Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘NSCLC’


What about PDL-1 in oncotherapy diagnostics for NSCLC?

Larry H. Bernstein, MD, FCAP, Curator

LPBI

UPDATED 5/15/2019

Questions on PD-L1 Diagnostics for Immunotherapy in NSCLC
Alexander M. Castellino, PhD
http://www.medscape.com/viewarticle/862275

Two immunotherapies that target the cell programmed death (PD) pathway are now available, and both nivolumab (Opdivo, Bristol-Myers Squibb Company) and pembrolizumab (Keytruda, Merck Sharp & Dohme Corp) are approved for treating advanced, refractory, non–small cell lung cancer (NSCLC). Across several studies in patients with NSCLC, response to these agents has been correlated with PD-L1 staining, which determines PD-L1 levels in the tumor tissue. How do the available assays for PD-L1 compare?

The linear correlation between three commercially available assays is good across a range of cutoff points, concluded a presentation at the 2016 American Association for Clinical Research Annual Meeting.

Cutoffs are defined as the percentage of cells expressing PD-L1 when analyzed histochemically. “The dataset builds confidence that the assays may be used according to the cutoff clinically validated for the drug in question,” Marianne J. Radcliffe, MD, diagnostic associate director at AstraZeneca, toldMedscape Medical News.

“The correlation is good between the assays across the range examined,” she added.

However, a recently published study showed a high rate of discordance between another set of PD-L1 assays that were tested.

Dr Marianne Radcliffe

“Different diagnostic tests yield different results, depending on the cutoff for each assay. We need to harmonize the assays so clinicians are talking about the same thing,” Brendon Stiles, MD, associate professor of cardiothoracic surgery at Weill Cornell Medicine and New York-Presbyterian Hospital, New York City, told Medscape Medical News.

For Dr Stiles, these studies raise the issue that it is difficult to compare results of diagnostic testing across the different drugs and even with the same drug that are derived from different assays. “More importantly, it raises confusion in clinical practice when a patient’s sample stains positive for PD-L1 with one assay and negative with another,” he said.

“The commercial strategy for developing companion diagnostics for each drug is not in the best interests of the patients. It generates confusion among both clinicians and patients,” Dr Stiles commented. “We need to know if these assays can be used interchangeably,” he said.

As new agents come into the clinic, Dr Stiles believes there should be a universal yes-or-no answer, so that clinicians can use the assay to help decide on the use of immunotherapy.

Three Assays Tested

The study presented by Dr Radcliffe and colleagues investigated three commercially available assays, Ventana SP263, Dako 22C3, and Dako 28-8, with regard to how they compare at different cutoffs. Different studies use different cutoffs to express positivity.

Ventana SP263 was developed as a companion diagnostic for durvalumab (under development by AstraZeneca) using a rabbit monoclonal antibody. Positivity is defined as ≥25% staining of tumor cells.

Dako 22C3 was developed, and is approved, as a companion diagnostic for pembrolizumab. It uses a mouse monoclonal antibody. Positivity is defined as ≥1% and ≥50% staining of tumor cells.

Dako 28-8 was developed as a companion diagnostic for nivolumab and uses a rabbit monoclonal antibody (different from the one used in the Ventana SP263). In clinical practice, this assay is used as a complementary diagnostic for nivolumab, but the drug is approved for use regardless of PD-L1 expression. Positivity is defined as ≥1%, ≥5%, or ≥10% staining of tumor cells.

Ventana SP142 was not included in the study because it is not commercially available, Dr Ratcliffe indicated.
The three assays were used on consecutive sections of 500 archival NSCLC tumor samples obtained from commercial vendors. A single pathologist trained by the manufacturer read all samples in batches on an assay-by-assay basis. Samples were assessed per package inserts provided by Ventana and Dako in a Clinical Laboratory Improvement Amendments program-certified laboratory.

Dr Ratcliffe indicated that between reads of samples from the same patient, there was a washout period for the pathologist to remove bias.

The NSCLC samples included patients with stage I (38%), II (39%), III (20%), and IV (<1%) disease. Histologies included nonsquamous (54%) and squamous (43%) cancers.

All three PD-L1 assays showed similar patterns of staining in the range of 0% to 100%, Dr Ratcliffe indicated.

 

The correlation between any two of the assays was determined from tumor cell membrane staining. The correlation was linear with Spearman correlation of 0.911 for Ventana SP263 vs Dako 22C3; 0.935 for Ventana SP263 vs Dako 28-8; and 0.954 for Dako 28-8 vs Dako 22C3.

“With an overall predictive value of >90%, the assays have closely aligned dynamic ranges, but more work is needed,” Dr Ratcliffe said. “In general, scoring of immunohistochemical assays can be more variable between 1% and 10%, and we plan to look at this in more detail,” she said. These samples need to be reviewed by an independent pathologist, she added.

Dr Radcliffe said that currently, “Direct clinical efficacy data supporting a specific diagnostic test should still be considered as the highest standard of proof for diagnostic clinical utility.”

Why Correlations Are Needed

Pembrolizumab is approved for use only in patients with PD-L1-positive, previously treated NSCLC. A similar patient profile is being considered for nivolumab, for which testing for PD-L1 expression is not required.

For new PD-immunotherapy agents in clinical development, it is not clear whether PD-L1 testing will be mandated.

However, in clinical practice, it is clear that some patients respond to therapy, even if they are PD-L1 negative, as defined from the study. “Is it a failure of the assay, tumor heterogeneity, or is there another time point when PD-L1 expression is turned on?” Dr Stiles asked.

Dr Stiles also pointed out that a recent publication from Yale researchers showed a high a rate of discordance. In this study, PD-L1 expression was determined using two rabbit monoclonal antibodies. Both of these were different from the ones used in the Ventana SP263 and Dako 28-8 assays.

In this study, whole-tissue sections from 49 NSCLC samples were used, and a corresponding tissue microarray was also used with the same 49 samples. Researchers showed that in 49 NSCLC tissue samples, there was intra-assay variability, with results showing fair to poor concordance with the two antibodies. “Assessment of 588 serial section fields of view from whole tissue showed discordant expression at a frequency of 25%.

“Objective determination of PD-L1 protein levels in NSCLC reveals heterogeneity within tumors and prominent interassay variability or discordance. This could be due to different antibody affinities, limited specificity, or distinct target epitopes. Efforts to determine the clinical value of these observations are under way,” the study authors conclude.

The Blueprint Proposal

Coincidentally, a blueprint proposal was announced here at the AACR meeting at a workshop entitled FDA-AACR-ASCO Complexities in Personalized Medicine: Harmonizing Companion Diagnostics across a Class of Targeted Therapies.

The blueprint proposal was developed by four pharmaceutical giants (Bristol-Myers Squibb Company, Merck & Co, Inc, AstraZeneca PLC, and Genentech, Inc) and two diagnostic companies (Agilent Technologies, Inc/Dako Corp and Roche/Ventana Medical Systems, Inc).

In this proposal, the development of an evidence base for PD-1/PD-L1 companion diagnostic characterization for NSCLC would be built into studies conducted in the preapproval stage. Once the tests are approved, the information will lay the foundation for postapproval studies to inform stakeholders (eg, patients, physicians, pathologists) on how the test results can best be used to make treatment decisions.

The blueprint proposal is available online.

Dr Ratcliffe is an employee and shareholder of AstraZeneca. Dr Stiles has disclosed no relevant financial relationships.

 American Association for Cancer Research (AACR) 2016 Annual Meeting: Abstract LB-094, presented April 18, 2016.
Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non–Small-Cell Lung Cancer
Joseph McLaughlin, 1,2; Gang Han, 3; Kurt A. Schalper, 2; ….,  Roy Herbst, 1; Patricia LoRusso, 1; David L. Rimm, 2

JAMA Oncol. 2016;2(1):46-54.       http://dx.doi.org:/10.1001/jamaoncol.2015.3638.

Importance  Early-phase trials with monoclonal antibodies targeting PD-1 (programmed cell death protein 1) and PD-L1 (programmed cell death 1 ligand 1) have demonstrated durable clinical responses in patients with non–small-cell lung cancer (NSCLC). However, current assays for the prognostic and/or predictive role of tumor PD-L1 expression are not standardized with respect to either quantity or distribution of expression.

Objective  To demonstrate PD-L1 protein distribution in NSCLC tumors using both conventional immunohistochemistry (IHC) and quantitative immunofluorescence (QIF) and compare results obtained using 2 different PD-L1 antibodies.

Design, Setting, and Participants  PD-L1 was measured using E1L3N and SP142, 2 rabbit monoclonal antibodies, in 49 NSCLC whole-tissue sections and a corresponding tissue microarray with the same 49 cases. Non–small-cell lung cancer biopsy specimens from 2011 to 2012 were collected retrospectively from the Yale Thoracic Oncology Program Tissue Bank. Human melanoma Mel 624 cells stably transfected with PD-L1 as well as Mel 624 parental cells, and human term placenta whole tissue sections were used as controls and for antibody validation. PD-L1 protein expression in tumor and stroma was assessed using chromogenic IHC and the AQUA (Automated Quantitative Analysis) method of QIF. Tumor-infiltrating lymphocytes (TILs) were scored in hematoxylin-eosin slides using current consensus guidelines. The association between PD-L1 protein expression, TILs, and clinicopathological features were determined.

Main Outcomes and Measures  PD-L1 expression discordance or heterogeneity using the diaminobenzidine chromogen and QIF was the main outcome measure selected prior to performing the study.

Results  Using chromogenic IHC, both antibodies showed fair to poor concordance. The PD-L1 antibodies showed poor concordance (Cohen κ range, 0.124-0.340) using conventional chromogenic IHC and showed intra-assay heterogeneity (E1L3N coefficient of variation [CV], 6.75%-75.24%; SP142 CV, 12.17%-109.61%) and significant interassay discordance using QIF (26.6%). Quantitative immunofluorescence showed that PD-L1 expression using both PD-L1 antibodies was heterogeneous. Using QIF, the scores obtained with E1L3N and SP142 for each tumor were significantly different according to nonparametric paired test (P < .001). Assessment of 588 serial section fields of view from whole tissue showed discordant expression at a frequency of 25%. Expression of PD-L1 was correlated with high TILs using both E1L3N (P = .007) and SP142 (P = .02).

Conclusions and Relevance  Objective determination of PD-L1 protein levels in NSCLC reveals heterogeneity within tumors and prominent interassay variability or discordance. This could be due to different antibody affinities, limited specificity, or distinct target epitopes. Efforts to determine the clinical value of these observations are under way.

 

 
Introduction We are in an era of rapid incorporation of basic scientific discoveries into the drug development pipeline. Currently, numerous sponsors are developing therapeutic products that may use similar or identical biomarkers for therapeutic selection, measured or detected by an in vitro companion diagnostic device. The current practice is to independently develop a companion diagnostic for each therapeutic. Thus, the matrix of therapeutics and companion diagnostics, if each therapeutic were approved in conjunction with a companion diagnostic, may present a complex challenge for testing and decision making in the clinic, potentially putting patients at risk if inappropriate diagnostic tests were used to make treatment decisions. To address this challenge, there is a desire to understand assay comparability and/or standardize analytical and clinical performance characteristics supporting claims that are shared across companion diagnostic devices. Pathologists and oncologists also need clarity on how to interpret test results to inform downstream treatment options for their patients.
Clearly using each of the companion diagnostics to select one of the several available targeted therapies in the same class is not practical and may be impossible. Likewise, having a single test or assay as a sole companion test for all of the multiple therapeutic options within a class is also impractical since the individual therapies have differing modes of action, intended use populations, specificities, safety and efficacy outcomes. Thus, a single assay or test may not adequately capture the appropriate patient population that may benefit (or not) from each individual therapeutic option within a class of therapies. Furthermore, aligning multiple sponsors’ study designs and timelines in order that they all adopt a single companion test may inadvertently slow down development of critical therapeutic products and delay patient access to these life-saving products.
Any solution to this challenge will be multifaceted and will, by necessity, involve multiple stakeholders. Thus, the US Food and Drug Administration (FDA), the American Association for Cancer Research (AACR) and American Society of Clinical Oncology (ASCO) convened a workshop titled “Complexities in Personalized Medicine: Harmonizing Companion Diagnostics Across a Class of Targeted Therapies” to draw out and assess possible solutions. Recognizing that the complex scientific, regulatory and market forces at play here require a collaborative effort, an industry workgroup volunteered to develop a blueprint proposal of potential solutions using nonsmall cell lung cancer (NSCLC) as the use case indication.
Goal and Scope of Blueprint The imminent arrival to the market of multiple PD1 / PD-L1 compounds and the possibility of one or more associated companion diagnostics is unprecedented in the field of oncology. Some may assume that since these products target the same biological pathway, they are interchangeable; however, each PD1/PD-L1 compound is unique with respect to its clinical pharmacology and each compound is being developed in the context of a unique biological scientific hypothesis and registration strategy. Similarly, each companion diagnostic has been optimized within the individual therapeutic development programs to meet specific development goals, e.g., 1) validation for patient selection, 2) subgroup analysis as a prognostic variable, or 3) enrichment.
Further, each companion diagnostic test is optimized for its specific therapy and with its own unique performance characteristics and scoring/interpretation guidelines.
The blueprint development group recognizes that to assume that any one of the available tests could be used for guiding the treatment decision with any one or all of the drugs available in this class presents a potential risk to patients that must be addressed.
The goal of this proposal is to agree and deliver, via cross industry collaboration, a package of information /data upon which analytic comparison of the various diagnostic assays may be conducted, potentially paving the way for post-market standardization and/or practice guideline development as appropriate.
A comparative study of PD-L1 diagnostic assays and the classification of patients as PD-L1 positive and PD-L1 negative
Presentation Time: Monday, Apr 18, 2016, 8:00 AM -12:00 PM
Location: Section 10
Poster Board Number: 18
Author Block: Marianne J. Ratcliffe1, Alan Sharpe2, Anita Midha1, Craig Barker2, Paul Scorer2, Jill Walker2. 1AstraZeneca, Alderley Park, United Kingdom; 2AstraZeneca, Cambridge, United Kingdom
Abstract Body: Background: PD-1/PD-L1 directed antibodies are emerging as effective therapeutics in multiple oncology settings. Keynote 001 and Checkmate 057 have shown more frequent response to PD-1 targeted therapies in NSCLC patients with high tumour PD-L1 expression than patients with low or no PD-L1 expression. Multiple diagnostic PD-L1 tests are available using different antibody clones, different staining protocols and diverse scoring algorithms. It is vital to compare these assays to allow appropriate interpretation of clinical outcomes. Such understanding will promote harmonization of PD-L1 testing in clinical practice.
Methods: Approximately 500 tumour biopsy samples from NSCLC patients, including squamous and non-squamous histologies, will be assessed using three leading PD-L1 diagnostics assays. PD-L1 assessment by the Ventana SP263 assay that is currently being used in Durvalumab clinical trials (positivity cut off: ≥25% tumour cells with membrane staining) will be compared with the Dako 28-8 assay (used in the Nivolumab Checkmate 057 trial at the 1%, 5% and 10% tumour membrane positivity cut offs), and the Dako 22C3 assay (used in the Pembrolizumab Keynote 001 trial) at the 1% and 50% cut offs).
Results: Preliminary data from 81 non-squamous patients indicated good concordance between the Ventana SP263 and Dako 28-8 assays. Optimal overall percent agreement (OPA) was observed between Dako 28-8 at the 10% cut off and the Ventana SP263 assay (OPA; 96%, Positive percent agreement (PPA); 91%, Negative percent agreement (NPA); 98%), where the Ventana SP263 assay was set as the reference. Data on the full cohort will be presented for all three assays, and a lower 95% confidence interval calculated using the Clopper-Pearson method.
Conclusions: This study indicates that the patient population defined by Ventana SP263 at the 25% cut off is similar to that identified by the Dako-28-8 assay at the 10% tumour membrane cut off. This, together with data on the 22C3 assay, will enable cross comparison of studies using different PD-L1 tests, and widen options for harmonization of PD-L1 diagnostic testing.

http://www.abstractsonline.com/Plan/ViewAbstract.aspx

Table 1
Reference: Ventana SP-263 (≥25% tumour membrane staining)
Dako 28-8 assay cut off PPA
(%)
NPA
(%)
OPA
(%)
>1% 58 100 81
>5% 72 100 90
>10% 91 98 96

UPDATED 5/19/2019

Incidence of Adverse Events for PD-1/PD-L1 Inhibitors Underscores Toxicity Risk

https://www.cancernetwork.com/immuno-oncology/incidence-adverse-events-pd-1pd-l1-inhibitors-underscores-toxicity-risk

May 7, 2019

Approximately two-thirds of cancer patients who received a programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1) inhibitor in clinical trials experienced treatment-related adverse events, according to a systematic review and meta-analysis recently published in JAMA Oncology. The study findings may facilitate discussions with cancer patients who are considering PD-1 or PD-L1 therapy.

“The vast majority of patients with advanced cancer want to be on the [PD-1 or PD-L1] therapy,” Eric H. Bernicker, MD, a thoracic medical oncologist with Houston Methodist Cancer Center, told Cancer Network. Not involved in the current study, Bernicker explained that patients perceive these therapies to have “very different” side effects and risks from chemotherapy.

While they do, Bernicker explained, it’s important to underscore, which this study does, that these are not “completely innocuous” therapies. The study findings allow physicians to give numbers to patients and families when counseling them about the risks involved, he said.

The systematic review and meta-analysis is based on data from 125 clinical trials and 20,128 participants. Clinical trials were identified by systematically searching for published clinical trials that evaluated single-agent PD-1 and PD-L1 inhibitors and reported treatment-related adverse events in PubMed, Web of Science, Embase, and Scopus. The majority of trials evaluated nivolumab (n = 46) or pembrolizumab (n = 49), and the most common cancer types were lung cancer (n = 26), genitourinary cancer (n = 22), melanoma (n = 16), and gastrointestinal cancer (n = 14).

In all, 66.0% of clinical trial participants reported at least 1 adverse event of any grade, and 14.0% reported at least 1 grade 3 or higher adverse event. The most frequently reported adverse events of any grade were fatigue (18.26%), pruritus (10.61%), and diarrhea (9.47%). As for grade 3 or higher events, the most commonly reported were fatigue (0.89%), anemia (0.78%), and aspartate aminotransferase (AST) increase (0.75%).

Frequently reported immune-related adverse events of any grade included diarrhea (9.47%), AST increase (3.39%), vitiligo (3.26%), alanine aminotransferase (ALT) increase (3.14%), pneumonitis (2.79%), and colitis (1.24%). Grade 3 or higher immune-related adverse events included AST increase (0.75%), ALT increase (0.70%), pneumonitis (0.67%), diarrhea (0.59%), and colitis (0.47%).

If present, certain adverse events had increased likelihood of being grade 3 or higher, including hepatitis (risk ratio [RR], 50.59%), pneumonitis (RR, 24.01%), type 1 diabetes (RR, 41.86%), and colitis (RR, 37.90%).

“In terms of the rough percentage of side effects and the breadth of the side effects, this is pretty much what most of us see in the clinic,” Bernicker said, noting that none of the findings were particularly surprising.

