test is optimized for its specific therapy and with its own unique performance characteristics and scoring/interpretation guidelines.
The blueprint development group recognizes that to assume that any one of the available tests could be used for guiding the treatment decision with any one or all of the drugs available in this class presents a potential risk to patients that must be addressed.
The goal of this proposal is to agree and deliver, via cross industry collaboration, a package of information /data upon which analytic comparison of the various diagnostic assays may be conducted, potentially paving the way for post-market standardization and/or practice guideline development as appropriate.
A comparative study of PD-L1 diagnostic assays and the classification of patients as PD-L1 positive and PD-L1 negative
Presentation Time: Monday, Apr 18, 2016, 8:00 AM -12:00 PM
Location: Section 10
Poster Board Number: 18
Author Block: Marianne J. Ratcliffe1, Alan Sharpe2, Anita Midha1, Craig Barker2, Paul Scorer2, Jill Walker2. 1AstraZeneca, Alderley Park, United Kingdom; 2AstraZeneca, Cambridge, United Kingdom
Abstract Body: Background: PD-1/PD-L1 directed antibodies are emerging as effective therapeutics in multiple oncology settings. Keynote 001 and Checkmate 057 have shown more frequent response to PD-1 targeted therapies in NSCLC patients with high tumour PD-L1 expression than patients with low or no PD-L1 expression. Multiple diagnostic PD-L1 tests are available using different antibody clones, different staining protocols and diverse scoring algorithms. It is vital to compare these assays to allow appropriate interpretation of clinical outcomes. Such understanding will promote harmonization of PD-L1 testing in clinical practice.
Methods: Approximately 500 tumour biopsy samples from NSCLC patients, including squamous and non-squamous histologies, will be assessed using three leading PD-L1 diagnostics assays. PD-L1 assessment by the Ventana SP263 assay that is currently being used in Durvalumab clinical trials (positivity cut off: ≥25% tumour cells with membrane staining) will be compared with the Dako 28-8 assay (used in the Nivolumab Checkmate 057 trial at the 1%, 5% and 10% tumour membrane positivity cut offs), and the Dako 22C3 assay (used in the Pembrolizumab Keynote 001 trial) at the 1% and 50% cut offs).
Results: Preliminary data from 81 non-squamous patients indicated good concordance between the Ventana SP263 and Dako 28-8 assays. Optimal overall percent agreement (OPA) was observed between Dako 28-8 at the 10% cut off and the Ventana SP263 assay (OPA; 96%, Positive percent agreement (PPA); 91%, Negative percent agreement (NPA); 98%), where the Ventana SP263 assay was set as the reference. Data on the full cohort will be presented for all three assays, and a lower 95% confidence interval calculated using the Clopper-Pearson method.
Conclusions: This study indicates that the patient population defined by Ventana SP263 at the 25% cut off is similar to that identified by the Dako-28-8 assay at the 10% tumour membrane cut off. This, together with data on the 22C3 assay, will enable cross comparison of studies using different PD-L1 tests, and widen options for harmonization of PD-L1 diagnostic testing.

http://www.abstractsonline.com/Plan/ViewAbstract.aspx

Table 1
Reference: Ventana SP-263 (≥25% tumour membrane staining)
Dako 28-8 assay cut off PPA
(%)
NPA
(%)
OPA
(%)
>1% 58 100 81
>5% 72 100 90
>10% 91 98 96

UPDATED 5/19/2019

Incidence of Adverse Events for PD-1/PD-L1 Inhibitors Underscores Toxicity Risk

https://www.cancernetwork.com/immuno-oncology/incidence-adverse-events-pd-1pd-l1-inhibitors-underscores-toxicity-risk

May 7, 2019

Approximately two-thirds of cancer patients who received a programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1) inhibitor in clinical trials experienced treatment-related adverse events, according to a systematic review and meta-analysis recently published in JAMA Oncology. The study findings may facilitate discussions with cancer patients who are considering PD-1 or PD-L1 therapy.

“The vast majority of patients with advanced cancer want to be on the [PD-1 or PD-L1] therapy,” Eric H. Bernicker, MD, a thoracic medical oncologist with Houston Methodist Cancer Center, told Cancer Network. Not involved in the current study, Bernicker explained that patients perceive these therapies to have “very different” side effects and risks from chemotherapy.

