Advertisements
Feeds:
Posts
Comments

Archive for the ‘CE Mark & Global Regulatory Affairs: process management and strategic planning – GCP’ Category


Author and Curator: Dror Nir, PhD

In the last couple of years we are witnessing a surge of AI applications in healthcare. It is clear now, that AI and its wide range of health-applications are about to revolutionize diseases’ pathways and the way the variety of stakeholders in this market interact.

Not surprisingly, the developing surge has waken the regulatory watchdogs who are now debating ways to manage the introduction of such applications to healthcare. Attributing measures to known regulatory checkboxes like safety, and efficacy is proving to be a complex exercise. How to align claims made by manufacturers, use cases, users’ expectations and public expectations is unclear. A recent demonstration of that is the so called “failure” of AI in social-network applications like FaceBook and Twitter in handling harmful materials.

‘Advancing AI in the NHS’ – is a report covering the challenges and opportunities of AI in the NHS. It is a modest contribution to the debate in such a timely and fast-moving field!  I bring here the report’s preface and executive summary hoping that whoever is interested in reading the whole 50 pages of it will follow this link: f53ce9_e4e9c4de7f3c446fb1a089615492ba8c

Screenshot 2019-04-07 at 17.18.18

 

Acknowledgements

We and Polygeia as a whole are grateful to Dr Dror Nir, Director, RadBee, whose insights

were valuable throughout the research, conceptualisation, and writing phases of this work; and to Dr Giorgio Quer, Senior Research Scientist, Scripps Research Institute; Dr Matt Willis, Oxford Internet Institute, University of Oxford; Professor Eric T. Meyer, Oxford Internet Institute, University of Oxford; Alexander Hitchcock, Senior Researcher, Reform; Windi Hari, Vice President Clinical, Quality & Regulatory, HeartFlow; Jon Holmes, co-founder and Chief Technology Officer, Vivosight; and Claudia Hartman, School of Anthropology & Museum Ethnography, University of Oxford for their advice and support.

Author affiliations

Lev Tankelevitch, University of Oxford

Alice Ahn, University of Oxford

Rachel Paterson, University of Oxford

Matthew Reid, University of Oxford

Emily Hilbourne, University of Oxford

Bryan Adriaanse, University of Oxford

Giorgio Quer, Scripps Research Institute

Dror Nir, RadBee

Parth Patel, University of Cambridge

All affiliations are at the time of writing.

Polygeia

Polygeia is an independent, non-party, and non-profit think-tank focusing on health and its intersection with technology, politics, and economics. Our aim is to produce high-quality research on global health issues and policies. With branches in Oxford, Cambridge, London and New York, our work has led to policy reports, peer-reviewed publications, and presentations at the House of Commons and the European Parliament. http://www.polygeia.com @Polygeia © Polygeia 2018. All rights reserved.

Foreword

Almost every day, as MP for Cambridge, I am told of new innovations and developments that show that we are on the cusp of a technological revolution across the sectors. This technology is capable of revolutionising the way we work; incredible innovations which could increase our accuracy, productivity and efficiency and improve our capacity for creativity and innovation.

But huge change, particularly through adoption of new technology, can be difficult to  communicate to the public, and if we do not make sure that we explain carefully the real benefits of such technologies we easily risk a backlash. Despite good intentions, the care.data programme failed to win public trust, with widespread worries that the appropriate safeguards weren’t in place, and a failure to properly explain potential benefits to patients. It is vital that the checks and balances we put in place are robust enough to sooth public anxiety, and prevent problems which could lead to steps back, rather than forwards.

Previous attempts to introduce digital innovation into the NHS also teach us that cross-disciplinary and cross-sector collaboration is essential. Realising this technological revolution in healthcare will require industry, academia and the NHS to work together and share their expertise to ensure that technical innovations are developed and adopted in ways that prioritise patient health, rather than innovation for its own sake. Alongside this, we must make sure that the NHS workforce whose practice will be altered by AI are on side. Consultation and education are key, and this report details well the skills that will be vital to NHS adoption of AI. Technology is only as good as those who use it, and for this, we must listen to the medical and healthcare professionals who will rightly know best the concerns both of patients and their colleagues. The new Centre for Data Ethics and Innovation, the ICO and the National Data Guardian will be key in working alongside the NHS to create both a regulatory framework and the communications which win society’s trust. With this, and with real leadership from the sector and from politicians, focused on the rights and concerns of individuals, AI can be advanced in the NHS to help keep us all healthy.