Although no differences in adverse event incidence were found across different cancer types, differences were found between PD-1 and PD-L1 inhibitors in a subgroup analysis. Overall, compared with PD-L1 inhibitors, PD-1 inhibitors had a higher mean incidence of grade 3 or higher events (odds ratio [OR], 1.58; 95% CI, 1.00–2.54). Specifically, nivolumab had a higher mean incidence of grade 3 or higher events (OR, 1.81; 95% CI, 1.04–3.01) compared with PD-L1 inhibitors.

Bernicker commented that these incidence differences on the basis of drug type were “intriguing” but not clinically useful, given that PD-1 and PD-L1 inhibitors are not interchangeable. He said the finding “needs to be further looked at.”

Advertisements

Read Full Post »


Programmed Cell Death and Cancer Therapy

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Programmed Death: A Cat and Mouse Game

 http://www.cancernetwork.com/blog/programmed-death-cat-and-mouse-game

Prologue: The world of cancer care has been shaken up by the news that patients with hard-to-treat tumors benefit from a new type of immunotherapy, called checkpoint inhibition. A key receptor, called programmed death 1 (PD-1), is charged with suppressing the ability of activated T cells and other immune cells to destroy cancer cells, all in the name of preventing damage to normal tissue via autoimmunity. When PD-1 receptors on T cells bind with PD-L1 and PD-L2, complimentary receptors expressed on tumor cells, the immune response (call it the assassination of the cell) is checked and the tumor lives on. The anti PD-1 monoclonal antibodies nivolumab and pembrolizumab keep PD-L1 from turning off T cells, which has produced durable responses in several tumor types including melanoma, lung cancer, and renal cell carcinoma and represents a new hope for many.

Oncologists are excited to relay this news to patients, but is there a way to explain this without putting everyone in the room to sleep? Well, I like to use analogies to make seemingly complicated mechanisms easier to understand and the PD-1/PD-L1 relationship has inspired several colorful examples, to wit:

“Think of T cells as killers that use photographs to identify individual bad guys. Their weakness is that they will not act if the intended victim shakes their hand first. The bad guys used to be born without arms, but over time they evolved to grow arms and hands, thus avoiding elimination. The antibodies are boxing gloves that cover the hands of the T cells. Goodbye, bad guys.”

“Think of T cells as cats specially trained to eliminate mice wherever they hide. Their only weakness is if they smell catnip they will roll over and purr like idiots instead of doing their job. The mice then develop special glands that secrete catnip, thus pacifying the kitties. Solution: plug up the cats’ noses with nivolumab or pembrolizumab. Sayonara, Mr. Mouse.”

“Think of T cells as a fire sprinkler system designed to activate when a metal plug is heated to its melting point, releasing water from a pipe. The fire then emits a toxin that coats the fusible metal, keeping it below its melting point. By fitting a protective shield around the plug we block the toxic molecules and allow the plug to melt in a fire. The shield is the monoclonal antibody against PD-1 and thus the fire is successfully extinguished.”

This is getting exhausting, so I think I will stop, but don’t you agree that the concept of checkpoint inhibition lends itself to a plethora of metaphors? Now for the next lesson: how to explain chimeric antigen receptor T-cell therapy to patients. Hold on—I think I need to explain it to myself first.

 

As an clinical immunologist, i agree with the concept, looks pretty straightforward but definitely much more complex as our immune system work like a network. I would appreciate clinical trial data with statistical significance.

 

Much more confusing. Most people understand simplified concepts.

“Some cancer cells turn off your immune systems ability to recognise them. These drugs ramp up the immune system and prevent the cancer cells from hiding. This allows your cells to attack and kill cancer cells”

If i think patient seem to have better ability to understand I say “the drugs block the “off switch” that cancer cells use to escape their detection. This turns your immune systems ability to attack and kill cancer cells back on”

I haven’t had one patient that has looked confused since.

 

HDAC Inhibitors Enhance Immunotherapy Efficacy in Lung Cancer

http://www.oncotherapynetwork.com/lung-cancer-targets/hdac-inhibitors-enhance-immunotherapy-efficacy-lung-cancer

Histone deacetylase (HDAC) inhibitors like romidepsin might improve the efficacy of programmed cell death-1 (PD-1) blockade in lung cancer, suggest preclinical findings reported in the journal Clinical Cancer Research.

Most lung cancer patients’ tumors do not respond to immune checkpoint blockade agents like those that target PD-1. One possible mechanism underlying tumor resistance to PD-1 blockade is the failure of sufficient numbers of T cells to infiltrate tumor tissue.

Hypothesizing that upregulating T-cell chemokine expression and thereby T-cell infiltration of tumors would improve PD-1 blockade’s efficacy against lung tumors, the research team went hunting for FDA-approved oncology agents that induce chemokine expression. Screening 97 approved agents, they found one class that did: HDAC inhibitors.

The HDAC-inhibiting agent romidepsin significantly increased T-cell tumor infiltration and impacted lung tumor growth in mouse models, the team reported—and when romidepsin was subsequently combined with PD-1 blockade in several lung tumor models, the combination showed greater antitumor activity than either agent on its own.

“These results suggest that combination of HDAC inhibitors with PD-1 blockade represent a promising strategy for lung cancer treatment,” said senior study author Amer A. Beg, PhD, of the Moffitt Cancer Center’s Immunology Program, in a news release.

Romidepsin and other HDAC inhibitors have already been approved by the FDA for use against lymphoma and other hematologic cancers, Dr. Beg noted.

The combination will next be tested in several clinical trials, including a study of patients diagnosed with non-small cell lung cancer (NSCLC) at Moffitt Cancer Center.

 

HDAC inhibitors enhance T cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma

Hong Zheng1,  weipeng zhao2Cihui Yan3Crystina C Watson4,…., Brian Ruffell13, and Amer A Beg4,*

Clin Cancer Res March 10, 2016; http://dx.doi.org:/10.1158/1078-0432.CCR-15-2584

Purpose: A significant limitation of checkpoint blockade immunotherapy is the relatively low response rate (e.g. ~20% with PD-1 blockade in lung cancer). In this study, we tested whether strategies which increase T cell infiltration to tumors can be efficacious in enhancing immunotherapy response. Experimental Design: We performed an unbiased screen to identify FDA-approved oncology agents with ability to enhance T cell chemokine expression with the goal of identifying agents capable of augmenting immunotherapy response. Identified agents were tested in multiple lung tumor models as single agents and in combination with PD-1 blockade. Additional molecular and cellular analysis of tumors was used to define underlying mechanisms. Results: We found that histone deacetylase (HDAC) inhibitors (HDACi) increased expression of multiple T cell chemokines in cancer cells, macrophages and T cells. Using the HDACi romidepsin in vivo, we observed increased chemokine expression, enhanced T cell infiltration, and T cell-dependent tumor regression. Importantly, romidepsin significantly enhanced the response to PD-1 blockade immunotherapy in multiple lung tumor models, including nearly complete rejection in two models. Combined romidepsin and PD-1 blockade also significantly enhanced activation of tumor-infiltrating T cells. Conclusions: These results provide evidence for a novel role of HDACs in modulating T cell chemokine expression in multiple cell types. In addition, our findings indicate that pharmacological induction of T cell chemokine expression represents a conceptually novel approach for enhancing immunotherapy response. Finally, these results suggest that combination of HDAC inhibitors with PD-1 blockade represents a promising strategy for lung cancer treatment.

 

Cancer Cell Survival Driven by Novel Metabolic Pathway

http://www.genengnews.com/gen-news-highlights/cancer-cell-survival-driven-by-novel-metabolic-pathway/81252584/

Researchers have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells. [National Cancer Institute, NIH] http://www.genengnews.com/Media/images/GENHighlight/thumb_28216_large1422477191.jpg

Being attached to the extracellular matrix (ECM) provides cells with numerous advantages for survival, for instance, receiving much needed growth stimuli. However, for malignant cells to function, they must overcome their anchorage-dependent growth—a scenario that is associated with increased production of reactive oxygen species (ROS) and altered glucose metabolism.

Now, researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) believe they have uncovered a novel metabolic pathway that helps cancer cells thrive in conditions that would otherwise be lethal to healthy cells.

“It’s long been thought that if we could target tumor-specific metabolic pathways, it could lead to effective ways to treat cancer,” explained senior study author Ralph DeBerardinis, M.D., Ph.D.,  associate professor, and director of CRI’s Genetic and Metabolic Disease Program. “This study finds that two very different metabolic processes are linked in a way that is specifically required for cells to adapt to the stress associated with cancer progression.”

This new study describes an alternate version of two well-known metabolic pathways, the pentose phosphate pathway (PPP) and the Krebs cycle, to defend against ROS that destroy cells via oxidative stress.

The findings from this study were published recently in Nature in an article entitled “Reductive Carboxylation Supports Redox Homeostasis During Anchorage-Independent Growth.”

Previous work from Dr. DeBerardinis’ laboratory found that the Krebs cycle, a series of chemical reactions that cells use to generate energy, could reverse itself under certain conditions to nourish cancer cells.

Dr. DeBerardinis also noted that cells “are dependent on matrix attachment to receive growth-promoting signals and to regulate their metabolism in a way that supports cell growth, proliferation, and survival.” Detachment from the matrix results in a sudden increase in ROS that is lethal to normal cells. Yet, cancer cells seem to have evolved workaround.

A landmark study from 2009 elucidated that healthy cells were destroyed when detached from the ECM. Moreover, in the same study, investigators found that inserting an oncogene into a normal cell caused it to behave like a cancer cell and survive detachment.

“Another Nature study, this one from CRI Director Dr. Sean Morrison’s laboratory in November 2015, found that the rare skin cancer cells that were able to detach from the primary tumor and successfully metastasize to other parts of the body had the ability to keep ROS levels from getting dangerously high,” Dr. DeBerardinis remarked.

Dr. DeBerardinis and his team worked from the premise that the two findings were pieces of the same puzzle and that a crucial part of the picture seemed to be missing.

It had been well known that the PPP was an important source of nicotine adenine dinucleotide phosphate (NADPH), which provides a source of reducing electrons to scavenge ROS; however, the PPP produces NADPH in the cytosol, whereas the ROS are generated primarily in another subcellular structure called the mitochondria.

“If you think of ROS as fire, then NADPH is like the water used by cancer cells to douse the flames,” Dr. DeBerardinis noted.  But how could NADPH from the PPP help deal with the stress of ROS produced in an entirely different part of the cell? “What we did was to discover how this happens.”

The CRI team was able to demonstrate that cancer cells use a “piggybacking” system to carry the reducing electron from the PPP into the mitochondria. This movement involves an unusual reaction in the cytosol that transfers reducing equivalents from NADPH to a molecule called citrate, similar to a reversed reaction of the Krebs cycle.The citrate then enters the mitochondria and stimulates another pathway that results in the release of reducing electrons to produce NADPH right at the location of ROS creation, allowing the cancer cells to survive and grow without the benefit of matrix attachment.

“We knew that both the PPP and Krebs cycle provide metabolic benefits to cancer cells. But we had no idea that they were linked in this unusual fashion,” Dr. DeBerardinis stated. “Strikingly, normal cells were unable to transport NADPH by this mechanism, and died as a result of the high ROS levels.”

The researchers stressed that their findings were based on cultured cell models and more research will be necessary to test the role of the pathway in living organisms.

“We are particularly excited to test whether this pathway is required for metastasis because cancer cells need to survive in a matrix-detached state in the circulation in order to metastasize,” Dr. DeBerardinis concluded.

 

Reductive carboxylation supports redox homeostasis during anchorage-independent growth

Lei JiangAlexander A. ShestovPamela SwainChendong Yang, …., Brian P. DrankaBenjamin Schwartz & Ralph J. DeBerardinis

Nature(2016)      http://dx.doi.org:/10.1038/nature17393

Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM)1. Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells2. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism2. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.

 

Liquid Biopsy Accurately Detects Mutations in Advanced NSCLC

http://www.oncotherapynetwork.com/lung-cancer/liquid-biopsy-accurately-detects-mutations-advanced-nsclc#sthash.bEPxRkAq.dpuf

Droplet digital polymerase chain reaction (ddPCR)-based plasma genotyping—referred to as liquid biopsy—exhibited perfect specificity in identifying EGFR and KRAS mutations in patients with advanced non–small-cell lung cancer (NSCLC), according to the results of a study published in JAMA Oncology.

“We see plasma genotyping as having enormous potential as a clinical test, or assay—a rapid, noninvasive way of screening a cancer for common genetic fingerprints, while avoiding the challenges of traditional invasive biopsies,” said senior author, Geoffrey Oxnard, MD, thoracic oncologist and lung cancer researcher at Dana-Farber and Brigham and Women’s Hospital, in a press release. “Our study was the first to demonstrate prospectively that a liquid biopsy technique can be a practical tool for making treatment decisions in cancer patients.”

According to the press release, the test proved so reliable in the study that the Dana-Farber/Brigham and Women’s Cancer Center this week became the first medical facility in the country to offer it to all patients with NSCLC, either at the time of first diagnosis or of relapse following previous treatment.

Oxnard and colleagues enrolled 180 patients with advanced NSCLC. Patients were either newly diagnosed with the disease (n = 120) or had acquired resistance to prior EGFR kinase inhibitors (n = 60) and were planned for rebiopsy. Patients underwent initial blood sampling and immediate plasma ddPCR screening for EGFR exon 19 deletion, L858R, the EGFR T790M acquired resistance mutation, or KRAS G12X. In addition, patients underwent biopsy for tissue genotyping used to compare the accuracy of ddPCR.

Among the enrolled patients, 80 had EGFR exon19/L858R mutations, 35 had T790M mutations and 25 had KRAS G12X mutations. The median test turnaround time for liquid biopsy was 3 days. In comparison, the median turnaround time for tissue genotyping was 12 days for newly diagnosed patients and 27 days for patients with acquired EGFR inhibitor resistance.

“This long turnaround time is due largely to the practical reality that many patients with newly diagnosed NSCLC require a repeat biopsy to obtain tissue for genotyping, as do all patients with acquired resistance,” the researchers noted.

The liquid biopsy showed 100% positive predictive value for detecting EGFR 19 deletion, L858R, and KRAS mutations. However, it had only a positive predictive value of 79% for T790M mutations. The sensitivity of the test was lower. ddPCR had a sensitivity of 82% for EGFR 19 deletion, 74% for L858R, 77% for T790M, and 64% for KRAS.

The researchers pointed out that “a key limitation of plasma ddPCR is that although this method is adept at rapidly detecting specific targetable mutations, it cannot easily detect copy number alterations and rearrangements. The ddPCR panel assessed in this study thus cannot currently detect targetable alterations in either ALK or ROS1,” two other common mutations in NSCLC.

In an editorial that accompanied the article, P. Mickey Williams, PhD, of Frederick National Laboratory for Cancer Research, and Barbara A. Conley, MD, from the National Cancer Institute, questioned whether or not these results, and the rapid turnaround time for liquid biopsy, could be replicated widely by other institutions.

“However, if this performance were generally applicable, this would indeed be an advance in clinical care, reducing the proportion of patients requiring biopsy, at least in the resistance setting,” Williams and Conley wrote.

“This study is a step in the right direction of preparing needed clinical validation for the use of ctDNA for detection and serial monitoring of clinically relevant tumor mutations. Owing to low sensitivity and high positive predictive value and specificity, this approach is probably best suited for detection of resistance mutations and for serial plasma testing to assess treatment response, and should not replace tumor biopsy assessment for initial treatment decision-making,” they concluded.

 

Prospective Validation of Rapid Plasma Genotyping for the Detection of EGFR and KRAS Mutations in Advanced Lung Cancer

Adrian G. Sacher, MD1,2; Cloud Paweletz, PhD3; Suzanne E. Dahlberg, PhD4,5; Ryan S. Alden, BSc1; Allison O’Connell, BSc3; Nora Feeney, BSc3; Stacy L. Mach, BA1; Pasi A. Jänne, MD, PhD1,2,3; Geoffrey R. Oxnard, MD1,2

JAMA Oncol. Published online April 07, 2016.    http://dx.doi.org:/10.1001/jamaoncol.2016.0173

Importance  Plasma genotyping of cell-free DNA has the potential to allow for rapid noninvasive genotyping while avoiding the inherent shortcomings of tissue genotyping and repeat biopsies.

Objective  To prospectively validate plasma droplet digital PCR (ddPCR) for the rapid detection of common epidermal growth factor receptor (EGFR) and KRAS mutations, as well as the EGFR T790M acquired resistance mutation.

Design, Setting, and Participants  Patients with advanced nonsquamous non–small-cell lung cancer (NSCLC) who either (1) had a new diagnosis and were planned for initial therapy or (2) had developed acquired resistance to an EGFR kinase inhibitor and were planned for rebiopsy underwent initial blood sampling and immediate plasma ddPCR for EGFR exon 19 del, L858R, T790M, and/or KRAS G12X between July 3, 2014, and June 30, 2015, at a National Cancer Institute–designated comprehensive cancer center. All patients underwent biopsy for tissue genotyping, which was used as the reference standard for comparison; rebiopsy was required for patients with acquired resistance to EGFR kinase inhibitors. Test turnaround time (TAT) was measured in business days from blood sampling until test reporting.

Main Outcomes and Measures  Plasma ddPCR assay sensitivity, specificity, and TAT.

Results  Of 180 patients with advanced NSCLC (62% female; median [range] age, 62 [37-93] years), 120 cases were newly diagnosed; 60 had acquired resistance. Tumor genotype included 80 EGFR exon 19/L858R mutants, 35 EGFR T790M, and 25 KRASG12X mutants. Median (range) TAT for plasma ddPCR was 3 (1-7) days. Tissue genotyping median (range) TAT was 12 (1-54) days for patients with newly diagnosed NSCLC and 27 (1-146) days for patients with acquired resistance. Plasma ddPCR exhibited a positive predictive value of 100% (95% CI, 91%-100%) for EGFR 19 del, 100% (95% CI, 85%-100%) for L858R, and 100% (95% CI, 79%-100%) for KRAS, but lower for T790M at 79% (95% CI, 62%-91%). The sensitivity of plasma ddPCR was 82% (95% CI, 69%-91%) for EGFR 19 del, 74% (95% CI, 55%-88%) for L858R, and 77% (95% CI, 60%-90%) for T790M, but lower for KRAS at 64% (95% CI, 43%-82%). Sensitivity for EGFR or KRAS was higher in patients with multiple metastatic sites and those with hepatic or bone metastases, specifically.

Conclusions and Relevance  Plasma ddPCR detected EGFR and KRAS mutations rapidly with the high specificity needed to select therapy and avoid repeat biopsies. This assay may also detect EGFR T790M missed by tissue genotyping due to tumor heterogeneity in resistant disease.

