Reporter: Aviva Lev-Ari, PhD, RN

Tool Identifies Risk in Stenting ACS Patients
A new, easy-to-calculate risk score developed for patients with non-ST-segment elevation acute coronary syndromes (ACS) undergoing percutaneous coronary intervention (PCI) had better prognostic accuracy than other widely used risk scores, researchers found.
The ACUITY-PCI risk score includes six variables — insulin-treated diabetes, renal insufficiency, baseline cardiac biomarker elevation or ST-segment deviation, presence of a bifurcation lesion, small vessel/diffuse coronary artery disease, and extent of coronary artery disease, according to Gregg Stone, MD, of Columbia University Medical Center in New York City, and colleagues.
The 1-year rate of death or MI significantly increased from 5.3% in the lowest risk tertile to 9.1% in the middle tertile to 19% in the highest tertile (P<0.001), the researchers reported in the November issue of JACC: Cardiovascular Interventions.
Discrimination and calibration were greater with the ACUITY-PCI score than with other established scores.
“Although the TIMI and the GRACE scores have been shown to be valuable prognostic tools at the time of hospital admission for selecting pharmacological strategies and identifying those patients most likely to benefit from an invasive strategy, they have not been optimized for patients undergoing PCI and, thus, have relatively poor prognostic power to further risk stratify acute coronary syndrome patients undergoing PCI,” Stone and colleagues wrote.
“The ACUITY-PCI score is therefore intended to supplement the TIMI and GRACE scores when an invasive strategy has been undertaken and PCI is being considered.”
The researchers created the risk score using data from 1,692 patients enrolled in the angiographic substudy of the ACUITY trial, which was a comparison of heparin plus a glycoprotein IIb/IIIa inhibitor, bivalirudin (Angiomax) plus a glycoprotein IIb/IIIa inhibitor, or bivalirudin alone in patients with ACS undergoing an early invasive strategy. They then validated the score using another 846 patients from the same study.
Multivariate analysis revealed six variables that were significantly associated with 1-year mortality and MI and were included in the score. The researchers assigned points based on the strength of the predictor:
- Insulin-treated diabetes (12 points)
- Renal insufficiency (12 points)
- Baseline cardiac biomarker elevation or ST-segment deviation (8 points)
- Bifurcation lesion (4 points)
- Small vessel/diffuse coronary artery disease (2 points)
- Extent of coronary artery disease (1 point for each 10 mm of disease)
The C-statistic for the risk score — a measure of discrimination — was 0.67 in the derivation cohort and 0.70 in the validation cohort. In the validation cohort, the chi-square statistic for calibration was 6.2 and the index of separation was 0.44.
All of those values were better than those seen for four other established risk scores — TIMI, GRACE, SYNTAX, and Clinical SYNTAX. In addition, the net reclassification improvement with the new score ranged from 9% to 38% and the integrated discrimination index varied from 1.9% to 2.7%.
The researchers noted that the ACUITY-PCI score also was a good predictor of 1-year definite or probable stent thrombosis, with a C-statistic of 0.72.
In another study in the same journal, George Dangas, MD, PhD, of Mount Sinai Medical Center in New York City, and colleagues — including Stone — reported on the development of a risk score specifically for stent thrombosis in patients with ACS undergoing PCI.
The study included 6,139 patients from the HORIZONS-AMI and ACUITY trials, which included those with ST-segment elevation MI (STEMI) in the former trial and those with non-STEMI and unstable angina in the latter. The researchers used 4,093 patients for the derivation cohort and 2,046 for the validation cohort.
The risk score included 10 variables that were significantly associated with the risk of Academic Research Consortium-defined definite or probable stent thrombosis at 1 year:
- Type of acute coronary syndrome (4 points for STEMI, 2 points for non-ST-segment elevation ACS with ST deviation, and 1 point for non-ST-segment elevation ACS without ST changes)
- Current smoking (1 point)
- Insulin-dependent diabetes (2 points)
- Prior PCI (1 point)
- Baseline platelet count (1 point for 250 to 400 K/µL and 2 points for more than 400 K/µL)
- Absence of pre-PCI heparin therapy (1 point)
- Aneurysmal/ulcerated lesion (2 points)
- Baseline TIMI flow grade 0/1 (1 point)
- Final TIMI flow grade less than 3 (1 point)
- Number of treated vessels (1 point for two vessels and 2 points for three vessels)
Scores from 1 to 6 are considered low risk, 7 to 9 are intermediate risk, and 10 or higher are high risk.