Daniel Zeichner

MP for Cambridge

Chair, All-Party Parliamentary Group on Data Analytics

 

Executive summary

Artificial intelligence (AI) has the potential to transform how the NHS delivers care. From enabling patients to self-care and manage long-term conditions, to advancing triage, diagnostics, treatment, research, and resource management, AI can improve patient outcomes and increase efficiency. Achieving this potential, however, requires addressing a number of ethical, social, legal, and technical challenges. This report describes these challenges within the context of healthcare and offers directions forward.

Data governance

AI-assisted healthcare will demand better collection and sharing of health data between NHS, industry and academic stakeholders. This requires a data governance system that ensures ethical management of health data and enables its use for the improvement of healthcare delivery. Data sharing must be supported by patients. The recently launched NHS data opt-out programme is an important starting point, and will require monitoring to ensure that it has the transparency and clarity to avoid exploiting the public’s lack of awareness and understanding. Data sharing must also be streamlined and mutually beneficial. Current NHS data sharing practices are disjointed and difficult to negotiate from both industry and NHS perspectives. This issue is complicated by the increasing integration of ’traditional’ health data with that from commercial apps and wearables. Finding approaches to valuate data, and considering how patients, the NHS and its partners can benefit from data sharing is key to developing a data sharing framework. Finally, data sharing should be underpinned by digital infrastructure that enables cybersecurity and accountability.

Digital infrastructure

Developing and deploying AI-assisted healthcare requires high quantity and quality digital data. This demands effective digitisation of the NHS, especially within secondary care, involving not only the transformation of paper-based records into digital data, but also improvement of quality assurance practices and increased data linkage. Beyond data digitisation, broader IT infrastructure also needs upgrading, including the use of innovations such as wearable technology and interoperability between NHS sectors and institutions. This would not only increase data availability for AI development, but also provide patients with seamless healthcare delivery, putting the NHS at the vanguard of healthcare innovation.

Standards

The recent advances in AI and the surrounding hype has meant that the development of AI-assisted healthcare remains haphazard across the industry, with quality being difficult to determine or varying widely. Without adequate product validation, including in

real-world settings, there is a risk of unexpected or unintended performance, such as sociodemographic biases or errors arising from inappropriate human-AI interaction. There is a need to develop standardised ways to probe training data, to agree upon clinically-relevant performance benchmarks, and to design approaches to enable and evaluate algorithm interpretability for productive human-AI interaction. In all of these areas, standardised does not necessarily mean one-size-fits-all. These issues require addressing the specifics of AI within a healthcare context, with consideration of users’ expertise, their environment, and products’ intended use. This calls for a fundamentally interdisciplinary approach, including experts in AI, medicine, ethics, cognitive science, usability design, and ethnography.

Regulations

Despite the recognition of AI-assisted healthcare products as medical devices, current regulatory efforts by the UK Medicines and Healthcare Products Regulatory Agency and the European Commission have yet to be accompanied by detailed guidelines which address questions concerning AI product classification, validation, and monitoring. This is compounded by the uncertainty surrounding Brexit and the UK’s future relationship with the European Medicines Agency. The absence of regulatory clarity risks compromising patient safety and stalling the development of AI-assisted healthcare. Close working partnerships involving regulators, industry members, healthcare institutions, and independent AI-related bodies (for example, as part of regulatory sandboxes) will be needed to enable innovation while ensuring patient safety.

The workforce

AI will be a tool for the healthcare workforce. Harnessing its utility to improve care requires an expanded workforce with the digital skills necessary for both developing AI capability and for working productively with the technology as it becomes commonplace.

Developing capability for AI will involve finding ways to increase the number of clinician-informaticians who can lead the development, procurement and adoption of AI technology while ensuring that innovation remains tied to the human aspect of healthcare delivery. More broadly, healthcare professionals will need to complement their socio-emotional and cognitive skills with training to appropriately interpret information provided by AI products and communicate it effectively to co-workers and patients.

Although much effort has gone into predicting how many jobs will be affected by AI-driven automation, understanding the impact on the healthcare workforce will require examining how jobs will change, not simply how many will change.

Legal liability

AI-assisted healthcare has implications for the legal liability framework: who should be held responsible in the case of a medical error involving AI? Addressing the question of liability will involve understanding how healthcare professionals’ duty of care will be impacted by use of the technology. This is tied to the lack of training standards for healthcare professionals to safely and effectively work with AI, and to the challenges of algorithm interpretability, with ”black-box” systems forcing healthcare professionals to blindly trust or distrust their output. More broadly, it will be important to examine the legal liability of healthcare professionals, NHS trusts and industry partners, raising questions