Plasma genotyping uses tumor-derived cell-free DNA (cfDNA) to allow for rapid noninvasive genotyping of tumors. This technology is currently poised to transition into a treatment decision-making tool in multiple cancer types. It is particularly relevant to the treatment of advanced non–small-cell lung cancer (NSCLC), in which therapy hinges on rapid and accurate detection of targetable epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and ROS1 alterations.1– 6Plasma genotyping is capable of circumventing many limitations of standard tissue genotyping including slow turnaround time (TAT), limited tissue for testing, and the potential for failed biopsies. It may be particularly useful in directing the rapid use of new targeted therapies for acquired resistance in advanced EGFR-mutant NSCLC, where the need for a repeat biopsy to test for resistance mechanisms has amplified the inherent limitations of traditional genotyping.7,8

The need to carefully validate the test characteristics of each of the myriad individual plasma genotyping assays before use in clinical decision making is paramount. We have previously reported the development of a quantitative droplet digital polymerase chain reaction (ddPCR)-based assay for the detection of EGFR kinase mutations andKRAS codon 12 mutations in plasma.9 The detection of these mutations has the potential to guide treatment by either facilitating targeted therapy with an EGFR tyrosine kinase inhibitor (TKI) or ruling out the presence of other potentially targetable alterations in the case of KRAS.5 Alternative platforms including Cobas, peptide nucleic acid–mediated PCR, multiplexed next-generation sequencing (NGS), high-performance liquid chromatography, and Scorpion–amplified refractory mutation system have also been examined in retrospective analyses of patient samples.10– 22 The test characteristics of these assays have been variable and may be attributable to differences in testing platforms, as well as the retrospective nature of these studies, their smaller size, and the timing of blood collection with respect to disease progression and therapy initiation. The absence of reliable prospective data on the use of specific plasma genotyping assays in advanced NSCLC has left key aspects of its utility largely undefined and slowed its uptake as a tool for clinical care in patients with both newly diagnosed NSCLC and EGFR acquired resistance.

To our knowledge, we have conducted the first prospective study of the use of ddPCR-based plasma genotyping for the detection of EGFR and KRAS mutations. This study was performed in the 2 settings where we anticipate clinical adoption of this assay: (1) patients with newly diagnosed advanced NSCLC and (2) those with acquired resistance to EGFR kinase inhibitors. The primary aim of this study was to prospectively evaluate the feasibility and accuracy of this assay for the detection ofEGFR/KRAS mutations in patients with newly diagnosed NSCLC and EGFR T790M in patients with acquired resistance in a clinical setting. Additional end points included test TAT and the effect of sample treatment conditions on test accuracy.

Key Points
  • Question What is the sensitivity, specificity, turnaround time, and robustness of droplet digital polymerase chain reaction (ddPCR)-based plasma genotyping for the rapid detection of targetable genomic alterations in patients with advanced non–small-cell lung cancer (NSCLC)?

  • Findings In this study of 180 patients with advanced NSCLC (120 newly diagnosed, 60 with acquired resistance to epidermal growth factor receptor [EGFR] kinase inhibitors), plasma genotyping exhibited perfect specificity (100%) and acceptable sensitivity (69%-80%) for the detection of EGFR-sensitizing mutations with rapid turnaround time (3 business days). Specificity was lower for EGFR T790M (63%), presumably secondary to tumor heterogeneity and false-negative tissue genotyping.

  • Meaning The use of ddPCR-based plasma genotyping can detect EGFR mutations with the rigor necessary to direct clinical care. This assay may obviate repeated biopsies in patients with positive plasma genotyping results.

CYP3A7*1C Allele Associated With Poor Outcomes in CLL, Breast, and Lung Cancer

 http://www.oncotherapynetwork.com/breast-cancer-targets/cyp3a71c-allele-associated-poor-outcomes-cll-breast-and-lung-cancer#sthash.7uiD8XFD.dpuf

Patients with the CYP3A7*1C allele suffer higher rates of cancer progression and mortality, possibly because of worse outcomes among patients treated with chemotherapy drugs that are broken down by the enzyme encoded by CYP3A7, according to authors of a retrospective study published in the journal Cancer Research.

“We found that individuals with breast cancer, lung cancer, or CLL [chronic lymphocytic leukemia] who carry one or more copy of the CYP3A7*1C allele tend to have worse outcomes,” said Olivia Fletcher, PhD, a senior investigator at the Breast Cancer Now Toby Robins Research Centre at the Institute of Cancer Research in London, England, in an American Association for Cancer Research (AACR) news release.

Approximately 8% of cancer patients harbor the CYP3A7*1C allele, the coauthors noted. For these patients, it is possible that standard chemotherapy with CYP3A substrates “may not be optimal,” they cautioned.

The team analyzed DNA samples from 1,008 patients with breast cancer, 1,128 patients with lung cancer, and 347 patients with CLL. They found that the CYP3A7*1C-associated single nucleotide polymorphism (SNP) rs45446698 is associated with increased breast cancer mortality (hazard ratio [HR] 1.74; P = .03), all-cause mortality among patients with lung cancer (HR 1.43; P = .009), and progression of CLL (HR 1.62; P = .03). The rs45446698 SNP is one of seven SNPs that form the CYP3A7*1C allele.

The CYP3A7*1C allele is expressed in adults, whereas other variants of CYP3A7 are expressed during fetal development. CYP3A7 encodes an enzyme that degrades estrogen and testosterone, and some anticancer drugs.

“We also found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment of patients with a cytotoxic agent that is a CYP3A substrate, and clinical outcome (P = .06),” they noted.

“Even though we did not see a statistically-significant difference when stratifying patients by treatment with a CYP3A7 substrate, the fact that we see the same effect in three very different cancer types suggests to me that it is more likely to be something to do with treatment than the disease itself,” commented Dr. Fletcher. “However, we are looking at ways of replicating these results in additional cohorts of patients and types of cancer, as well as overcoming the limitations of this study.”

Limitations included the retrospective nature of the study and the absence of data on how quickly individual patients metabolized chemotherapeutic agents, she said.

 

Cytochrome P450 AlleleCYP3A7*1C Associates with Adverse Outcomes in Chronic Lymphocytic Leukemia, Breast, and Lung Cancer

Nichola Johnson1,2Paolo De Ieso3Gabriele Migliorini4,….., Gillian Ross12Richard S. Houlston, and Olivia Fletcher1,2,*

Cancer Res March 10, 2016; http://dx.doi.org:/10.1158/0008-5472.CAN-15-1410

CYP3A enzymes metabolize endogenous hormones and chemotherapeutic agents used to treat cancer, thereby potentially affecting drug effectiveness. Here, we refined the genetic basis underlying the functional effects of a CYP3A haplotype on urinary estrone glucuronide (E1G) levels and tested for an association betweenCYP3A genotype and outcome in patients with chronic lymphocytic leukemia (CLL), breast, or lung cancers. The most significantly associated SNP was rs45446698, an SNP that tags the CYP3A7*1Callele; this SNP was associated with a 54% decrease in urinary E1G levels. Genotyping this SNP in 1,008 breast cancer, 1,128 lung cancer, and 347 CLL patients, we found that rs45446698 was associated with breast cancer mortality (HR, 1.74; P = 0.03), all-cause mortality in lung cancer patients (HR, 1.43; P = 0.009), and CLL progression (HR, 1.62; P= 0.03). We also found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment of patients with a cytotoxic agent that is a CYP3A substrate, and clinical outcome (Pinteraction = 0.06). The CYP3A7*1C allele, which results in adult expression of the fetal CYP3A7 gene, is likely to be the functional allele influencing levels of circulating endogenous sex hormones and outcome in these various malignancies. Further studies confirming these associations and determining the mechanism by which CYP3A7*1C influences outcome are required. One possibility is that standard chemotherapy regimens that include CYP3A substrates may not be optimal for the approximately 8% of cancer patients who are CYP3A7*1C carriers. Cancer Res; 76(6); 1–9. ©2016 AACR.

 

​Specific Form of CYP3A7 Gene Associated With Poor Outcomes for Patients With Several Cancer Types

3/10/2016

PHILADELPHIA — Among patients with breast cancer, lung cancer, or chronic lymphocytic leukemia (CLL), those who had a specific form of the CYP3A7 gene (CYP3A7*1C) had worse outcomes compared with those who did not have CYP3A7*1C, and this may be related to how the patients metabolize, or break down, the therapeutics used to treat them, according to a study published in Cancer Research, a journal of the American Association for Cancer Research.

“The CYP3A7 gene encodes an enzyme that breaks down all sorts of naturally occurring substances—such as sex steroids like estrogen and testosterone—as well as a wide range of drugs that are used in the treatment of cancer,” saidOlivia Fletcher, PhD, a senior investigator at the Breast Cancer Now Toby Robins Research Centre at The Institute of Cancer Research in London. “The CYP3A7 gene is normally turned on in an embryo and then turned off shortly after a baby is born, but individuals who have one or more copy of the CYP3A7*1C form of the gene [the CYP3A7*1C allele] turn on their CYP3A7 gene in adult life.

“We found that individuals with breast cancer, lung cancer, or CLL who carry one or more copy of the CYP3A7*1C allele tend to have worse outcomes,” continued Fletcher. “One possibility is that these patients break down the drugs that they are given to treat their cancer too fast. However, further independent studies that replicate our findings in larger numbers of patients and rule out biases are needed before we could recommend any changes to the treatment that cancer patients with the CYP3A7*1C allele receive.”

To find out whether the CYP3A7*1C allele was associated with outcome for patients with breast cancer, lung cancer, or CLL, Fletcher and colleagues analyzed DNA samples from 1,008 breast cancer patients, 1,142 patients with lung cancer, and 356 patients with CLL for the presence of a single nucleotide polymorphism (SNP), rs45446698. Fletcher explained that a SNP is a type of genetic variant and that because of the way that we inherit our genetic material from our parents, we tend to inherit clusters of genetic variants. She went on to say that rs45446698 is one of seven SNPs that cluster together, forming the CYP3A7*1C allele.

The researchers found that among the breast cancer patients, rs45446698 (and, therefore, the CYP3A7*1C allele) was associated with a 74 percent increased risk of breast cancer mortality. Among the lung cancer patients, it was associated with a 43 percent increased risk of death from any cause, and among the CLL patients, it was associated with a 62 percent increased risk of disease progression.

Patients who were treated with a chemotherapeutic broken down by CYP3A7 tended to have worse outcomes compared with those treated with other chemotherapeutics, but the difference was not statistically significant.

“Even though we did not see a statistically significant difference when stratifying patients by treatment with a CYP3A7 substrate, the fact that we see the same effect in three very different cancer types suggests to me that it is more likely to be something to do with treatment than the disease itself,” said Fletcher. “However, we are looking at ways of replicating these results in additional cohorts of patients and types of cancer, as well as overcoming the limitations of this study.”

Fletcher explained that the main limitation of the study is that the researchers used samples and clinical information collected for other studies. Therefore, they did not have the same clinical information for each patient, and the samples were collected at different time points and for patients treated with various chemotherapeutics. She also noted that the team were not able to determine how quickly the patients broke down the therapeutics they received as treatment.

The study was supported by Breast Cancer Now, Leukaemia and Lymphoma Research (now known as Bloodwise), Cancer Research UK, the Medical Research Council, the Cridlan Trust, the Helen Rollason Cancer Charity, and Sanofi-Aventis. Funding for the authors’ institutions was received from the National Health Service of the United Kingdom. Fletcher declares no conflicts of interest.

 

Liquid Biopsy for NSCLC

‘Liquid biopsy’ blood test accurately detects key genetic mutations in most common form of lung cancer, study finds.

http://www.technologynetworks.com/Diagnostics/news.aspx?ID=190276

A simple blood test can rapidly and accurately detect mutations in two key genes in non-small cell lung tumors, researchers at Dana-Farber Cancer Institute and other institutions report in a new study – demonstrating the test’s potential as a clinical tool for identifying patients who can benefit from drugs targeting those mutations.

The test, known as a liquid biopsy, proved so reliable in the study that Dana-Farber/Brigham and Women’s Cancer Center (DF/BWCC) expects to offer it soon to all patients with non-small cell lung cancer (NSCLC), either at the time of first diagnosis or of relapse following previous treatment.

…….

“Our study was the first to demonstrate prospectively that a liquid biopsy technique can be a practical tool for making treatment decisions in cancer patients. The trial was such a success that we are transitioning the assay into a clinical test for lung cancer patients at DF/BWCC.”

The study involved 180 patients with NSCLC, 120 of whom were newly diagnosed, and 60 of whom had become resistant to a previous treatment, allowing the disease to recur. Participants’ cell-free DNA was tested for mutations in the EGFR and KRAS genes, and for a separate mutation in EGFR that allows tumor cells to become resistant to front-line targeted drugs. The test was performed with a technique known as droplet digital polymerase chain reaction (ddPCR), which counts the individual letters of the genetic code in cell-free DNA to determine if specific mutations are present. Each participant also underwent a conventional tissue biopsy to test for the same mutations. The results of the liquid biopsies were then compared to those of the tissue biopsies.

The data showed that liquid biopsies returned results much more quickly. The median turnaround time for liquid biopsies was three days, compared to 12 days for tissue biopsies in newly diagnosed patients and 27 days in drug-resistant patients.

Liquid biopsy was also found to be highly accurate. In newly diagnosed patients, the “predictive value” of plasma ddPCR was 100 percent for the primary EGFR mutation and the KRAS mutation – meaning that a patient who tested positive for either mutation was certain to have that mutation in his or her tumor. For patients with the EGFR resistance mutation, the predictive value of the ddPCR test was 79 percent, suggesting the blood test was able to find additional cases with the mutation that were missed using standard biopsies.

Prospective Validation of Rapid Plasma Genotyping for the Detection of EGFRand KRAS Mutations in Advanced Lung Cancer

Adrian G. Sacher, MD1,2; Cloud Paweletz, PhD3; Suzanne E. Dahlberg, PhD, et al.       JAMA Oncol. Published online April 07, 2016.  http://dx.doi.org::/10.1001/jamaoncol.2016.0173

Importance  Plasma genotyping of cell-free DNA has the potential to allow for rapid noninvasive genotyping while avoiding the inherent shortcomings of tissue genotyping and repeat biopsies.

Objective  To prospectively validate plasma droplet digital PCR (ddPCR) for the rapid detection of common epidermal growth factor receptor (EGFR) and KRAS mutations, as well as the EGFR T790M acquired resistance mutation.

Design, Setting, and Participants  Patients with advanced nonsquamous non–small-cell lung cancer (NSCLC) who either (1) had a new diagnosis and were planned for initial therapy or (2) had developed acquired resistance to an EGFR kinase inhibitor and were planned for rebiopsy underwent initial blood sampling and immediate plasma ddPCR for EGFR exon 19 del, L858R, T790M, and/or KRAS G12X between July 3, 2014, and June 30, 2015, at a National Cancer Institute–designated comprehensive cancer center. All patients underwent biopsy for tissue genotyping, which was used as the reference standard for comparison; rebiopsy was required for patients with acquired resistance to EGFR kinase inhibitors. Test turnaround time (TAT) was measured in business days from blood sampling until test reporting.

Main Outcomes and Measures  Plasma ddPCR assay sensitivity, specificity, and TAT.

Results  Of 180 patients with advanced NSCLC (62% female; median [range] age, 62 [37-93] years), 120 cases were newly diagnosed; 60 had acquired resistance. Tumor genotype included 80 EGFR exon 19/L858R mutants, 35 EGFR T790M, and 25 KRASG12X mutants. Median (range) TAT for plasma ddPCR was 3 (1-7) days. Tissue genotyping median (range) TAT was 12 (1-54) days for patients with newly diagnosed NSCLC and 27 (1-146) days for patients with acquired resistance. Plasma ddPCR exhibited a positive predictive value of 100% (95% CI, 91%-100%) for EGFR 19 del, 100% (95% CI, 85%-100%) for L858R, and 100% (95% CI, 79%-100%) for KRAS, but lower for T790M at 79% (95% CI, 62%-91%). The sensitivity of plasma ddPCR was 82% (95% CI, 69%-91%) for EGFR 19 del, 74% (95% CI, 55%-88%) for L858R, and 77% (95% CI, 60%-90%) for T790M, but lower for KRAS at 64% (95% CI, 43%-82%). Sensitivity for EGFR or KRAS was higher in patients with multiple metastatic sites and those with hepatic or bone metastases, specifically.

Conclusions and Relevance  Plasma ddPCR detected EGFR and KRAS mutations rapidly with the high specificity needed to select therapy and avoid repeat biopsies. This assay may also detect EGFR T790M missed by tissue genotyping due to tumor heterogeneity in resistant disease.

 

In this prospective study, we demonstrate the highly specific and rapid nature of plasma genotyping. No false-positive test results were seen for driver mutations inEGFR or KRAS, and TAT from when the specimen was obtained to result was a matter of days. This assay exhibited 100% positive predictive value for the detection of these mutations. Sensitivity was more modest and was directly correlated with both number of metastatic sites and the presence of liver or bone metastases. This newly demonstrated relationship is likely related to increased cfDNA shed in the setting of more extensive disease where tumor cfDNA shed is the chief driver of assay sensitivity and determines its upper limit. The characteristics of plasma ddPCR prospectively demonstrated in this study were similar or improved compared with previous retrospective reports of other cfDNA genotyping assays.10– 13,15,16,24,25 These retrospective studies are smaller, frequently examined a mix of tumor types and/or stages, and lack the careful prospective design needed to demonstrate the readiness of this technology to transition to a tool for selecting therapy. Studies that use retrospective samples from clinical trials that enrolled only EGFR-mutant patients are further limited by an inability to both blind laboratory investigators to tissue genotype and to generalize their assay test characteristics to a genetically heterogeneous real-world patient population.11 These differences and the multiple platforms examined previously have led to variable test characteristics and uncertainty regarding the clinical application of these technologies. This study is the first to prospectively demonstrate the ability of a ddPCR-based plasma genotyping assay to rapidly and accurately detect EGFR and KRAS mutations in a real-world clinical setting with the rigor necessary to support the assertion that use of this assay is capable of directing clinical care.

Even with a diagnostic sensitivity of less than 100%, such a rapid assay with 100% positive predictive value carries the potential for immense clinical utility. The 2- to 3-day TAT contrasts starkly with the 27-day TAT for tumor genotyping seen in patients needing a new tumor biopsy. This long TAT is due largely to the practical reality that many patients with newly diagnosed NSCLC require a repeat biopsy to obtain tissue for genotyping, as do all patients with acquired resistance. Consider the case of 1 study participant, an octogenarian with metastatic NSCLC who had developed acquired resistance to erlotinib with painful bone metastases (Figure 3). Due to the patient’s age and comorbidities, significant concerns existed about the risks of a biopsy and further systemic therapy. A plasma sample was obtained, and within 24 hours ddPCR demonstrated 806 copies/mL of EGFR T790M. A confirmatory lung biopsy was performed, which confirmed EGFR T790M. Treatment with a third-generation EGFR kinase inhibitor, osimertinib mesylate, was subsequently initiated and the patient had a partial response to therapy that was maintained for more than 1 year. The potential of this technology to obviate repeated biopsy in both patients with newly diagnosed NSCLC with insufficient tissue, as well as patients with acquired resistance, is considerable.

A key limitation of plasma ddPCR is that although this method is adept at rapidly detecting specific targetable mutations, it cannot easily detect copy number alterations and rearrangements. The ddPCR panel assessed in this study thus cannot currently detect targetable alterations in either ALK or ROS1. This limitation may potentially be addressed by using targeted NGS of cfDNA for broad, multiplexed detection of complex genomic alterations including ALK and ROS1 rearrangements, although this method is potentially slower than ddPCR-based methods and has been less thoroughly evaluated.23 The potential exists to use these technologies in tandem in advanced NSCLC to facilitate rapid initiation of therapy. Tissue genotyping and repeated biopsy would be specifically used to direct therapy in cases in which plasma genotyping was uninformative due to limitations of assay sensitivity. This approach would be particularly useful in cases of EGFR acquired resistance in which a repeated biopsy for T790M testing could be avoided entirely in many patients. Beyond detecting targetable alterations in order to drive therapy, the identification of nontargetable oncogenic drivers such as KRAS mutations that preclude the presence of other targetable alterations may guide a clinician to rapidly initiate alternative therapies such as chemotherapy or immunotherapy.5 The finding that assay sensitivity is highest in patients with more extensive metastatic disease suggests that those patients most in need of rapid treatment initiation would also be least likely to have false-negative results.