While they do, Bernicker explained, it’s important to underscore, which this study does, that these are not “completely innocuous” therapies. The study findings allow physicians to give numbers to patients and families when counseling them about the risks involved, he said.

The systematic review and meta-analysis is based on data from 125 clinical trials and 20,128 participants. Clinical trials were identified by systematically searching for published clinical trials that evaluated single-agent PD-1 and PD-L1 inhibitors and reported treatment-related adverse events in PubMed, Web of Science, Embase, and Scopus. The majority of trials evaluated nivolumab (n = 46) or pembrolizumab (n = 49), and the most common cancer types were lung cancer (n = 26), genitourinary cancer (n = 22), melanoma (n = 16), and gastrointestinal cancer (n = 14).

In all, 66.0% of clinical trial participants reported at least 1 adverse event of any grade, and 14.0% reported at least 1 grade 3 or higher adverse event. The most frequently reported adverse events of any grade were fatigue (18.26%), pruritus (10.61%), and diarrhea (9.47%). As for grade 3 or higher events, the most commonly reported were fatigue (0.89%), anemia (0.78%), and aspartate aminotransferase (AST) increase (0.75%).

Frequently reported immune-related adverse events of any grade included diarrhea (9.47%), AST increase (3.39%), vitiligo (3.26%), alanine aminotransferase (ALT) increase (3.14%), pneumonitis (2.79%), and colitis (1.24%). Grade 3 or higher immune-related adverse events included AST increase (0.75%), ALT increase (0.70%), pneumonitis (0.67%), diarrhea (0.59%), and colitis (0.47%).

If present, certain adverse events had increased likelihood of being grade 3 or higher, including hepatitis (risk ratio [RR], 50.59%), pneumonitis (RR, 24.01%), type 1 diabetes (RR, 41.86%), and colitis (RR, 37.90%).

“In terms of the rough percentage of side effects and the breadth of the side effects, this is pretty much what most of us see in the clinic,” Bernicker said, noting that none of the findings were particularly surprising.

Although no differences in adverse event incidence were found across different cancer types, differences were found between PD-1 and PD-L1 inhibitors in a subgroup analysis. Overall, compared with PD-L1 inhibitors, PD-1 inhibitors had a higher mean incidence of grade 3 or higher events (odds ratio [OR], 1.58; 95% CI, 1.00–2.54). Specifically, nivolumab had a higher mean incidence of grade 3 or higher events (OR, 1.81; 95% CI, 1.04–3.01) compared with PD-L1 inhibitors.

Bernicker commented that these incidence differences on the basis of drug type were “intriguing” but not clinically useful, given that PD-1 and PD-L1 inhibitors are not interchangeable. He said the finding “needs to be further looked at.”

Read Full Post »


PLD1 tests for Lung Cancer

Larry H. Bernstein, MD, FCAP, Curator

PLBI

 

AACR: Three PD-L1 Biomarker Tests Give Similar Results in Lung Cancer

http://www.oncotherapynetwork.com/lung-cancer-targets/aacr-three-pd-l1-biomarker-tests-give-similar-results-lung-cancer?GUID=08B7ACA4-07B7-4253-8ACC-0C9AAFF0371A&rememberme=1&ts=22042016#sthash.1sWQZ14d.dpuf

 

Three commercial tests that measure levels of PD-L1 on tumors showed similar results on non-small cell lung cancer (NSCLC) tumor samples, according to a study presented at the American Association of Cancer Research (AACR) Annual Meeting, being held April 16-20, 2016, in New Orleans.
Two anti-PD-1 immunotherapy antibodies are now approved for certain patients with metastatic NSCLC (see FDA Approves Keytruda for Metastatic Non-Small Cell Lung Cancer and FDA Approves Nivolumab (Opdivo) for NSCLC).

Several pharmaceutical companies are developing diagnostic tests to measure the levels of PD-L1 protein expression on patients’ tumors. Two clinical trials, with both nivolumab (Opdivo) and pembrolizumab (Keytruda), support the notion that those patients whose tumors have higher levels of PD-L1 on their surface are more likely to respond to anti-PD-1 treatment compared to those patients whose tumors have low or no PD-L1 expression.

“Before our study, we did not know whether the different assays identified the same patients,” said study author Marianne Ratcliffe, PhD, MA, a diagnostic associate director at AstraZeneca, which is developing durvalumab/MEDI4736, an anti-PD-L1 immunotherapy antibody.

The current study compared the Ventana SP263 assay (developed by Ventana) in collaboration with AstraZeneca for use in conjunction with patients treated with durvalumab, the Dako 22C3 assay (by Dako), approved for the US Food and Drug Administration (FDA) as a companion diagnostic to identify patients who are most likely to benefit from pembrolizumab, and the Dako 28-8 assay, approved by the FDA as a complementary diagnostic for nivolumab. All three tests measure the percentage of tumor cells within a sample that stain positive for the surface protein PD-L1. Each test sets a unique cut-off point of test positivity which corresponds to a greater likelihood of response to the immunotherapy among lung cancer patients.

The researchers evaluated the three tests on 500 patient biopsy samples, including both squamous and nonsquamous histologies. The comparison showed that a 25% cutoff using the Ventana SP263 test was similar to the results using the Dako 28-8 test at a 10% cutoff mark. There were similar results between the SP263 and the 22C3 tests at a 50% cut off mark.

The three tests achieved overall percentage agreement of more than 90%, according to Radcliffe. She also noted that this study points to the ability to extrapolate results from one test to another, which in the future, could allow physicians to use the tests interchangeably.

 

Comparison of Three Different PD-L1 Diagnostic Tests Shows a High Degree of Concordance

4/18/2016

NEW ORLEANS — Three commercially available diagnostic tests were similarly effective in measuring  PD-L1 protein expression on non-small cell lung cancer (NSCLC) tumor samples, indicating that health care providers may someday be able to use these tests interchangeably when determining which patients will respond best to anti-PD-L1/PD-1 immunotherapeutic drugs, according to research presented here at the AACR Annual Meeting 2016, April 16-20.Marianne Ratcliffe

“PD-L1-directed antibodies are emerging as effective therapeutics in monotherapy and in combination in multiple oncology settings,” said the study’s lead author, Marianne Ratcliffe, MA, PhD, diagnostic associate director at AstraZeneca. She explained that several different diagnostic tests, or assays, are effective in determining which patients’ tumors express high levels of PD-L1 and might, therefore, respond best to targeted treatment.

“Before our study, we did not know whether the different assays identified the same patients,” Ratcliffe said, adding that the tests were developed on different platforms and use different antibody clones and testing protocols.

“Clearly, for the oncology community, this presents a number of issues, including a lack of confidence in being able to identify appropriate patients for treatment with these targeted therapies,” Ratcliffe said. “Our current study complements the ongoing Blueprint initiative, which is also tackling the issue of PD-L1 assay harmonization.”

This study compared the Ventana SP263 assay, developed by Ventana in collaboration with AstraZeneca for use in evaluating patients for the immunotherapeutic drug durvalumab, an anti-PD-L1; the Dako 22C3 assay, made by Dako and approved for the U.S. Food and Drug Administration (FDA) as a companion diagnostic to identify patients for pembrolizumab (Keytruda), an anti-PD-1; and the Dako 28-8 assay, made by Dako and approved by the FDA as a complementary diagnostic for nivolumab (Opdivo), an anti-PD-1.

All three tests assess the percentage of tumor cells whose membranes stain positive for the PD-L1 protein. A cut-off point is set for each test, and patients whose tumors score above the cut-off point are determined to be more likely to respond to the corresponding therapy, Ratcliffe explained.

In this study, the largest to date, approximately 500 tumor biopsy samples from patients with NSCLC were assessed because all three tests have been previously validated for that disease.
The study determined that the patient population defined by Ventana SP263 at the 25 percent cutoff point is similar to the group identified by the Dako 28-8 at the 10 percent cutoff. The study also showed a high degree of concordance between the SP263 and 22C3 assays if a 50 percent cutoff point was applied in both cases.

