Posts Tagged ‘ST elevation’

Revascularization: PCI, Prior History of PCI vs CABG

Curator: Aviva Lev-Ari, PhD, RN


UPDATED 9/25/2013

Table. Comparison of Surgical Therapy and Coronary Angioplasty (Open Table in a new window)

Endpoint Pocock et al* Pocock et al BARI Study
CABG(N=358) PTCA(N=374) CABG(N=1303) PTCA(N=1336) CABG(N=914) PTCA(N=915)
Death (%) 0.3 1.9 2.8 3.1 10.7 13.7
Death or MI 4.5 7.2 8.5 8.1 11.7 10.9
Repeat CABG 1.4 16.0§ 0.8 18.3§ 0.7 20.5§
Repeat CABG or PTCA 3.6 30.5§ 3.2 34.5§ 8.0 54.0§
More than mild angina 6.5 14.6§ 12.1 17.8§
*Meta-analysis of results of 3 trials at 1 year. Patients with single-vessel disease were studied.[22] †Meta-analysis of results of 3 trials at 1 year. Patients with multivessel disease were studied.[22] 

‡Reported results are for 5-year follow-up. Patients with multivessel disease were studied.[21] 

§ P < .05.

BARI = Bypass Angioplasty Revascularization Investigation; CABG = coronary artery bypass grafting; MI = myocardial infarction; PTCA = percutaneous transluminal coronary angioplasty.



Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a nonsurgical technique for treating multiple conditions, including unstable angina, acute myocardial infarction (MI), and multivessel coronary artery disease (CAD).

Essential update: Cangrelor decreases periprocedural complications of PCI

According to a pooled analysis of 3 CHAMPION trials—CHAMPION-PCI , CHAMPION-PLATFORM , and CHAMPION-PHOENIX—cangrelor can reduce the risk of periprocedural thrombotic complications of PCI.[1, 2, 3] The 3 trials included patients with ST-elevation MI (STEMI), non-STEMI, and stable CAD who were randomly assigned to receive either cangrelor or control therapy consisting of either clopidogrel or placebo.

The primary outcome in this analysis was a composite of death, MI, ischemia-driven revascularization, or stent thrombosis at 48 hours.[2] The frequency of this outcome was significantly lower in cangrelor-treated patients than in control subjects (absolute difference, 1.9%; relative risk reduction [RRR], 19%). Stent thrombosis was also reduced in the cangrelor-treated group (absolute difference, 0.3%; RRR, 41%). Primary safety outcomes were comparable in the 2 groups, but cangrelor-treated patients had a higher rate of mild bleeding.

Indications and contraindications

Clinical indications for PCI include the following:

In an asymptomatic or mildly symptomatic patient, objective evidence of a moderate-sized to large area of viable myocardium or moderate to severe ischemia on noninvasive testing is an indication for PCI. Angiographic indications include hemodynamically significant lesions in vessels serving viable myocardium (vessel diameter >1.5 mm).

Clinical contraindications for PCI include the presence of any significant comorbid conditions (this is a relative contraindication). Angiographic contraindications include the following:

  • Left main stenosis in a patient who is a surgical candidate (except in carefully selected patients[4] )
  • Diffusely diseased small-caliber artery or vein graft
  • Other coronary anatomy not amenable to PCI

In patients with stable angina, medical therapy is recommended as first-line therapy unless one or more of the following indications for cardiac catheterization and PCI or CABG are present:

  • A change in symptom severity
  • Failed medical therapy
  • High-risk coronary anatomy
  • Worsening left ventricular (LV) dysfunction

American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines on the management of unstable angina/non-STEMI recommend that an early invasive approach (angiography and revascularization within 24 hours) should be used to treat patients presenting with the following high-risk features[5] :

  • Recurrent angina at rest or low level of activity
  • Elevated cardiac biomarkers
  • PCI in the past 6 months or prior CABG
  • New ST-segment depression
  • Elevated cardiac biomarkers
  • High-risk findings on noninvasive testing
  • Signs or symptoms of heart failure or new or worsening mitral regurgitation
  • Hemodynamic instability
  • Sustained ventricular tachycardia
  • LV systolic function < 40%
  • High risk score (eg, Thrombolysis in Myocardial Infarction [TIMI] score >2) (see the TIMI Score for Unstable Angina Non ST Elevation Myocardial Infarction calculator)

See Overview for more detail.


Balloon catheters for PCI have the following features:

  • A steerable guide wire precedes the balloon into the artery and permits navigation through the coronary tree
  • Inflation of the balloon compresses and axially redistributes atheromatous plaque and stretches the vessel wall
  • The balloon catheter also serves as an adjunctive device for many other interventional therapies

Atherectomy devices have the following features:

  • These devices are designed to physically remove coronary atheroma, calcium, and excess cellular material
  • Rotational atherectomy, which relies on plaque abrasion and pulverization, is used mostly for fibrotic or heavily calcified lesions that can be wired but not crossed or dilated by a balloon catheter
  • Atherectomy devices may be used to facilitate stent delivery in complex lesions
  • Directional coronary atherectomy (DCA) has been used to debulk coronary plaques
  • Laser atherectomy is not widely used at present
  • Atherectomy is typically followed by balloon dilation and stenting

Intracoronary stents have the following features:

  • Stents differ with respect to composition (eg, stainless steel, cobalt chromium, or nickel chromium), architectural design, and delivery system
  • Drug-eluting stents have demonstrated significant reductions in restenosis and target-lesion revascularization rates
  • In the United States, stents are available that elute the following drugs: sirolimus (Cypher), paclitaxel (Taxus), zotarolimus (Endeavor), and everolimus (Xience V)
  • Stents are conventionally placed after balloon predilation, but in selected coronary lesions, direct stenting may lead to better outcomes

Other devices used for PCI include the following:

  • Thrombus aspiration limits the adverse effects that prolonged time to treatment has on myocardial reperfusion[6]
  • Distal embolic protection during saphenous vein graft intervention has become the standard of care

See Periprocedural Care and Devices for more detail.


Intravascular ultrasonography (IVUS) is used in PCI as follows:

  • Provide information about the plaque, the vessel wall, and the degree of luminal narrowing
  • Assessment of indeterminate lesions
  • Evaluation of adequate stent deployment

Intracoronary Doppler pressure wires are used in PCI as follows:

  • To characterize coronary lesion physiology and estimate lesion severity
  • Comparison of pressure distal to a lesion with aortic pressure enables determination of fractional flow reserve (FFR)
  • An FFR measurement below 0.75-0.80 during maximal hyperemia (induced via administration of adenosine) is consistent with a hemodynamically significant lesion

Antithrombotic therapy

  • Aspirin and heparin have been the traditional adjunctive medical therapies
  • Direct thrombin inhibitors (ie, hirudin, bivalirudin) are slightly better than heparin in preventing ischemic complications during balloon angioplasty but do not affect restenosis rates
  • Low-molecular-weight heparins (LMWHs) are substituted for standard heparin at some centers

Antiplatelet therapy

Patients receiving stents are treated with a combination of aspirin and clopidogrel. Duration of therapy is as follows:

  • Bare-metal stents: A minimum of 4 weeks
  • Drug-eluting stents: A minimum of 12 months

Use of proton pump inhibitors is appropriate in patients with multiple risk factors for GI bleeding who require antiplatelet therapy.

Glycoprotein inhibitor therapy

  • Abciximab, tirofiban, and eptifibatide have all been shown to reduce ischemic complications in patients undergoing balloon angioplasty and coronary stenting
  • In primary PCI, GPIIb/IIIa receptor inhibitors have also been shown to improve flow and perfusion and to reduce adverse events
  • Abciximab may improve outcomes in patients when given before arrival in the catheterization lab for primary PCI[7]

See Technique and Medication for more detail.

SOURCE & References for the UPDATE, in


Outcomes comparison between PCI and CABG was explored in the past by authors on this Open Access Online Scientific Journal, in the following articles:

CABG or PCI: Patients with Diabetes – CABG Rein Supreme


To Stent or Not? A Critical Decision


PCI Outcomes, Increased Ischemic Risk associated with Elevated Plasma Fibrinogen not Platelet Reactivity


New Definition of MI Unveiled, Fractional Flow Reserve (FFR)CT for Tagging Ischemia


Age-Dependent Depression in Circulating Endothelial Progenitor Cells in Coronary Artery Bypass Grafting Patients


Now we are reporting  an Original Contribution on this subject which includes also Prior History of PCI, a factor NOT included in the other studies. The major conclusions are the following three:

  1. In a contemporary cohort of STEMI patients undergoing primary PCI, a history of prior CABG was found to be an independent predictor of in-hospital mortality.
  2. In contrast, despite more comorbidities at the time of STEMI, patients with prior PCI had no significant difference in the rates of death, stroke, or periprocedural MI when compared to a STEMI population without prior coronary revascularization.
  3. Thus, only prior surgical — and not percutaneousrevascularization should be considered a significant risk factor in the setting of primary PCI.

Number 1, above is related to patient medical history of cardiovascular disease SEVERITY prior to CABG

Number 2, above indicates that patients can tolerate and benefit several cycles of PCI and stent implantation rather than PCI being a determinant predictor of future prognosis

Number 3, above is as well related to patient medical history of cardiovascular disease SEVERITY prior to CABG

The Original Contribution on this subject is present, below.

The Impact of Previous Revascularization on Clinical Outcomes in Patients Undergoing Primary Percutaneous Coronary Intervention

Travis J. Bench, MD1, Puja B. Parikh, MD1, Allen Jeremias, MD1, Sorin J. Brener, MD2, Srihari S. Naidu, MD3,

Richard A. Shlofmitz, MD4, Thomas Pappas, MD4, Kevin P. Marzo, MD3, Luis Gruberg, MD1

Authors Affiliations:

1Division of Cardiovascular Medicine, Stony Brook University Medical Center, Stony Brook, New York,

2Department of Cardiology, Methodist Hospital, Brooklyn, New York,

3Division of Cardiology, Winthrop University Hospital, Mineola,

New York, and

4The Heart Center, St Francis Hospital, Roslyn, New York.

The authors report no conflicts of interest regarding the content herein.

Manuscript submitted October 10, 2012, provisional acceptance given October 20, 2012, final version accepted November 28, 2012.

Address for correspondence: 

Luis Gruberg, MD, FACC, Department of Medicine, Division of Cardiology, Health Sciences Center, T16-080, Stony Brook, NY 11794- 8160. Email: luis.gruberg@stonybrook.edu


Abstract : While the impact of prior coronary artery bypass graft surgery (CABG) on in-hospital outcomes in patients with STelevation myocardial infarction (STEMI) has been described, data are limited on patients with prior percutaneous coronary intervention (PCI) undergoing primary PCI in the setting of an STEMI. The aim of the present study was to assess the effect of previous revascularization on in-hospital outcomes in STEMI patients undergoing primary PCI. Between January 2004 and December 2007, a total of 1649 patients underwent primary PCI for STEMI at four New York State hospitals. Baseline clinical and angiographic characteristics and in-hospital outcomes were prospectively collected as part of the New York State PCI Reporting System (PCIRS). Patients with prior surgical or percutaneous coronary revascularization were compared to those without prior coronary revascularization. Of the 1649 patients presenting with STEMI, a total of 93 (5.6%) had prior CABG, 258 (15.7%) had prior PCI, and 1298 (78.7%) had no history of prior coronary revascularization. Patients with prior CABG were significantly older and had higher rates of peripheral vascular disease, diabetes mellitus, congestive heart failure, and prior stroke. Additionally, compared with those patients with a history of prior PCI as well as those without prior coronary revascularization, patients with previous CABG had more left main interventions (24% vs 2% and 2%; P<.001), but were less often treated with drug-eluting stents (47% vs 61% and 72%; P<.001).