One surprising result of our study was evidence of recurrent false-positive results forEGFR T790M in patients with acquired resistance, despite no false-positive test results for other mutations studied. The sensitivity of the EGFR T790M assay was comparable to that of the EGFR sensitizing mutation assays and similarly related to both disease burden and the presence of liver or bone metastases, which are likely predictive of increased tumor cfDNA shed. We hypothesize that the lower assay specificity is due to the genomic heterogeneity whereby the T790M status of the biopsied site is not representative of all metastatic sites in a patient, a phenomenon supported by mounting evidence in the acquired resistance setting.26,27 This is consistent with the finding that a minority of patients with apparently EGFR T790M tissue-negative disease respond to therapy with third-generation EGFR kinase inhibitors.7,8,28 These observations raise questions regarding the fallibility of tissue-based genotyping as the reference standard for T790M status. The use of plasma genotyping to detect EGFR T790M thus has great potential to identify patients who would benefit from newly approved third-generation EGFR kinase inhibitors but would be unable to access them based on falsely negative tissue genotyping results. Indeed, plasma genotyping may allow more reliable assessment of both T790M status as well as the mechanisms of resistance across all sites of a heterogeneous cancer as opposed to a tissue biopsy and is likely to be an essential tool for future trials targeting drug resistance. The potential to avoid a repeat biopsy entirely in patients in whom plasma ddPCR detects T790M further strengthens the utility of this technology, although a repeat biopsy would still be needed in patients with uninformative plasma ddPCR due to limitations with respect to assay sensitivity.

This study also examined the potential of the quantitative nature of ddPCR-based plasma genotyping to allow for the early prediction of treatment response. Distinct patterns of change in mutant allele copy number were observed as early as 2 weeks after treatment and were similar to those reported in other tumor types.19,20 We hypothesize that these distinct patterns of change in this study will correlate with specific patterns of radiographic response and emergence of acquired resistance and plan to report these data once mature. The observed differences in treatment discontinuation rates observed in this study comparing patients with complete resolution of detectable mutant cfDNA with those with incomplete resolution support this hypothesis. The use of this technology to monitor disease status in real time has potential utility for both routine clinical care, as well as use as an integrated biomarker in early-phase clinical trials.10

Read Full Post »


Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Membranous CD24 expression as detected by the monoclonal antibody SWA11 is a prognostic marker in non-small cell lung cancer patients

Michael MajoresAnne SchindlerAngela FuchsJohannes SteinLukas HeukampPeter Altevogt and Glen Kristiansen

BMC Clinical Pathology201515:19   http://dx.doi.org:/10.1186/s12907-015-0019-z

Background    Lung cancer is one of the most common malignant neoplasms worldwide and has a high mortality rate. To enable individualized therapy regimens, a better understanding of the molecular tumor biology has still to be elucidated. The expression of the cell surface protein CD24 has already been claimed to be associated with shorter patient survival in non-small cell lung cancer (NSCLC), however, the prognostic value and applicability of CD24 immunostaining in paraffin embedded tissue specimens has been questioned due to the recent acknowledgement of restricted epitope specificity of the commonly used antibody SN3b.   Methods    A cohort of 137 primary NSCLC cases was immunostained with a novel CD24 antibody (clone SWA11), which specifically recognizes the CD24 protein core and the resulting expression data were compared with expression profiles based on the monoclonal antibody SN3b. Furthermore, expression data were correlated to clinico-pathological parameters. Univariate and multivariate survival analyses were conducted with Kaplan Meier estimates and Cox regression, respectively. Results    CD24 positivity was found in 34 % resp. 21 % (SN3b) of NSCLC with a membranous and/or cytoplasmic staining pattern. Kaplan-Meier analyses revealed that membranous, but not cytoplasmic CD24 expression (clone SWA11) was associated with lympho-nodular spread and shorter overall survival times (both p < 0.05). CD24 expression established by SN3b antibodies did not reveal significant clinicopathological correlations with overall survival, neither for cytoplasmic nor membranous CD24 staining.  Conclusions    Membranous CD24 immunoreactivity, as detected with antibody clone SWA11 may serve as a prognostic factor for lymphonodular spread and poorer overall survival. Furthermore, these results corroborate the importance of a careful distinction between membranous and cytoplasmic localisation, if CD24 is to be considered as a potential prognostic biomarker.

 

Lung cancer is a major cause of carcinoma related death, being responsible for 17.8 % of all cancer deaths and accounting for more than a million deaths worldwide per year [1]. Despite intense studies to improve therapy options, its prognosis has remained poor with a 5-year overall survival rate of less than 15 % [2].

In the past decade, the largest subgroup of lung cancer, i.e. non-small cell lung cancer (NSCLC), has been subjected to exerted research for a better understanding of the underlying molecular biology of lung cancer. More than ten years ago, CD24 has already been suggested as a novel and promising biomarker for carcinoma progression in NSCLC [3] and several groups have confirmed this finding on protein and transcript level [2, 4]. CD24 is a highly glycosylated protein, that binds to the cell surface through a GPI (glycosyl-phosphatidylinositol)-anchor and functions as a cell adhesion molecule and is involved in cell-cell-interaction via its P-selectin binding site [5]. CD24 has been found to be expressed by pre-B-lymphocytes [5]. It is assumed that CD24-positive cells can attach more easily to platelets and activated endothelial cells [6, 7]. Notably, CD24 has also been observed in many human carcinomas, such as ovarian cancer, renal cell cancer, breast cancer and NSCLC [3, 812]. In epithelial ovarian cancer high scores of cytoplasmic CD24 were highly predictive of shorter patient survival times (mean 97.8 vs. 36.5 months), whereas membranous CD24 expression seemed to have no influence on survival times. Interestingly, CD24 positivity (membranous or cytoplasmic) of prostate cancer samples was significantly associated to younger patient age and higher pT stages and a higher 3-year prostate-specific antigen (PSA) relapse rate compared with CD24-negative tumours.

In patients with gallbladder carcinoma, tumors with up-regulation of CD24 revealed lymph node metastasis and lymphovascular invasion more frequently. Moreover, up-regulation of CD24 tended to show deeper invasion depth and higher TNM stage [13]. Together, these findings support CD24 as a prognostic marker for carcinoma progression and poorer survival.

Despite these intriguing findings, major concerns regarding a lack of epitope specificity of the commonly used monoclonal antibody SN3b have been raised [14]. Recent findings indicate that the mAb (monoclonal antibody) SN3b does not bind to the protein core itself, but binds to a glycan structure that decorates the CD24 molecule. On the one hand, this motif is not present on all forms of CD24 and—on the other hand—it can be present in other epitopes irrespective of CD24 [14]. These limitations underline the need for more specific CD24 antibodies, such as the mAb SWA11 antibody that has been suggested to be more specific as it binds to the protein core [14].

As CD24 is a promising biomarker for the risk assessment of disease progression, the goal of the present study was to investigate CD24 expression in NSCLC using the novel, more specific monoclonal antibody (mAb) SWA11. Special emphasis was put on the comparison of SN3b- and SWA11-mediated CD24 detection regarding a) the subcellular distribution of CD24 expression (i.e. membranous versus cytoplasmic expression) and b) its correlation with various clinicopathological features including patient survival times.

Table 1

Clinicopathological characteristics of the NSCLC cohort

  AC SCC
N (%) N (%)
Tumour stage (pT)
1 29 (21.2 %) 5 (3.6)
2 51 (37.2 %) 23 (16.8 %)
3 6 (4.4 %) 6 (4.4 %)
4 1 (0.7 %) 0 (0 %)
Nodal Status (pN) 0 37 (27.0 %) 15 (10.9 %)
1 15 (10.9 %) 9 (6.6 %)
2 14 (10.2 %) 3 (2.2 %)
3 1 (0.7 %) 0 (0.0 %)
Grading (G) 1 5 (3.6 %) 0 (0.0 %)
2 41 (29.9 %) 16 (11.6 %)
3 44 (32.1 %) 17 (12.4 %)
Mean age at surgery 64,2 64,56
(median age) (65) (67)
Sex (m:w) 68:34 30:5
Median OS (months) 52 24
(SD; 95 % CI [months]) (±23.7; 5.5– 98.5) (± 12.8;0.0– 49.0)

 

Immunohistochemical detection of CD24 expression using clone SWA11 and SN3b

Using the mAb SWA11, 47 of 137 (34.3 %) NSCLC revealed CD24 expression (either cytoplasmic or membranous) (Table 2). CD24 expression was observed more frequently in adenocarcinomas (AC) than in squamous cell carcinomas (SCC). In AC cytoplasmic expression was observed more frequently than membranous expression. In SCC, both cyptoplasmic and membranous expression was rare. Normal lung parenchyma (i.e. alveolar surface cells) showed no expression of CD24. Bronchial epithelium showed a strong membranous and cytoplasmic staining of the brush border (Fig. 1).

Table 2

Cytoplasmic and membranous expression of CD24

SWA11 (mAb clone) SN3b (mAB clone)
  AC SCC   AC SCC
Cytoplasmic N (%) N (%) Cytoplasmic N (%) N (%)
0 45 (32.6 %) 19 (13.8 %) 0 76 (55.1 %) 31 (22.5 %)
1 22 (15.9 %) 8 (5.8 %) 1 12 (8.7 %) 1 (0.7 %)
2 17 (12.3 %) 4 (2.9 %) 2 7 (5.1 %) 2 (1.4 %)
3 18 (13.0 %) 4 (2.9 %) 3 1 (0.7 %) 0 (0 %)
AC SCC AC SCC
Membranous N (%) N (%) Membranous N (%) N (%)
0 68 (49.3 %) 21 (15.2 %) 0 64 (46.4 %) 30 (21.7 %)
1 21 (15.2 %) 5 (3.6 %) 1 10 (7.2 %) 2 (1.4 %)
2 8 (5.8 %) 4 (2.9 %) 2 12 (8.7 %) 2 1.4 %)
3 5 (3.6 %) 5 (3.6 %) 3 10 (7.2 %) 0 (0 %)

Staining intensities are determined as follows:

0: negative or equivocal, 1: weak, 2: moderate and 3: strong CD24 staining

 

https://static-content.springer.com/image/art%3A10.1186%2Fs12907-015-0019-z/MediaObjects/12907_2015_19_Fig1_HTML.gif

Fig 1

The immunohistochemical characterization reveals membranous and/or cytoplasmic CD24 (mAb SWA11) expression. Strong cytoplasmic CD24 expression is found in a proportion of both AC (a) and SCC (b, d) specimens. Membranous CD24 expression can be pronounced with only scant or even absent cytoplasmic staining as shown in the AC (c). Also, both membranous and cytoplasmic CD24 detection can be found in some instances (d), the insert is showing the corresponding squamous carcinoma in-situ with membranous staining. Simultaneous membranous and cytoplasmic CD24 expression is also found in AC specimens (e, f). In normal tissue, alveolar epithelial cells do not express CD24 (g), whereas CD24 staining is found at the apical cell membrane of bronchial respiratory epithelia (h)

Using the mAb SN3b, 29 of 137 (21.2 %) NSCLC revealed CD24 expression (either cytoplasmic or membranous) (Table 2). As above, CD24 expression was observed more frequently in adenocarcinomas (AC) than in squamous cell carcinomas (SCC). However, in contrast to mAb SWA11 cytoplasmic expression was observed less frequently than membranous expression in AC. In SCC, both cytoplasmic and membranous expression was rare. Normal lung parenchyma (i.e. alveolar surface cells) showed a distinct membranous immunoreactivity. Bronchial epithelium revealed both membranous and cytoplasmic staining of CD24.

Correlation between SWA11 and SN3b: As SWA11 and SN3b detect different epitopes, we evaluated the correlation of the immunohistochemical staining patterns. Of 132 NSCLC specimens with matched expression data, only 9 specimens (6.8 %) revealed a concordant CD24 expression. Of these cases, 4 cases revealed a concordant cytoplasmic staining and another 5 cases revealed a concordant membranous CD24 expression. Statistically, no significant correlation between the two mAb could be observed (cc = −0.63, p = 0.470; Fisher’s exact test p = 0.665). The correlation of cytoplasmic and membranous expression (for each antibody) was as follows: cc = 0.475 (p < 0.05) for SWA11 (n = 108) and cc = 0.140 (p = 0.11) for SN3b (n = 103).

Survival analyses

Recent studies indicate that CD24 expression is associated with tumor progression and poorer survival rates. Therefore, we performed follow up analyses with a special emphasis on 1) the prognostic value of mAb SWA11 in dependence on subcellular staining characteristics and 2) the prognostic values of different clinicopathological parameters:

Prognostic value of CD24 in Kaplan Meier Analyses

Only membranous CD24 (SWA11) staining revealed significantly poorer survival rates (median overall survival 21 vs. 52 months; p = 0.005) as illustrated in Fig. 2. In contrast, cytoplasmic CD24 (SWA11) staining did not affect the survival rates (median OS 34 vs. 35 months; p = 0.884) (Table 3). When stratifying the cohort into SCC (n = 35) and AC (n = 102) in Kaplan Meier analyses, membranous CD24 (SWA11) expression did not affect patients’ survival, neither in SCC (p = 0.243) nor AC (p = 0.135) (Table 3), probably due to the small number of observations (Fisher exact test: p > 0.05). After stratification for AC subtypes, membranous CD24 expression (SWA11) showed a tendency towards an association with poorer survival in acinar subtype AC, but failed significance (p = 0.328).
https://static-content.springer.com/image/art%3A10.1186%2Fs12907-015-0019-z/MediaObjects/12907_2015_19_Fig2_HTML.gif

Fig 2

Survival analysis. Kaplan-Meier curves according to SWA11 expression. Cases with moderate to strong expression were bundled in a ‘high expression’ and cases with negative or weak expression in a ‘low expression’ group. Membranous expression of CD24 detected by SWA11 proved to be an independent marker for shorter survival times in NSCLC (p = 0.005)

Table 3

Univariate survival analysis

SWA11 No. of cases Mean survival time Median survival time p-value
(months +/− s.e.) (months +/− s.e.)
Mem CD24
Negative 76 84.833 +/− 10.395 52.000 +/− 27.030 0.005
Positive 16 27.925 +/− 6.379 21.000 +/− 4.000
Cyto CD24
Negative 66 75.209 +/− 10.577 35.000 +/− 12.422 0.884
Positive 26 60.540 +/− 11.551 34.000 +/− 12.196
Total CD24
Negative 64 76.972 +/− 10.841 35.000 +/− 13.726 0.633
Positive 28 57.535 +/− 10.895 34.000 +/− 9.303
SCC
Mem CD24 negative 16 52.063 +/− 14.668 16.000 +/− 16.000 0.243
Mem CD24 positive 7 21.571 +/− 7.201 24.000 +/− 23.568
AC
Mem CD24 negative 59 88.953 +/− 11.631 56.000 +/− 22.885 0.135
Mem CD24 positive 8 39.167 +/− 11.674 21.000 +/− 8.485
pN0 31 103.641 +/− 14.940 93.000 +/− 28.224 0.012
pN1+ 30 54.911 +/− 10.646 26.000 +/− 0.983

 

…..

Univariate survival analysis according to the Cox regression model (mAb SWA11)

  Beta HR (hazard ratio) 95 % CI of HR P-value
SWA11 mem all 0.856 2.353 1.268–4.364 0.007
pN 0.963 2.620 1.389–4.943 0.003
pT 0.844 2.325 1.279–4.224 0.006
Tumour type 0.975 2.651 1.999–3.517 0.000

Table 5

Multivariate survival analysis according to the Cox regression model (mAb SWA11)

  Beta HR (hazard ratio) 95 % CI of HR P-value
SWA11 mem all 0.944 2.571 1.211–5.458 0.014
pN 0.737 2.091 1.087–4.021 0.027
pT 0.587 1.799 0.755–4.283 0.185

 

…..

In the present study, we have analyzed immunohistochemical staining characteristics and the prognostic value of CD24 expression in NSCLC with a special emphasis on the comparison of the CD24 antibodies SWA11 and SN3b. The most important result of our study is that the prognostic relevance of CD24 is critically dependent on the careful consideration of sub-cellular compartments and the epitope specificity of the antibody used.

Overall, about one third of the NSCLC cohort revealed a significant CD24 expression (either cytoplasmic or membranous). These results are in line with the findings of other studies. In another NSCLC cohort, CD24 (SN3b) expression was found in 33 % of the samples (87 of 267 cases) [2]. Consistent with those results, we have found similar rates of high CD24 expression levels (35 % of the cases) for SWA11. Originally, we would have expected lower rates than those found by Lee et al, as they used the antibody SN3b, that also recognizes yet unidentified other glycoproteins next to CD24. Furthermore, they used whole mount sections instead of tissue microarrays. A possible explanation for rather equal detection rates would be the fact that it has been demonstrated that the epitope recognized by SN3b is indeed present in CD24, but is not found in all glycoforms of CD24 [14]. In contrast to the commonly used mAb SN3b, mAb SWA11 binds to the protein core of CD24 and does not depict other glycan moieties next to CD24. The protein core of CD24 is linear, consisting of the amino acid sequence leucine-proline-alanine (LAP) next to a glycosyl-phosphatidylinositol anchor [15].

CD24 expression has been associated with disease progression and cancer-related death in the majority of malignant tumors [2, 3, 16, 17], although a caveat to these data is that most of these studies are based on the supposedly less specific CD24 clone SN3b. Lee et al demonstrated a significant association between CD24-high expression (SN3b) and shorter patient survival times. Furthermore, Lee and colleagues and ourselves in former studies referred the results to cytoplasmic CD24 expression [2, 3].

Switching Off Cancers’ Ability to Spread

http://www.technologynetworks.com/rnai/news.aspx?ID=189704

A key molecule in breast and lung cancer cells can help switch off the cancers’ ability to spread around the body.

The findings by researchers at Imperial College London, published in the journal EMBO Reports, may help scientists develop treatments that prevent cancer travelling around the body – or produce some kind of test that allows doctors to gauge how likely a cancer is to spread. During tumour growth, cancer cells can break off and travel in the bloodstream or lymph system to other parts of the body, in a process called metastasis.

Patients whose cancers spread tend to have a worse prognosis, explains Professor Justin Stebbing, senior author of the study from the Department of Surgery and Cancer at Imperial: “The ability of a cancer to spread around the body has a large impact on a patient’s survival. However, at the moment we are still in the dark about why some cancers spread around the body – while others stay in one place. This study has given important insights into this process.”

The researchers were looking at breast and lung cancer cells and they found that a protein called MARK4 enables the cells to break free and move around to other parts of the body, such as the brain and liver. Although scientist are still unsure how it does this, one theory is it affects the cell’s internal scaffolding, enabling it to move more easily around the body. The team found that a molecule called miR-515-5p helps to silence, or switch off, the gene that produces MARK4.

In the study, the team used human breast cancer and lung cancer cells to show that the miR-515-5p molecule silences the gene MARK4. They then confirmed this in mouse models, which showed that increasing the amount of miR-515-5p prevents the spread of cancer cells. The findings also revealed that the silencer molecule was found in lower levels in human tumours that had spread around the body. The team then also established that patients with breast and lung cancers whose tumours had low amounts of these silencer molecules – or high amounts of MARK4 – had lower survival rates.