The rates of stent thrombosis at 1 year were 1.36%, 3.06%, and 9.18% across the three risk tertiles in the derivation cohort (P<0.001 for trend), with a similar trend seen in the validation cohort.
The C-statistics were 0.67 in the derivation cohort and 0.66 in the validation cohort. Performance was comparable for events occurring both early (within the first 30 days) and late (from 1 month to 1 year).
“We believe that the development and initial validation of this stent thrombosis risk score can be a useful tool for both clinical practice and future clinical investigation (future analyses of trials or registries), as it can be a simple way to risk stratify patients immediately following a procedure,” Dangas and colleagues wrote. “The risk score could also be used in the informed consent process to better inform patients of their individual risk of stent thrombosis.”
But Ron Waksman, MD, and Israel Barbash, MD, of MedStar Washington Hospital Center in Washington, D.C., noted some limitations of the tool, including the pooling of different types of patients, the exclusion of important variables associated with stent thrombosis risk, and the use of mostly first-generation drug-eluting stents in the trials.
“It is imperative that the user of such a prediction tool be aware of its capabilities and performance, as well as its limitations, in various clinical scenarios,” they wrote in an accompanying editorial.
“A newly developed risk score for stent thrombosis should be robust and should be tested across broad study populations, stents, and antiplatelet regimens. A new model should also be validated in a setting different from the one in which it was derived,” they wrote. “Unfortunately, this is not the case with the newly proposed model.”
“Until such an encompassing tool is developed and validated,” they wrote, “one should rely on the known stent thrombosis risk factors and tailor an appropriate treatment for each patient.”
The ACUITY trial was funded by The Medicines Company and Nycomed.
Stone has served as a consultant to Abbott Vascular, Boston Scientific, Medtronic, and The Medicines Company. His co-authors reported relationships with Abbott, Regado, Ortho McNeil, Janssen, Merck, Maya Medical, AstraZeneca, Sanofi/Bristol-Myers Squibb, Eli Lilly, and Daiichi Sankyo.
The HORIZONS-AMI trial was supported by the Cardiovascular Research Foundation, with grant support from Boston Scientific and The Medicines Company.
Dangas has received speaker honoraria from AstraZeneca, Bristol-Myers Squibb, The Medicines Company, sanofi-aventis, and Abbott Vascular. His co-authors reported relationships with sanofi-aventis, The Medicines Company, Abbott Vascular, Bristol-Myers Squibb, Cordis, AstraZeneca, Daiichi Sankyo, Eli Lilly, Maquet, Roche, Boehringer Ingelheim, Liposcience, Merck, Pozen, Gilead Sciences, WebMD, the NIH, Pfizer, Johnson & Johnson, Schering-Plough, Merck Sharpe and Dohme, GlaxoSmithKline, Regado Biosciences, Boston Scientific, and Bristol-Myers Squibb/Sanofi.
Waksman and Barbash reported that they had no conflicts of interest.
From the American Heart Association:
Primary source: JACC: Cardiovascular Interventions
Source reference:
Palmerini T, et al “A new score for risk stratification of patients with acute coronary syndromes undergoing percutaneous coronary intervention: the ACUITY-PCI (Acute Catheterization and Urgent Intervention Triage Strategy-Percutaneous Coronary Intervention) risk score” JACC Cardiovasc Interv 2012; 5: 1108-1116.
Additional source: JACC: Cardiovascular Interventions
Source reference:
Dangas G, et al “Development and validation of a stent thrombosis risk score in patients with acute coronary syndromes” JACC Cardiovasc Interv 2012; 5: 1097-1105.
Additional source: JACC: Cardiovascular Interventions
Source reference:
Waksman R, Barbash I “The appropriate use of risk scores” JACC Cardiovasc Interv 2012; 5: 1106-1107.

Todd Neale
Senior Staff Writer
Todd Neale, MedPage Today Staff Writer, got his start in journalism at Audubon Magazine and made a stop in directory publishing before landing at MedPage Today. He received a B.S. in biology from the University of Massachusetts Amherst and an M.A. in journalism from the Science, Health, and Environmental Reporting program at New York University. He is based atMedPage Today headquarters in Little Falls, N.J.
SOURCE:
http://www.medpagetoday.com/Cardiology/AcuteCoronarySyndrome/36010
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette
I actually consider this amazing blog , âSAME SCIENTIFIC IMPACT: Scientific Publishing –
Open Journals vs. Subscription-based « Pharmaceutical Intelligenceâ, very compelling plus the blog post ended up being a good read.
Many thanks,Annette