Despite a low incidence of adverse in-hospital events, prior CABG was associated with higher all-cause in-hospital mortality (6.5% vs 2.2%; P=.012), and as a result, higher overall MACE (6.5% vs 2.7%; P=.039). By multivariate analysis, prior CABG (odds ratio, 3.40; 95% confidence interval, 1.15-10.00) was independently associated with in-hospital mortality. In contrast, patients with prior PCI had similar rates of MACE (4.3% vs 2.7%; P=.18) and inhospital mortality (3.1% vs 2.2%; P=.4) when compared to the de novo population. Patients with a prior history of CABG, but not prior PCI, undergoing primary PCI in the setting of STEMI have significantly worse in-hospital outcomes when compared with patients who had no prior history of coronary artery revascularization. Thus, only prior surgical — and not percutaneous — revascularization should be considered a significant risk factor in the setting of primary PCI.

J INVASIVE CARDIOL 2013;25(4):166-169

Key words: PCI risk factor, CABG

Demographics and Angiographic Characteristics

Between 2004 and 2007, a total of 25,025 patients underwent PCI at these medical institutions, and their data were prospectively collected and submitted as required by the New York State Department of Health. Of these patients, a total of 1649 underwent primary PCI in the setting of an STEMI and constituted our study population. In this group, a total

No Prior Revascularization (n = 1298)

Prior PCI (n = 258)

Prior CABG (n = 93)


Age (years) 61 ± 13 62 ± 12 67 ± 12 <.001

Male gender 956 (73.6%) 194 (75.2%) 76 (81.7%) .21

White 1165 (89.8%) 231 (89.5%) 87 (93.5%) .51

African-American 78 (6%) 18 (7%) 1 (1.1%) .51

Hispanic 91 (7%) 11 (4.3%) 4 (4.3%) .51

Medical history

Ejection fraction (%) 43 ± 12 44 ± 13 45 ± 11 .079

Diabetes mellitus 196 (15.1%) 69 (26.7%) 27 (29%) <.001

Peripheral vascular disease 53 (4.1%) 25 (9.7%) 12 (12.9%) <.001

Chronic lung disease 47 (3.6%) 17 (6.6%) 4 (4.3%) .09

Congestive heart failure 74 (5.7%) 25 (9.7%) 10 (10.8%) .02

Prior myocardial infarction 3 (0.2%) 1 (0.4%) 1 (1.1%) .35

Prior cerebrovascular event 56 (4.3%) 9 (3.5%) 10 (11%) .01

Chronic dialysis 6 (0.5%) 6 (2.3%) 0 (0%) .004

Creatinine (mg/dL) 1.1 ± 0.8 1.3 ± 1.4 1.3 ± 1.1 .002

Glomerular filtration rate (mL/min/1.73 m2) 79 ± 26 75 ± 28 71 ± 27 .002

Angiographic characteristics

Left main 19 (1.5%) 5 (1.9%) 22 (23.7%) <.001

Left anterior descending 942 (72.6%) 178 (69%) 69 (74.2%) .45

Left circumflex 579 (44.6%) 122 (47.3%) 70 (75.3%) <.001

Right coronary 806 (62.1%) 187 (72.5%) 67 (72%) .002

Graft (arterial or venous) n/a n/a 20 (21.5%)

Stent type

Bare-metal stent 241 (18.6%) 52 (20.2%) 23 (24.7%) .31

Drug-eluting stent 928 (71.5%) 158 (61.2%) 44 (47.3%) <.001

of 1298 patients (78.7%) had no prior history of revascularization,

while 93 patients (5.6%) had a history of previous

CABG and 258 (15.7%) had a history of previous PCI. Considerable

differences in baseline clinical and procedural characteristics were noted among these groups (Table 1).


While STEMI patients with prior CABG are well known to have worse clinical outcomes than those without prior revascularization, a direct comparison between patients who underwent primary PCI in the setting of prior CABG or prior PCI has not yet been reported. The principal findings from the present analysis suggest that in a contemporary, unrestricted patient population presenting with STEMI and undergoing primary PCI, patients with a prior history of CABG are:

(1) usually older and have multiple comorbidities, including peripheral vascular disease, diabetes, and chronic obstructive lung disease;

(2) are more likely to undergo intervention on a native vessel and not a bypass graft;

(3) are more likely to be treated with bare-metal stents; and (4) have higher rates of in-hospital mortality without a significant increase in stroke or MI rates, when compared with patients with a prior history of PCI or patients with no previous history of coronary artery revascularization. Interestingly, these outcomes did not apply to patients with a history of prior PCI in this analysis. Instead, this cohort of patients had no significant difference in the rate of death, stroke, or periprocedural infarction when compared to a STEMI population without prior coronary revascularization, despite a significantly higher burden of comorbidities than those with no prior revascularization.

Our findings concur with previous studies that have shown higher mortality rates among patients with prior surgical bypass presenting with acute MI.7,9,14 Despite changes in revascularization strategies over the past 30 years, invasive therapies to treat acute coronary syndromes in patients with prior bypass surgery appear to have yielded less robust results than in other populations. In fact, Stone and colleagues already described in the Primary Angioplasty in Myocardial Infarction (PAMI-2) study that patients with a previous CABG undergoing primary PCI in the setting of an acute MI had significantly greater in-hospital mortality than patients without previous CABG, especially if the infarct-related vessel was a bypass conduit. However, by logistic regression analysis, only advanced age (P=.004), triple-vessel disease (P=.004), and Killip class ≥2 (P=.02) were independent predictors of in-hospital mortality in that study.13 In a more contemporary study of 128 STEMI patients with prior CABG, who were enrolled in the Assessment of PEXelizumab in Acute

Figure 1. In-hospital major adverse cardiac and cerebrovascular events (MACCE), mortality, and stroke rates for patients without prior history of coronary revascularization (light grey bars), prior percutaneous coronary revascularization (PCI) (dark grey bars), and prior coronary artery bypass graft (CABG) (black bars). Vol. 25, No. 4, April 2013 169

STEMI and Prior Revascularization Myocardial Infarction (APEX-AMI) trial, Welsh and colleagues reported that post-CABG patients are less likely to undergo acute reperfusion (only 79% underwent primary PCI), have worse angiographic outcomes following primary PCI, and have higher 90-day mortality rates (19.0% vs 5.7%; P=.05). This difference was even more apparent when the infarct-related artery was a bypass graft that was not successfully reperfused (23.1% vs 8.5%; P=.03).3 These results are similar to our current analysis, where in-hospital mortality rates for patients who underwent primary PCI of a graft were numerically roughly 4 times as high as those undergoing PCI of a native vessel. Likewise, Gurfinkel et al reported a significant reduction in hard endpoints, such as all-cause death and MI at 6 months in patients treated with an invasive approach in the Global Registry of Acute Coronary Events (GRACE).15 In this large, multinational, observational study of 3853 patients with prior bypass surgery presenting with an acute coronary syndrome, only 497 (12.9%) were managed invasively and the rest were treated medically.

Despite significant differences in baseline characteristics, including a higher rate of STEMI in patients treated invasively (14% vs 27%; P<.001), in-hospital mortality was similar in both groups (3.4% vs 3.2%; P=.86). However, at 6-month follow-up, mortality was significantly higher in those patients treated medically (6.5% vs 3.4%; P<.02) as was the combined endpoint of death or MI (11% vs 5.8%; P<.01).

Whether these results apply to patients with a prior history of PCI has not been well defined. By the nature of vascular disease, patients with prior PCI are more likely to have more comorbidities than those without prior revascularization, a finding confirmed in our study. Despite considerable differences in baseline characteristics, however, these differences did not translate into a differential risk after STEMI. In fact, the cohort of patients presenting with STEMI who had a history of prior PCI had no statistically significant difference in in-hospital mortality or overall MACCE when compared to a population of patients presenting with STEMI in the absence of any prior revascularization.

Study limitations. The database utilized was derived from four New York State teaching hospitals and was designed to track quality of care and clinical outcomes. As all studies involving multicenter databases and registries, there is potential error in data entry and availability. Potential confounding comorbidities, including smoking status and family history of coronary artery disease, were not collected in this database, and information regarding long-term follow-up is not available, all of which are important limitations of this analysis. As such, deficiencies such as these limit the conclusions that can be drawn from our multivariate analysis. Additionally, there is no audit of data quality, and the low overall event rates limit effective statistical comparison.


In a contemporary cohort of STEMI patients undergoing primary PCI, a history of prior CABG was found to be an independent predictor of in-hospital mortality. In contrast, despite more comorbidities at the time of STEMI, patients with prior PCI had no significant difference in the rates of death, stroke, or periprocedural MI when compared to a STEMI population without prior coronary revascularization. Thus, only prior surgical — and not percutaneous — revascularization should be considered a significant risk factor in the setting of primary PCI.


1. Kushner FG, Hand M, Smith SC Jr, et al. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Catheter Cardiovasc Interv. 2009;74(7):E25-E68.

2. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361(9351):13-20.

3. Welsh RC, Granger CB, Westerhout CM, et al. Prior coronary artery bypass graft patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. JACC Cardiovasc Interv. 2010;3(3):343-351.

4. Mathew V, Gersh B, Barron H, et al. In-hospital outcome of acute myocardial infarction in patients with prior coronary artery bypass surgery. Am Heart J. 2002;144(3):463-469.

5. Lee KL, Woodlief LH, Topol EJ, et al. Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. GUSTO-I Investigators. Circulation. 1995;91(6):1659-1668.

6. Dittrich HC, Gilpin E, Nicod P, et al. Outcome after acute myocardial infarction in patients with prior coronary artery bypass surgery. Am J Cardiol. 1993;72(7):507-513.

7. Berry C, Pieper KS, White HD, et al. Patients with prior coronary artery bypass grafting have a poor outcome after myocardial infarction: an analysis of the VALsartan in acute myocardial iNfarcTion trial (VALIANT). Eur Heart J. 2009;30(12):1450-1456.

8. Grines CL, Booth DC, Nissen SE, et al. Mechanism of acute myocardial infarction in patients with prior coronary artery bypass grafting and therapeutic implications. Am J Cardiol. 1990;65(20):1292-1296.

9. Labinaz M, Sketch MH Jr, Ellis SG, et al. Outcome of acute ST-segment elevation myocardial infarction in patients with prior coronary artery bypass surgery receiving thrombolytic therapy. Am Heart J. 2001;141(3):469-477.

10. Peterson LR, Chandra NC, French WJ, Rogers WJ, Weaver WD, Tiefenbrunn AJ. Reperfusion therapy in patients with acute myocardial infarction and prior coronary artery bypass graft surgery (National Registry of Myocardial Infarction-2). Am J Cardiol. 1999;84(11):1287-1291.

11. Nguyen TT, O’Neill WW, Grines CL, et al. One-year survival in patients with acute myocardial infarction and a saphenous vein graft culprit treated with primary angioplasty. Am J Cardiol. 2003;91(10):1250-1254.