Researchers are now investigating whether either the MARK4 gene or the silencer molecule could be targeted with drugs. They are also investigating whether these molecules could be used to develop a test to indicate whether a patient’s cancer is likely to spread. Professor Stebbing said: “In our work we have shown that this silencer molecule is important in the spread of cancer. This is very early stage research, so we now need more studies to find out more about this molecule, and if it is present in other types of cancer.”

Dr Olivier Pardo, lead author of the paper, also from the Department of Surgery and Cancer at Imperial, added: “Our work also identified that MARK4 enables breast and lung cancer cells to both divide and invade other parts of the body. These findings could have profound implications for treating breast and lung cancers, two of the biggest cancer killers worldwide.” The study was supported by the NIHR Imperial Biomedical Research Centre, the Medical Research Council, Action Against Cancer and the Cancer Treatment and Research Trust.

 

‘Silencer molecules’ switch off cancer’s ability to spread around body

by Kate Wighton

main image

Scientists have revealed that a key molecule in breast and lung cancer cells can help switch off the cancers’ ability to spread around the body

The findings by researchers at Imperial College London, published in the journal EMBO Reports, may help scientists develop treatments that prevent cancer travelling around the body – or produce some kind of test that allows doctors to gauge how likely a cancer is to spread.

During tumour growth, cancer cells can break off and travel in the bloodstream or lymph system to other parts of the body, in a process called metastasis.

Patients whose cancers spread tend to have a worse prognosis, explains Professor Justin Stebbing, senior author of the study from the Department of Surgery and Cancer at Imperial: “The ability of a cancer to spread around the body has a large impact on a patient’s survival. However, at the moment we are still in the dark about why some cancers spread around the body – while others stay in one place. This study has given important insights into this process.”

The researchers were looking at breast and lung cancer cells and they found that a protein called MARK4 enables the cells to break free and move around to other parts of the body, such as the brain and liver. Although scientist are still unsure how it does this, one theory is it affects the cell’s internal scaffolding, enabling it to move more easily around the body.

 

miR‐515‐5p controls cancer cell migration through MARK4 regulation

Olivier E Pardo, Leandro Castellano, Catriona E Munro, Yili Hu, Francesco Mauri,Jonathan Krell, Romain Lara, Filipa G Pinho, Thameenah Choudhury, Adam EFrampton, Loredana Pellegrino, Dmitry Pshezhetskiy, Yulan Wang, JonathanWaxman, Michael J Seckl, Justin Stebbing    

EMBO reports http://embor.embopress.org/content/early/2016/02/10/embr.201540970     http://dx.doi.org:/
Here, we show that miR‐515‐5p inhibits cancer cell migration and metastasis. RNA‐seq analyses of both oestrogen receptor receptor‐positive and receptor‐negative breast cancer cells overexpressing miR‐515‐5p reveal down‐regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR‐515‐5p inhibits MARK4 directly 3′ UTR interaction and that MARK4 knock‐down mimics the effect of miR‐515‐5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR‐515‐5p, suggesting miR‐515‐5p mediates this process through MARK4 down‐regulation. Furthermore, miR‐515‐5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR‐515‐5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR‐515‐5p and low MARK4 expression correlate with increased breast and lung cancer patients’ survival, respectively. Taken together, these data demonstrate the importance of miR‐515‐5p/MARK4 regulation in cell migration and metastasis across two common cancers.
Embedded Image

miR‐515‐5p inhibits cancer progression, cell migration and metastasis through its direct target MARK4, a regulator of the cytoskeleton and cell motility. Moreover, reduced miR‐515‐5p and increased MARK4 levels in metastatic lung and breast cancer correlate with poor patient prognosis.

  • MARK4 down‐regulation promotes microtubule polymerisation.

  • Increased cell spreading downstream of miR‐515‐5p overexpression or MARK4 silencing hinders cell motility and invasiveness.

  • miR‐515‐5p overexpression or MARK4 silencing prevent organ colonisation by circulating tumour cells.

  • MARK4 inhibitors may represent novel therapeutic agents to control cancer dissemination.breasat cancer

 

Liquid Biopsy for NSCLC

http://www.technologynetworks.com/Diagnostics/news.aspx?ID=190276

‘Liquid biopsy’ blood test accurately detects key genetic mutations in most common form of lung cancer, study finds.

A simple blood test can rapidly and accurately detect mutations in two key genes in non-small cell lung tumors, researchers at Dana-Farber Cancer Institute and other institutions report in a new study – demonstrating the test’s potential as a clinical tool for identifying patients who can benefit from drugs targeting those mutations.

The test, known as a liquid biopsy, proved so reliable in the study that Dana-Farber/Brigham and Women’s Cancer Center (DF/BWCC) expects to offer it soon to all patients with non-small cell lung cancer (NSCLC), either at the time of first diagnosis or of relapse following previous treatment.

NSCLC is the most common form of lung cancer, diagnosed in more than 200,000 people in the United States each year, according to the American Cancer Society. An estimated 30 percent of NSCLC patients have mutations in either of the genes included in the study, and can often be treated with targeted therapies. The study is being published online today by the journal JAMA Oncology.

The liquid biopsy tested in the study – technically known as rapid plasma genotyping – involves taking a test tube-full of blood, which contains free-floating DNA from cancer cells, and analyzing that DNA for mutations or other abnormalities. (When tumor cells die, their DNA spills into the bloodstream, where it’s known as cell-free DNA.) The technique, which provides a “snapshot” of key genetic irregularities in a tumor, is a common tool in research for probing the molecular make-up of different kinds of cancers.

“We see plasma genotyping as having enormous potential as a clinical test, or assay – a rapid, noninvasive way of screening a cancer for common genetic fingerprints, while avoiding the challenges of traditional invasive biopsies,” said the senior author of the study, Geoffrey Oxnard, MD, thoracic oncologist and lung cancer researcher at Dana-Farber and Brigham and Women’s Hospital. “Our study was the first to demonstrate prospectively that a liquid biopsy technique can be a practical tool for making treatment decisions in cancer patients. The trial was such a success that we are transitioning the assay into a clinical test for lung cancer patients at DF/BWCC.”

The study involved 180 patients with NSCLC, 120 of whom were newly diagnosed, and 60 of whom had become resistant to a previous treatment, allowing the disease to recur. Participants’ cell-free DNA was tested for mutations in the EGFR and KRAS genes, and for a separate mutation in EGFR that allows tumor cells to become resistant to front-line targeted drugs. The test was performed with a technique known as droplet digital polymerase chain reaction (ddPCR), which counts the individual letters of the genetic code in cell-free DNA to determine if specific mutations are present. Each participant also underwent a conventional tissue biopsy to test for the same mutations. The results of the liquid biopsies were then compared to those of the tissue biopsies.

The data showed that liquid biopsies returned results much more quickly. The median turnaround time for liquid biopsies was three days, compared to 12 days for tissue biopsies in newly diagnosed patients and 27 days in drug-resistant patients.

Liquid biopsy was also found to be highly accurate. In newly diagnosed patients, the “predictive value” of plasma ddPCR was 100 percent for the primary EGFR mutation and the KRAS mutation – meaning that a patient who tested positive for either mutation was certain to have that mutation in his or her tumor. For patients with the EGFR resistance mutation, the predictive value of the ddPCR test was 79 percent, suggesting the blood test was able to find additional cases with the mutation that were missed using standard biopsies.

“In some patients with the EGFR resistance mutation, ddPCR detected mutations missed by standard tissue biopsy,” Oxnard remarked. “A resistant tumor is inherently made up of multiple subsets of cells, some of which carry different patterns of genetic mutations. A single biopsy is only analyzing a single part of the tumor, and may miss a mutation present elsewhere in the body. A liquid biopsy, in contrast, may better reflect the distribution of mutations in the tumor as a whole.”

When ddPCR failed to detect these mutations, the cause was less clear-cut, Oxnard says. It could indicate that the tumor cells don’t carry the mutations or, alternatively, that the tumor isn’t shedding its DNA into the bloodstream. This discrepancy between the test results and the presence of mutations was less common in patients whose cancer had metastasized to multiple sites in the body, researchers found.

The ddPCR-based test, or assay, was piloted and optimized for patients at the Translational Resarch lab of the Belfer Center for Applied Cancer Science at Dana-Farber. It was then validated for clinical use at Dana-Farber’s Lowe Center for Thoracic Oncology.

An advantage of this form of liquid biopsy is that it can help doctors quickly determine whether a patient is responding to therapy. Fifty participants in the study had repeat testing done after starting treatment for their cancer. “Those whose blood tests showed a disappearance of the mutations within two weeks were more likely to stay on the treatment than patients who didn’t see such a reduction,” said the study’s lead author, Adrian Sacher, MD, of Dana-Farber and Brigham and Women’s Hospital.

And because tumors are constantly evolving and acquiring additional mutations, repeated liquid biopsies can provide early detection of a new mutation – such as the EGFR resistance mutation – that can potentially be treated with targeted agents.

“The study data are compelling,” said DF/BWCC pathologist Lynette Sholl, MD, explaining the center’s decision to begin offering ddPCR-based liquid biopsy to all lung cancer patients. “We validated the authors’ findings by cross-comparing results from liquid and tissue biopsies in 34 NSCLC patients. To work as a real-world clinical test, liquid biopsy needs to provide reliable, accurate data and be logistically practical. That’s what we’ve seen with the ddPCR-based blood test.

“The test has great utility both for patients newly diagnosed with NSCLC and for those with a recurrence of the disease,” she continued. “It’s fast, it’s quantitative (it indicates the amount of mutant DNA in a sample), and it can be readily employed at a cancer treatment center.”

The co-authors of the study are Cloud Paweletz, PhD, Allison O’Connell, BSc, and Nora Feeney, BSc, of the Belfer Center for Applied Cancer Science at Dana-Farber; Ryan S. Alden BSc, and Stacy L. Mach BA, of Dana-Farber; Suzanne E. Dahlberg, PhD, of Dana-Farber and Harvard T.H. Chan School of Public Health; and Pasi A. Jänne, MD, PhD, of Dana-Farber, the Belfer Center, and Brigham and Women’s Hospital.

Read Full Post »


Are CXCR4 Antagonists Making a Comeback in Cancer Chemotherapy?

Reporter: Stephen J. Williams, Ph.D.

Biospace News reported that Massachusetts based X4 Pharmaceuticals is using $34B to launch two clinical trials on its CXCR4 inhibitor X4P-001 in refractory clear cell renal cell carcinoma and refractory epithelial ovarian cancer.

The full report is below:

X4 Pharma Uses $37.5 Million to Push Cancer Therapies into Human Trials

 

December 14, 2015
By Alex Keown, BioSpace.com Breaking News Staff

CAMBRIDGE, Mass. – Massachusetts based X4 Pharmaceuticals is beginning human trials for its oncology program using CXCR4 inhibitors, the Boston Business Journal reported this morning.

After spending years in stealth mode, the company, helmed by former Genzyme executives, is launching two clinical two clinical studies initiating in 2016 in refractory clear cell renal cell carcinoma and refractory epithelial ovarian cancer with its lead drug candidate, X4P-001.

The company’s pipeline is based on drug compounds that originate from a portfolio of oral CXCR4 inhibitors exclusively licensed from Sanofi (SNY), X4 said in a statement. Inhibition of CXCR4, a receptor over-expressed in many cancers, is designed to block non-cancerous immuno-suppressive and pro-angiogenic cells from populating the tumor, thereby disrupting the cancer microenvironment and restoring normal immune surveillance functions. The novel mechanism of CXCR4 inhibition increases the ability of T-Cells to track and destroy cancer. X4 is leveraging its CXCR4 research against past experience working with Genzyme’s plerixafor, which is also a CXCR4 blocker.

In an interview with the Journal, Paula Ragan, X4’s chief executive officer, said the CXCR4 protein “acts as a beacon to attract cells to surround a tumor, effectively hiding the tumor from the body’s T cells that would otherwise destroy them.” Developing a therapy to block the protein will prevent the tumors from hiding and allow it to be treated.

Ragan said the Phase Ia trial for X4P-001 will test safety and dosage in a small trial of about 20 people, the Journal reported. If all goes well the company would start a Phase 2a trial by the end of 2016 in around 50 or 60 patients, the Journal said.

In September, Ragan said a CXCR4 antagonist could potentially be paired with promising oncology drugs like Merck & Co. (MRK)’s Keytruda, or Bristol-Myers Squibb (BMY)’s Opdivo. Keytruda has been shown to be effective in treating patients with three types of cancer, melanoma, lung cancer and mesothelioma. Opdivo is a treatment of patients with metastatic squamous non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy.

The cytokines and cytokine receptors have been investigated before for their utility as a chemotherapeutic target as they are highly expressed on tumors and promote metastasis. The general idea was that tumor cells secrete cytokines which promote their growth and metastases and attract immune cells which also secrete growth-promoting cytokines. Many tumor types have shown increased expression of these cytokines and cytokine receptors. However only some development efforts have shown promise, there have been no approved drugs in this class. As written in a previous post (Tumor Associated Macrophages: The Double-Edged Sword Resolved?), there could be many biological reasons for this, as well as difficulties in interpreting preclinical results in immunocompromised mice.

CXCR4: from the review by Ori Wald, Oz M. Shapira, Uzi Izha

 

Source: Wald O, Shapira OM, Izhar U. CXCR4/CXCL12 Axis in Non Small Cell Lung Cancer (NSCLC) Pathologic Roles and Therapeutic Potential. Theranostics 2013; 3(1):26-33. doi:10.7150/thno.4922. Available from http://www.thno.org/v03p0026.htm

 

Chemokines, a family of 48 chemotactic cytokines interact with their 7 transmembrane G-protein-coupled receptors to guide immune cell trafficking in the body under both physiologic and pathologic conditions (20, 21). Tumor cells, which express a relatively restricted repertoire of chemokine and chemokine receptors, utilize and manipulate the chemokine system in a manner that benefits both local tumor growth and distant dissemination (20, 22, 23). In the tumor microenvironment autocrine and paracrine chamokine/chemokine receptor loops interact to promote tumor cell survival and growth, and also to enhance tumor neo-angiogenesis (20, 22, 23). At distant sites, it is the tissue-produced chemokine which guide/attracts the metastasis of chemokine receptor expressing tumor cells (20).

Among the 19 chemokine receptors, CXCR4 is the receptor most widely expressed by malignant tumors and whose role in tumor biology is most thoroughly studied (20). The chemokine CXCL12 is the sole ligand of CXCR4 and the majority of research that focus on the role of CXCR4 in cancer relates to this chemokine/chemokine receptor pair (24, 25). Nevertheless, in 2006 another receptor for CXCL12 was identified and named CXCR7 (26). CXCR7 is expressed during embriogenesis, angiogenesis and in various malignant tissues including NSCLC. CXCR7 is thought to act in part as a scavenger of CXCL12 however additional functions for this receptor have also been reported (2628). In distinct form CXCR4, CXCR7 binds not only CXCL12 but also the chemokine CXCL11 (26, 27). Moreover, the signaling cascades that are generated upon binding of CXCL12 to CXCR4 or CXCR7 vary at least partly, depending on which of the receptors is engaged (26, 27). This review focuses mainly on data collected regarding the expression and function of CXCR4 in NSCLC, nevertheless it is important to keep in mind that whenever CXCL12 is mentioned the effects related to its expression may be attributed in part to CXCR7 expression and function.

Relative to normal cells in the tumor’s tissue of origin, malignant cells often over express CXCR4, this phenotype can be induced by multiple oncogenic alternations and appears to promote tumor cell survival, proliferation, invasion and metastasis (20, 2935).

 

 

 

cxcrimagetumorncls

Potential roles for CXCR4/CXCL12 in NSCLC. NSCLC tumor cells express CXCR4 and produce CXCL12. Tumor expressed CXCR4 guides metastatic spread to sights such as the brain, bone marrow and liver that express high levels of CXCL12. In addition, CXCR4/CXCL12 interactions act locally in autocrine and paracrine manners to enhance primary tumor growth and to alter its inflammatory milieu. Tumor and tumor microenvironment secreted CXCL12 enhance tumor cell survival and growth and may also guide trafficking of immune and bone marrow derived cells into the tumor microenvironment. Furthermore, alternations in the tumor microenvironment result from the stimulation of tumor cells with CXCL12 that in turn enhance the production of additional chemokines such as the pro-inflammatory and pro-proliferative chemokine CCL20) pro-angiogenic and pro-proliferative chemokine (CXCL1 – IL-8). Figure from Wald O, Shapira OM, Izhar U. CXCR4/CXCL12 Axis in Non Small Cell Lung Cancer (NSCLC) Pathologic Roles and Therapeutic Potential. Theranostics 2013; 3(1):26-33. doi:10.7150/thno.4922. Available from http://www.thno.org/v03p0026.htm

For further reference on CXCR4 and development of CXCR4 inhibitors please see the following references:

  1. Peled A, Wald O, Burger J. Development of novel CXCR4-based therapeutics. Expert Opin Investig Drugs. 2012Mar;21(3):341-53
  2. Balkwill FR. The chemokine system and cancer. J Pathol. 2012Jan;226(2):148-57
  3. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006Mar1;107(5):1761-7
  4. Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009Jan;23(1):43-52
  5. Otsuka S, Bebb G. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol. 2008Dec;3(12):1379-83

 

Current CXCR4 inhibitors in development

somecxcr4inhibitors

Figure. Structures of Representative Small Molecule CXCR4 Antagonists and CXCL12 Inhibitors. From JJ Zariek et al. Fragment-Based Optimization of Small Molecule CXCL12 Inhibitors for Antagonizing the CXCL12/CXCR4 Interaction. Curr Top Med Chem. 2012; 12(24): 2727–2740.

 

A Phase 1 Trial of LY2510924, a CXCR4 Peptide Antagonist, in Patients with Advanced Cancer

This manuscript reports the results of a phase I study designed to evaluate the safety and tolerability of the C-X-C motif receptor 4 (CXCR4) inhibitor LY2510924 in patients with advanced cancer. LY2510924 is a peptide antagonist, which blocks stromal cell-derived factor-1 (SDF-1) from CXCR4 binding. CXCR4 is often overexpressed in many cancers and involved in the metastasis of solid tumors. LY2510924 was tolerated with mostly Grade 1/2 adverse events, revealed favorable pharmacokinetics, and demonstrated evidence of target engagement as indicated by dose dependent increases in CD34+ cells.

Anti-CXCR4 (BMS-936564) Alone and in Combination With Lenalidomide/Dexamethasone or Bortezomib/Dexamethasone in Relapsed/Refractory Multiple Myeloma

The purpose of this study is to determine 1) the safety and tolerability of multiple intravenous doses of anti-CXCR4 (BMS-936564) as monotherapy and as combination, and 2) the maximum tolerated dose (MTD) of BMS-936564 in combination with Lenalidomide/Dexamethasone or Bortezomib/Dexamethasone in subjects with relapsed or refractory multiple myeloma.

 

Novel CXCR4 Antagonist BL-8040 Enters Clinical Testing for CML – See more at: http://www.cancernetwork.com/chronic-myeloid-leukemia/novel-cxcr4-antagonist-enters-clinical-testing-cml#sthash.RoXCC5W6.dpuf

 

Other posts on this Open Access Journal on CXCR4 and Chemokines in Cancer Include

Assessing effects of antimetastatic treatment

Understanding the Stem Cell Niche: A Webinar by The Scientist

Protein regulator of HIV replication

Immunotherapy in Cancer: A Series of Twelve Articles in the Frontier of Oncology by Larry H Bernstein, MD, FCAP

Humanized Mice May Revolutionize Cancer Drug Discovery

Tumor Associated Macrophages: The Double-Edged Sword Resolved?

 

 

 

 

 

 

 

Read Full Post »


FDA approves EGFR mutation detection test for NSCLC drug, Tarceva

Author/Reporter: Ritu Saxena, Ph.D.

The cobas EGFR Mutation Test, Roche Molecular Diagnostics, identifies mutations in epidermal growth factor receptor (EGFR) exons 18, 19, 20 and 21 of patients. The FDA has approved the companion diagnostic for the cancer drug Tarceva (erlotinib). It would select non-small cell lung cancer (NSCLC) patients for treatment with EGFR inhibitors. This is the first FDA-approved companion diagnostic that detects EGFR gene mutations, which are present in approximately 10-30% of non-small cell lung cancers (NSCLC). The test is being approved with an expanded use for Tarceva as a first-line treatment for patients with NSCLC that has metastasized and who have certain mutations in the EGFR gene.

Lung cancer, the leading cause of cancer death among both men and women leads to death of more people than colon, breast, and prostate cancers combined. The American Cancer Society’s most recent estimates for lung cancer in the United States for 2012 reveal that about 226,160 new cases of lung cancer will be diagnosed (116,470 in men and 109,690 in women), and there will be an estimated 160,340 deaths from lung cancer (87,750 in men and 72,590 among women), accounting for about 28% of all cancer deaths. NSCLC is the most common type of lung cancer and usually grows and spreads more slowly than small cell lung cancer. Activating EGFR mutations occur in 10–30% NSCLC cases, and lead to hyperdependence of tumors on EGFR signaling and increased sensitivity of EGFR to inhibition by erlotinib. Genentech/OSI Pharmaceuticals/Roche/Chugai Pharmaceutical’s erlotinib (Tarceva) is a small molecule quinazoline and directly and reversibly inhibits the EGFR tyrosine kinase.

Tarceva has been indicated for first-line treatment of cancer with EGFR mutations including NSCLC. The approval is Tarceva’s fourth indication and the third use for lung cancer. The FDA approved Tarceva on April 16, 2010, for maintenance treatment of patients with locally advanced or metastatic NSCLC whose disease has not progressed after four cycles of platinum-based first-line chemotherapy. Tarceva was originally approved in November 2004 for the treatment of patients with locally advanced or metastatic NSCLC after failure of at least one prior chemotherapy regimen.

In a recent multicenter, open label, randomized, phase III clinical trial (EURTAC trial; NCT0044625; http://clinicaltrials.gov/ct2/show/NCT00446225 ), Tarceva was investigated in patients with advanced NSCLC with mutations in the tyrosine kinase (TK) domain of the EGFR. The EURTAC trial was initiated in February 2007 and completed in December 2012 and enrolled around 174 patients. Patients were divided into two experimental arms. Patients in arm 1 were administered Tarceva (150 mg/day) while patients in arm 2 underwent chemotherapy as platinum-based doublets. The chemotherapeutic drugs were administered as Cisplatin (75 mg/m2) / Docetaxel (75 mg/m2); Cisplatin (75 mg/m2) / Gemcitabine (1250 mg/m2; day 1 and 8); Docetaxel (75 mg/m2) /carboplatin (AUC=6); Gemcitabine (1000 mg/m2; day 1 and 8) / Carboplatin (AUC=5). Results revealed that Erlotinib is better tolerated in Chinese population (grade 3-4 toxicities 17%) then in European patients (grade 3-4 toxicities 45%). Erlotinib scored significantly better than chemotherapy in terms of progression-free survival (PFS) with 9.7 versus 5.2 months, respectively (HR 0.37, 95% CI 0.25-0.54). Thus, the results of the trial strengthen the rationale for routine baseline tissue-based assessment of EGFR mutations in patients with NSCLC and for treatment of mutation-positive patients with EGFR tyrosine-kinase inhibitors. (Gridelli C and Rossi A, J Thorac Dis. 2012 Apr 1;4(2):219-20; http://www.ncbi.nlm.nih.gov/pubmed/22833832 )

In conclusion, FDA approval of cobas EGFR Mutation Test is a recent example of how genotyping patients in clinical trials could lead to crucial information regarding personalizing the diagnostic and therapeutic approaches.

Reference:

News brief

Clinical lab products http://www.clpmag.com/all-news/24074-fda-approves-first-companion-diagnostic-to-detect-gene-mutation-linked-with-a-type-of-lung-cancer

Clinical trial http://clinicaltrials.gov/ct2/show/NCT00446225

Research articles

Melosky B. EURTAC first line therapy for non small cell lung carcinoma in epidermal growth factor receptor mutation positive patients: A choice between two TKIs. J Thorac Dis. 2012 Apr 1;4(2):221-2; http://www.ncbi.nlm.nih.gov/pubmed/22833833

Gridelli C and Rossi AJ. EURTAC first-line phase III randomized study in advanced non-small cell lung cancer: Erlotinib works also in European population. Thorac Dis. 2012 Apr 1;4(2):219-20; http://www.ncbi.nlm.nih.gov/pubmed/22833832

Related reading

Nguyen KS and Neal JW. First-line treatment of EGFR-mutant non-small-cell lung cancer: the role of erlotinib and other tyrosine kinase inhibitors. Biologics. 2012;6:337-45; http://www.ncbi.nlm.nih.gov/pubmed/23055691

https://pharmaceuticalintelligence.com/2012/11/06/non-small-cell-lung-cancer-drugs-where-does-the-future-lie/ Curator: Ritu Saxena, Ph.D.

https://pharmaceuticalintelligence.com/2013/03/03/personalized-medicine-in-nsclc/ Curator: Larry H. Bernstein, M.D.

https://pharmaceuticalintelligence.com/2012/11/08/lung-cancer-nsclc-drug-administration-and-nanotechnology/ Author: Tilda Barliya, Ph.D.

https://pharmaceuticalintelligence.com/2012/09/18/personalized-rx-decisions-in-nsclc-treatments-symposium-in-thoracic-oncology/ Reporter: Aviva Lev-Ari, Ph.D., R.N.

https://pharmaceuticalintelligence.com/2013/05/15/diagnosis-of-cardiovascular-disease-treatment-and-prevention-current-predicted-cost-of-care-and-the-promise-of-individualized-medicine-using-clinical-decision-support-systems/ Author/Curator: Larry H. Bernstein, M.D.

Read Full Post »


Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs

Larry H Bernstein, MD, FCAP, Author and Curator

This article has two parts:

  • Part 1: Novel Genomics Industry Trends in Diagnostics and Biomarkers vs Present Market Transient Conditions

and

  • Part 2: Historical Scientific Leaders Memoirs

 

Part 1: Novel Genomics Industry Trends in Diagnostics and Biomarkers vs Present Market Transient Conditions

 

Based on “Forging a path from companion diagnostics to holistic decision support”, L.E.K.

Executive Insights, 2013;14(12). http://www.LEK.com

Companion diagnostics and their companion therapies is defined here as a method enabling

  • LIKELY responders to therapies that are specific for patients with ma specific molecular profile.

The result of this statement is that the diagnostics permitted to specific patient types gives access to

  • novel therapies that may otherwise not be approve or reimbursed in other, perhaps “similar” patients
  • who lack a matching identification of the key identifier(s) needed to permit that therapy,
  • thus, entailing a poor expected response.

The concept is new because:

(1) The diagnoses may be closely related by classical criteria, but at the same time they are
not alike with respect to efficacy of treatment with a standard therapy.
(2) The companion diagnostics is restricted to dealing with a targeted drug-specific question
without regard to other clinical issues.
(3) The efficacy issue it clarifies is reliant on a deep molecular/metabolic insight that is not available, except through
emergent genomic/proteomic analysis that has become available and which has rapidly declining cost to obtain.

The limitation example given is HER2 testing for use of Herceptin in therapy for non-candidates (HER2 negative patients).
The problem is that the current format is a “one test/one drug” match, but decision support  may require a combination of

  • validated biomakers obtained on a small biopsy sample (technically manageable) with confusing results.

While HER2 negative patients are more likely to be pre-menopausal with a more aggressive tumor than postmenopausal,

  • the HER2 negative designation does not preclude treatment with Herceptin.

So the Herceptin would be given in combination, but with what other drug in a non-candidate?

The point that L.E.K. makes is that providing highly validated biomarkers linked to approved therapies, it is necessary to pursue more holistic decision support tests that interrogate multiple biomarkers (panels of companion diagnostic markers) and discovery of signatures for treatments that are also used with a broad range of information, such as,

  • traditional tests,
  • imaging,
  • clinical trials,
  • outcomes data,
  • EMR data,
  • reimbursement and coverage data.

A comprehensive solution of this nature appears to be a distance from realization.  However, is this the direction that will lead to tomorrows treatment decision support approaches?

 Surveying the Decision Support Testing Landscape

As a starting point, L.E.K. characterized the landscape of available tests in the U.S. that inform treatment decisions compiled from ~50 leading diagnostics companies operating in the U.S. between 2004-2011. L.E.K. identified more than 200 decision support tests that were classified by test purpose, and more specifically,  whether tests inform treatment decisions for a single drug/class (e.g., companion diagnostics) vs. more holistic treatment decisions across multiple drugs/classes (i.e., multiagent response tests).

 Treatment Decision Support Tests

Companion Diagnostics
Single drug/class
Predict response/safety or guide dosing of a single drug or class

HercepTest   Dako
Determines HER2 protein overexpression for Herceptin treatment selection

Multiple drugs/classes

Vysis ALK Break
Apart FISH
Abbott Labs Predicts the NSCLC patient response to Xalkori

Other Decision Support
Provide prognostic and predictive information on the benefit of treatment

Oncotype Dx    Genomic Health, Inc.
Predicts both recurrence of breast cancer and potential patient benefit to chemotherapy regimens

PML-RARα     Clarient, Inc.
Predicts response to all-trans retinoic acid (ATRA) and other chemotherapy agents

TRUGENE    Siemens
Measures resistence to multiple  HIV-1 anti-retroviral agents

Multi-agent Response

Inform targeted therapy class selection by interrogating a panel of biomarkers
Target Now  Caris Life Sciences
Examines tumor’s molecular profile to tailor treatment options

ResponseDX: Lung    Response Genetics, Inc.
Examines multiple biomarkers to guide therapeutic treatment decisions for NSCLC patients

Source: L.E.K. Analysis

Includes IVD and LDT tests from

  1. top-15 IVD test suppliers,
  2. top-four large reference labs,
  3. top-five AP labs, and
  4. top-20 specialty reference labs.

For descriptive purposes only, may not map to exact regulatory labeling

Most tests are companion diagnostics and other decision support tests that provide guidance on

  • single drug/class therapy decisions.

However, holistic decision support tests (e.g., multi-agent response) are growing the fastest at 56% CAGR.
The emergence of multi-agent response tests suggests diagnostics companies are already seeing the need to aggregate individual tests (e.g., companion diagnostics) into panels of appropriate markers addressing a given clinical decision need. L.E.K. believes this trend is likely to continue as

  • increasing numbers of  biomarkers become validated for diseases and multiplexing tools
  • enabling the aggregation of multiple biomarker interrogations into a single test

to become deployed in the clinic.

Personalized Medicine Partnerships

L.E.K. also completed an assessment of publicly available personalized medicine partnership activity from 2009-2011 for ~150 leading organizations operating in the U.S. to look at broader decision support trends and emergence of more holistic solutions beyond diagnostic tests.

Survey of partnerships deals was conducted for

  • top-10 academic medical centers research institutions,
  • top-25 biopharma,
  • top-four healthcare IT companies,
  • top-three healthcare imaging companies,
  • top-20 IVD manufacturers,
  • top-20 laboratories,
  • top-10 payers/PBMs,
  • top-15 personalized healthcare companies,
  • top-10 regulatory/guideline entities, and
  • top-20 tools vendors for the period of 01/01/2009 – 12/31/2011.
    Source: Company websites, GenomeWeb, L.E.K. analysis

Across the sample we identified 189 publicly announced partnerships of which ~65% focused on more traditional areas (biomarker discovery, companion diagnostics and targeted therapies). However, a significant portion (~30%) included elements geared towards creating more holistic decision support models.

Partnerships categorized as holistic decision support by L.E.K. were focused on

  • mining large patient datasets (e.g., from payers or providers),
  • molecular profiling (e.g., deploying next-generation sequencing),
  • creating information technology (IT) infrastructure needed to enable holistic decision support models and
  • integrating various datasets to create richer decision support solutions.

Interestingly, holistic decision support partnerships often included stakeholders outside of biopharma and diagnostics such as

  • research tools,
  • payers/PBMs,
  • healthcare IT companies as well as
  • emerging personalized healthcare (PHC) companies (e.g., Knome, Foundation Medicine and 23andMe).

This finding suggests that these new stakeholders will be increasingly important in influencing care decisions going forward.

Holistic Treatment Decision Support

Holistic Decision   Support Focus

Technology Provider Partners
Stakeholder Deploying the Solution

Holistic Decision
Support Activities
Molecular Profiling

Life Technologies

TGEN/US
Oncology

Sequencing of triple-negative breast  cancer patients to identify potential treatment strategies

Foundation Medicine

Novartis

Deployment of cancer genomics analysis platform to support Novartis clinical research efforts
Predictive genomics

Clarient, Inc.
(GE Healthcare)

Acorn
Research

Biomarker profiling of patients within Acorn’s network of providers to support clinical research efforts

GenomeQuest

Beth Israel Deaconess
Medical Center

Whole genome analysis and to guide patient management
Outcomes Data Mining

AstraZeneca

WellPoint

Evaluate comparative effectiveness of selected marketed therapies

23andMe

NIH

Leverage information linking drug response and CYP2C9/CYP2C19 variation

Pfizer

Medco

Leverage patient genotype, phenotype and outcome for treatment decisions and target therapeutics
Healthcare IT Infrastructure

IBM

WellPoint

Deploy IBM’s Watson-based solution to evidence-based healthcare decision-making support

Oracle

Moffitt Cancer Center

Deploy Oracle’s informatics platform to store and manage patient medical information
Data Integration

Siemens Diagnostics

Susquehanna Health

Integration of imaging and laboratory diagnostics

Cernostics

Geisinger
Health

Integration of advanced tissue diagnostics, digital pathology, annotated biorepository and EMR
to create solutions
next-generation treatment decision support solutions

CardioDx

GE Healthcare

Integration of genomics with imaging data in CVD

Implications

L.E.K. believes the likely debate won’t center on which models and companies will prevail. It appears that the industry is now moving along the continuum to a truly holistic capability.
The mainstay of personalized medicine today will become integrated and enhanced by other data.

The companies that succeed will be able to capture vast amounts of information

  • and synthesize it for personalized care.

Holistic models will be powered by increasingly larger datasets and sophisticated decision-making algorithms.
This will require the participation of an increasingly broad range of participants to provide the

  • science, technologies, infrastructure and tools necessary for deployment.

There are a number of questions posed by this study, but only some are of interest to this discussion:

Group A.    Pharmaceuticals and Devices

  •  How will holistic decision support impact the landscape ?
    (e.g., treatment /testing algorithms, decision making, clinical trials)

Group B.     Diagnostics and   Decision Support

  •   What components will be required to build out holistic solutions?

– Testing technologies

– Information (e.g., associations, outcomes, trial databases, records)

– IT infrastructure for data integration and management, simulation and reporting

  •  How can various components be brought together to build seamless holistic  decision support solutions?

Group C.      Providers and Payers

  •  In which areas should models be deployed over time?
  • Where are clinical and economic arguments  most compelling?

Part 2: Historical Scientific Leaders Memoirs – Realtime Clinical Expert Support

Gil David and Larry Bernstein have developed, in consultation with Prof. Ronald Coifman,
in the Yale University Applied Mathematics Program,

A software system that is the equivalent of an intelligent Electronic Health Records Dashboard that

  • provides empirical medical reference and
  • suggests quantitative diagnostics options.

The current design of the Electronic Medical Record (EMR) is a linear presentation of portions of the record

  • by services
  • by diagnostic method, and
  • by date, to cite examples.

This allows perusal through a graphical user interface (GUI) that partitions the information or necessary reports

  • in a workstation entered by keying to icons.

This requires that the medical practitioner finds the

  • history,
  • medications,
  • laboratory reports,
  • cardiac imaging and
  • EKGs, and
  • radiology in different workspaces.

The introduction of a DASHBOARD has allowed a presentation of

  • drug reactions
  • allergies
  • primary and secondary diagnoses, and
  • critical information

about any patient the care giver needing access to the record.

The advantage of this innovation is obvious.  The startup problem is what information is presented and

  • how it is displayed, which is a source of variability and a key to its success.

We are proposing an innovation that supercedes the main design elements of a DASHBOARD and utilizes

  • the conjoined syndromic features of the disparate data elements.

So the important determinant of the success of this endeavor is that

  • it facilitates both the workflow and the decision-making process with a reduction of medical error.

Continuing work is in progress in extending the capabilities with model datasets, and sufficient data because

  • the extraction of data from disparate sources will, in the long run, further improve this process.

For instance, the finding of  both ST depression on EKG coincident with an elevated cardiac biomarker (troponin), particularly in the absence of substantially reduced renal function. The conversion of hematology based data into useful clinical information requires the establishment of problem-solving constructs based on the measured data.

The most commonly ordered test used for managing patients worldwide is the hemogram that often incorporates

  • the review of a peripheral smear.

While the hemogram has undergone progressive modification of the measured features over time the subsequent expansion of the panel of tests has provided a window into the cellular changes in the

  • production
  • release
  • or suppression

of the formed elements from the blood-forming organ into the circulation. In the hemogram one can view

  • data reflecting the characteristics of a broad spectrum of medical conditions.

Progressive modification of the measured features of the hemogram has delineated characteristics expressed as measurements of

  • size
  • density, and
  • concentration,

resulting in many characteristic features of classification. In the diagnosis of hematological disorders

  • proliferation of marrow precursors, the
  • domination of a cell line, and features of
  • suppression of hematopoiesis

provide a two dimensional model.  Other dimensions are created by considering

  • the maturity of the circulating cells.

The application of rules-based, automated problem solving should provide a valid approach to

  • the classification and interpretation of the data used to determine a knowledge-based clinical opinion.

The exponential growth of knowledge since the mapping of the human genome enabled by parallel advances in applied mathematics that have not been a part of traditional clinical problem solving.

As the complexity of statistical models has increased

  • the dependencies have become less clear to the individual.

Contemporary statistical modeling has a primary goal of finding an underlying structure in studied data sets.
The development of an evidence-based inference engine that can substantially interpret the data at hand and

  • convert it in real time to a “knowledge-based opinion”

could improve clinical decision-making by incorporating

  • multiple complex clinical features as well as duration of onset into the model.

An example of a difficult area for clinical problem solving is found in the diagnosis of SIRS and associated sepsis. SIRS (and associated sepsis) is a costly diagnosis in hospitalized patients.   Failure to diagnose sepsis in a timely manner creates a potential financial and safety hazard.  The early diagnosis of SIRS/sepsis is made by the application of defined criteria by the clinician.