Recommendations

  1. The NHS, the Centre for Data Ethics and Innovation, and industry and academic partners should conduct a review to understand the obstacles that the NHS and external organisations face around data sharing. They should also develop health data valuation protocols which consider the perspectives of patients, the NHS, commercial organisations, and academia. This work should inform the development of a data sharing framework.
  2. The National Data Guardian and the Department of Health should monitor the NHS data opt-out programme and its approach to transparency and communication, evaluating how the public understands commercial and non-commercial data use and the handling of data at different levels of anonymisation.
  3. The NHS, patient advocacy groups, and commercial organisations should expand public engagement strategies around data governance, including discussions about the value of health data for improving healthcare; public and private sector interactions in the development of AI-assisted healthcare; and the NHS’s strategies around data anonymisation, accountability, and commercial partnerships. Findings from this work should inform the development of a data sharing framework.
  4. The NHS Digital Security Operations Centre should ensure that all NHS organisations comply with cybersecurity standards, including having up-to-date technology.
  5. NHS Digital, the Centre for Data Ethics and Innovation, and the Alan Turing Institute should develop technological approaches to data privacy, auditing, and accountability that could be implemented in the NHS. This should include learning from Global Digital Exemplar trusts in the UK and from international examples such as Estonia.
  6. The NHS should continue to increase the quantity, quality, and diversity of digital health data across trusts. It should consider targeted projects, in partnership with professional medical bodies, that quality-assure and curate datasets for more deployment-ready AI technology. It should also continue to develop its broader IT infrastructure, focusing on interoperability between sectors, institutions, and technologies, and including the end users as central stakeholders.
  7. The Alan Turing Institute, the Ada Lovelace Institute, and academic and industry partners in medicine and AI should develop ethical frameworks and technological approaches for the validation of training data in the healthcare sector, including methods to minimise performance biases and validate continuously-learning algorithms.
  8. The Alan Turing Institute, the Ada Lovelace Institute, and academic and industry partners in medicine and AI should develop standardised approaches for evaluating product performance in the healthcare sector, with consideration for existing human performance standards and products’ intended use.
  9. The Alan Turing Institute, the Ada Lovelace Institute, and academic and industry partners in medicine and AI should develop methods of enabling and evaluating algorithm interpretability in the healthcare sector. This work should involve experts in AI, medicine, ethics, usability design, cognitive science, and ethnography, among others.
  10. Developers of AI products and NHS Commissioners should ensure that usability design remains a top priority in their respective development and procurement of AI-assisted healthcare products.
  11. The Medicines and Healthcare Products Regulatory Agency should establish a digital health unit with expertise in AI and digital products that will work together with manufacturers, healthcare bodies, notified bodies, AI-related organisations, and international forums to advance clear regulatory approaches and guidelines around AI product classification, validation, and monitoring. This should address issues including training data and biases, performance evaluation, algorithm interpretability, and usability.
  12. The Medicines and Healthcare Products Regulatory Agency, the Centre for Data Ethics and Innovation, and industry partners should evaluate regulatory approaches, such as regulatory sandboxing, that can foster innovation in AI-assisted healthcare, ensure patient safety, and inform on-going regulatory development.
  13. The NHS should expand innovation acceleration programmes that bridge healthcare and industry partners, with a focus on increasing validation of AI products in real-world contexts and informing the development of a regulatory framework.
  14. The Medicines and Healthcare Products Regulatory Agency and other Government bodies should arrange a post-Brexit agreement ensuring that UK regulations of medical devices, including AI-assisted healthcare, are aligned as closely as possible to the European framework and that the UK can continue to help shape Europe-wide regulations around this technology.
  15. The General Medical Council, the Medical Royal Colleges, Health Education England, and AI-related bodies should partner with industry and academia on comprehensive examinations of the healthcare sector to assess which, when, and how jobs will be impacted by AI, including analyses of the current strengths, limitations, and workflows of healthcare professionals and broader NHS staff. They should also examine how AI-driven workforce changes will impact patient outcomes.
  16. The Federation of Informatics Professionals and the Faculty of Clinical Informatics should continue to lead and expand standards for health informatics competencies, integrating the relevant aspects of AI into their training, accreditation, and professional development programmes for clinician-informaticians and related professions.
  17. Health Education England should expand training programmes to advance digital and AI-related skills among healthcare professionals. Competency standards for working with AI should be identified for each role and established in accordance with professional registration bodies such as the General Medical Council. Training programmes should ensure that ”un-automatable” socio-emotional and cognitive skills remain an important focus.
  18. The NHS Digital Academy should expand recruitment and training efforts to increase the number of Chief Clinical Information Officers across the NHS, and ensure that the latest AI ethics, standards, and innovations are embedded in their training programme.
  19. Legal experts, ethicists, AI-related bodies, professional medical bodies, and industry should review the implications of AI-assisted healthcare for legal liability. This includes understanding how healthcare professionals’ duty of care will be affected, the role of workforce training and product validation standards, and the potential role of NHS Indemnity and no-fault compensation systems.
  20. AI-related bodies such as the Ada Lovelace Institute, patient advocacy groups and other healthcare stakeholders should lead a public engagement and dialogue strategy to understand the public’s views on liability for AI-assisted healthcare.