12. Al Suwaidi J, Velianou JL, Berger PB, et al. Primary percutaneous coronary interventions in patients with acute myocardial infarction and prior coronary artery bypass grafting, Am Heart J. 2001;142(3):452-459.

13. Stone GW, Brodie BR, Griffin JJ, et al. Clinical and angiographic outcomes in patients with previous coronary artery bypass graft surgery treated with primary balloon angioplasty for acute myocardial infarction. Second Primary Angioplasty in Myocardial Infarction Trial (PAMI-2) Investigators. J Am Coll Cardiol. 2000;35(3):605-611.

14. Labinaz M, Kilaru R, Pieper K, et al. Outcomes of patients with acute coronary syndromes and prior coronary artery bypass grafting: results from the platelet glycoprotein IIb/IIIa in unstable angina: receptor suppression using integrilin therapy (PURSUIT) trial. Circulation. 2002;105(3):322-327.

15. Gurfinkel EP, Perez de la Hoz R, Brito VM, et al. Invasive vs non-invasive treatment in acute coronary syndromes and prior bypass surgery. Int J Cardiol. 2007;119(1):65-72.


Other related studies on this subject published on this Open Access Online Scientific Journal include the following:

Lev-Ari, A. 2/12/2013 Clinical Trials on transcatheter aortic valve replacement (TAVR) to be conducted by American College of Cardiology and the Society of Thoracic Surgeons



Lev-Ari, A. 12/31/2012 Renal Sympathetic Denervation: Updates on the State of Medicine



Lev-Ari, A. 9/2/2012 Imbalance of Autonomic Tone: The Promise of Intravascular Stimulation of Autonomics


Lev-Ari, A. 8/13/2012 Coronary Artery Disease – Medical Devices Solutions: From First-In-Man Stent Implantation, via Medical Ethical Dilemmas to Drug Eluting Stents http://pharmaceuticalintelligence.com/2012/08/13/coronary-artery-disease-medical-devices-solutions-from-first-in-man-stent-implantation-via-medical-ethical-dilemmas-to-drug-eluting-stents/


Lev-Ari, A. 7/18/2012 Percutaneous Endocardial Ablation of Scar-Related Ventricular Tachycardia



Lev-Ari, A. 6/13/2012 Treatment of Refractory Hypertension via Percutaneous Renal Denervation


Lev-Ari, A. 6/22/2012 Competition in the Ecosystem of Medical Devices in Cardiac and Vascular Repair: Heart Valves, Stents, Catheterization Tools and Kits for Open Heart and Minimally Invasive Surgery (MIS)


Lev-Ari, A. 6/19/2012 Executive Compensation and Comparator Group Definition in the Cardiac and Vascular Medical Devices Sector: A Bright Future for Edwards Lifesciences Corporation in the Transcatheter Heart Valve Replacement Market



Lev-Ari, A. 6/22/2012 Global Supplier Strategy for Market Penetration & Partnership Options (Niche Suppliers vs. National Leaders) in the Massachusetts Cardiology & Vascular Surgery Tools and Devices Market for Cardiac Operating Rooms and Angioplasty Suites



Lev-Ari, A. 7/23/2012 Heart Remodeling by Design: Implantable Synchronized Cardiac Assist Device: Abiomed’s Symphony



Lev-Ari, A. (2006b). First-In-Man Stent Implantation Clinical Trials & Medical Ethical Dilemmas. Bouve College of Health Sciences, Northeastern University, Boston, MA 02115


Read Full Post »

Reporter: Aviva Lev-Ari, PhD, RN

Tool Identifies Risk in Stenting ACS Patients

By Todd Neale, Senior Staff Writer, MedPage Today

Published: November 19, 2012
Reviewed by Dori F. Zaleznik, MD; Associate Clinical Professor of Medicine, Harvard Medical School, Boston and Dorothy Caputo, MA, BSN, RN, Nurse Planner

A new, easy-to-calculate risk score developed for patients with non-ST-segment elevation acute coronary syndromes (ACS) undergoing percutaneous coronary intervention (PCI) had better prognostic accuracy than other widely used risk scores, researchers found.

The ACUITY-PCI risk score includes six variables — insulin-treated diabetes, renal insufficiency, baseline cardiac biomarker elevation or ST-segment deviation, presence of a bifurcation lesion, small vessel/diffuse coronary artery disease, and extent of coronary artery disease, according to Gregg Stone, MD, of Columbia University Medical Center in New York City, and colleagues.

The 1-year rate of death or MI significantly increased from 5.3% in the lowest risk tertile to 9.1% in the middle tertile to 19% in the highest tertile (P<0.001), the researchers reported in the November issue of JACC: Cardiovascular Interventions.

Discrimination and calibration were greater with the ACUITY-PCI score than with other established scores.

“Although the TIMI and the GRACE scores have been shown to be valuable prognostic tools at the time of hospital admission for selecting pharmacological strategies and identifying those patients most likely to benefit from an invasive strategy, they have not been optimized for patients undergoing PCI and, thus, have relatively poor prognostic power to further risk stratify acute coronary syndrome patients undergoing PCI,” Stone and colleagues wrote.

“The ACUITY-PCI score is therefore intended to supplement the TIMI and GRACE scores when an invasive strategy has been undertaken and PCI is being considered.”

The researchers created the risk score using data from 1,692 patients enrolled in the angiographic substudy of the ACUITY trial, which was a comparison of heparin plus a glycoprotein IIb/IIIa inhibitor, bivalirudin (Angiomax) plus a glycoprotein IIb/IIIa inhibitor, or bivalirudin alone in patients with ACS undergoing an early invasive strategy. They then validated the score using another 846 patients from the same study.

Multivariate analysis revealed six variables that were significantly associated with 1-year mortality and MI and were included in the score. The researchers assigned points based on the strength of the predictor:

  • Insulin-treated diabetes (12 points)
  • Renal insufficiency (12 points)
  • Baseline cardiac biomarker elevation or ST-segment deviation (8 points)
  • Bifurcation lesion (4 points)
  • Small vessel/diffuse coronary artery disease (2 points)
  • Extent of coronary artery disease (1 point for each 10 mm of disease)

The C-statistic for the risk score — a measure of discrimination — was 0.67 in the derivation cohort and 0.70 in the validation cohort. In the validation cohort, the chi-square statistic for calibration was 6.2 and the index of separation was 0.44.

All of those values were better than those seen for four other established risk scores — TIMI, GRACE, SYNTAX, and Clinical SYNTAX. In addition, the net reclassification improvement with the new score ranged from 9% to 38% and the integrated discrimination index varied from 1.9% to 2.7%.

The researchers noted that the ACUITY-PCI score also was a good predictor of 1-year definite or probable stent thrombosis, with a C-statistic of 0.72.

In another study in the same journal, George Dangas, MD, PhD, of Mount Sinai Medical Center in New York City, and colleagues — including Stone — reported on the development of a risk score specifically for stent thrombosis in patients with ACS undergoing PCI.

The study included 6,139 patients from the HORIZONS-AMI and ACUITY trials, which included those with ST-segment elevation MI (STEMI) in the former trial and those with non-STEMI and unstable angina in the latter. The researchers used 4,093 patients for the derivation cohort and 2,046 for the validation cohort.

The risk score included 10 variables that were significantly associated with the risk of Academic Research Consortium-defined definite or probable stent thrombosis at 1 year:

  • Type of acute coronary syndrome (4 points for STEMI, 2 points for non-ST-segment elevation ACS with ST deviation, and 1 point for non-ST-segment elevation ACS without ST changes)
  • Current smoking (1 point)
  • Insulin-dependent diabetes (2 points)
  • Prior PCI (1 point)
  • Baseline platelet count (1 point for 250 to 400 K/µL and 2 points for more than 400 K/µL)
  • Absence of pre-PCI heparin therapy (1 point)
  • Aneurysmal/ulcerated lesion (2 points)
  • Baseline TIMI flow grade 0/1 (1 point)
  • Final TIMI flow grade less than 3 (1 point)
  • Number of treated vessels (1 point for two vessels and 2 points for three vessels)

Scores from 1 to 6 are considered low risk, 7 to 9 are intermediate risk, and 10 or higher are high risk.

The rates of stent thrombosis at 1 year were 1.36%, 3.06%, and 9.18% across the three risk tertiles in the derivation cohort (P<0.001 for trend), with a similar trend seen in the validation cohort.

The C-statistics were 0.67 in the derivation cohort and 0.66 in the validation cohort. Performance was comparable for events occurring both early (within the first 30 days) and late (from 1 month to 1 year).

“We believe that the development and initial validation of this stent thrombosis risk score can be a useful tool for both clinical practice and future clinical investigation (future analyses of trials or registries), as it can be a simple way to risk stratify patients immediately following a procedure,” Dangas and colleagues wrote. “The risk score could also be used in the informed consent process to better inform patients of their individual risk of stent thrombosis.”

But Ron Waksman, MD, and Israel Barbash, MD, of MedStar Washington Hospital Center in Washington, D.C., noted some limitations of the tool, including the pooling of different types of patients, the exclusion of important variables associated with stent thrombosis risk, and the use of mostly first-generation drug-eluting stents in the trials.

“It is imperative that the user of such a prediction tool be aware of its capabilities and performance, as well as its limitations, in various clinical scenarios,” they wrote in an accompanying editorial.

“A newly developed risk score for stent thrombosis should be robust and should be tested across broad study populations, stents, and antiplatelet regimens. A new model should also be validated in a setting different from the one in which it was derived,” they wrote. “Unfortunately, this is not the case with the newly proposed model.”

“Until such an encompassing tool is developed and validated,” they wrote, “one should rely on the known stent thrombosis risk factors and tailor an appropriate treatment for each patient.”

The ACUITY trial was funded by The Medicines Company and Nycomed.

Stone has served as a consultant to Abbott Vascular, Boston Scientific, Medtronic, and The Medicines Company. His co-authors reported relationships with Abbott, Regado, Ortho McNeil, Janssen, Merck, Maya Medical, AstraZeneca, Sanofi/Bristol-Myers Squibb, Eli Lilly, and Daiichi Sankyo.

The HORIZONS-AMI trial was supported by the Cardiovascular Research Foundation, with grant support from Boston Scientific and The Medicines Company.

Dangas has received speaker honoraria from AstraZeneca, Bristol-Myers Squibb, The Medicines Company, sanofi-aventis, and Abbott Vascular. His co-authors reported relationships with sanofi-aventis, The Medicines Company, Abbott Vascular, Bristol-Myers Squibb, Cordis, AstraZeneca, Daiichi Sankyo, Eli Lilly, Maquet, Roche, Boehringer Ingelheim, Liposcience, Merck, Pozen, Gilead Sciences, WebMD, the NIH, Pfizer, Johnson & Johnson, Schering-Plough, Merck Sharpe and Dohme, GlaxoSmithKline, Regado Biosciences, Boston Scientific, and Bristol-Myers Squibb/Sanofi.

Waksman and Barbash reported that they had no conflicts of interest.

From the American Heart Association:

Primary source: JACC: Cardiovascular Interventions
Source reference:
Palmerini T, et al “A new score for risk stratification of patients with acute coronary syndromes undergoing percutaneous coronary intervention: the ACUITY-PCI (Acute Catheterization and Urgent Intervention Triage Strategy-Percutaneous Coronary Intervention) risk score” JACC Cardiovasc Interv 2012; 5: 1108-1116.