  • temperature
  • heart rate
  • respiratory rate and
  • WBC count

The application of those clinical criteria, however, defines the condition after it has developed and

  • has not provided a reliable method for the early diagnosis of SIRS.

The early diagnosis of SIRS may possibly be enhanced by the measurement of proteomic biomarkers, including

  • transthyretin
  • C-reactive protein
  • procalcitonin
  • mean arterial pressure

Immature granulocyte (IG) measurement has been proposed as a

  • readily available indicator of the presence of granulocyte precursors (left shift).

The use of such markers, obtained by automated systems

  • in conjunction with innovative statistical modeling, provides
  • a promising approach to enhance workflow and decision making.

Such a system utilizes the conjoined syndromic features of

  • disparate data elements with an anticipated reduction of medical error.

How we frame our expectations is so important that it determines

  • the data we collect to examine the process.

In the absence of data to support an assumed benefit, there is no proof of validity at whatever cost.
This has meaning for

  • hospital operations,
  • for nonhospital laboratory operations,
  • for companies in the diagnostic business, and
  • for planning of health systems.

The problem stated by LL  WEED in “Idols of the Mind” (Dec 13, 2006): “ a root cause of a major defect in the health care system is that, while we falsely admire and extol the intellectual powers of highly educated physicians, we do not search for the external aids their minds require”.  HIT use has been

  • focused on information retrieval, leaving
  • the unaided mind burdened with information processing.

We deal with problems in the interpretation of data presented to the physician, and how through better

  • design of the software that presents this data the situation could be improved.

The computer architecture that the physician uses to view the results is more often than not presented

  • as the designer would prefer, and not as the end-user would like.

In order to optimize the interface for physician, the system would have a “front-to-back” design, with
the call up for any patient ideally consisting of a dashboard design that presents the crucial information

  • that the physician would likely act on in an easily accessible manner.

The key point is that each item used has to be closely related to a corresponding criterion needed for a decision.

Feature Extraction.

This further breakdown in the modern era is determined by genetically characteristic gene sequences
that are transcribed into what we measure.  Eugene Rypka contributed greatly to clarifying the extraction
of features in a series of articles, which

  • set the groundwork for the methods used today in clinical microbiology.

The method he describes is termed S-clustering, and

  • will have a significant bearing on how we can view laboratory data.

He describes S-clustering as extracting features from endogenous data that

  • amplify or maximize structural information to create distinctive classes.

The method classifies by taking the number of features

  • with sufficient variety to map into a theoretic standard.

The mapping is done by

  • a truth table, and each variable is scaled to assign values for each: message choice.

The number of messages and the number of choices forms an N-by N table.  He points out that the message

  • choice in an antibody titer would be converted from 0 + ++ +++ to 0 1 2 3.

Even though there may be a large number of measured values, the variety is reduced

  • by this compression, even though there is risk of loss of information.

Yet the real issue is how a combination of variables falls into a table with meaningful information. We are concerned with accurate assignment into uniquely variable groups by information in test relationships. One determines the effectiveness of each variable by

  • its contribution to information gain in the system.

The reference or null set is the class having no information.  Uncertainty in assigning to a classification is

  • only relieved by providing sufficient information.

The possibility for realizing a good model for approximating the effects of factors supported by data used

  • for inference owes much to the discovery of Kullback-Liebler distance or “information”, and Akaike
  • found a simple relationship between K-L information and Fisher’s maximized log-likelihood function.

In the last 60 years the application of entropy comparable to

  • the entropy of physics, information, noise, and signal processing,
  • has been fully developed by Shannon, Kullback, and others, and has been integrated with modern statistics,
  • as a result of the seminal work of Akaike, Leo Goodman, Magidson and Vermunt, and work by Coifman.

Gil David et al. introduced an AUTOMATED processing of the data available to the ordering physician and

  • can anticipate an enormous impact in diagnosis and treatment of perhaps half of the top 20 most common
  • causes of hospital admission that carry a high cost and morbidity.

For example: anemias (iron deficiency, vitamin B12 and folate deficiency, and hemolytic anemia or myelodysplastic syndrome); pneumonia; systemic inflammatory response syndrome (SIRS) with or without bacteremia; multiple organ failure and hemodynamic shock; electrolyte/acid base balance disorders; acute and chronic liver disease; acute and chronic renal disease; diabetes mellitus; protein-energy malnutrition; acute respiratory distress of the newborn; acute coronary syndrome; congestive heart failure; disordered bone mineral metabolism; hemostatic disorders; leukemia and lymphoma; malabsorption syndromes; and cancer(s)[breast, prostate, colorectal, pancreas, stomach, liver, esophagus, thyroid, and parathyroid].

Rudolph RA, Bernstein LH, Babb J: Information-Induction for the diagnosis of myocardial infarction. Clin Chem 1988;34:2031-2038.

Bernstein LH (Chairman). Prealbumin in Nutritional Care Consensus Group.

Measurement of visceral protein status in assessing protein and energy malnutrition: standard of care. Nutrition 1995; 11:169-171.

Bernstein LH, Qamar A, McPherson C, Zarich S, Rudolph R. Diagnosis of myocardial infarction: integration of serum markers and clinical descriptors using information theory. Yale J Biol Med 1999; 72: 5-13.

Kaplan L.A.; Chapman J.F.; Bock J.L.; Santa Maria E.; Clejan S.; Huddleston D.J.; Reed R.G.; Bernstein L.H.; Gillen-Goldstein J. Prediction of Respiratory Distress Syndrome using the Abbott FLM-II amniotic fluid assay. The National Academy of Clinical Biochemistry (NACB) Fetal Lung Maturity Assessment Project.  Clin Chim Acta 2002; 326(8): 61-68.

Bernstein LH, Qamar A, McPherson C, Zarich S. Evaluating a new graphical ordinal logit method (GOLDminer) in the diagnosis of myocardial infarction utilizing clinical features and laboratory data. Yale J Biol Med 1999; 72:259-268.

Bernstein L, Bradley K, Zarich SA. GOLDmineR: Improving models for classifying patients with chest pain. Yale J Biol Med 2002; 75, pp. 183-198.

Ronald Raphael Coifman and Mladen Victor Wickerhauser. Adapted Waveform Analysis as a Tool for Modeling, Feature Extraction, and Denoising. Optical Engineering, 33(7):2170–2174, July 1994.

R. Coifman and N. Saito. Constructions of local orthonormal bases for classification and regression. C. R. Acad. Sci. Paris, 319 Série I:191-196, 1994.

Realtime Clinical Expert Support and validation System

We have developed a software system that is the equivalent of an intelligent Electronic Health Records Dashboard that provides empirical medical reference and suggests quantitative diagnostics options.

The primary purpose is to

  1. gather medical information,
  2. generate metrics,
  3. analyze them in realtime and
  4. provide a differential diagnosis,
  5. meeting the highest standard of accuracy.

The system builds its unique characterization and provides a list of other patients that share this unique profile, therefore utilizing the vast aggregated knowledge (diagnosis, analysis, treatment, etc.) of the medical community. The

  • main mathematical breakthroughs are provided by accurate patient profiling and inference methodologies
  • in which anomalous subprofiles are extracted and compared to potentially relevant cases.

As the model grows and its knowledge database is extended, the diagnostic and the prognostic become more accurate and precise. We anticipate that the effect of implementing this diagnostic amplifier would result in

  • higher physician productivity at a time of great human resource limitations,
  • safer prescribing practices,
  • rapid identification of unusual patients,
  • better assignment of patients to observation, inpatient beds,
    intensive care, or referral to clinic,
  • shortened length of patients ICU and bed days.

The main benefit is a real time assessment as well as diagnostic options based on

  • comparable cases,
  • flags for risk and potential problems

as illustrated in the following case acquired on 04/21/10. The patient was diagnosed by our system with severe SIRS at a grade of 0.61 .

Graphical presentation of patient status

The patient was treated for SIRS and the blood tests were repeated during the following week. The full combined record of our system’s assessment of the patient, as derived from the further hematology tests, is illustrated below. The yellow line shows the diagnosis that corresponds to the first blood test (as also shown in the image above). The red line shows the next diagnosis that was performed a week later.

Progression changes in patient ICU stay with SIRS

Chemistry of Herceptin [Trastuzumab] is explained with images in

http://www.chm.bris.ac.uk/motm/herceptin/index_files/Page450.htm

 

REFERENCES

The Cost Burden of Disease: U.S. and Michigan CHRT Brief. January 2010.
@www.chrt.org

The National Hospital Bill: The Most Expensive Conditions by Payer, 2006. HCUP Brief #59.

Rudolph RA, Bernstein LH, Babb J: Information-Induction for the diagnosis of myocardial infarction. Clin Chem 1988;34:2031-2038.

Bernstein LH, Qamar A, McPherson C, Zarich S, Rudolph R. Diagnosis of myocardial infarction: integration of serum markers and clinical descriptors using information theory. Yale J Biol Med 1999; 72: 5-13.

Kaplan L.A.; Chapman J.F.; Bock J.L.; Santa Maria E.; Clejan S.; Huddleston D.J.; Reed R.G.; Bernstein L.H.; Gillen-Goldstein J. Prediction of Respiratory Distress Syndrome using the Abbott FLM-II amniotic fluid assay. The National Academy of Clinical Biochemistry (NACB) Fetal Lung Maturity Assessment Project.  Clin Chim Acta 2002; 326(8): 61-68.

Bernstein LH, Qamar A, McPherson C, Zarich S. Evaluating a new graphical ordinal logit method (GOLDminer) in the diagnosis of myocardial infarction utilizing clinical features and laboratory data. Yale J Biol Med 1999; 72:259-268.

Bernstein L, Bradley K, Zarich SA. GOLDmineR: Improving models for classifying patients with chest pain. Yale J Biol Med 2002; 75, pp. 183-198.

Ronald Raphael Coifman and Mladen Victor Wickerhauser. Adapted Waveform Analysis as a Tool for Modeling, Feature Extraction, and Denoising. Optical Engineering 1994; 33(7):2170–2174.

  1. Coifman and N. Saito. Constructions of local orthonormal bases for classification and regression. C. R. Acad. Sci. Paris, 319 Série I:191-196, 1994.

W Ruts, S De Deyne, E Ameel, W Vanpaemel,T Verbeemen, And G Storms. Dutch norm data for 13 semantic categories and 338 exemplars. Behavior Research Methods, Instruments, & Computers 2004; 36 (3): 506–515.

De Deyne, S Verheyen, E Ameel, W Vanpaemel, MJ Dry, WVoorspoels, and G Storms.  Exemplar by feature applicability matrices and other Dutch normative data for semantic concepts.  Behavior Research Methods 2008; 40 (4): 1030-1048

Landauer, T. K., Ross, B. H., & Didner, R. S. (1979). Processing visually presented single words: A reaction time analysis [Technical memorandum].  Murray Hill, NJ: Bell Laboratories. Lewandowsky, S. (1991).

Weed L. Automation of the problem oriented medical record. NCHSR Research Digest Series DHEW. 1977;(HRA)77-3177.

Naegele TA. Letter to the Editor. Amer J Crit Care 1993:2(5):433.

Retinal prosthetic strategy with the capacity to restore normal vision, Sheila Nirenberg and Chethan Pandarinath

http://www.pnas.org/content/109/37/15012

 

Other related articles published in http://pharmaceuticalintelligence.com include the following:

 

  • The Automated Second Opinion Generator

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/08/13/the-automated-second-opinion-generator/

 

  • The electronic health record: How far we have travelled and where is journeys end

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/09/21/the-electronic-health-record-how-far-we-have-travelled-and-where-is-journeys-end/

 

  • The potential contribution of informatics to healthcare is more than currently estimated.

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/02/18/the-potential-contribution-of-informatics-to-healthcare-is-more-than-currently-estimated/

 

  • Clinical Decision Support Systems for Management Decision Making of Cardiovascular Diseases

Justin Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/05/04/cardiovascular-diseases-decision-support-systems-for-disease-management-decision-making/

 

  • Demonstration of a diagnostic clinical laboratory neural network applied to three laboratory data conditioning problems

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/08/13/demonstration-of-a-diagnostic-clinical-laboratory-neural-network-agent-applied-to-three-laboratory-data-conditioning-problems/

 

  • CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/08/30/cracking-the-code-of-human-life-the-birth-of-bioinformatics-computational-genomics/

 

  • Genetics of conduction disease atrioventricular AV conduction disease block gene mutations transcription excitability and energy homeostasis

Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/28/genetics-of-conduction-disease-atrioventricular-av-conduction-disease-block-gene-mutations-transcription-excitability-and-energy-homeostasis/

 

  • Identification of biomarkers that are related to the actin cytoskeleton

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/12/10/identification-of-biomarkers-that-are-related-to-the-actin-cytoskeleton/

 

  • Regression: A richly textured method for comparison of predictor variables

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/08/14/regression-a-richly-textured-method-for-comparison-and-classification-of-predictor-variables/

 

  • Diagnostic evaluation of SIRS by immature granulocytes

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/08/02/diagnostic-evaluation-of-sirs-by-immature-granulocytes/

 

  • Big data in genomic medicine

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/12/17/big-data-in-genomic-medicine/

 

  • Automated inferential diagnosis of SIRS, sepsis, septic shock

Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/08/01/automated-inferential-diagnosis-of-sirs-sepsis-septic-shock/

 

  • A Software Agent for Diagnosis of ACUTE MYOCARDIAL INFARCTION

Isaac E. Mayzlin, Ph.D., David Mayzlin and Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2012/08/12/1815/

 

  • Artificial Vision: Cornell and Stanford Researchers crack Retinal Code

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/15/1946/

 

  • Vinod Khosla: 20 doctor included speculations, musings of a technology optimist or technology will replace 80 percent of what doctors do

Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/05/13/vinod-khosla-20-doctor-included-speculations-musings-of-a-technology-optimist-or-technology-will-replace-80-of-what-doctors-do/

 

  • Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization

Larry H Bernstein, MD, FACP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/05/05/bioengineering-of-vascular-and-tissue-models/

 

  • The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN

Aviva Lev-Ari, PhD, RN 2/28/2013

https://pharmaceuticalintelligence.com/2013/02/28/the-heart-vasculature-protection-a-concept-based-pharmacological-therapy-including-thymosin/

 

  • FDA Pending 510(k) for The Latest Cardiovascular Imaging Technology

Aviva Lev-Ari, PhD, RN 1/28/2013

https://pharmaceuticalintelligence.com/2013/01/28/fda-pending-510k-for-the-latest-cardiovascular-imaging-technology/

 

  • PCI Outcomes, Increased Ischemic Risk associated with Elevated Plasma Fibrinogen not Platelet Reactivity

Aviva Lev-Ari, PhD, RN 1/10/2013

https://pharmaceuticalintelligence.com/2013/01/10/pci-outcomes-increased-ischemic-risk-associated-with-elevated-plasma-fibrinogen-not-platelet-reactivity/

 

  • The ACUITY-PCI score: Will it Replace Four Established Risk Scores — TIMI, GRACE, SYNTAX, and Clinical SYNTAX

Aviva Lev-Ari, PhD, RN 1/3/2013

https://pharmaceuticalintelligence.com/2013/01/03/the-acuity-pci-score-will-it-replace-four-established-risk-scores-timi-grace-syntax-and-clinical-syntax/

 

  • Coronary artery disease in symptomatic patients referred for coronary angiography: Predicted by Serum Protein Profiles

Aviva Lev-Ari, PhD, RN 12/29/2012

https://pharmaceuticalintelligence.com/2012/12/29/coronary-artery-disease-in-symptomatic-patients-referred-for-coronary-angiography-predicted-by-serum-protein-profiles

 

  • New Definition of MI Unveiled, Fractional Flow Reserve (FFR)CT for Tagging Ischemia

Aviva Lev-Ari, PhD, RN 8/27/2012

https://pharmaceuticalintelligence.com/2012/08/27/new-definition-of-mi-unveiled-fractional-flow-reserve-ffrct-for-tagging-ischemia/
 

Additional Related articles

  • Hospital EHRs Inadequate for Big Data; Need for Specialized -Omics Systems(labsoftnews.typepad.com)
  • Apple Inc. (AAPL), QUALCOMM, Inc. (QCOM): Disruptions Needed(insidermonkey.com)
  • Netsmart Names Dr. Ian Chuang Senior Vice President, Healthcare Informatics and Chief Medical Officer(prweb.com)
  • Strategic partnership signals new age of stratified medicine(prweb.com)
  • Personalized breast cancer therapeutic with companion diagnostic poised for clinical trials in H2(medcitynews.com)

Read Full Post »


Personalized Medicine in NSCLC

Reviewer: Larry H Bernstein, MD, FCAP

Introduction

Early in the 21st century, gefitinib, an epi­dermal growth factor receptor (EGFRtyrosine kinase inhibitor became available  for the treatment of non-small cell lung can­cer (NSCLC). Over 80% of selected patients

  • EGFR mutation-positive patients, respond to gefitinib treatment;
  • most patients develop acquired resistance to gefitinib within a few years.
Recently, many studies have been performed to determine precisely how to select patients who will respond to gefitinib, the best timing for its administration, and how to avoid the development of acquired resistance as well as adverse drug effects.
Lung cancers are classified according to their his­tological type. Because each variant has different bio­logical and clinical properties, including response to treatment, a precise classification is essential to pro­vide appropriate therapy for individual patients. Lung cancer consists of two broad categories—non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).

NSCLC  – 20%–40% RR to chemotherapy

  • ade­nocarcinoma (AC),  40%–50% ( most common form)
    • higher sensitivity to chemotherapy than SCC or LC
  • squamous cell carcinoma (SCC),  ∼30%
  •  large cell carcinoma (LCC). 10%
The majority of patients with SCLC are diagnosed with
  • advanced cancer with distant metastasis
  • high sensitivity to chemotherapy.
  • response rate (RR) for SCLC is reportedly 60%–80%
  • complete remission is observed in only 15%–20% of patients
The Potential of Personalized Medicine in Advanced NSCLC
Personalized medicine—
  • matching a patient’s unique molecular profile with an appropriate targeted therapy—
  • is transforming the diagnosis and treatment of non–small-cell lung cancer (NSCLC).

Through molecular diagnostics, tumor cells may be differentiated based on the presence or absence of

  • receptor proteins,
  • driver mutations, or
  • oncogenic fusion/rearrangements.

The convergence of advancing research in drug development and genetic sequencing has permitted the development of therapies specifically targeted to certain biomarkers, which may offer a differential clinical benefit.

Putting personalized medicine in NSCLC into practice
With the data on the prognostic and predictive biomarkers EGFR and ALK, biomarker testing is increasingly important in therapy decisions in NSCLC.1,2
Biomarker Testing in Advanced NSCLC: Evolution in Pathology Clinical Practice
http://www.medscape.com/infosite/letstest/article-3
Multidisciplinary Approaches in the Changing Landscape of Advanced NSCLC
http://www.medscape.com/infosite/letstest/article-4
Oncology Perspectives on Biomarker Testing
http://www.medscape.com/infosite/letstest/article-1

References
1. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology™: Non-Small Cell Lung Cancer. Version 2.2012.
http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf.                   August 6, 2012.
2. Gazdar AF. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy. Cancer Metastasis Rev. 2010;29(1):37-48.