Advertisements

Read Full Post »


Entire Family of Impella Abiomed Impella® Therapy Left Side Heart Pumps: FDA Approved To Enable Heart Recovery

Reporter: Aviva Lev-Ari, PhD, RN

 

Abiomed Impella® Therapy Receives FDA Approval for Cardiogenic Shock After Heart Attack or Heart Surgery

Entire Family of Impella Left Side Heart Pumps FDA Approved To Enable Heart Recovery

DANVERS, Mass., April 07, 2016 (GLOBE NEWSWIRE) — Abiomed, Inc. (NASDAQ:ABMD), a leading provider of breakthrough heart support technologies, today announced that it has received U.S. Food and Drug Administration (FDA) Pre-Market Approval (PMA) for its Impella 2.5™, Impella CP®, Impella 5.0™ and Impella LD™ heart pumps to provide treatment of ongoing cardiogenic shock. In this setting, the Impella heart pumps stabilize the patient’s hemodynamics, unload the left ventricle, perfuse the end organs and allow for recovery of the native heart.  This latest approval adds to the prior FDA indication of Impella 2.5 for high risk percutaneous coronary intervention (PCI), or Protected PCI™, received in March 2015.

With this approval, these are the first and only percutaneous temporary ventricular support devices that are FDA-approved as safe and effective for the cardiogenic shock indication, as stated below:

The Impella 2.5, Impella CP, Impella 5.0 and Impella LD catheters, in conjunction with the Automated Impella Controller console, are intended for short-term use (<4 days for the Impella 2.5 and Impella CP and <6 days for the Impella 5.0 and Impella LD) and indicated for the treatment of ongoing cardiogenic shock that occurs immediately (<48 hours) following acute myocardial infarction (AMI) or open heart surgery as a result of isolated left ventricular failure that is not responsive to optimal medical management and conventional treatment measures with or without an intra-aortic balloon pump.  The intent of the Impella system therapy is to reduce ventricular work and to provide the circulatory support necessary to allow heart recovery and early assessment of residual myocardial function.

The product labeling also allows for the clinical decision to leave Impella 2.5, Impella CP, Impella 5.0 and Impella LD in place beyond the intended duration of four to six days due to unforeseen circumstances.

The Impella products offer the unique ability to both stabilize the patient’s hemodynamics before or during a PCI procedure and unload the heart, which allows the muscle to rest and potentially recover its native function. Heart recovery is the ideal option for a patient’s quality of life and as documented in several clinical papers, has the ability to save costs for the healthcare system1,2,3.

Cardiogenic shock is a life-threatening condition in which the heart is suddenly unable to pump enough blood and oxygen to support the body’s vital organs. For this approval, it typically occurs during or after a heart attack or acute myocardial infarction (AMI) or cardiopulmonary bypass surgery as a result of a weakened or damaged heart muscle. Despite advancements in medical technology, critical care guidelines and interventional techniques, AMI cardiogenic shock and post-cardiotomy cardiogenic shock (PCCS) carry a high mortality risk and has shown an incremental but consistent increase in occurrence in recent years in the United States.

“This approval sets a new standard for the entire cardiovascular community as clinicians continue to seek education and new approaches to effectively treat severely ill cardiac patients with limited options and high mortality risk,” said William O’Neill, M.D., medical director of the Center for Structural Heart Disease at Henry Ford Hospital. “The Impella heart pumps offer the ability to provide percutaneous hemodynamic stability to high-risk patients in need of rapid and effective treatment by unloading the heart, perfusing the end organs and ultimately, allowing for the opportunity to recover native heart function.”

“Abiomed would like to recognize our customers, physicians, nurses, scientists, regulators and employees for their last fifteen years of circulatory support research and clinical applications. This FDA approval marks a significant milestone in the treatment of heart disease. The new medical field of heart muscle recovery has begun,” said Michael R. Minogue, President, Chairman and Chief Executive Officer of Abiomed. “Today, Abiomed only treats around 5% of this AMI cardiogenic shock patient population, which suffers one of the highest mortality risks of any patient in the heart hospital. Tomorrow, Abiomed will be able to educate and directly partner with our customers and establish appropriate protocols to improve the patient outcomes focused on native heart recovery.”

Abiomed Data Supporting FDA Approval

The data submitted to the FDA in support of the PMA included an analysis of 415 patients from the RECOVER 1 study and the U.S. Impella registry (cVAD Registry™), as well as an Impella literature review including 692 patients treated with Impella from 17 clinical studies. A safety analysis reviewed over 24,000 Impella treated patients using the FDA medical device reporting (“MDR”) database, which draws from seven years of U.S. experience with Impella.

In addition, the Company also provided a benchmark analysis of Impella patients in the real-world Impella cVAD registry vs. these same patient groups in the Abiomed AB5000/BVS 5000 Registry. The Abiomed BVS 5000 product was the first ventricular assist device (VAD) ever approved by the FDA in 1991 based on 83 patient PMA study. In 2003, the AB5000 Ventricle received FDA approval and this also included a PMA study with 60 patients.

For this approval, the data source for this benchmark analysis was a registry (“AB/BVS Registry”) that contained 2,152 patients that received the AB5000 and BVS 5000 devices, which were originally approved for heart recovery. The analysis examined by the FDA used 204 patients that received the AB5000 device for the same indications. This analysis demonstrated significantly better outcomes with Impella in these patients.

The Company believes this is the most comprehensive review ever submitted to the FDA for circulatory support in the cardiogenic shock population.

  1. Maini B, Gregory D, Scotti DJ, Buyantseva L. Percutaneous cardiac assist devices compared with surgical hemodynamic support alternatives: Cost-Effectiveness in the Emergent Setting.Catheter Cardiovasc Interv. 2014 May 1;83(6):E183-92.
  2. Cheung A, Danter M, Gregory D. TCT-385 Comparative Economic Outcomes in Cardiogenic Shock Patients Managed with the Minimally Invasive Impella or Extracorporeal Life Support. J Am Coll Cardiol. 2012;60(17_S):. doi:10.1016/j.jacc.2012.08.413.
  3. Gregory D, Scotti DJ, de Lissovoy G, Palacios I, Dixon, Maini B, O’Neill W. A value-based analysis of hemodynamic support strategies for high-risk heart failure patients undergoing a percutaneous coronary intervention. Am Health Drug Benefits. 2013 Mar;6(2):88-99


ABOUT IMPELLA

Impella 2.5 received FDA PMA approval for high risk PCI in March 2015, is supported by clinical guidelines, and is reimbursed by the Centers for Medicare & Medicaid Services (CMS) under ICD-9-CM code 37.68 for multiple indications. The Impella RP® device received Humanitarian Device Exemption (HDE) approval in January 2015. The Impella product portfolio, which is comprised of Impella 2.5, Impella CP, Impella 5.0, Impella LD, and Impella RP, has supported over 35,000 patients in the United States.

The ABIOMED logo, ABIOMED, Impella, Impella CP, and Impella RP are registered trademarks of Abiomed, Inc. in the U.S.A. and certain foreign countries.  Impella 2.5, Impella 5.0, Impella LD, and Protected PCI are trademarks of Abiomed, Inc.

ABOUT ABIOMED
Based in Danvers, Massachusetts, Abiomed, Inc. is a leading provider of medical devices that provide circulatory support.  Our products are designed to enable the heart to rest by improving blood flow and/or performing the pumping of the heart.  For additional information, please visit: www.abiomed.com

FORWARD-LOOKING STATEMENTS
This release includes forward-looking statements.  These forward-looking statements generally can be identified by the use of words such as “anticipate,” “expect,” “plan,” “could,” “may,” “will,” “believe,” “estimate,” “forecast,” “goal,” “project,” and other words of similar meaning.  These forward-looking statements address various matters including, the Company’s guidance for fiscal 2016 revenue. Each forward-looking statement contained in this press release is subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statement.  Applicable risks and uncertainties include, among others, uncertainties associated with development, testing and related regulatory approvals, including the potential for future losses, complex manufacturing, high quality requirements, dependence on limited sources of supply, competition, technological change, government regulation, litigation matters, future capital needs and uncertainty of additional financing, and the risks identified under the heading “Risk Factors” in the Company’s Annual Report on Form 10-K for the year ended March 31, 2015 and the Company’s Quarterly Report on Form 10-Q for the quarter ended September 30, 2015, each filed with the Securities and Exchange Commission, as well as other information the Company files with the SEC.  We caution investors not to place considerable reliance on the forward-looking statements contained in this press release.  You are encouraged to read our filings with the SEC, available at www.sec.gov, for a discussion of these and other risks and uncertainties.  The forward-looking statements in this press release speak only as of the date of this release and the Company undertakes no obligation to update or revise any of these statements.  Our business is subject to substantial risks and uncertainties, including those referenced above.  Investors, potential investors, and others should give careful consideration to these risks and uncertainties.