Additional source: JACC: Cardiovascular Interventions
Source reference:
Dangas G, et al “Development and validation of a stent thrombosis risk score in patients with acute coronary syndromes” JACC Cardiovasc Interv 2012; 5: 1097-1105.

Additional source: JACC: Cardiovascular Interventions
Source reference:
Waksman R, Barbash I “The appropriate use of risk scores” JACC Cardiovasc Interv 2012; 5: 1106-1107.

Todd Neale

Senior Staff Writer

Todd Neale, MedPage Today Staff Writer, got his start in journalism at Audubon Magazine and made a stop in directory publishing before landing at MedPage Today. He received a B.S. in biology from the University of Massachusetts Amherst and an M.A. in journalism from the Science, Health, and Environmental Reporting program at New York University. He is based atMedPage Today headquarters in Little Falls, N.J.



Read Full Post »

UPDATED: PLATO Trial on ACS: BRILINTA (ticagrelor) better than Plavix® (clopidogrel bisulfate): Lowering chances of having another heart attack

Reporter: Aviva Lev-Ari, PhD, RN


UPDATED on 9/1/2019

Extended DAPT with Brilinta: No Benefit for Stable CAD in T2D

Substudy in those with prior PCI might identify group where bleeding tradeoff is worthwhile

PARIS — Ticagrelor (Brilinta) as part of a dual antiplatelet therapy (DAPT) regimen didn’t improve net outcomes for stable coronary artery disease (CAD) among type 2 diabetes patients, except perhaps in the setting of percutaneous coronary intervention (PCI), the THEMIS trial showed.

Adding the potent antiplatelet agent to aspirin reduced cardiovascular (CV) death, myocardial infarction (MI), or stroke (7.7% vs 8.5%, HR 0.90, 95% CI 0.81-0.99), reported Deepak Bhatt, MD, MPH, of Brigham and Women’s Hospital and Harvard Medical School in Boston, at the European Society of Cardiology (ESC) congress and online in the New England Journal of Medicine.

But it also increased

  • TIMI major bleeding (2.2% vs 1.0%, HR 2.32, 95% CI 1.82-2.94) and
  • intracranial hemorrhage (0.7% vs 0.5%, HR 1.71, 95% CI 1.18- 2.48) over aspirin alone, albeit
  • without more fatal bleeding (0.2% vs 0.1%, P=0.11).

The combined effect was neutral for the exploratory composite outcome of “irreversible harm” (death from any cause, MI, stroke, fatal bleeding, or intracranial hemorrhage 10.1% vs 10.8%, HR 0.93, 95% CI 0.86-1.02).

ESC session study discussant Colin Baigent, MD, of Oxford University in England, actually calculated 12 major bleeds for every eight events prevented.

“This is a consistent story: when we add an antiplatelet agent for risk reduction, we increase the risk of bleeding,” noted Richard Kovacs, MD, of Indiana University in Indianapolis and president of the American College of Cardiology.

THEMIS is the final part of a largely-disappointing PARTHENON development program for ticagrelor, he noted. “It hasn’t changed practice. …Will the main THEMIS trial change clinical practice? In my opinion, no.”




UPDATED on 10/4/2016

Soriot’s $3.5B Brilinta dream is dashed by yet another big trial flop for AstraZeneca

by john carroll
October 4, 2016 09:00 AM EDT
Updated: 09:33 AM

Brilinta, the drug failed to demonstrate a benefit over generic Plavix (clopidogrel) for peripheral artery disease. Back in March, the heart drug flopped in a large stroke study, unable to prove that it could beat aspirin. And Soriot can chalk up those expensive studies to proving Brilinta’s serious deficiencies.

“We don’t believe the goal of $3.5 billion is attainable. I think it would be unrealistic to believe that,” Ludovic Helfgott, head of AstraZeneca’s Brilinta business, told Reuters.

Brilinta brought in a total of $619 million last year after disappointing analysts repeatedly with lower-than-expected quarterly revenue.

Heart studies aren’t cheap. AstraZeneca recruited 13,500 patients for the EUCLID study, and it had enrolled close to that number for the earlier SOCRATES trial.



UPDATED on 9/4/2014

Prehospital Ticagrelor in ST-Segment Elevation Myocardial Infarction

Gilles Montalescot, M.D., Ph.D., Arnoud W. van ‘t Hof, M.D., Ph.D., Frédéric Lapostolle, M.D., Ph.D., Johanne Silvain, M.D., Ph.D., Jens Flensted Lassen, M.D., Ph.D., Leonardo Bolognese, M.D., Warren J. Cantor, M.D., Ángel Cequier, M.D., Ph.D., Mohamed Chettibi, M.D., Ph.D., Shaun G. Goodman, M.D., Christopher J. Hammett, M.B., Ch.B., M.D., Kurt Huber, M.D., Magnus Janzon, M.D., Ph.D., Béla Merkely, M.D., Ph.D., Robert F. Storey, M.D., D.M., Uwe Zeymer, M.D., Olivier Stibbe, M.D., Patrick Ecollan, M.D., Wim M.J.M. Heutz, M.D., Eva Swahn, M.D., Ph.D., Jean-Philippe Collet, M.D., Ph.D., Frank F. Willems, M.D., Ph.D., Caroline Baradat, M.Sc., Muriel Licour, M.Sc., Anne Tsatsaris, M.D., Eric Vicaut, M.D., Ph.D., and Christian W. Hamm, M.D., Ph.D. for the ATLANTIC Investigators

September 1, 2014DOI: 10.1056/NEJMoa1407024


The direct-acting platelet P2Y12 receptor antagonist ticagrelor can reduce the incidence of major adverse cardiovascular events when administered at hospital admission to patients with ST-segment elevation myocardial infarction (STEMI). Whether prehospital administration of ticagrelor can improve coronary reperfusion and the clinical outcome is unknown.


We conducted an international, multicenter, randomized, double-blind study involving 1862 patients with ongoing STEMI of less than 6 hours’ duration, comparing prehospital (in the ambulance) versus in-hospital (in the catheterization laboratory) treatment with ticagrelor. The coprimary end points were the proportion of patients who did not have a 70% or greater resolution of ST-segment elevation before percutaneous coronary intervention (PCI) and the proportion of patients who did not have Thrombolysis in Myocardial Infarction flow grade 3 in the infarct-related artery at initial angiography. Secondary end points included the rates of major adverse cardiovascular events and definite stent thrombosis at 30 days.


The median time from randomization to angiography was 48 minutes, and the median time difference between the two treatment strategies was 31 minutes. The two coprimary end points did not differ significantly between the prehospital and in-hospital groups. The absence of ST-segment elevation resolution of 70% or greater after PCI (a secondary end point) was reported for 42.5% and 47.5% of the patients, respectively. The rates of major adverse cardiovascular events did not differ significantly between the two study groups. The rates of definite stent thrombosis were lower in the prehospital group than in the in-hospital group (0% vs. 0.8% in the first 24 hours; 0.2% vs. 1.2% at 30 days). Rates of major bleeding events were low and virtually identical in the two groups, regardless of the bleeding definition used.


Prehospital administration of ticagrelor in patients with acute STEMI appeared to be safe but did not improve pre-PCI coronary reperfusion. (Funded by AstraZeneca; ATLANTIC ClinicalTrials.gov number, NCT01347580.)





UPDATED on 2/7/2014

PLATO Controversy Hits the Wall Street Journal

February 05, 2014

NEW YORK, NY – The controversy surrounding the PLATOtrial of ticagrelor (Brilinta, AstraZeneca) continues unabated, according to a story published in the Wall Street Journal. Specifically, a sealed complaint filed in US district court in the District of Columbia by a researcher contends that the cardiovascular events in the study “may have been manipulated” [1].

Dr Victor Serebruany (HeartDrug Research Laboratories, Johns Hopkins University, Towson, MD), who has long been a thorn in the side of AstraZeneca and the PLATO investigators, filed the complaint under the False Claims Act, reports theWall Street Journal. The Journal notes that the US attorney’s office in Washington, DC, has contacted Serebruany and is currently investigating the clinical trial.As reported by heartwirein October 2013, the US Department of Justice issued a civil investigative demand from its civil division “seeking documents and information regarding PLATO.” AstraZeneca is complying with the request.

First reported by heart wirein 2009 , the PLATO trial was a positive study involving more 18 000 patients from 43 countries. PLATO investigators, led by Dr Lars Wallentin (Uppsala Clinical Research Center, Sweden), showed that treating acute coronary syndrome patients with ticagrelor significantly reduced the rate of MI, stroke, and cardiovascular death compared with patients taking clopidogrel. Results were presented at the European Society of Cardiology 2009 Congress and reported in the New England Journal of Medicine.

PLATO has been dogged by questions, including prior to approval. In the sealed complaint, Serebruany takes issue with a number of things, many of which have been reported previously. He alleges that the

  • number of clinical events among those taking clopidogrel was high compared with other studies, pointing out that the rate of all-cause death was 5.9% among clopidogrel-treated patients—nearly twice as high as earlier studies. In addition,
  • the sealed complaint documents the geographic discrepancies in the trial, noting there was a trend toward worse outcomes with ticagrelor at North American sites.The complaint also alleges that
  • an initial count of clinical events suggested the two drugs were equivalent, but adjudication by the Duke Clinical Research Institute attributed another 45 MIs to the clopidogrel group, which tipped the results in favor of ticagrelor. Other questions raised about the study include
  • site monitoring and timing of clinical events. Serebruany also alleges that
  • the trial may have unintentionally been unblinded because of the shape of clopidogrel’s “split capsules,” which would have enabled doctors and nurses to know which drug patients received.

AstraZeneca rebutted these issues, telling the Journal that it is cooperating with the government. It said it is confident in the integrity of the trial and noted the overall study showed the superiority of ticagrelor over clopidogrel. There is no evidence the trial was unblinded and researchers used the same standards when qualifying all clinical events, including MIs, they noted. In addition, the company said it is not possible to compare event rates with clopidogrel in PLATO with other studies because the patient populations differ.

The Journal reports that Serebruany became embroiled in the controversy when asked by the FDA‘s Dr Thomas Marciniak to advise the agency about the PLATO data in 2010. Marciniak, who led the FDA’s review of PLATO, called AstraZeneca’s submission on serious adverse events the “worst submission” he ever encountered. According to the submission, he noted, 12 patients reported their own deaths by telephone. Before approving ticagrelor, the FDA requested an additional analysis of PLATO, and it was eventually approved in the US in July 2011. Ticagrelor was approved in Europe in December 2010 and is authorized for use in more than 100 countries.

The Journal called Serebruany an expert in the antiplatelet field but said he is a “controversial figure,” partly because of his financial ties to industry and repeated criticisms of new drug approvals. Through HeartDrug Research, Serebruany has worked on prasugrel (Effient, Lily/Daiichi-Sankyo), a competing antiplatelet agent, but has also done work for AstraZeneca.


Burton TM. Doctor challenges testing of AstraZeneca’s Brilinta. Wall Street Journal, February 2, 2014. Available here.



UPDATED 3/28/2013

How AstraZeneca Will Use A Diagnostic To Market Its Blood Thinner

by Matthew Harper, Forbes Staff on 3/21/2013

Earlier today I wrote about how AstraZeneca is telling investors that its blood-thinner Brilinta, used to prevent second heart attacks, could be a multi-billion dollar drug, at least twice as big as Wall Street analysts expect. So far the drug has been a disappointment.