Over the last decade, a growing number of biomarkers have been identified in NSCLC.3,4 To date, 2 of these molecular markers have been shown to have both prognostic and predictive value in patients with advanced NSCLC: epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements.5-8 Testing for these biomarkers may provide physicians with more information on which to base treatment decisions, and reflex testing may permit consideration of appropriate therapy from the outset of treatment.2,9,10

References:
Lovly CM, Carbone DP. Lung cancer in 2010: one size does not fit all. Nat Rev Clin Oncol. 2011;8(2):68-70.
Dacic S. Molecular diagnostics of lung carcinomas. Arch Pathol Lab Med. 2011;135(5):622-629.
Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367-1380.
Quest Diagnostics. Lung Cancer Mutation Panel (EGFR, KRAS, ALK).                       Sept 17, 2012
http://questdiagnostics.com/hcp/intguide/jsp/showintguidepage.jsp?fn=Lung/TS_LungCancerMutation_Panel.htm.

Rosell R, Gervais R, Vergnenegre A, et al. Erlotinib versus chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC) patients (p) with epidermal growth factor receptor (EGFR) mutations: interim results of the European Erlotinib Versus Chemotherapy (EURTAC) phase III randomized trial. Presented at: 2011 American Society of Clinical Oncology (ASCO) Annual Meeting, J Clin Oncol. 2011;29(suppl). Abstract 7503.                        Aug 6, 2012.                    http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=102&abstractID=78285.
Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947-957.
Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N Engl J Med. 2010;363(18):1693-1703.
National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology™: Non-Small Cell Lung Cancer. Version 2.2012.
http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf.                        Aug 6, 2012
College of American Pathologists (CAP)/International Association for the Study of Lung Cancer (IASLC)/Association for Molecular Pathology (AMP) expert panel. Lung cancer biomarkers guideline draft recommendations. http://capstaging.cap.org/apps/docs/membership/transformation/new/lung_public_comment_supporting_materials.pdf.      Aug 6, 2012.
Gazdar AF. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy. Cancer Metastasis Rev. 2010;29(1):37-48.

 Background Studies
In 2002, gefitinib (ZD1839; AstraZeneca) , the first epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, became available as an innovative molecular-targeted drug for the treatment of unresectable NSCLC. Initially, many NSCLC patients were expected to respond to gefitinib because many solid tumors, including NSCLC, are known to overexpress EGFR, which has a role in tumor pro­liferation and is used as a biomarker to predict poor prognosis. Gefitinib was shown to have a dra­matic effect on a limited number of patients; but  it was ineffective in 70%–80% of patients with NSCLC. There have been reports of death caused by interstitial pneumonia (IP), one of the critical adverse drug reactions (ADRs) associated with gefitinib use. Therefore, there is a need for  predicting the effects of gefitinib, and criteria for select­ing patients who could be treated with gefitinib.
 In 2004, Lynch et al. and Paez et al. each pub­lished, on the same day, sensational reports in the New England Journal of Medicine and Science, identifying somatic mutations in the tyrosine kinase domain of the EGFR gene in patients with gefitinib-sensitive lung cancer, as compared with none of the patients who had no response. Therefore, screening for EGFR mutations in lung cancer showed potential for identifying patients who would respond to gefi­tinib therapy. It then was found that patients with EGFR mutations in the area of the gene cod­ing for the ATP-binding pocket of the tyrosine kinase domain responded to gefitinib. Consequently, the EGFR genotyping has been used to select patients who will respond to gefitinib. Other genetic mutations have also been reported as indicators of the response or resistance to gefitinib; for example, mutations of the KRAS gene are associated with primary resistance to gefitinib. Thus, screening of EGFR and KRAS is used to
  • predict the effects of gefi­tinib and
  • to select patients who will respond to gefitinib in the clinical setting.
Until now, the effects of gefitinib have been predicted only by genotyping factors, such as EGFR and KRAS mutations. However, Nakamura et al showed a relationship between the blood concentration of gefitinib and its clinical effects. In their study of 23 NSCLC patients with EGFR mutations, the ratio of the gefitinib concentration on day 8 to that on day 3 after the first administration of gefitinib (C8/C3) correlated with the progression-free survival (PFS) period. Patients with a higher C8/C3 ratio had a significantly lon­ger PFS (P = 0.0158, 95% confidence interval [CI]: 0.237–0.862), which  suggests the importance of the PK of gefitinib on its clinical outcome.   Chmielecki et al. concurrently reported that maintain­ing a high concentration of erlotinib, another EGFR tyrosine kinase inhibitor (EGFR-TKIs) with the same mechanism of action as gefitinib, could
  1. delay the establishment of drug-resistant tumor cells and
  2. decrease the proliferation rate of drug-resistant cells compared to
    • treatment using a lower concentration of erlotinib.
Pharmacogenetic profile
Initially, gefitinib was expected to induce a response in patients with tumors that overexpressed EGFR because it exerts its antineoplastic effects by com­petitively inhibiting the binding of ATP to the ATP-binding site of EGFR.  A number of studies contradict this hypothesis:
(1) while approxi­mately 40%–80% of NSCLC overexpress EGFR, only 10%–20% of NSCLC patients respond to gefi­tinib;5,6 and
(2) while EGFR overexpression is known to be more common in SCC than AC, gefitinib shows a higher antineoplastic effect on AC than on SCC, while other reports indicated no correlation between the expression levels of EGFR and clinical outcomes.
In 2004, somatic mutations were identified in the EGFR tyrosine kinase domain of patients with gefitinib-responsive lung cancer, as compared with no mutations in patients exhibiting no response, and the presence of an EGFR mutation was highly correlated with a good response to gefitinib.The conformational change of the EGFR ATP-binding site caused by genetic mutations constitutively acti­vates the EGFR downstream signaling pathway and increases the malignancy of cancer. Conversely, the conformational change of the ATP-binding site can also increase its affinity for gefitinib; therefore, gefi­tinib can inhibit the downstream signaling pathway more easily, strongly induces apoptosis, and reduces the proliferation of cancer cells.
Mutations in exons 18–21 of EGFR are predictive factors for the clinical efficacy of gefitinib;
  • deletions in exon 19 and missense mutations in exon 21 account for ∼90% of these mutations.

The detection of EGFR muta­tions in exons 19 and 21 is considered to be essential to predict the clinical efficacy of gefitinib.
Acquired resistance
All responders eventually develop resistance to gefitinib but in 2005, an EGFR mutation in exon 20, which substitutes methionine for threonine at amino acid position 790 (T790M), was reported to be one of the main causes of acquired resistance to gefitinib. The EGFR T790M vari­ant

  1. changes the structural conformation of the ATP-binding site, thereby
  2. increasing the affinity of ATP to EGFR, while
  3. the affinity of gefitinib to ATP is unchanged.

Screening methods for EGFR and KRAS mutations
The detection of EGFR and KRAS mutations has been usually achieved by sequencing DNA amplified from tumor tissues; however, sequencing techniques are too complex, time-consuming, and expensive.  The selection of an appropri­ate method to detect EGFR and KRAS mutations is essential to make an exact prediction of the efficacy of gefitinib in individual patients. Advances in diagnostics and treatments for NSCLC have led to better outcomes and higher standards of what outcomes are expected. These new understandings and treatments have raised multiple new questions and issues with regard to the decisions on the appropriate treatment of NSCLC patients.

  • Biomarkers are increasingly recognized and applied for guidance in diagnosis, prognosis and treatment decisions and evaluation.
  • Biologics and newer cancer treatments are enabling the possibility for new combined treatment modalities in earlier stage disease
  • Maintenance therapy has been shown to be useful, but optimal therapy choices before and after maintenance therapy need clarification
  • The importance of performance status on treatment decisions
  • Comparative effectiveness is becoming an expectation across all treatments and diseases, and will prove difficult to accomplish within the complexity of cancer diseases
NCCN Molecular Testing White Paper: Effectiveness, Efficiency, and Reimbursement
PF Engstrom, MG Bloom,GD Demetri, PG Febbo, et al.
Personalized medicine in oncology is maturing and evolving rapidly, and the use of molecular biomarkers in clinical decisionmaking is growing. This raises important issues regarding the safe, effective, and efficient deployment of molecular tests to guide appropriate care, specifically regarding laboratory-developed tests and companion diagnostics. In May 2011, NCCN assembled a work group composed of thought leaders from NCCN Member Institutions and other organizations to identify challenges and provide guidance regarding molecular testing in oncology and its corresponding utility. The NCCN Molecular Testing Work Group identified
challenges surrounding molecular testing, including health care provider knowledge, determining clinical utility, coding and billing for molecular tests, maintaining clinical and analytic validity of molecular tests, efficient use of specimens, and building clinical evidence. (JNCCN 2011;9[Suppl 6]:S1–S16)
Executive Summary
The FDA recently announced plans for oversight of laboratory-developed tests (LDTs) and released draft guidance regarding the development of companion diagnostics concurrently with therapeutics, both areas over which the FDA has regulatory authority. As recognized by the FDA, these types of diagnostic tests are used increasingly to directly inform treatment decisions, and this especially impacts patients with cancer and their oncologists. However, because of the increasing complexity of some LDTs and increasing commercial interest in oncology-related LDTs in general, the FDA is considering whether its policy of exercising “enforcement discretion”

for LDTs is still appropriate. To provide guidance regarding challenges of molecular testing to health care providers and other stakeholders, NCCN assembled a work group composed of thought leaders from NCCN Member Institutions and other organizations external to NCCN.  The NCCN Molecular Testing Work Group agreed to define molecular testing in oncology as

  • procedures designed to detect somatic or germline mutations in DNA and
  • changes in gene or protein expression that could impact the
    • diagnosis,
    • prognosis,
    • prediction, and
    • evaluation of therapy of patients with cancer.
Therefore, the discussion focused on molecular tests that predict outcomes for therapy.
Realizing the importance of personalized medicine in advanced NSCLC
E Topol, B Buehler, GS Ginsburg.       Medscape Molec Medicine
With the data on the prognostic and predictive biomarkers EGFR and ALK, biomarker testing is increasingly important in therapy decisions in NSCLC
http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf/
Lung Cancer in the Never Smoker Population: An Expert Interview With Dr. Nasser Hanna

Lung cancer in the never smoker population is a distinct disease entity with specific molecular changes, offering the potential for targeted therapy.
Experts And Viewpoint, Medscape Hematology-Oncology, December 2007

An Update on New and Emerging Therapies for NSCLC
Simon L. Ekman, MD, PhD; Fred R. Hirsch, MD, PhD
On completion of these readings participants will be thoroughly familiar with these issues:
  1. The influence of histologic types and genetic and molecular markers on choosing and personalizing therapy in patients with advanced NSCLC
  2. The role of the pathologist in properly classifying subtypes of NSCLC and reporting the presence of molecular markers in tumor samples
  3. Familiarize themselves with effective methods of obtaining adequate tissue samples from patients and recognize the importance of accurate pathologic assessment of NSCLC
The rapid developments in molecular biology have opened up new possibilities for individualized treatment of non-small cell lung cancer (NSCLC), and, in recent years, has mainly focused on the epidermal growth factor receptor (EGFR). A greater understanding of the molecular mechanisms behind
  • tumorigenesis and
  • the identification of new therapeutic targets
    • have sparked the development of novel agents
    • intended to improve the standard chemotherapy regimens for NSCLC.
Along with the advent of targeted therapy, identifying biomarkers to predict the subset of patients more likely to benefit from a specific targeted intervention has become increasingly important.
EGFR TYROSINE KINASE INHIBITORS 
tumor-associated mutations in the tyrosine kinase domain of EGFR have been associated with response to EGFR TKIs
The most common EGFR-sensitizing mutations encompass deletions in exon 19 and a point mutation at L858R in exon 21; together,
  • they account for approximately 85% of EGFR mutations in NSCLC.
  • Other EGFR mutations have been detected, particularly in exon 20.
    •  mutations identified in exon 20 have been linked to resistance to EGFR TKIsNon-Small Cell Lung Cancer: Biologic and Therapeutic Considerations for Personalized Management
      Taofeek K. Owonikoko, MD, PhD
What is the role and application of molecular profiling in the management of NSCLC?
It is essential to:
  1. Identify advances in the understanding of molecular biology and histologic profiling in the treatment of NSCLC
  2. Summarize clinical data supporting the use of tumor biomarkers as predictors of therapeutic efficacy of targeted agents in NSCLC
  3. Devise an individualized treatment plan for patients with advanced NSCLC based on a tumor’s molecular profile
  4. Identify methods for overcoming barriers to effective incorporation of molecular profiling for the management of NSCLC into clinical practice
Non-small cell lung cancer (NSCLC),the most common type of lung cancer, usually grows and spreads more slowly than small cell lung cancer.
The three common forms of NSCLC are:
  1. Adenocarcinomas are often found in an outer area of the lung.
  2. Squamous cell carcinomas are usually found in the center of the lung next to an air tube (bronchus).
  3. Large cell carcinomas occur in any part of the lung and tend to grow and spread faster than the other two types
Smoking causes most cases of lung cancer. The risk depends on the number of cigarettes you smoke every day and for how long you have smoked. Some people who do not smoke and have never smoked develop lung cancer.
Working with or near the following cancer-causing chemicals or materials can also increase your risk:
  • Asbestos
  • Chemicals such as uranium, beryllium, vinyl chloride, nickel chromates, coal products, mustard gas, chloromethyl ethers, gasoline, and diesel exhaust
  • Certain alloys, paints, pigments, and preservatives
  • Products using chloride and formaldehyde
Non-small cell lung c

ancer
(NSCLC) accounts for
  • approximately 85% of all lung cancers.
Lung cancer  may produce no symptoms until the disease is well advanced, so early recognition of symptoms may be beneficial to outcome.
At initial diagnosis,
  • 20% of patients have localized disease,
  • 25% of patients have regional metastasis, and
  • 55% of patients have distant spread of disease.
Revisiting Doublet Maintenance Chemo in Advanced NSCLC 
H. Jack West, MD
  • Pemetrexed Versus Pemetrexed and Carboplatin as Second-Line Chemotherapy In Advanced Non-Small-Cell Lung Cancer
Ardizzoni A, Tiseo M, Boni L, et al
J Clin Oncol. 2102;30:4501-4507
Historically, our second-line therapy has evolved into a strategy of pursuing single-agent therapies for patients with advanced non-small cell lung cancer (NSCLC) who have received prior chemotherapy. This approach was developed on the basis of benefits conferred by such established treatments as docetaxel, pemetrexed, and erlotinib — each well-tested as single agents — and evidence indicating a survival benefit in previously treated patients.
A study out of Italy by Ardizzoni and colleagues published in the Journal of Clinical Oncology directly compares carboplatin/pemetrexed with pemetrexed alone, and
  • it provides more evidence that our current approach of sequential singlet therapy remains appropriate.
This randomized phase 2 trial enrolled 239 patients with advanced NSCLC, initially of any histology, then later amended (September 2008) to enroll
  • only patients with non-squamous NSCLC because of mounting evidence that pemetrexed is not active in patients with the squamous subtype of advanced NSCLC.
Patients must have received prior chemotherapy (without restriction on regimen except that it could not include pemetrexed). Participants were randomly assigned 1:1 to receive pemetrexed at the standard dose of 500 mg/m2 IV every 21 days or the same chemotherapy with carboplatin at an area under the curve of 5, also IV every 21 days.
The primary endpoint for the trial was progression-free survival (PFS), and the trial was intended to have results pooled with a nearly identically designed trial that was done in The Netherlands. The Dutch trial compared pemetrexed with carboplatin/pemetrexed at the same dose and schedule. The vast majority of patients (97.5%) had a performance status of 0 or 1, and the median age was 64 years.
The Italian study found no evidence to support a benefit in efficacy from the more aggressive doublet regimen. Specifically,
  • median PFS was 3.6 months with pemetrexed alone vs 3.5 months with carboplatin/pemetrexed.
  • Response rate (RR) and median overall survival (OS) were also no better with the doublet regimen
      • RR 12.6% vs 12.5%, median OS 9.2 vs 8.8 months, for pemetrexed and carboplatin/pemetrexed.

Moreover, pooling the data from the Italian trial with the Dutch trial demonstrated no significant differences between the 2 strategies. Subgroup analysis showed that

  • the patients with squamous NSCLC had a superior median PFS of 3.2 months with the carboplatin doublet vs 2.0 months with pemetrexed alone.

Unfortunately, this only confirms that adding a second agent is beneficial for patients receiving an agent previously shown to be ineffective in that population.

Viewpoint
Putting it in the context of previous data, these results only provide further confirmation that more is not better.
  • combinations are associated with more toxicity than single-agent therapy, and
  • this is likely to be especially relevant in previously treated patients whose ability to tolerate ongoing therapy over time may be reduced.

It is critical to balance efficacy with tolerability to enable us to deliver the treatment over a prolonged period. We need to recognize the importance of pacing ourselves if our goal is to administer treatments in a palliative setting for an increasingly longer duration.

Epidermal growth factor receptor (EGFR) signal...

Epidermal growth factor receptor (EGFR) signaling pathway. (Photo credit: Wikipedia)

EGFR structure

EGFR structure (Photo credit: Wikipedia)

ATP synthase

ATP synthase (Photo credit: Ethan Hein)

Non-small cell carcinoma - FNA

Non-small cell carcinoma – FNA (Photo credit: Pulmonary Pathology)

Articles on NSCLC in Pharmaceutical Intelligence:
Key Sources:
  1. Realizing the importance of personalized medicine in advanced NSCLC
    E Topol, B Buehler, GS Ginsburg. 

    Medscape Molec Medicine The Potential of Personalized Medicine in Advanced NSCLC

    With the data on the prognostic and predictive biomarkers EGFR and ALK, biomarker testing is increasingly important in therapy decisions in NSCLC
  2. Revisiting Doublet Maintenance Chemo in Advanced NSCLC
    H. Jack West, MD     http://www.medscape.com/viewarticle/777367
    Pemetrexed Versus Pemetrexed and Carboplatin as Second-Line Chemotherapy In Advanced Non-Small-Cell Lung Cancer
    Ardizzoni A, Tiseo M, Boni L, et al
    J Clin Oncol. 2102;30:4501-4507
  3. Lung Cancer in the Never Smoker Population: An Expert Interview With Dr. Nasser Hanna
    Experts And Viewpoint, Medscape Hematology-Oncology, December 2007
  4. Non-Small Cell Lung Cancer: Biologic and Therapeutic Considerations for Personalized Management
    Taofeek K. Owonikoko, MD, PhD   August 24, 2011.   Medscape
  5. An Update on New and Emerging Therapies for NSCLC
    Simon L. Ekman, MD, PhD; Fred R. Hirsch, MD, PhD     Medscape
  6. Lovly CM, Carbone DP. Lung cancer in 2010: one size does not fit all. Nat Rev Clin Oncol. 2011;8(2):68-70.
  7. Dacic S. Molecular diagnostics of lung carcinomas. Arch Pathol Lab Med. 2011;135(5):622-629.

  8. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367-1380.
  9. Gazdar AF. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy.

    Cancer Metastasis Rev. 2010;29:37-48.

  10. NCCN Oncology Insights Report on Non-Small Cell Lung Cancer 1.2010
  11.   Review of the Treatment of Non-Small Cell Lung Cancer with Gefitinib
    T Araki, H Yashima, K Shimizu, T Aomori
    Clinical Medicine Insights: Oncology 2012:6 407–421  http://dx.doi.org/10.4137/CMO.S7340

 

Read Full Post »

Older Posts »