For more information, please contact: Aimee Genzler Director, Corporate Communications 978-646-1553 agenzler@abiomed.com Ingrid Goldberg Director, Investor Relations igoldberg@abiomed.com

SOURCE
http://investors.abiomed.com/releasedetail.cfm?ReleaseID=964113

Read Full Post »


UPDATED on 2/25/2019

https://www.medpagetoday.com/cardiology/prevention/78202?xid=nl_mpt_SRCardiology_2019-02-25&eun=g99985d0r&utm_source=Sailthru&utm_medium=email&utm_campaign=CardioUpdate_022519&utm_term=NL_Spec_Cardiology_Update_Active

Medtronic recalled its dual chamber pacemakers (Adapta, Versa, Sensia, Relia, Attesta, Sphera, and Vitatron A, E, G, and Q series) due to a possible software error that can stop pacing.

Steps to minimise replacement of cardiac implantable electronic devices

Reporter: Aviva Lev-Ari, PhD, RN

Pacemaker battery scandal

SOURCE

http://www.bmj.com/content/352/bmj.i228

BMJ 2016; 352 doi: http://dx.doi.org/10.1136/bmj.i228 (Published 04 February 2016)Cite this as: BMJ 2016;352:i228
  1. John Dean, consultant cardiologist 1,
  2. Neil Sulke, consultant cardiologist 2

Author affiliations

  1. Correspondence to: J Dean john.dean2@nhs.net

Much can and should be done to maximise the longevity of existing devices

Imagine spending £3000 on a new watch with a battery embedded in the mechanism that cannot be replaced or recharged. Although the battery is predicted to last 10 years or more, after six years you discover that it is running flat and you’re advised to replace the watch immediately, even though it may keep good time for a year or more.

This mirrors the dilemma faced by all patients with cardiac implantable electronic devices such as pacemakers and implantable cardioverter defibrillators (ICD). But for them the stakes are much higher as replacing the battery exposes them to a risk of serious complications, including life threatening infection.

Over half of all patients with pacemakers require a replacement procedure because the batteries have reached their expected life.1 Some 11-16% need multiple replacements.2 The situation is worse for recipients of an ICD, since the risks of infection at the time of implant and device replacement are higher than with pacemakers and the batteries have a shorter life.3

What is the risk of infection?

With no standard definition or reporting system, infection rates vary widely, and the commonly quoted risk of 0.5% for new implants and 1-5% for replacement procedures may be wrong.4 Infection, even if it seems superficial, usually necessitates extraction of the entire system. Simply treating the infection with antibiotics results in a much poorer outcome.5 The increased risk of infection associated with battery replacement makes it critical that we prolong the life of implantable devices as much as possible. The health economic grounds for minimising the number of replacements are also compelling.6

The current financial model discourages the development of longer life devices. Increasing longevity would reduce profits for manufacturers, implanting physicians, and their institutions. With financial disincentives for both manufacturers and purchasers it is hardly surprising that longer life devices do not exist.

Patients are often assumed to prefer smaller devices, but when offered the choice, over 90% would opt for a larger, longer lasting device over a smaller one that would require more frequent operations to change the battery.7 And given the risks that patients are exposed to during replacement, there is an urgent need to improve longevity by developing longer life batteries and using those in current devices more prudently.

What can be done now?

At present the main drive to improving longevity of pacemakers has been through programming changes aimed at reducing the amount of pacing8 or minimising the drain of current during pacing—for example, using high impedance leads. But devices are usually replaced when there is still substantial life left in the battery. For example, when a pacemaker reaches elective replacement indication, it is usually 3-12 months before it will reach its end of life. And even then, the battery may continue to function for several months. Early replacement may be reasonable for high risk patients (such as those who are entirely dependent on their pacemaker). However, we could delay replacement of the pulse generator until the batteries are virtually depleted in lower risk patients. The increasingly popular innovation of home monitoring of devices would facilitate this.

For ICDs the waste is even more striking; devices reach their elective replacement indication when they are still capable of delivering at least six full energy shocks. Each shock reduces the battery longevity by about 30 days. So for patients who receive no shock therapy we are prematurely discarding a device costing up to £25 000 (€33 000; $36 000), which could last at least another six months (current devices last four to seven years on average). We need to review the timing of replacement of implantable devices in all patients.

CONTINUE READING

http://www.bmj.com/content/352/bmj.i228

REFERENCES

Read Full Post »


Finland and Norway Biotech: Polaris the merger product of Targovax and Oncos Therapeutics

Reporter: Aviva Lev-Ari, PhD, RN

SEE MAP for Europe BioTech

http://labiotech.eu/map/

 

SOURCE

http://labiotech.eu/polaris-a-new-nordic-leader-in-immuno-oncology/

Read Full Post »


This content is password protected. To view it please enter your password below:

Read Full Post »


This content is password protected. To view it please enter your password below:

Read Full Post »


NIH and FDA on 3D Printing in Medical Applications: Views for On-demand Drug Printing, in-Situ direct Tissue Repair and Printed Organs for Live Implants

 

UPDATED on 4/5/2016

Update on FDA Policy Regarding 3D Bioprinted Material

Curator: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2016/04/05/update-on-fda-policy-regarding-3d-bioprinted-material/

UPDATED on 11/12/2015

NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

 

FDA Guidance on Use of Xenotransplanted Products in Human: Implications in 3D Printing

FDA Guidance Documents Update Nov. 2015 on Devices, Animal Studies, Gene Therapy, Liposomes

FDA Cellular & Gene Therapy Guidances: Implications for CRSPR/Cas9 Trials

New FDA Draft Guidance On Homologous Use of Human Cells, Tissues, and Cellular and Tissue-Based Products – Implications for 3D BioPrinting of Regenerative Tissue

FDA Guidance on Use of Xenotransplanted Products in Human: Implications in 3D Printing

FDA Guidance Documents Update Nov. 2015 on Devices, Animal Studies, Gene Therapy, Liposomes

FDA Cellular & Gene Therapy Guidances: Implications for CRSPR/Cas9 Trials

New FDA Draft Guidance On Homologous Use of Human Cells, Tissues, and Cellular and Tissue-Based Products – Implications for 3D BioPrinting of Regenerative Tissue

Logo of pharmthera

P&T Community Current issue Registration Submit an Article
P T. 2014 Oct; 39(10): 704–711.
PMCID: PMC4189697

Medical Applications for 3D Printing: Current and Projected Uses

SOURCE

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189697/

FUTURE TRENDS

3D printing is expected to play an important role in the trend toward personalized medicine, through its use in customizing nutritional products, organs, and drugs.3,9 3D printing is expected to be especially common in pharmacy settings.5 The manufacturing and distribution of drugs by pharmaceutical companies could conceivably be replaced by emailing databases of medication formulations to pharmacies for on-demand drug printing.1 This would cause existing drug manufacturing and distribution methods to change drastically and become more cost-effective.1 If most common medications become available in this way, patients might be able to reduce their medication burden to one polypill per day, which would promote patient adherence.5

The most advanced 3D printing application that is anticipated is the bioprinting of complex organs.3,11 It has been estimated that we are less than 20 years from a fully functioning printable heart.8 Although, due to challenges in printing vascular networks, the reality of printed organs is still some way off, the progress that has been made is promising.3,7 As the technology advances, it is expected that complex heterogeneous tissues, such as liver and kidney tissues, will be fabricated successfully.9 This will open the door to making viable live implants, as well as printed tissue and organ models for use in drug discovery.9 It may also be possible to print out a patient’s tissue as a strip that can be used in tests to determine what medication will be most effective.1 In the future, it could even be possible to take stem cells from a child’s baby teeth for lifelong use as a tool kit for growing and developing replacement tissues and organs.3

In situ printing, in which implants or living organs are printed in the human body during operations, is another anticipated future trend.13 Through use of 3D bioprinting, cells, growth factors, and biomaterial scaffolding can be deposited to repair lesions of various types and thicknesses with precise digital control.10 In situ bioprinting for repairing external organs, such as skin, has already taken place.13 In one case, a 3D printer was used to fill a skin lesion with keratinocytes and fibroblasts, in stratified zones throughout the wound bed.13 This approach could possibly advance to use for in situ repair of partially damaged, diseased, or malfunctioning internal organs.13 A handheld 3D printer for use in situ for direct tissue repair is an anticipated innovation in this area.10 Advancements in robotic bioprinters and robot-assisted surgery may also be integral to the evolution of this technology.13

Medical applications for 3D printing are expanding rapidly and are expected to revolutionize health care.1Medical uses for 3D printing, both actual and potential, can be organized into several broad categories, including:

  • tissue and organ fabrication;
  • creation of customized prosthetics, implants, and anatomical models; and
  • pharmaceutical research regarding drug dosage forms, delivery, and discovery.2

The application of 3D printing in medicine can provide many benefits, including:

the customization and personalization of medical products, drugs, and equipment;

  • cost-effectiveness;
  • increased productivity;
  • the democratization of design and manufacturing; and
  • enhanced collaboration.1,36

However, it should be cautioned that despite recent significant and exciting medical advances involving 3D printing, notable scientific and regulatory challenges remain and the most transformative applications for this technology will need time to evolve.35,7

A number of fairly simple 3D-printed medical devices have received the FDA’s 510(k) approval.17

COMMON TYPES OF 3D PRINTERS

All 3D printing processes offer advantages and disadvantages.3 The type of 3D printer chosen for an application often depends on the materials to be used and how the layers in the finished product are bonded.11 The three most commonly used 3D printer technologies in medical applications are: selective laser sintering (SLS), thermal inkjet (TIJ) printing, and fused deposition modeling (FDM).10,11 A brief discussion of each of these technologies follows.

Selective Laser Sintering

An SLS printer uses powdered material as the substrate for printing new objects.11 A laser draws the shape of the object in the powder, fusing it together.11 Then a new layer of powder is laid down and the process repeats, building each layer, one by one, to form the object.11 Laser sintering can be used to create metal, plastic, and ceramic objects.11 The degree of detail is limited only by the precision of the laser and the fineness of the powder, so it is possible to create especially detailed and delicate structures with this type of printer.11

Thermal Inkjet Printing

Inkjet printing is a “noncontact” technique that uses thermal, electromagnetic, or piezoelectric technology to deposit tiny droplets of “ink” (actual ink or other materials) onto a substrate according to digital instructions.10 In inkjet printing, droplet deposition is usually done by using heat or mechanical compression to eject the ink drops.10 In TIJ printers, heating the printhead creates small air bubbles that collapse, creating pressure pulses that eject ink drops from nozzles in volumes as small as 10 to 150 picoliters.10 Droplet size can be varied by adjusting the applied temperature gradient, pulse frequency, and ink viscosity.10

TIJ printers are particularly promising for use in tissue engineering and regenerative medicine.10,13Because of their digital precision, control, versatility, and benign effect on mammalian cells, this technology is already being applied to print simple 2D and 3D tissues and organs (also known as bioprinting).10 TIJ printers may also prove ideal for other sophisticated uses, such as drug delivery and gene transfection during tissue construction.10

Fused Deposition Modeling

FDM printers are much more common and inexpensive than the SLS type.11 An FDM printer uses a printhead similar to an inkjet printer.11 However, instead of ink, beads of heated plastic are released from the printhead as it moves, building the object in thin layers.4,11 This process is repeated over and over, allowing precise control of the amount and location of each deposit to shape each layer.4 Since the material is heated as it is extruded, it fuses or bonds to the layers below.4 As each layer of plastic cools, it hardens, gradually creating the solid object as the layers build.11 Depending on the complexity and cost of an FDM printer, it may have enhanced features such as multiple printheads.11 FDM printers can use a variety of plastics.11 In fact, 3D FDM printed parts are often made from the same thermoplastics that are used in traditional injection molding or machining, so they have similar stability, durability, and mechanical properties.4

REFERENCES

1. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–161. [PubMed]
2. Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery—ready for prime time? World Neurosurg.2013;80(3–4):233–235. [PubMed]
3. Banks J. Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22–26. [PubMed]
4. Mertz L. Dream it, design it, print it in 3-D: What can 3-D printing do for you? IEEE Pulse.2013;4(6):15–21. [PubMed]
5. Ursan I, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc.2013;53(2):136–144. [PubMed]
6. Gross BC, Erkal JL, Lockwood SY, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–3253. [PubMed]
7. Bartlett S. Printing organs on demand. Lancet Respir Med. 2013;1(9):684. [PubMed]
8. Science and society: Experts warn against bans on 3D printing. Science. 2013;342(6157):439. [PubMed]
9. Lipson H. New world of 3-D printing offers “completely new ways of thinking:” Q & A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse. 2013;4(6):12–14. [PubMed]
10. Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6(2):149–155. [PMC free article] [PubMed]
11. Hoy MB. 3D printing: making things at the library. Med Ref Serv Q. 2013;32(1):94–99. [PubMed]
12. 3D Print Exchange. National Institutes of Health; Available at: http://3dprint.nih.gov. Accessed July 9, 2014.
13. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691–699. [PubMed]
14. Bertassoni L, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip. 2014;14(13):2202. [PMC free article][PubMed]
15. Centers for Disease Control and Prevention Colorectal cancer statistics. Sep 2, 2014. Available at:http://www.cdc.gov/cancer/colorectal/statistics. Accessed September 17, 2014.
16. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1–2):105–111. [PubMed]
17. Plastics Today. FDA tackles opportunities, challenges, of 3D printed medical devices. Jun 2, 2014. Available at: http://www.plasticstoday.com/articles/FDA-tackles-opportunities-challenges-3D-printed-medical-devices-140602. Accessed July 9, 2014.
18. Food and Drug Administration Public workshop—additive manufacturing of medical devices: an interactive discussion on the technical considerations of 3D printing. Sep 3, 2014. Available at:http://www.fda.gov/medicaldevices/newsevents/workshopsconferences/ucm397324.htm. Accessed September 17, 2014.

Read Full Post »

Older Posts »