I wrote:

Another key data point Astra presented was that blood levels of troponin, a muscle protein released by the heart during a heart attack, predict which patients get the most benefit from Brilinta. This data is not in AstraZeneca’s label, but a spokeswoman said that she believed it would be something the company can market to doctors.

via Can Pascal Soriot Turn Around AstraZeneca? It May Come Down To One Drug – Forbes.

But will the Food and Drug Administration allow Astra to tell doctors that? Stratification using troponin is not in Brilinta’s FDA-approved label, and off-label promotion is illegal. But Ferguson says that communications about troponin will be allowed because all patients with high troponin are patients who would be included in the FDA-approved indication. He confirms that use of troponin testing will be part of the new marketing plan for Brilinta.



Can Pascal Soriot Turn Around AstraZeneca? It May Come Down To One Drug

by Matthew Herper, Forbes Staff on 3/21/2013

This morning in New York, new AstraZeneca chief executive Pascal Soriot is telling investors how he is going to turn around the company that has had the absolute worst track record in research and development among any big pharmaceutical firm. The plan is fairly wide-ranging and involves a lot of the steps one might expect:

  • new layoffs (2,300 jobs);
  • a re-focusing of research and development on three areas: heart disease and diabetes; oncology; and respiratory and inflammation;
  • new R&D initiatives involving Moderna, a biotech company, and the Karolinska Instutet;
  • moving the company’s headquarters to its R&D hub in Cambridge, U.K.;
  • re-focusing on emerging markets, where AZ already gets $6 billion in sales, especially China.

But the short-term key to delivering on his promises today seems to come down to a single drug: Brilinta, the Plavix competitor thatAstraZeneca introduced in 2011 which has so far disappointed, generating  just $324 $89 million in global sales last year. This is a medicine to prevent heart attacks and strokes in patients who suffer acute coronary syndrome, the condition that occurs after a heart attack or serious heart-related chest pain. It works by preventing the formation of blood clots.

Plavix was the second biggest drug in the world, with $6 billion in annual sales, but it is now generic. The conventional wisdom is that it will be difficult to compete with cheap generics. Brilinta is actually trailing Effient, a similar medicine from Eli Lilly, in usage. Wall Street consensus currently sees Brilinta growing to become a moderate-sized drug in 2018, with $1.3 billion in annual sales. But AstraZeneca is saying that it thinks Brilinta can be a multi-billion dollar product. Astra has confirmed that this means Brilinta will have to surpass Effient. The newer drugs also cause more bleeding than Plavix.

What is the company’s argument? In his presentation today, Paul Hudson, Astra’s Executive Vice President, North America, said that the key would be focusing on one key fact: Brilinta reduced cardiovascular deaths by 21% compared to Plavix in a big clinical trial. That would mean that if everyone eligible for Brilinta got it, 100,000 lives would be saved.

But the reality is that doctors have been skeptical of that data because in the part of that trial that was run in North America, the benefit was less clear. AstraZeneca says that this may have been due to an interaction of Brilinta and aspirin and that, according to current cardiovascular guidelines, doctors should be prescribing less aspirin anyway.

Another key data point Astra presented was that blood levels of troponin, a muscle protein released by the heart during a heart attack, predict which patients get the most benefit from Brilinta. This data is not in AstraZeneca’s label, but a spokeswoman said that she believed it would be something the company can market to doctors.

A lot of what Astra will do in the short term on Brilinta will be blocking and tackling. It needs to pay bigger rebates to insurers to make sure that patients can get cheap access to the drug. (This is how discounts happen in the American insurance system: the patient pays a co-payment and the insurer pays full price for the drug, but then the drug maker gives the insurer money back to make the end cost cheaper.) It will also be doing a lot of medical marketing, involving its internal experts or paid, external doctors, to get the word out about the benefits of Brilinta.

Brilinta has other advantages (it stops acting quickly) and disadvantages (it must be given twice a day). But the other big question for expanding results is whether large clinical trials that are now ongoing will show that it works in a broader array of heart patients. Astra is starting a big trial to show Brilinta prevents strokes. These trials are risky and expensive, but there will be a big payoff if they work.

Astra has some other commercial levers to point to. It’s diabetes pill Onglyza, which is sold with Bristol-Myers Squibb, will have results in a big study of its efficacy in preventing heart disease before a similar study of Merck’s top-selling Januvia, which started first. Soriot has smart ideas about which drugs to advance into later testing. But Brilinta is going to be the biggest single indicator of whether Soriot’s new strategies are paying off.



BRILINTA is an antiplatelet medication

Taking BRILINTA is a first step in the treatment your physician has chosen for you. At BRILINTA.com, you will find helpful information and useful learning tools to help you complete your course of BRILINTA therapy. Make sure you and your loved ones read through all of the sections.


BRILINTA is a type of prescription antiplatelet medication for people who have had a recent heart attack or severe chest pain that happened because their heart wasn’t getting enough oxygen and who are being treated with medicines or procedures to open blocked arteries in the heart. BRILINTA is used with aspirin to stop platelets from sticking together and forming a blood clot that could block blood flow to the heart and cause another, possibly fatal, heart attack. Platelets are small cells in the blood that help with normal blood clotting.

Take BRILINTA and aspirin exactly as instructed by your doctor: BRILINTA twice a day, plus one 81-mg aspirin tablet once a day. You should not take a dose of aspirin higher than 100 mg each day because it can affect how well BRILINTA works. Tell your doctor about any medicines you are taking that contain aspirin. Do not take any new medicines that contain aspirin.


BRILINTA used with aspirin lowers your chance of having another serious problem with your heart or blood vessels such as heart attack, stroke, or blood clots in your stent if you received one. These can be fatal. In fact, in a large clinical study BRILINTA was even better than Plavix® (clopidogrel bisulfate) tablets at lowering your chances of having another heart attack.

BRILINTA is used to lower your chance of having another heart attack or dying from a heart attack, but BRILINTA (and similar drugs) can cause bleeding that can be serious and sometimes lead to death.

Complete the


BRILINTA is used to lower your chance of having another heart attack or dying from a heart attack or stroke, but BRILINTA (and similar drugs) can cause bleeding that can be serious and sometimes lead to death. Instances of serious bleeding, such as internal bleeding, may require blood transfusions or surgery. While you take BRILINTA, you may bruise and bleed more easily and be more likely to have nosebleeds. Bleeding will also take longer than usual to stop.

Call your doctor right away if you have any signs or symptoms of bleeding while taking BRILINTA, including: severe, uncontrollable bleeding; pink, red, or brown urine; vomit that is bloody or looks like coffee grounds; red or black stool; or if you cough up blood or blood clots.

Do not stop taking BRILINTA without talking to the doctor who prescribes it for you. People who are treated with a stent, and stop taking BRILINTA too soon, have a higher risk of getting a blood clot in the stent, having a heart attack, or dying. If you stop BRILINTA because of bleeding, or for other reasons, your risk of a heart attack or stroke may increase. Tell all your doctors and dentists that you are taking BRILINTA. To decrease your risk of bleeding, your doctor may instruct you to stop taking BRILINTA 5 days before you have elective surgery. Your doctor should tell you when to start taking BRILINTA again, as soon as possible after surgery.

Take BRILINTA and aspirin exactly as instructed by your doctor. You should not take a dose of aspirin higher than 100 mg daily because it can affect how well BRILINTA works. Tell your doctor if you take other medicines that contain aspirin. Do not take new medicines that contain aspirin.

Do not take BRILINTA if you are bleeding now, especially from your stomach or intestine (ulcer), have a history of bleeding in the brain, or have severe liver problems.

BRILINTA can cause serious side effects, including bleeding and shortness of breath. Call your doctor if you have new or unexpected shortness of breath or any side effect that bothers you or that does not go away. Your doctor can decide what treatment is needed.

Tell your doctor about all the medicines you take, including prescription and nonprescription medicines, vitamins, and herbal supplements. BRILINTA may affect the way other medicines work, and other medicines may affect how BRILINTA works.

Approved uses
BRILINTA is a prescription medicine for people who have had a recent heart attack or severe chest pain that happened because their heart wasn’t getting enough oxygen and who are being treated with medicines or procedures to open blocked arteries in the heart.

BRILINTA is used with aspirin to lower your chance of having another serious problem with your heart or blood vessels such as heart attack, stroke, or blood clots in your stent if you received one. These can be fatal.

Please read Prescribing Information, including Boxed WARNINGS.

Please read Medication Guide.

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.fda.gov/medwatch or call 1-800-FDA-1088.

If you are without prescription coverage and cannot afford your medication, AstraZeneca may be able to help. For more information, please visit www.AstraZeneca.com.

This product information is intended for US consumers only.

BRILINTA is a trademark of the AstraZeneca group of companies.

Plavix® is a registered trademark of sanofi-aventis.

©2012 AstraZeneca.706809-1789005 8/12




BRILINTA (ticagrelor)

Ticagrelor (trade name Brilinta in the US, Brilique and Possia in the EU) is a platelet aggregation inhibitor produced by AstraZeneca. The drug was approved for use in the European Union by the European Commission on December 3, 2010.[1][2] The drug was approved by the US Food and Drug Administrationon July 20, 2011.[3]


Ticagrelor is indicated for the prevention of thrombotic events (for example stroke or heart attack) in patients with acute coronary syndrome or myocardial infarction with ST elevation. The drug is combined with acetylsalicylic acid unless the latter is contraindicated.[4] Treatment of acute coronary syndrome with ticagrelor as compared with clopidogrel significantly reduces the rate of death.[5]


Contraindications for ticagrelor are: active pathological bleeding and a history of intracranial bleeding, as well as reduced liver function and combination with drugs that strongly influence activity of the liver enzymeCYP3A4, because the drug is metabolized via CYP3A4 and excreted via the liver.[4]

Adverse effects

The most common side effects are shortness of breath (dyspnea, 14%)[6] and various types of bleeding, such as hematomanosebleedgastrointestinalsubcutaneous or dermal bleeding. Allergic skin reactions such as rash and itching have been observed in less than 1% of patients.[4]

Physical and chemical properties

Ticagrelor is a nucleoside analogue: the cyclopentane ring is similar to the sugar ribose, and the nitrogen rich aromatic ring system resembles the nucleobase purine, giving the molecule an overall similarity toadenosine. The substance has low solubility and low permeability under the Biopharmaceutics Classification System.[1]

Ticagrelor as a nucleoside analogue

The nucleoside adenosinefor comparison


Ticagrelor is absorbed quickly from the gut, the bioavailability being 36%, and reaches its peak concentration after about 1.5 hours. The main metabolite, AR-C124910XX, is formed quickly via CYP3A4 by de-hydroxyethylation at position 5 of the cyclopentane ring.[7] It peaks after about 2.5 hours. Both ticagrelor and AR-C124910XX are bound to plasma proteins (>99.7%), and both are pharmacologically active. Blood plasma concentrations are linearly dependent on the dose up to 1260 mg (the sevenfold daily dose). The metabolite reaches 30–40% of ticagrelor’s plasma concentrations. Drug and metabolite are mainly excreted via bile and feces.