Ratcliffe said that the three tests achieved overall percentage agreement of more than 90 percent.  The results also indicate which cutoff points should be used to optimize agreement between a positive or negative PD-L1 result, which will help the medical community to compare results from clinical studies that have used different tests.

Ratcliffe said the study results indicate that it may be possible to extrapolate the results from one test to that of another test, and could someday allow physicians to use the tests interchangeably, though she added that further research is needed to confirm the findings.

 

Read Full Post »


 

ATCC Announces First Isogenic Cell Line Produced by the CRISPR/Cas9 Technology

CellPassages-1-2016_cancer

 

 

 

 

Reporter: Stephen J. Williams, PhD.

 

 

EML4-ALK Isogenic Cells — New!

ATCC is proud to announce its first product developed using CRISPR/Cas9 technology, the EML4-ALK Fusion-A549 Isogenic Cell Line Human (ATCC® CCL-185IG™). This cell line was derived from the parental A549 (ATCC® CCL-185™) non-small cell lung cancer cell line. EML4-ALK Fusion-A549 Isogenic Cell Line has been intensively validated on the genome, transcript, and protein level, and is otherwise identical to the parental line. This isogenic cell line is more sensitive to ALK inhibitor crizotinib when compared to A549, and serves as a vital model to study cell signaling pathways in cancer as well as in drug screening when used side-by-side with A549 cells.

Further your lung cancer research with the EML4-ALK Fusion-A549 Isogenic Cell Line Human ATCC® CCL-185IG™ derived from A549 ATCC ® CCL-185™ today!

lunc cancer cells

 

Lung Cancer

Lung cancers are classified by type: small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). SCLCs are associated with smoking and metastasize very early. By contrast, non-smokers usually present with NSCLC, which are further subdivided into squamous cell carcinomas, adenocarcinomas, and large cell carcinomas. Since both SCLC and NSCLC are usually diagnosed after the disease has spread beyond the primary site, the overall survival rates for lung cancers are poor. To breathe new life into your lung cancer research, ATCC provides numerous lung cancer cell lines, a new gene-edited isogenic NSCLC cell line, human primary cells, and h-TERT-immortalized cell lines. And to increase the throughput of your lung cancer experiments, ATCC has lung cancer cell lines organized into tumor cell panels.

Find out more about ATCC Lung Cancer Resources.

Physiologically Relevant Controls

All experiments should include physiologically relevant controls. ATCC provides both primary and hTERT-immortalized bronchial epithelial cells and small airway cells that may be used side-by-side with NSCLC or SCLC cells as normal controls. The primary and hTERT-immortalized cells may also be used to create 3D cell culture models to better represent an in vivo environment, ex vivo.

Browse the ATCC Primary Cells and hTERT Immortalized Cells to find physiological models relevant for your research needs.

Add new dimension to your research, read our application note Human Bronchial/Tracheal Epithelial Cells: Improving Functional Studies to find out how primary bronchial epithelial cells differentiate into mature airway tissue using a 3-D Air-Liquid Culture Interface model.

 

Read Full Post »


 

Multiple factors related to initial trial design may predict low patient accrual for cancer clinical trials

Reporter: Stephen J. Williams, Ph.D.

UPDATED 5/15/2019

A recently published paper in JCNI highlights results determining factors which may affect cancer trial patient accrual and the development of a predictive model of accrual issues based on those factors.

To hear a JCNI podcast on the paper click here

but below is a good posting from scienmag.com which describes their findings:

Factors predicting low patient accrual in cancer clinical trials

source: http://scienmag.com/factors-predicting-low-patient-accrual-in-cancer-clinical-trials/

Nearly one in four publicly sponsored cancer clinical trials fail to enroll enough participants to draw valid conclusions about treatments or techniques. Such trials represent a waste of scarce human and economic resources and contribute little to medical knowledge. Although many studies have investigated the perceived barriers to accrual from the patient or provider perspective, very few have taken a trial-level view and asked why certain trials are able to accrue patients faster than expected while others fail to attract even a fraction of the intended number of participants. According to a study published December 29 in the JNCI: Journal of the National Cancer Institute, a number of measurable trial characteristics are predictive of low patient accrual.

Caroline S. Bennette, M.P.H., Ph.D., of the Pharmaceutical Outcomes Research and Policy Program, University of Washington, Seattle, and colleagues from the University of Washington and the Fred Hutchinson Cancer Research Center analyzed information on 787 phase II/III clinical trials sponsored by the National Clinical Trials Network (NCTN; formerly the Cooperative Group Program) launched between 2000 and 2011. After excluding trials that closed because of toxicity or interim results, Bennette et al. found that 145 (18%) of NCTN trials closed with low accrual or were accruing at less than 50% of target accrual 3 years or more after opening.

The authors identified potential risk factors from the literature and interviews with clinical trial experts and found multiple trial-level factors that were associated with poor accrual to NCTN trials, such as increased competition for patients from currently ongoing trials, planning to enroll a higher proportion of the available patient population, and not evaluating a new investigational agent or targeted therapy. Bennette et al. then developed a multivariable prediction model of low accrual using 12 trial-level risk factors, which they reported had good agreement between predicted and observed risks of low accrual in a preliminary validation using 46 trials opened between 2012 and 2013.

The researchers conclude that “Systematically considering the overall influence of these factors could aid in the design and prioritization of future clinical trials…” and that this research provides a response to the recent directive from the Institute of Medicine to “improve selection, support, and completion of publicly funded cancer clinical trials.”

In an accompanying editorial, Derek Raghavan, M.D., Levine Cancer Institute, writes that the focus needs to be on getting more patients involved in trials, saying, “we should strive to improve trial enrollment, giving the associated potential for improved results. Whether the basis is incidental, because of case selection bias, or reflects the support available to trial patients has not been determined, but the fact remains that outcomes are better.”

###

Contact info:

Article: Caroline S. Bennette, M.P.H., Ph.D., cb11@u.washington.edu

Editorial: Derek Raghavan, M.D., derek.raghavan@carolinashealthcare.org

Other investigators also feel that initial trial design is of UTMOST importance for other reasons, especially in the era of “precision” or “personalized” medicine and why the “basket trial” or one size fits all trial strategy is not always feasible.

In Why the Cancer Research Paradigm Must Transition to “N-of-1” Approach

Dr. Maurie Markman, MD gives insight into why the inital setup of a trial and the multi-center basket type of  accrual can be a problematic factor in obtaining meaningful cohorts of patients with the correct mutational spectrum.

The anticancer clinical research paradigm has rapidly evolved so that subject selection is increasingly based on the presence or absence of a particular molecular biomarker in the individual patient’s malignancy. Even where eligibility does not mandate the presence of specific biological features, tumor samples are commonly collected and an attempt is subsequently made to relate a particular outcome (eg, complete or partial objective response rate; progression-free or overall survival) to the individual cancer’s molecular characteristics.

One important result of this effort has been the recognition that there are an increasing number of patient subsets within what was previously—and incorrectly—considered a much larger homogenous patient population; for example, non–small cell lung cancer (NSCLC) versus EGFR-mutation–positive NSCLC. And, while it may still be possible to conduct phase III randomized trials involving a relatively limited percentage of patients within a large malignant entity, extensive and quite expensive effort may be required to complete this task. For example, the industry-sponsored phase III trial comparing first-line crizotinib with chemotherapy (pemetrexed plus either carboplatin or cisplatin) in ALK-rearrangement–positive NSCLC, which constitutes 3% to 5% of NSCLCs, required an international multicenter effort lasting 2.5 years to accrue the required number of research subjects.1

But what if an investigator, research team, or biotech company desired to examine the clinical utility of an antineoplastic in a patient population representing an even smaller proportion of patients with NSCLC such as in the 1% of the patient population with ROS1 abnormalities,2 or in a larger percentage of patients representing 4%-6% of patients with a less common tumor type such as ovarian cancer? How realistic is it that such a randomized trial could ever be conducted?

Further, considering the resources required to initiate and successfully conduct a multicenter international phase III registration study, it is more than likely that in the near future only the largest pharmaceutical companies will be in a position to definitively test the clinical utility of an antineoplastic in a given clinical situation.

One proposal to begin to explore the benefits of targeted antineoplastics in the setting of specific molecular abnormalities has been to develop a socalled “basket trial” where patients with different types of cancers with varying treatment histories may be permitted entry, assuming a well-defined molecular target is present within their cancer. Of interest, several pharmaceutical companies have initiated such clinical research efforts.

Yet although basket trials represent an important research advance, they may not provide the answer to the molecular complexities of cancer that many investigators believe they will. The research establishment will have to take another step toward innovation to “N-of-1” designs that truly explore the unique nature of each individual’s cancer.

Trial Illustrates Weaknesses

A recent report of the results of one multicenter basket trial focused on thoracic cancers demonstrates both the strengths but also a major fundamental weakness of the basket trial approach.3

However, the investigators were forced to conclude that despite accrual of more than 600 patients onto a study conducted at two centers over a period of approximately 2 years, “this basket trial design was not feasible for many of the arms with rare mutations.”3

They concluded that they needed a larger number of participating institutions and the ability to adapt the design for different drugs and mutations. So the question to be asked is as follows: Is the basket-type approach the only alternative to evaluate the clinical relevance of a targeted antineoplastic in the presence of a specific molecular abnormality?

Of course, the correct answer to this question is surely: No!

– See more at: http://www.onclive.com/publications/Oncology-live/2015/July-2015/Why-the-Cancer-Research-Paradigm-Must-Transition-to-N-of-1-Approach#sthash.kLGwNzi3.dpuf

The following is a video on the website ClinicalTrials.gov which is a one-stop service called EveryClinicalTrial to easily register new clinical trials and streamline the process:

 

UPDATED 5/15/2019

Another possible roadblock to patient accrual has always been the fragmentation of information concerning the availability of clinical trails and coordinating access among the various trial centers, as well as performing analytics on trial data to direct new therapeutic directions.  The NIH has attempted to circumvent this problem with the cancer trials webpage trials.gov however going through the vast number of trials, patient accrual requirements, and finding contact information is a daunting task.  However certain clinical trial marketplaces are now being developed which may ease access problems to clinical trials as well as data analytic issues, as highlighted by the Scientist.com article below:

Scientist.com Launches Trial Insights, A Transformative Clinical Trials Data Analytics Solution

The world’s largest online marketplace rolls out first original service, empowering researchers with on demand insights into clinical trials to help drive therapeutic decisions

SAN DIEGO–(BUSINESS WIRE)–Scientist.com, the online marketplace for outsourced research, announced today the launch of Trial Insights, a digital reporting solution that simplifies data produced through clinical trial, biomarker and medical diagnostic studies into an intuitive and user-friendly dashboard. The first of its kind, Trial Insights curates publicly available data nightly from information hubs such as clinicaltrials.gov and customizes it to fit a researcher or research organization’s specific project needs.

Trial Insights, new clinical trial reporting solution, allows researchers to keep track of the evolving landscape of drugs, diseases, sponsors, investigators and medical devices important to their work.

Tweet this

“Trial Insights offers researchers an easy way to navigate the complexity of clinical trials information,” said Ron Ranauro, Founder of Incite Advisors. “Since Trial Insights’ content is digitally curated, researchers can continuously keep track of the evolving landscape of drugs, diseases, sponsors, investigators and medical devices important to their work.”

As the velocity, variety and veracity of data available on sites like clinicaltrials.gov continues to increase, the ability to curate it becomes more valuable to different audiences. With the advancement of personalized medicine, it is important to make the data accessible to the health care and patient communities. Information found on the Trial Insights platform can help guide decision making across the pharmaceutical, biotechnology and contract research organization industries as clinical trial data is a primary information source for competitive intelligence, research planning and clinical study planning.

“We are extremely excited to launch the first Scientist.com exclusive, original service offering to our clients in the life sciences,” said Mark Herbert, Scientist.com Chief Business Officer. “Our goal at Scientist.com is to help cure all diseases by 2050, and we believe solutions like Trial Insights, which greatly simplifies access to and reporting of clinical trial data, will get us one step closer to reaching that goal.”

source: https://www.businesswire.com/news/home/20190416005362/en/Scientist.com-Launches-Trial-Insights-Transformative-Clinical-Trials?utm_source=TrialIO+List

 

Other article on this Open Access Journal on Cancer Clinical Trial Design include:

Read Full Post »

Older Posts »