Plasma concentrations of ticagrelor are slightly increased (12–23%) in elderly patients, women, patients of Asian ethnicity, and patients with mild hepatic impairment. They are decreased in patients that described themselves as ‘coloured’ and such with severe renal impairment. These differences are considered clinically irrelevant. In Japanese people, concentrations are 40% higher than in Caucasians, or 20% after body weight correction. The drug has not been tested in patients with severe hepatic impairment.[4]

Mechanism of action

Like the thienopyridines prasugrelclopidogrel and ticlopidine, ticagrelor blocks adenosine diphosphate (ADP) receptors of subtype P2Y12. In contrast to the other antiplatelet drugs, ticagrelor has a binding site different from ADP, making it an allosteric antagonist, and the blockage is reversible.[8] Moreover, the drug does not need hepatic activation, which might work better for patients with genetic variants regarding the enzyme CYP2C19 (although it is not certain whether clopidogrel is significantly influenced by such variants).[9][10][11]

Comparison with clopidogrel

The PLATO trial, funded by AstraZeneca, in mid-2009 found that ticagrelor had better mortality rates than clopidogrel (9.8% vs. 11.7%, p<0.001) in treating patients with acute coronary syndrome. Patients given ticagrelor were less likely to die from vascular causes, heart attack, or stroke but had greater chances of non-lethal bleeding (16.1% vs. 14.6%, p=0.0084), higher rate of major bleeding not related to coronary-artery bypass grafting (4.5% vs. 3.8%, P=0.03), including more instances of fatal intracranial bleeding. Rates of major bleeding were not different. Discontinuation of the study drug due to adverse events occurred more frequently with ticagrelor than with clopidogrel (in 7.4% of patients vs. 6.0%, P<0.001)[5] The PLATO trial showed a statistically insignificant trend toward worse outcomes with ticagrelor versus clopidogrel among US patients in the study – who comprised 1800 of the total 18,624 patients. The HR actually reversed for the composite end point cardiovascular (death, MI, or stroke): 12.6% for patients given ticagrelor and 10.1% for patients given clopidogrel (HR = 1.27). Some believe the results could be due to differences in aspirin maintenance doses, which are higher in the United States.[12] Others state that the central adjudicating committees found an extra 45 MIs in the clopidogrel (comparator) arm but none in the ticagrelor arm, which improved the MI outcomes with ticagrelor. Without this adjudication the trials’ primary efficacy outcomes should not be significant[13]

Consistently with its reversible mode of action, ticagrelor is known to act faster and shorter than clopidogrel.[14] This means it has to be taken twice instead of once a day which is a disadvantage in respect of compliance, but its effects are more quickly reversible which can be useful before surgery or if side effects occur.[4][15]


Inhibitors of the liver enzyme CYP3A4, such as ketoconazole and possibly grapefruit juice, increase blood plasma levels and consequently can lead to bleeding and other adverse effects. Conversely, drugs that are metabolized by CYP3A4, for example simvastatin, show increased plasma levels and more side effects if combined with ticagrelor. CYP3A4 inductors, for example rifampicin and possibly St. John’s wort, can reduce the effectiveness of ticagrelor. There is no evidence for interactions via CYP2C9.

The drug also inhibits P-glycoprotein (P-gp), leading to increased plasma levels of digoxinciclosporin and other P-gp substrates. Ticagrelor and AR-C124910XX levels are not significantly influenced by P-gp inhibitors.[4]

In the US a boxed warning states that use of ticagrelor with aspirin doses exceeding 100 mg/day decreases the effectiveness of the medication.[16]


  1. a b “Assessment Report for Brilique”European Medicines Agency. January 2011.
  2. ^ European Public Assessment Report Possia
  3. ^ “FDA approves blood-thinning drug Brilinta to treat acute coronary syndromes”. FDA. 20 July 2011.
  4. a b c d e f Haberfeld, H, ed. (2010) (in German). Austria-Codex (2010/2011 ed.). Vienna: Österreichischer Apothekerverlag.
  5. a b Wallentin, Lars; Becker, RC; Budaj, A; Cannon, CP; Emanuelsson, H; Held, C; Horrow, J; Husted, S et al. (August 30, 2009). “Ticagrelor versus Clopidogrel in Patients with Acute Coronary Syndromes”NEJM 361 (11): 1045–57. doi:10.1056/NEJMoa0904327PMID 19717846.
  6. ^ Brilinta: Highlights of prescribing information
  7. ^ Teng, R; Oliver, S; Hayes, MA; Butler, K (2010). “Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects”. Drug metabolism and disposition: the biological fate of chemicals 38 (9): 1514–21. doi:10.1124/dmd.110.032250PMID 20551239.
  8. ^ Birkeland, Kade; Parra, David; Rosenstein, Robert (2010). “Antiplatelet therapy in acute coronary syndromes: focus on ticagrelor”Journal of Blood Medicine 1: 197–219.
  9. ^ H. Spreitzer (February 4, 2008). “Neue Wirkstoffe – AZD6140” (in German). Österreichische Apothekerzeitung (3/2008): 135.
  10. ^ Owen, RT, Serradell, N, Bolos, J (2007). “AZD6140”. Drugs of the Future 32 (10): 845–853. doi:10.1358/dof.2007.032.10.1133832.
  11. ^ Tantry, Udaya S; Bliden, Kevin P (2010). “First Analysis of the Relation Between CYP2C19 Genotype and Pharmacodynamics in Patients Treated With Ticagrelor Versus Clopidogrel”. Circulation: Cardiovascular Genetics 3: 556–566. doi:10.1161/CIRCGENETICS.110.958561.
  12. ^ Bernardo Lombo, José G Díez. Ticagrelor: the evidence for its clinical potential as an oral antiplatelet treatment for the reduction of major adverse cardiac events in patients with acute coronary syndromes Core Evid. 2011; 6: 31–42. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065559/
  13. ^ Serebruany VL, Atar D. Viewpoint: Central adjudication of myocardial infarction in outcome-driven clinical trials—Common patterns in TRITON, RECORD, and PLATO? Thromb Haemost 2012; DOI: 10.1160/TH12-04-0251. http://www.theheart.org/article/1433145/print.do
  14. ^ Miller, R (24 February 2010). “Is there too much excitement for ticagrelor?”. TheHeart.org.
  15. ^ H. Spreitzer (17 January 2011). “Neue Wirkstoffe – Elinogrel” (in German). Österreichische Apothekerzeitung (2/2011): 10.
  16. ^ July 20, 2011 AstraZeneca: Ticagrelor (Brilinta) Gains FDA Approval Larry Husten cardiobrief.org/2011/07/20/astrazeneca-ticagrelor-brilinta-gains-fda-approval/



Read Full Post »

Reporter and Curator: Aviva Lev-Ari, PhD, RN

WOEST (What is the Optimal Antiplatelet and Anticoagulant Therapy in Patients with Oral Anticoagulantion and Coronary Stenting): Get Rid Of The Aspirin In Triple Therapy

According to current guidelines and clinical practice, PCI patients already taking an oral anticoagulant generally end up on triple therapy comprising the anticoagulant plus clopidogrel and aspirin. However, there is no supporting evidence base for this approach and the triple therapy regimen is known to increase bleeding complications. Now a new study– the first randomized trial to address this situation, according to the investigators–  may have a large impact on clinical practice by demonstrating that the omission of aspirin in this context appears to be safe and may reduce adverse events.

Results of the WOEST (What is the Optimal Antiplatelet and Anticoagulant Therapy in Patients with Oral Anticoagulantion and Coronary Stenting) trial were presented by Willem Dewilde at the ESC in Munich today. Investigators in the Netherlands and Belgium randomized 573 patients to triple therapy or dual therapy of an anticoagulant plus clopidogrel for at least one month after implantation of a bare-metal stent or one year after a drug-eluting stent. Two-thirds of the patients were receiving oral anticoagulation for atrial fibrillation.

The primary endpoint, the total number of bleeding events, was dramatically reduced in the dual therapy group at one year:

  • 44.9% in the triple therapy group versus 19.5% (HR 0.36, CI 0.26-0.50)

There were 3 intracranial bleeds in each group. Most of the difference in bleeding occurred in TIMI minor and minimal bleeding. The difference in TIMI major bleeding (3.3% versus 5.8%) did not achieve statistical significance.

Clinical events, the trials’s secondary endpoint, were numerically lower in the dual therapy group. The difference in mortality achieved statistical significance.

  • Mortality: 7 deaths (2.6%) in the dual therapy group versus 18 deaths (6.4%) in the triple therapy group, p=0.027
  • MI: 3.3% versus 4.7%, p=0.382
  • TVR: 7.3% versus 6.8%, p=0.876
  • Stroke: 1.1% versus 2.9%, p=0.128)
  • Stent thrombosis: 1.5% versus 3.2%, p=0.165

“The WOEST study demonstrates that omitting aspirin leads to less bleedings but does not increase the risk of stent thrombosis, stroke or myocardial infarction,” said Dewilde in an ESC press release. “Although the number of patients in the trial is limited, this is an important finding with implications for future treatment and guidelines in this group of patients known to be at high risk of bleeding and thrombotic complications.”

David Holmes said the trial addressed “an incredibly important issue” and predicted that it would “change the way we practice medicine, it will change practice right away.” Keith Fox said that the evidence base prior to WOEST was extremely limited and that the trial showed that there was no hazard in doing without aspirin. The ESC discussant, Marco Valgimigli, said the trial showed it was safe to drop aspirin and provided another demonstration that “we have hit the wall” with anticoagulation.

Republished with permission from CardioExchange, a NEJM group publication.


European Society of Cardiology: Prasugrel Can’t Top Clopidogrel in ACS

 By Todd Neale, Senior Staff Writer, MedPage Today

Published: August 26, 2012

Reviewed by Robert Jasmer, MD; Associate Clinical Professor of Medicine, University of California, San Francisco

MUNICH — For patients with unstable angina or non-ST-segment elevation myocardial infarction (non-STEMI) who do not undergo revascularization, increasing platelet inhibition may not improve outcomes, a randomized trial showed.

Added to a background of low-dose aspirin, prasugrel (Effient) did not significantly reduce the rate of MI, stroke, or cardiovascular death compared with clopidogrel (13.9% versus 16%, HR 0.91, 95% CI 0.79 to 1.05), according to Matthew Roe, MD, of Duke University in Durham, N.C.

The risk of severe bleeding was similar with both drugs, although minor and moderate bleeding were increased with prasugrel, Roe reported at the European Society of Cardiology meeting here. The findings were published simultaneously online in the New England Journal of Medicine.

“I think the outcome is a bit surprising because we think usually that more aggressive antiplatelet therapy, conceivably, in the face of an acute coronary syndrome and non-ST-elevation would lead to lesser adverse outcome from acute myocardial infarction or death,” said William Zoghbi, MD, from Methodist DeBakey Heart Center in Houston and president of the American College of Cardiology.

But he said clinicians need to respect the data “and start thinking about pathogenesis and what we’re trying to do with any of our new interventions.”

In patients with unstable angina or non-STEMI, practice guidelines call for angiography within 48 to 72 hours with provisional revascularization. Many of these patients do not ultimately undergo revascularization, placing them at greater risk compared with those who have their arteries opened with percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG).

Recommended medical therapy is with clopidogrel and aspirin, which is an approach that will not change from the current findings, Zoghbi said.

The purpose of the TRILOGY ACS trial was to explore whether using a more powerful platelet inhibitor — prasugrel — would improve outcomes compared clopidogrel (Plavix) in this high-risk patient subset.

The primary analysis involved 7,243 patients younger than 75 (mean age 62) who were receiving aspirin and were randomized to prasugrel 10 mg daily (or 5 mg daily for those weighing less than 132 pounds) or to clopidogrel 75 mg daily. The researchers recommended a daily aspirin dose of 100 mg or less.

A secondary, exploratory analysis involved 2,083 patients, 75 or older, who were randomized to prasugrel 5 mg daily or to clopidogrel 75 mg daily.

The lack of efficacy seen in the primary analysis of patients younger than 75 remained when patients of all ages were combined. There were no between-group differences for any of the components of the primary endpoint.

A prespecified secondary analysis taking multiple recurrent ischemic events into consideration showed a lower risk of MI, stroke, and cardiovascular death with prasugrel in the younger patients (HR 0.85, 95% CI 0.72 to 1.00, P=0.04), a finding consistent with the main results of the TRITON-TIMI 38 trial, which involved patients treated with PCI. The apparent benefit appeared after 12 months of treatment.

“Although this observation is exploratory, it raises the question of whether investigation of the multiplicity of ischemic events is warranted in future secondary-prevention trials, rather than solely analyzing the time to the first event, as has been traditional in studies involving patients who have had an acute coronary event,” the researchers wrote.

Rates of GUSTO severe or life threatening bleeding and TIMI major bleeding — as well as intracranial hemorrhage — were similar in the two groups in both the younger patients and in the overall study population. When minor and moderate bleeding events were added, the bleeding rate was higher with prasugrel.

There were no widespread differences between the groups in rates of nonhemorrhagic serious adverse events, but heart failure was more frequent with clopidogrel (1.8% versus 1.3%, P=0.045).

Douglas Weaver, MD, of Henry Ford Health System, said that he does not think the findings will have any impact on the use of prasugrel, which is not indicated for the patient population included in the study.

“It just doesn’t pass muster in improving value over clopidogrel,” said Weaver, a past president of the American College of Cardiology.

From a clinical perspective, he said, an important message from the study is the evidence of the safety of a reduced dose of prasugrel in the patients 75 and older, which is a consideration when prescribing prasugrel for patients undergoing PCI.

In comments following Roe’s presentation, Raffaele De Caterina, MD, PhD, of the G. d’Annunzio University in Chieti, Italy, provided context about how the findings fit in with the rest of the literature.

He compared the current results to those of a substudy of the PLATO trial, which involved ticagrelor (Brilinta).

In that trial, ticagrelor significantly reduced vascular death, MI, and stroke (HR 0.85, 95% CI 0.73 to 1.00, P=0.045) — the primary endpoint — and all-cause death (HR 0.75, 95% CI 0.61 to 0.93).

He then highlighted the ESC guidelines on treating patients with acute coronary syndromes without persistent ST-segment elevation.

In those, ticagrelor is recommended for all patients at moderate-to-high risk of ischemic events, regardless of initial treatment strategy and including those pre-treated with clopidogrel, and prasugrel is recommended for those who have not taken another P2Y12 inhibitor, who have a known coronary anatomy, and who are proceeding to PCI.

“I believe such statements and recommendations of the guidelines should not be changed,” De Caterina said.

TRILOGY ACS was funded by Eli Lilly and Daiichi Sankyo.

Roe reported relationships with Daiichi Sankyo, Eli Lilly, AstraZeneca, Bristol-Myers Squibb, Janssen Pharmaceuticals, Merck, Hoffmann-La Roche, and sanofi-aventis. The other authors reported numerous relationships with industry.

Primary source: New England Journal of Medicine

Prematurely halted ALTITUDE trial showed When added to monotherapy with either an ACE inhibitor or an angiotensin receptor blocker (ARB), aliskiren (Tekturna) did not improve outcomes in patients with type 2 diabetes who had high cardiovascular and renal risk

ESC: Aliskiren Onboard No Help in T2D

By Todd Neale, Senior Staff Writer, MedPage Today

Published: August 26, 2012

Reviewed by Robert Jasmer, MD; Associate Clinical Professor of Medicine, University of California, San Francisco

MUNICH — When added to monotherapy with either an ACE inhibitor or an angiotensin receptor blocker (ARB), aliskiren (Tekturna) did not improve outcomes in patients with type 2 diabetes who had high cardiovascular and renal risk, the prematurely halted ALTITUDE trial showed.

Through an average follow-up of 32 months, a composite of various cardiovascular and renal outcomes occurred in 17.9% of patients receiving the direct renin inhibitor and 16.8% of those receiving placebo (HR 1.08, 95% CI 0.98 to 1.20), according to Hans-Henrik Parving, MD, DMSc, of the University of Copenhagen and Aarhus University in Denmark.

As a Hot Line presentation European Society of Cardiology meeting here, Parving reported that there were no significant differences on any of the individual components of the endpoint — cardiovascular death, resuscitated sudden death, MI, stroke, unplanned hospitalization for heart failure, doubling of baseline serum creatinine, and onset of end-stage renal disease — or all-cause death.

The rate of stroke — mostly ischemic stroke — was numerically higher with aliskiren, although the result fell short of statistical significance (3.4% versus 2.8%; HR 1.25, 95% CI 0.98 to 1.60,P=0.07).

Thus, Parving said, using aliskiren with ACE inhibitors or ARBs in these high-risk patients “is not recommended and may even be harmful.”

The data monitoring committee for the ALTITUDE trial decided to stop the study early in December 2011 both for futility and for adverse events. Then, earlier this year, the FDA issued a warning about using aliskiren with ACE inhibitors or ARBs and changed the drug label to reflect a contraindication for such combinations in patients with diabetes or renal impairment.

The trial included 8,561 patients with type 2 diabetes who had a high risk of cardiovascular or renal disease who were randomized to aliskiren — at 150 mg daily for 1 month followed by 300 mg daily thereafter — or placebo in addition to monotherapy with either an ACE inhibitor or an ARB (but not both).

Adding aliskiren did not improve outcomes, and in fact, may have caused harm, Parving said, as indicated by the apparent increase in stroke risk.

He said that could be explained by the impaired autoregulation of patients with diabetes or by chance, as there are no indications of a stroke risk in other studies of the drug.

Johannes Mann, of Friedrich Alexander University in Erlangen, Germany, and McMaster University in Hamilton, Ontario, who served as the discussant following Parving’s presentation, agreed that it could be a chance finding, but said that it could also be a direct effect of aliskiren itself.

He concluded that the stroke risk was not explained, however, by dual renin system inhibition, because such a signal was not seen in the ONTARGET trial, which compared the combination of ramipril (an ACE inhibitor) and telmisartan (an ARB) with each drug as monotherapy.

As noted when the trial was halted last year, adverse events were more frequent in the aliskiren group.

The percentage of patients who had a potassium level of 5.5 to less than 6.0 mmol/L was greater with active treatment (21% versus 16%), as was the percentage of those with a potassium level of 6.0 mmol/L or greater (8.8% versus 5.6%).

Aliskiren carried higher risks of hyperkalemia (38.7% versus 28.6%), hypotension (12.1% versus 8%), diarrhea (9.6% versus 7.2%), and falls (2.8% versus 2.6%). There was one death caused by hyperkalemia.

Douglas Weaver, MD, of the Henry Ford Health System in Detroit, said that the findings were disappointing, but that they likely wouldn’t change how aliskiren is used in practice.

“I don’t think this is going to have a negative or a positive effect on it,” said Weaver, who is a past president of the American College of Cardiology.

ALTITUDE was sponsored by Novartis Pharma AG.

The executive committee and other investigators or their institutions received a consultancy fee. Some of the authors are employees of Novartis and therefore eligible for stock and stock options.

Primary source: European Society of Cardiology
Source reference:
Parving H-H, et al “The Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE)” ESC 2012; Abstract 399.


From Wikipedia, the free encyclopedia
Systematic (IUPAC) name
Aliskiren (INN) (trade names Tekturna, U.S.; Rasilez, U.K. and elsewhere) is the first in a class of drugs called direct renin inhibitors. Its current licensed indication is essential (primary) hypertension.

Aliskiren was co-developed by the Swiss pharmaceutical companies Novartis and Speedel.[1][2] It was approved by the U.S. Food and Drug Administration in 2007 for the treatment of primary hypertension.[3]

In December 2011, Novartis had to halt a clinical trial of the drug after discovering increased incidence of non-fatal stroke, renal complications, hyperkalemia and hypotension in patients with diabetes and renal impairment.[4]

The following recommendations are being added to the drug labels for aliskiren-containing products as of 4/20/12:

I) A new contraindication against the use of aliskiren with ARBs or ACEIs in patients with diabetes because of the risk of renal impairment, hypotension, and hyperkalemia. II) A warning to avoid use of aliskiren with ARBs or ACEIs in patients with moderate to severe renal impairment (i.e., where glomerular filtration rate [GFR] < 60 mL/min).

Mechanism of Action

Renin is the first enzyme in the renin-angiotensin-aldosterone system which plays a role in blood pressure control. Renin cleaves angiotensinogen to angiotensin I, which is in turn converted by angiotensin-converting enzyme (ACE) toangiotensin II. Angiotensin II has both direct and indirect effects on blood pressure. It directly causes arterial smooth muscle to contract, leading to vasoconstriction and increased blood pressure. Angiotensin II also stimulates the production of aldosterone from the adrenal cortex, which causes the tubules of the kidneys to increase reabsorption of sodium, with water following thereby increasing plasma volume and blood pressure.

Aliskiren binds to the S3bp binding pocket of renin, essential for its activity.[5] Binding to this pocket prevents the conversion of angiotensinogen to angiotensin I.
Aliskiren is also available as combination therapy with hydrochlorothiazide.[6]

Many drugs control blood pressure by interfering with angiotensin or aldosterone. However, when these drugs are used chronically, the body increases renin production, which drives blood pressure up again. Therefore, doctors have been looking for a drug to inhibit renin directly. Aliskiren is the first drug to do so.[7][8]

Aliskiren may have renoprotective effects that are independent of its blood pressure−lowering effect in patients with hypertension, type 2 diabetes, and nephropathy who are receiving the recommended renoprotective treatment. According to the AVOID study, researchers found that treatment with 300 mg of aliskiren daily, as compared with placebo, reduced the mean urinary albumin-to-creatinine ratio by 20% (95% confidence interval, 9 to 30; P<0.001), with a reduction of 50% or more in 24.7% of the patients who received aliskiren as compared with 12.5% of those who received placebo (P<0.001). Furthermore, the AVOID trial shows that treatment with 300 mg of aliskiren daily reduces albuminuria in patients with hypertension, type 2 diabetes, and proteinuria who are receiving the recommended maximal renoprotective treatment with losartan and optimal antihypertensive therapy. Therefore, direct renin inhibition will have a critical role in strategic renoprotective pharmacotherapy, in conjunction with dual blockade of the renin−angiotensin−aldosterone system with the use of ACE inhibitors and angiotensin II–receptor blockers, very high doses of angiotensin II−receptor blockers, and aldosterone blockade.[9]

Adverse effects

  • Angioedema
  • Hyperkalemia (particularly when used with ACE inhibitors in diabetic patients)
  • Hypotension (particularly in volume-depleted patients)
  • Diarrhea and other GI symptoms
  • Headache
  • Dizziness
  • Cough
  • Rash
  • Elevated uric acidgout, and renal stones
  • Rarely: allergic swelling of the face, lips or tongue and difficulty breathing


  • Pregnancy: other drugs such as ACE inhibitors, also acting on the renin-angiotensin system have been associated with fetal malformations and neonatal death[10]
  • Breast feeding: during animal studies, the drug has been found present in milk.[10]

Aliskiren has not yet been evaluated in patients with significantly impaired renal function.

Drug interactions

Aliskiren is a minor substrate of CYP3A4 and, more important, P-glycoprotein:

  • Reduces furosemide blood concentration.
  • Atorvastatin may increase blood concentration, however no dose adjustment needed.
  • Possible interaction with ciclosporin (the concomitant use of ciclosporin and aliskiren is contraindicated).
  • Caution should be exercised when aliskiren is administered with ketoconazole or other moderate P-gp inhibitors (itraconazole, clarithromycin, telithromycin, erythromycin, amiodarone).
  • Doctors should stop prescribing aliskiren-containing medicines to patients with diabetes (type 1 or type 2) or with moderate to severe kidney impairment who are also taking an ACE inhibitor or ARB, and should consider alternative antihypertensive treatment as necessary.[11]


  1. ^ Gradman A, Schmieder R, Lins R, Nussberger J, Chiang Y, Bedigian M (2005). “Aliskiren, a novel orally effective renin inhibitor, provides dose-dependent antihypertensive efficacy and placebo-like tolerability in hypertensive patients”. Circulation 111 (8): 1012–8. doi:10.1161/01.CIR.0000156466.02908.EDPMID 15723979.
  2. ^ Straessen JA, Li Y, and Richart T (2006). “Oral Renin Inhibitors”Lancet 368 (9545): 1449–56. doi:10.1016/S0140-6736(06)69442-7PMID 17055947.
  3. ^ “First Hypertension Drug to Inhibit Kidney Enzyme Approved”CBC. 2007-03-06. Retrieved 2007-03-14.[dead link]
  4. ^ Healthzone.ca: Blood-pressure drug reviewed amid dangerous side effects
  5. ^ “Chemistry & Biology : Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin”. ScienceDirect. Retrieved 2010-01-20.
  6. ^ Baldwin CM, Plosker GL.[1]doi:10.2165/00003495-200969070-00004. Drugs 2009; 69(7):833-841.
  7. ^ Ingelfinger JR (June 2008). “Aliskiren and dual therapy in type 2 diabetes mellitus”N. Engl. J. Med. 358 (23): 2503–5. doi:10.1056/NEJMe0803375.PMID 18525047.
  8. ^ PharmaXChange: Direct Renin Inhibitors as Antihypertensive Drugs
  9. ^ Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. “Aliskiren Combined with Losartan in Type 2 Diabetes and Nephropathy,” N Engl J Med 2008;358:2433-46.
  10. a b Drugs.com: Tekturna
  11. ^ European Medicines Agency recommends new contraindications and warnings for aliskiren-containing medicines.

External links


Read Full Post »

New Drug-Eluting Stent Works Well in STEMI

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 8/8/2013

Meta-analysis makes case for drug-eluting stents in STEMI

AUGUST 7, 2013 

New York, NY – Newer-generation drug-eluting stents, particularly the everolimus-eluting stent (Xience V, Abbot; Promus, Boston Scientific), significantly reduce the risk of target vessel revascularization (TVR) in patients with ST-segment-elevation MI (STEMI) without increasing the risk of adverse safety outcomes, including rates of stent thrombosis, when compared with bare-metal stents [1].

These are the principal findings of a new meta-analysis of 28 randomized, controlled clinical trials involving more than 34 000 patient-years of follow-up.

Published online August 6, 2013 in Circulation: Cardiovascular Interventions, the analysis showed that compared with the sirolimus-eluting stent (Cypher, Cordis), the paclitaxel-eluting stent (Taxus, Boston Scientific), and bare-metal stents, the use of an everolimus-eluting stent reduced the relative risk of stent thrombosis 62%, 61%, and 58%, respectively.

“I would make a strong argument to say that the current guidelines should change,” lead investigator Dr Sripal Bangalore (New York University School of Medicine) told heartwire. “The reduction in TVR is not surprising. We know that drug-eluting stents compared with bare-metal stents reduce TVR, but the biggest thing we were able show was that stent thrombosis is also reduced when compared with a bare-metal stent, as well as compared with first-generation drug-eluting stents.”

The current American College of Cardiology/American Heart Association (ACC/AHA) and European Society of Cardiology (ESC) clinical guidelines state that drug-eluting-stent implantation is a class IIa indication in STEMI patients. The recommendations are based on concerns about an increased risk of stent thrombosis with the drug-eluting stents compared with their bare-metal counterparts. Bangalore said concerns have also been raised about the risk of stent thrombosis beyond one year with the first-generation drug-eluting stents, a time point when dual antiplatelet therapy is stopped.

The newer-generation drug-eluting stents, however, have been shown in various studies to be as safe asbare-metal stents in the STEMI setting. For this reason, they conducted a meta-analysis of randomized, controlled trials comparing the sirolimus-, paclitaxel-, everolimus-, and zotarolimus-eluting stents against each other and against bare-metal stents.

When compared with bare-metal stents, the sirolimus-, paclitaxel-, and everolimus-eluting stent reduced the relative risk of TVR by 53%, 31%, and 57%, respectively. The sirolimus-eluting stent was significantly more effective than the paclitaxel-eluting stent at reducing TVR, as was the everolimus-eluting stent. Overall, there was a 67% probability that the Endeavor Resolute zotarolimus-eluting stent (Medtronic) had the lowest risk of TVR, although the data are based on just one trial with 281 patients, note the investigators.

Median rate of efficacy and definite/probable stent thrombosis

Stent type TVR rate (per 1000 patient-years of follow-up) Definite/probable stent thrombosis (per 1000 patient-years of follow-up)
Bare metal 64.00 16.60
Sirolimus 28.93 15.75
Paclitaxel 44.38 18.46
Everolimus 26.55 6.54
Zotarolimus 59.01 11.41
Zotarolimus (Resolute) 14.76 NA*


*For stent thrombosis, there were no available data on the Resolute stent

When compared with bare-metal stents, the everolimus-eluting stent reduced the risk of any stent thrombosis by 58%. The Xience stent was also associated with a statistically significant 62% and 61% reduction in the risk of stent thrombosis compared with the first-generation Cypher and Taxus stents.

Bangalore said that a previous patient-level analysis conducted by Dr Giuseppe De Luca (Ospedale Maggiore della Carità, Novara, Italy), reported by heartwire at that time, showed there was a significant 50% increase in the risk of late (more than one year) reinfarction with drug-eluting stents and an almost doubling of very late stent thrombosis with first-generation stents. In this newest meta-analysis, however, the researchers did not observe a similarly increased risk of very late stent thrombosis with the everolimus-eluting stent.

“Based on the totality of data, I would say that it’s time the guidelines make drug-eluting stents and especially the everolimus-eluting stent a class I indication in STEMI patients who can take dual antiplatelet therapy,” said Bangalore.


  1. Bangalore S, Amoroso N, Fusaro M, Kumar S, Feit F. Outcomes with various drug-eluting or bare-metal stents in patients with ST-segment elevation myocardial infarctionCirc Cardiovasc Interv 2013; DOI:10.1161/CIRCINTERVENTIONS.113.000415. Available at: http://circinterventions.ahajournals.org.


New Drug-Eluting Stent Works Well in STEMI

By Michael Smith, North American Correspondent, MedPage Today

Published: August 21, 2012

Reviewed by Robert Jasmer, MD; Associate Clinical Professor of Medicine, University of California, San Francisco and Dorothy Caputo, MA, BSN, RN, Nurse Planner

 Watch Video

 A new-generation biodegradable drug-eluting stent had a lower rate of major cardiac events than similar bare-metal devices, researchers reported.

In a randomized trial, patients with ST-segment elevation myocardial infarction (STEMI) needed fewer revascularization procedures and had a lower risk of a new heart attack in the target blood vessel, according to Stephan Windecker, MD, of Bern University Hospital in Bern, Switzerland, and colleagues.

On the other hand, rates of cardiac death were not significantly different, Windecker and colleagues reported in the Aug. 22/29 issue of the Journal of the American Medical Association.

Drug-eluting stents have been shown to reduce the need for repeat revascularization, compared with bare-metal stents, but at the cost of delayed healing, chronic inflammation, and late stent thrombosis, the researchers noted.

The long-term effects result from the persistence of the polymer, Windecker and colleagues noted — something that might be avoided by using a biodegradable polymer.

The biodegradable BioMatrix Flex stent, which delivers the immunosuppressant drug biolimus, was non-inferior in a 4-year trial to the sirolimus-eluting Cypher stent, which does not break down over time.

But it had not been tested against bare-metal stents. To help fill the gap, Windecker and colleagues studied 1-year outcomes in 1,161 STEMI patients randomly assigned to get either the biolimus-eluting biodegradable stent or a similar bare-metal device.

The primary endpoint of the trial was the 1-year rate of major adverse cardiac events — a composite of cardiac death, target vessel-related re-infarction, and ischemia-driven target-lesion revascularization.

Windecker and colleagues found that 24 patients (4.3%) with biodegradable stents had a major adverse cardiac event at 1 year, compared with 49 (8.7%) who were given the bare-metal devices (HR 0.49, 95% CI 0.30 to 0.80, P=0.004).

The difference was driven by a lower risk of two of the elements of the combined endpoint: target vessel-related reinfarction and ischemia-driven target-lesion revascularization. Specifically:

  • Three patients getting the biodegradable stent (0.5%) had a re-infarction related to the target vessel, compared with 15 (2.7%) of those with bare-metal devices (HR 0.20, 95% CI 0.06 to 0.69, P=0.01).
  • Nine patients (1.6%) with biodegradable stents and 32 (5.7%) with bare-metal devices needed target-lesion revascularization (HR 0.28, 95% CI 0.13 to 0.59, P<0.001).
  • Rates of cardiac death were numerically lower, but not significantly so, in the biodegradable stent patients — 16 deaths, or 2.9%, versus 20, or 3.5%.

Definite stent thrombosis occurred in five patients treated with the drug-eluting stents and 12 patients with bare-metal stents, but the difference did not reach significance.

The findings should be “reassuring” to both doctors and patients, Windecker said in a video released by the journal.

The study is “a well-done trial with convincing results regarding its primary end point,” commented Salvatore Cassese, MD, and Adnan Kastrati, MD, both of the Technische Universitat in Munich, Germany.

But, in an accompanying editorial, they argued that it still may not settle the question of long-term complications.

Despite “positive signals,” they wrote, the study has “neither the required sample size nor the sufficient length of follow-up to provide the definitive answer about the long-term safety” of the new biodegradable drug-eluting stents.

The researchers cautioned that the biodegradable drug-eluting stent is not yet approved in the U.S., although European authorities have given it the nod.

They also noted that the study, while demonstrating superiority on the overall endpoint, did not have sufficient statistical power to address the individual components definitively.

The study had support from the Swiss National Science Foundation and Biosensors Europe SA. Windecker reported financial links through his institution with Abbott, Boston Scientific, Biosensors, Biotronik, Cordis, Medtronic, and St. Jude Medical.

The editorial authors reported support from the European Commission. Kastrati reported holding a patent related to polymer-free sirolimus and probucol coating, as well as financial links with Abbott, Biosensors, Cordis, and Medtronic.

From the American Heart Association:

Related Articles in Heart.org

Related links

Read Full Post »

%d bloggers like this: