Feeds:
Posts
Comments

Posts Tagged ‘myocardial infarction’


Leaders in Pharmaceutical Business Intelligence would like to announce their First Volume of their BioMedical E-Book Series A: eBooks on Cardiovascular Diseases

 

Perspectives on Nitric Oxide in Disease Mechanisms

Nitric Oxide coverwhich is now available on Amazon Kindle at

http://www.amazon.com/dp/B00DINFFYC

This book is a comprehensive review of Nitric Oxide, its discovery, function, and related opportunities for Targeted Therapy written by  Experts, Authors, Writers.  This book is a series of articles delineating the basic functioning of the NOS isoforms, their production widely by endothelial cells, and the effect of NITRIC OXIDE production by endothelial cells, by neutrophils and macrophages, the effect on intercellular adhesion, and the effect of circulatory shear and turbulence on NITRIC OXIDE production. The e-Book’s articles have been published on the  Open Access Online Scientific Journal, since April 2012.  All new articles on this subject, will continue to be incorporated, as published, in real time in the e-Book which is a live book.

 

We invite e-Readers to write an Article Reviews on Amazon for this e-Book.

 

All forthcoming BioMed e-Book Titles can be viewed at:

https://pharmaceuticalintelligence.com/biomed-e-books/

 

Leaders in Pharmaceutical Business Intelligence, launched in April 2012 an Open Access Online Scientific Journal is a scientific, medical and business multi expert authoring environment in several domains of  life sciences, pharmaceutical, healthcare & medicine industries. The venture operates as an online scientific intellectual exchange at their website http://pharmaceuticalintelligence.com and for curation and reporting on frontiers in biomedical, biological sciences, healthcare economics, pharmacology, pharmaceuticals & medicine. In addition the venture publishes a Medical E-book Series available on Amazon’s Kindle platform.

Analyzing and sharing the vast and rapidly expanding volume of scientific knowledge has never been so crucial to innovation in the medical field. WE are addressing need of overcoming this scientific information overload by:

  • delivering curation and summary interpretations of latest findings and innovations on an open-access, Web 2.0 platform with future goals of providing primarily concept-driven search in the near future
  • providing a social platform for scientists and clinicians to enter into discussion using social media
  • compiling recent discoveries and issues in yearly-updated Medical E-book Series on Amazon’s mobile Kindle platform

This curation offers better organization and visibility to the critical information useful for the next innovations in academic, clinical, and industrial research by providing these hybrid networks.

Table of Contents for Perspectives on Nitric Oxide in Disease Mechanisms

Chapter 1: Nitric Oxide Basic Research

Chapter 2: Nitric Oxide and Circulatory Diseases

Chapter 3: Therapeutic Cardiovascular Targets

Chapter 4: Nitric Oxide and Neurodegenerative Diseases

Chapter 5: Bone Metabolism

Chapter 6: Nitric Oxide and Systemic Inflammatory Disease

Chapter 7: Nitric Oxide: Lung and Alveolar Gas Exchange

Chapter 8. Nitric Oxide and Kidney Dysfunction

Chapter 9: Nitric Oxide and Cancer 

 

 

 

 

 

 

 

 

Read Full Post »

Summary – Volume 4, Part 2: Translational Medicine in Cardiovascular Diseases


Summary – Volume 4, Part 2:  Translational Medicine in Cardiovascular Diseases

Author and Curator: Larry H Bernstein, MD, FCAP

 

We have covered a large amount of material that involves

  • the development,
  • application, and
  • validation of outcomes of medical and surgical procedures

that are based on translation of science from the laboratory to the bedside, improving the standards of medical practice at an accelerated pace in the last quarter century, and in the last decade.  Encouraging enabling developments have been:

1. The establishment of national and international outcomes databases for procedures by specialist medical societies

Stent Design and Thrombosis: Bifurcation Intervention, Drug Eluting Stents (DES) and Biodegrable Stents
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/08/06/stent-design-and-thrombosis-bifurcation-intervention-drug-eluting-stents-des-and-biodegrable-stents/

On Devices and On Algorithms: Prediction of Arrhythmia after Cardiac Surgery and ECG Prediction of an Onset of Paroxysmal Atrial Fibrillation
Author, and Content Consultant to e-SERIES A: Cardiovascular Diseases: Justin Pearlman, MD, PhD, FACC
https://pharmaceuticalintelligence.com/2013/05/07/on-devices-and-on-algorithms-arrhythmia-after-cardiac-surgery-prediction-and-ecg-prediction-of-paroxysmal-atrial-fibrillation-onset/

Mitral Valve Repair: Who is a Patient Candidate for a Non-Ablative Fully Non-Invasive Procedure?
Author, and Content Consultant to e-SERIES A: Cardiovascular Diseases: Justin Pearlman, MD, PhD, FACC and Article Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/11/04/mitral-valve-repair-who-is-a-candidate-for-a-non-ablative-fully-non-invasive-procedure/

Cardiovascular Complications: Death from Reoperative Sternotomy after prior CABG, MVR, AVR, or Radiation; Complications of PCI; Sepsis from Cardiovascular Interventions
Author, Introduction and Summary: Justin D Pearlman, MD, PhD, FACC and Article Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/07/23/cardiovascular-complications-of-multiple-etiologies-repeat-sternotomy-post-cabg-or-avr-post-pci-pad-endoscopy-andor-resultant-of-systemic-sepsis/

Survivals Comparison of Coronary Artery Bypass Graft (CABG) and Percutaneous Coronary Intervention (PCI) /Coronary Angioplasty
Larry H. Bernstein, MD, Writer And Aviva Lev-Ari, PhD, RN, Curator
https://pharmaceuticalintelligence.com/2013/06/23/comparison-of-cardiothoracic-bypass-and-percutaneous-interventional-catheterization-survivals/

Revascularization: PCI, Prior History of PCI vs CABG
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/04/25/revascularization-pci-prior-history-of-pci-vs-cabg/

Outcomes in High Cardiovascular Risk Patients: Prasugrel (Effient) vs. Clopidogrel (Plavix); Aliskiren (Tekturna) added to ACE or added to ARB
Reporter and Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2012/08/27/outcomes-in-high-cardiovascular-risk-patients-prasugrel-effient-vs-clopidogrel-plavix-aliskiren-tekturna-added-to-ace-or-added-to-arb/

Endovascular Lower-extremity Revascularization Effectiveness: Vascular Surgeons (VSs), Interventional Cardiologists (ICs) and Interventional Radiologists (IRs)
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2012/08/13/coronary-artery-disease-medical-devices-solutions-from-first-in-man-stent-implantation-via-medical-ethical-dilemmas-to-drug-eluting-stents/

and more

2. The identification of problem areas, particularly in activation of the prothrombotic pathways, infection control to an extent, and targeting of pathways leading to progression or to arrythmogenic complications.

Cardiovascular Complications: Death from Reoperative Sternotomy after prior CABG, MVR, AVR, or Radiation; Complications of PCI; Sepsis from Cardiovascular Interventions Author, Introduction and Summary: Justin D Pearlman, MD, PhD, FACC and Article Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/07/23/cardiovascular-complications-of-multiple-etiologies-repeat-sternotomy-post-cabg-or-avr-post-pci-pad-endoscopy-andor-resultant-of-systemic-sepsis/

Anticoagulation genotype guided dosing
Larry H. Bernstein, MD, FCAP, Author and Curator
https://pharmaceuticalintelligence.com/2013/12/08/anticoagulation-genotype-guided-dosing/

Stent Design and Thrombosis: Bifurcation Intervention, Drug Eluting Stents (DES) and Biodegrable Stents
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/08/06/stent-design-and-thrombosis-bifurcation-intervention-drug-eluting-stents-des-and-biodegrable-stents/

The Effects of Aprotinin on Endothelial Cell Coagulant Biology
Co-Author (Kamran Baig, MBBS, James Jaggers, MD, Jeffrey H. Lawson, MD, PhD) and Curator
https://pharmaceuticalintelligence.com/2013/07/20/the-effects-of-aprotinin-on-endothelial-cell-coagulant-biology/

Outcomes in High Cardiovascular Risk Patients: Prasugrel (Effient) vs. Clopidogrel (Plavix); Aliskiren (Tekturna) added to ACE or added to ARB
Reporter and Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2012/08/27/outcomes-in-high-cardiovascular-risk-patients-prasugrel-effient-vs-clopidogrel-plavix-aliskiren-tekturna-added-to-ace-or-added-to-arb/

Pharmacogenomics – A New Method for Druggability  Author and Curator: Demet Sag, PhD
https://pharmaceuticalintelligence.com/2014/04/28/pharmacogenomics-a-new-method-for-druggability/

Advanced Topics in Sepsis and the Cardiovascular System at its End Stage    Author: Larry H Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2013/08/18/advanced-topics-in-Sepsis-and-the-Cardiovascular-System-at-its-End-Stage/

3. Development of procedures that use a safer materials in vascular management.

Stent Design and Thrombosis: Bifurcation Intervention, Drug Eluting Stents (DES) and Biodegrable Stents
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/08/06/stent-design-and-thrombosis-bifurcation-intervention-drug-eluting-stents-des-and-biodegrable-stents/

Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization
Author and Curator: Larry H Bernstein, MD, FACP and Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/05/05/bioengineering-of-vascular-and-tissue-models/

Vascular Repair: Stents and Biologically Active Implants
Author and Curator: Larry H Bernstein, MD, FACP and Curator: Aviva Lev-Ari, RN, PhD
https://pharmaceuticalintelligence.com/2013/05/04/stents-biologically-active-implants-and-vascular-repair/

Drug Eluting Stents: On MIT’s Edelman Lab’s Contributions to Vascular Biology and its Pioneering Research on DES
Author: Larry H Bernstein, MD, FACP and Curator: Aviva Lev-Ari, PhD, RN
http://PharmaceuticalIntelligence.com/2013/04/25/Contributions-to-vascular-biology/

MedTech & Medical Devices for Cardiovascular Repair – Curations by Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2014/04/17/medtech-medical-devices-for-cardiovascular-repair-curation-by-aviva-lev-ari-phd-rn/

4. Discrimination of cases presenting for treatment based on qualifications for medical versus surgical intervention.

Treatment Options for Left Ventricular Failure – Temporary Circulatory Support: Intra-aortic balloon pump (IABP) – Impella Recover LD/LP 5.0 and 2.5, Pump Catheters (Non-surgical) vs Bridge Therapy: Percutaneous Left Ventricular Assist Devices (pLVADs) and LVADs (Surgical)
Author: Larry H Bernstein, MD, FCAP And Curator: Justin D Pearlman, MD, PhD, FACC
https://pharmaceuticalintelligence.com/2013/07/17/treatment-options-for-left-ventricular-failure-temporary-circulatory-support-intra-aortic-balloon-pump-iabp-impella-recover-ldlp-5-0-and-2-5-pump-catheters-non-surgical-vs-bridge-therapy/

Coronary Reperfusion Therapies: CABG vs PCI – Mayo Clinic preprocedure Risk Score (MCRS) for Prediction of in-Hospital Mortality after CABG or PCI
Writer and Curator: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/06/30/mayo-risk-score-for-percutaneous-coronary-intervention/

ACC/AHA Guidelines for Coronary Artery Bypass Graft Surgery Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/11/05/accaha-guidelines-for-coronary-artery-bypass-graft-surgery/

Mitral Valve Repair: Who is a Patient Candidate for a Non-Ablative Fully Non-Invasive Procedure?
Author, and Content Consultant to e-SERIES A: Cardiovascular Diseases: Justin Pearlman, MD, PhD, FACC and Article Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/11/04/mitral-valve-repair-who-is-a-candidate-for-a-non-ablative-fully-non-invasive-procedure/ 

5.  This has become possible because of the advances in our knowledge of key related pathogenetic mechanisms involving gene expression and cellular regulation of complex mechanisms.

What is the key method to harness Inflammation to close the doors for many complex diseases?
Author and Curator: Larry H Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2014/03/21/what-is-the-key-method-to-harness-inflammation-to-close-the-doors-for-many-complex-diseases/

CVD Prevention and Evaluation of Cardiovascular Imaging Modalities: Coronary Calcium Score by CT Scan Screening to justify or not the Use of Statin
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2014/03/03/cvd-prevention-and-evaluation-of-cardiovascular-imaging-modalities-coronary-calcium-score-by-ct-scan-screening-to-justify-or-not-the-use-of-statin/

Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension
Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2014/03/03/richard-lifton-md-phd-of-yale-university-and-howard-hughes-medical-institute-recipient-of-2014-breakthrough-prizes-awarded-in-life-sciences-for-the-discovery-of-genes-and-biochemical-mechanisms-tha/

Pathophysiological Effects of Diabetes on Ischemic-Cardiovascular Disease and on Chronic Obstructive Pulmonary Disease (COPD)
Curator:  Larry H. Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2014/01/15/pathophysiological-effects-of-diabetes-on-ischemic-cardiovascular-disease-and-on-chronic-obstructive-pulmonary-disease-copd/

Atherosclerosis Independence: Genetic Polymorphisms of Ion Channels Role in the Pathogenesis of Coronary Microvascular Dysfunction and Myocardial Ischemia (Coronary Artery Disease (CAD))
Reviewer and Co-Curator: Larry H Bernstein, MD, CAP and Curator: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2013/12/21/genetic-polymorphisms-of-ion-channels-have-a-role-in-the-pathogenesis-of-coronary-microvascular-dysfunction-and-ischemic-heart-disease/

Notable Contributions to Regenerative Cardiology  Author and Curator: Larry H Bernstein, MD, FCAP and Article Commissioner: Aviva Lev-Ari, PhD, RD
https://pharmaceuticalintelligence.com/2013/10/20/notable-contributions-to-regenerative-cardiology/

As noted in the introduction, any of the material can be found and reviewed by content, and the eTOC is identified in attached:

http://wp.me/p2xfv8-1W

 

This completes what has been presented in Part 2, Vol 4 , and supporting references for the main points that are found in the Leaders in Pharmaceutical Intelligence Cardiovascular book.  Part 1 was concerned with Posttranslational Modification of Proteins, vital for understanding cellular regulation and dysregulation.  Part 2 was concerned with Translational Medical Therapeutics, the efficacy of medical and surgical decisions based on bringing the knowledge gained from the laboratory, and from clinical trials into the realm opf best practice.  The time for this to occur in practice in the past has been through roughly a generation of physicians.  That was in part related to the busy workload of physicians, and inability to easily access specialty literature as the volume and complexity increased.  This had an effect of making access of a family to a primary care provider through a lifetime less likely than the period post WWII into the 1980s.

However, the growth of knowledge has accelerated in the specialties since the 1980’s so that the use of physician referral in time became a concern about the cost of medical care.  This is not the place for or a matter for discussion here.  It is also true that the scientific advances and improvements in available technology have had a great impact on medical outcomes.  The only unrelated issue is that of healthcare delivery, which is not up to the standard set by serial advances in therapeutics, accompanied by high cost due to development costs, marketing costs, and development of drug resistance.

I shall identify continuing developments in cardiovascular diagnostics, therapeutics, and bioengineering that is and has been emerging.

1. Mechanisms of disease

REPORT: Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures 

Science 11 April 2014:
Vol. 344 no. 6180 pp. 208-211
http://dx.doi.org/10.1126/science.1250217

Abstract: Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.

Yeasty HIPHOP

Laura Zahn
Sci. Signal. 15 April 2014; 7(321): ec103.   http://dx.doi.org/10.1126/scisignal.2005362

In order to identify how chemical compounds target genes and affect the physiology of the cell, tests of the perturbations that occur when treated with a range of pharmacological chemicals are required. By examining the haploinsufficiency profiling (HIP) and homozygous profiling (HOP) chemogenomic platforms, Lee et al.(p. 208) analyzed the response of yeast to thousands of different small molecules, with genetic, proteomic, and bioinformatic analyses. Over 300 compounds were identified that targeted 121 genes within 45 cellular response signature networks. These networks were used to extrapolate the likely effects of related chemicals, their impact upon genetic pathways, and to identify putative gene functions

Key Heart Failure Culprit Discovered

A team of cardiovascular researchers from the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai, Sanford-Burnham Medical Research Institute, and University of California, San Diego have identified a small, but powerful, new player in thIe onset and progression of heart failure. Their findings, published in the journal Nature  on March 12, also show how they successfully blocked the newly discovered culprit.
Investigators identified a tiny piece of RNA called miR-25 that blocks a gene known as SERCA2a, which regulates the flow of calcium within heart muscle cells. Decreased SERCA2a activity is one of the main causes of poor contraction of the heart and enlargement of heart muscle cells leading to heart failure.

Using a functional screening system developed by researchers at Sanford-Burnham, the research team discovered miR-25 acts pathologically in patients suffering from heart failure, delaying proper calcium uptake in heart muscle cells. According to co-lead study authors Christine Wahlquist and Dr. Agustin Rojas Muñoz, developers of the approach and researchers in Mercola’s lab at Sanford-Burnham, they used high-throughput robotics to sift through the entire genome for microRNAs involved in heart muscle dysfunction.

Subsequently, the researchers at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai found that injecting a small piece of RNA to inhibit the effects of miR-25 dramatically halted heart failure progression in mice. In addition, it also improved their cardiac function and survival.

“In this study, we have not only identified one of the key cellular processes leading to heart failure, but have also demonstrated the therapeutic potential of blocking this process,” says co-lead study author Dr. Dongtak Jeong, a post-doctoral fellow at the Cardiovascular Research Center at Icahn School of  Medicine at Mount Sinai in the laboratory of the study’s co-senior author Dr. Roger J. Hajjar.

Publication: Inhibition of miR-25 improves cardiac contractility in the failing heart.Christine Wahlquist, Dongtak Jeong, Agustin Rojas-Muñoz, Changwon Kho, Ahyoung Lee, Shinichi Mitsuyama, Alain Van Mil, Woo Jin Park, Joost P. G. Sluijter, Pieter A. F. Doevendans, Roger J. :  Hajjar & Mark Mercola.     Nature (March 2014)    http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13073.html

 

“Junk” DNA Tied to Heart Failure

Deep RNA Sequencing Reveals Dynamic Regulation of Myocardial Noncoding RNAs in Failing Human Heart and Remodeling With Mechanical Circulatory Support

Yang KC, Yamada KA, Patel AY, Topkara VK, George I, et al.
Circulation 2014;  129(9):1009-21.
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003863              http://circ.ahajournals.org/…/CIRCULATIONAHA.113.003863.full

The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.

Junk DNA was long thought to have no important role in heredity or disease because it doesn’t code for proteins. But emerging research in recent years has revealed that many of these sections of the genome produce noncoding RNA molecules that still have important functions in the body. They come in a variety of forms, some more widely studied than others. Of these, about 90% are called long noncoding RNAs (lncRNAs), and exploration of their roles in health and disease is just beginning.

The Washington University group performed a comprehensive analysis of all RNA molecules expressed in the human heart. The researchers studied nonfailing hearts and failing hearts before and after patients received pump support from left ventricular assist devices (LVAD). The LVADs increased each heart’s pumping capacity while patients waited for heart transplants.

In their study, the researchers found that unlike other RNA molecules, expression patterns of long noncoding RNAs could distinguish between two major types of heart failure and between failing hearts before and after they received LVAD support.

“The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support,” wrote the researchers. “These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.”

‘Junk’ Genome Regions Linked to Heart Failure

In a recent issue of the journal Circulation, Washington University investigators report results from the first comprehensive analysis of all RNA molecules expressed in the human heart. The researchers studied nonfailing hearts and failing hearts before and after patients received pump support from left ventricular assist devices (LVAD). The LVADs increased each heart’s pumping capacity while patients waited for heart transplants.

“We took an unbiased approach to investigating which types of RNA might be linked to heart failure,” said senior author Jeanne Nerbonne, the Alumni Endowed Professor of Molecular Biology and Pharmacology. “We were surprised to find that long noncoding RNAs stood out.

In the new study, the investigators found that unlike other RNA molecules, expression patterns of long noncoding RNAs could distinguish between two major types of heart failure and between failing hearts before and after they received LVAD support.

“We don’t know whether these changes in long noncoding RNAs are a cause or an effect of heart failure,” Nerbonne said. “But it seems likely they play some role in coordinating the regulation of multiple genes involved in heart function.”

Nerbonne pointed out that all types of RNA molecules they examined could make the obvious distinction: telling the difference between failing and nonfailing hearts. But only expression of the long noncoding RNAs was measurably different between heart failure associated with a heart attack (ischemic) and heart failure without the obvious trigger of blocked arteries (nonischemic). Similarly, only long noncoding RNAs significantly changed expression patterns after implantation of left ventricular assist devices.

Comment

Decoding the noncoding transcripts in human heart failure

Xiao XG, Touma M, Wang Y
Circulation. 2014; 129(9): 958960,  http://dx.doi.org/10.1161/CIRCULATIONAHA.114.007548 

Heart failure is a complex disease with a broad spectrum of pathological features. Despite significant advancement in clinical diagnosis through improved imaging modalities and hemodynamic approaches, reliable molecular signatures for better differential diagnosis and better monitoring of heart failure progression remain elusive. The few known clinical biomarkers for heart failure, such as plasma brain natriuretic peptide and troponin, have been shown to have limited use in defining the cause or prognosis of the disease.1,2 Consequently, current clinical identification and classification of heart failure remain descriptive, mostly based on functional and morphological parameters. Therefore, defining the pathogenic mechanisms for hypertrophic versus dilated or ischemic versus nonischemic cardiomyopathies in the failing heart remain a major challenge to both basic science and clinic researchers. In recent years, mechanical circulatory support using left ventricular assist devices (LVADs) has assumed a growing role in the care of patients with end-stage heart failure.3 During the earlier years of LVAD application as a bridge to transplant, it became evident that some patients exhibit substantial recovery of ventricular function, structure, and electric properties.4 This led to the recognition that reverse remodeling is potentially an achievable therapeutic goal using LVADs. However, the underlying mechanism for the reverse remodeling in the LVAD-treated hearts is unclear, and its discovery would likely hold great promise to halt or even reverse the progression of heart failure.

 

Efficacy and Safety of Dabigatran Compared With Warfarin in Relation to Baseline Renal Function in Patients With Atrial Fibrillation: A RE-LY (Randomized Evaluation of Long-term Anticoagulation Therapy) Trial Analysis

Circulation. 2014; 129: 951-952     http://dx.doi.org/10.1161/​CIR.0000000000000022

In patients with atrial fibrillation, impaired renal function is associated with a higher risk of thromboembolic events and major bleeding. Oral anticoagulation with vitamin K antagonists reduces thromboembolic events but raises the risk of bleeding. The new oral anticoagulant dabigatran has 80% renal elimination, and its efficacy and safety might, therefore, be related to renal function. In this prespecified analysis from the Randomized Evaluation of Long-Term Anticoagulant Therapy (RELY) trial, outcomes with dabigatran versus warfarin were evaluated in relation to 4 estimates of renal function, that is, equations based on creatinine levels (Cockcroft-Gault, Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI]) and cystatin C. The rates of stroke or systemic embolism were lower with dabigatran 150 mg and similar with 110 mg twice daily irrespective of renal function. Rates of major bleeding were lower with dabigatran 110 mg and similar with 150 mg twice daily across the entire range of renal function. However, when the CKD-EPI or MDRD equations were used, there was a significantly greater relative reduction in major bleeding with both doses of dabigatran than with warfarin in patients with estimated glomerular filtration rate ≥80 mL/min. These findings show that dabigatran can be used with the same efficacy and adequate safety in patients with a wide range of renal function and that a more accurate estimate of renal function might be useful for improved tailoring of anticoagulant treatment in patients with atrial fibrillation and an increased risk of stroke.

Aldosterone Regulates MicroRNAs in the Cortical Collecting Duct to Alter Sodium Transport.

Robert S Edinger, Claudia Coronnello, Andrew J Bodnar, William A Laframboise, Panayiotis V Benos, Jacqueline Ho, John P Johnson, Michael B Butterworth

Journal of the American Society of Nephrology (Impact Factor: 8.99). 04/2014;     http://dx. DO.org/I:10.1681/ASN.2013090931

Source: PubMed

ABSTRACT A role for microRNAs (miRs) in the physiologic regulation of sodium transport in the kidney has not been established. In this study, we investigated the potential of aldosterone to alter miR expression in mouse cortical collecting duct (mCCD) epithelial cells. Microarray studies demonstrated the regulation of miR expression by aldosterone in both cultured mCCD and isolated primary distal nephron principal cells.

Aldosterone regulation of the most significantly downregulated miRs, mmu-miR-335-3p, mmu-miR-290-5p, and mmu-miR-1983 was confirmed by quantitative RT-PCR. Reducing the expression of these miRs separately or in combination increased epithelial sodium channel (ENaC)-mediated sodium transport in mCCD cells, without mineralocorticoid supplementation. Artificially increasing the expression of these miRs by transfection with plasmid precursors or miR mimic constructs blunted aldosterone stimulation of ENaC transport.

Using a newly developed computational approach, termed ComiR, we predicted potential gene targets for the aldosterone-regulated miRs and confirmed ankyrin 3 (Ank3) as a novel aldosterone and miR-regulated protein.

A dual-luciferase assay demonstrated direct binding of the miRs with the Ank3-3′ untranslated region. Overexpression of Ank3 increased and depletion of Ank3 decreased ENaC-mediated sodium transport in mCCD cells. These findings implicate miRs as intermediaries in aldosterone signaling in principal cells of the distal kidney nephron.

 

2. Diagnostic Biomarker Status

A prospective study of the impact of serial troponin measurements on the diagnosis of myocardial infarction and hospital and 6-month mortality in patients admitted to ICU with non-cardiac diagnoses.

Marlies Ostermann, Jessica Lo, Michael Toolan, Emma Tuddenham, Barnaby Sanderson, Katie Lei, John Smith, Anna Griffiths, Ian Webb, James Coutts, John hambers, Paul Collinson, Janet Peacock, David Bennett, David Treacher

Critical care (London, England) (Impact Factor: 4.72). 04/2014; 18(2):R62.   http://dx.doi.org/:10.1186/cc13818

Source: PubMed

ABSTRACT Troponin T (cTnT) elevation is common in patients in the Intensive Care Unit (ICU) and associated with morbidity and mortality. Our aim was to determine the epidemiology of raised cTnT levels and contemporaneous electrocardiogram (ECG) changes suggesting myocardial infarction (MI) in ICU patients admitted for non-cardiac reasons.
cTnT and ECGs were recorded daily during week 1 and on alternate days during week 2 until discharge from ICU or death. ECGs were interpreted independently for the presence of ischaemic changes. Patients were classified into 4 groups: (i) definite MI (cTnT >=15 ng/L and contemporaneous changes of MI on ECG), (ii) possible MI (cTnT >=15 ng/L and contemporaneous ischaemic changes on ECG), (iii) troponin rise alone (cTnT >=15 ng/L), or (iv) normal. Medical notes were screened independently by two ICU clinicians for evidence that the clinical teams had considered a cardiac event.
Data from 144 patients were analysed [42% female; mean age 61.9 (SD 16.9)]. 121 patients (84%) had at least one cTnT level >=15 ng/L. A total of 20 patients (14%) had a definite MI, 27% had a possible MI, 43% had a cTNT rise without contemporaneous ECG changes, and 16% had no cTNT rise. ICU, hospital and 180 day mortality were significantly higher in patients with a definite or possible MI.Only 20% of definite MIs were recognised by the clinical team. There was no significant difference in mortality between recognised and non-recognised events.At time of cTNT rise, 100 patients (70%) were septic and 58% were on vasopressors. Patients who were septic when cTNT was elevated had an ICU mortality of 28% compared to 9% in patients without sepsis. ICU mortality of patients who were on vasopressors at time of cTNT elevation was 37% compared to 1.7% in patients not on vasopressors.
The majority of critically ill patients (84%) had a cTnT rise and 41% met criteria for a possible or definite MI of whom only 20% were recognised clinically. Mortality up to 180 days was higher in patients with a cTnT rise.

 

Prognostic performance of high-sensitivity cardiac troponin T kinetic changes adjusted for elevated admission values and the GRACE score in an unselected emergency department population.

Moritz BienerMatthias MuellerMehrshad VafaieAllan S JaffeHugo A Katus,Evangelos Giannitsis

Clinica chimica acta; international journal of clinical chemistry (Impact Factor: 2.54). 04/2014;   http://dx.doi.org/10.1016/j.cca.2014.04.007

Source: PubMed

ABSTRACT To test the prognostic performance of rising and falling kinetic changes of high-sensitivity cardiac troponin T (hs-cTnT) and the GRACE score.
Rising and falling hs-cTnT changes in an unselected emergency department population were compared.
635 patients with a hs-cTnT >99th percentile admission value were enrolled. Of these, 572 patients qualified for evaluation with rising patterns (n=254, 44.4%), falling patterns (n=224, 39.2%), or falling patterns following an initial rise (n=94, 16.4%). During 407days of follow-up, we observed 74 deaths, 17 recurrent AMI, and 79 subjects with a composite of death/AMI. Admission values >14ng/L were associated with a higher rate of adverse outcomes (OR, 95%CI:death:12.6, 1.8-92.1, p=0.01, death/AMI:6.7, 1.6-27.9, p=0.01). Neither rising nor falling changes increased the AUC of baseline values (AUC: rising 0.562 vs 0.561, p=ns, falling: 0.533 vs 0.575, p=ns). A GRACE score ≥140 points indicated a higher risk of death (OR, 95%CI: 3.14, 1.84-5.36), AMI (OR,95%CI: 1.56, 0.59-4.17), or death/AMI (OR, 95%CI: 2.49, 1.51-4.11). Hs-cTnT changes did not improve prognostic performance of a GRACE score ≥140 points (AUC, 95%CI: death: 0.635, 0.570-0.701 vs. 0.560, 0.470-0.649 p=ns, AMI: 0.555, 0.418-0.693 vs. 0.603, 0.424-0.782, p=ns, death/AMI: 0.610, 0.545-0.676 vs. 0.538, 0.454-0.622, p=ns). Coronary angiography was performed earlier in patients with rising than with falling kinetics (median, IQR [hours]:13.7, 5.5-28.0 vs. 20.8, 6.3-59.0, p=0.01).
Neither rising nor falling hs-cTnT changes improve prognostic performance of elevated hs-cTnT admission values or the GRACE score. However, rising values are more likely associated with the decision for earlier invasive strategy.

 

Troponin assays for the diagnosis of myocardial infarction and acute coronary syndrome: where do we stand?

Arie Eisenman

ABSTRACT: Under normal circumstances, most intracellular troponin is part of the muscle contractile apparatus, and only a small percentage (< 2-8%) is free in the cytoplasm. The presence of a cardiac-specific troponin in the circulation at levels above normal is good evidence of damage to cardiac muscle cells, such as myocardial infarction, myocarditis, trauma, unstable angina, cardiac surgery or other cardiac procedures. Troponins are released as complexes leading to various cut-off values depending on the assay used. This makes them very sensitive and specific indicators of cardiac injury. As with other cardiac markers, observation of a rise and fall in troponin levels in the appropriate time-frame increases the diagnostic specificity for acute myocardial infarction. They start to rise approximately 4-6 h after the onset of acute myocardial infarction and peak at approximately 24 h, as is the case with creatine kinase-MB. They remain elevated for 7-10 days giving a longer diagnostic window than creatine kinase. Although the diagnosis of various types of acute coronary syndrome remains a clinical-based diagnosis, the use of troponin levels contributes to their classification. This Editorial elaborates on the nature of troponin, its classification, clinical use and importance, as well as comparing it with other currently available cardiac markers.

Expert Review of Cardiovascular Therapy 07/2006; 4(4):509-14.   http://dx.doi.org/:10.1586/14779072.4.4.509 

 

Impact of redefining acute myocardial infarction on incidence, management and reimbursement rate of acute coronary syndromes.

Carísi A Polanczyk, Samir Schneid, Betina V Imhof, Mariana Furtado, Carolina Pithan, Luis E Rohde, Jorge P Ribeiro

ABSTRACT: Although redefinition for acute myocardial infarction (AMI) has been proposed few years ago, to date it has not been universally adopted by many institutions. The purpose of this study is to evaluate the diagnostic, prognostic and economical impact of the new diagnostic criteria for AMI. Patients consecutively admitted to the emergency department with suspected acute coronary syndromes were enrolled in this study. Troponin T (cTnT) was measured in samples collected for routine CK-MB analyses and results were not available to physicians. Patients without AMI by traditional criteria and cTnT > or = 0.035 ng/mL were coded as redefined AMI. Clinical outcomes were hospital death, major cardiac events and revascularization procedures. In-hospital management and reimbursement rates were also analyzed. Among 363 patients, 59 (16%) patients had AMI by conventional criteria, whereas additional 75 (21%) had redefined AMI, an increase of 127% in the incidence. Patients with redefined AMI were significantly older, more frequently male, with atypical chest pain and more risk factors. In multivariate analysis, redefined AMI was associated with 3.1 fold higher hospital death (95% CI: 0.6-14) and a 5.6 fold more cardiac events (95% CI: 2.1-15) compared to those without AMI. From hospital perspective, based on DRGs payment system, adoption of AMI redefinition would increase 12% the reimbursement rate [3552 Int dollars per 100 patients evaluated]. The redefined criteria result in a substantial increase in AMI cases, and allow identification of high-risk patients. Efforts should be made to reinforce the adoption of AMI redefinition, which may result in more qualified and efficient management of ACS.

International Journal of Cardiology 03/2006; 107(2):180-7. · 5.51 Impact Factor   http://www.sciencedirect.com/science/article/pii/S0167527305005279

 

3. Biomedical Engineerin3g

Safety and Efficacy of an Injectable Extracellular Matrix Hydrogel for Treating Myocardial Infarction 

Sonya B. Seif-Naraghi, Jennifer M. Singelyn, Michael A. Salvatore,  et al.
Sci Transl Med 20 February 2013 5:173ra25  http://dx.doi.org/10.1126/scitranslmed.3005503

Acellular biomaterials can stimulate the local environment to repair tissues without the regulatory and scientific challenges of cell-based therapies. A greater understanding of the mechanisms of such endogenous tissue repair is furthering the design and application of these biomaterials. We discuss recent progress in acellular materials for tissue repair, using cartilage and cardiac tissues as examples of application with substantial intrinsic hurdles, but where human translation is now occurring.

 Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies

J. A. Burdick, R. L. Mauck, J. H. Gorman, R. C. Gorman,
Sci. Transl. Med. 2013; 5, (176): 176 ps4    http://stm.sciencemag.org/content/5/176/176ps4

Acellular biomaterials can stimulate the local environment to repair tissues without the regulatory and scientific challenges of cell-based therapies. A greater understanding of the mechanisms of such endogenous tissue repair is furthering the design and application of these biomaterials. We discuss recent progress in acellular materials for tissue repair, using cartilage and cardiac tissues as examples of applications with substantial intrinsic hurdles, but where human translation is now occurring.


Instructive Nanofiber Scaffolds with VEGF Create a Microenvironment for Arteriogenesis and Cardiac Repair

Yi-Dong Lin, Chwan-Yau Luo, Yu-Ning Hu, Ming-Long Yeh, Ying-Chang Hsueh, Min-Yao Chang, et al.
Sci Transl Med 8 August 2012; 4(146):ra109.   http://dx.doi.org/ 10.1126/scitranslmed.3003841

Angiogenic therapy is a promising approach for tissue repair and regeneration. However, recent clinical trials with protein delivery or gene therapy to promote angiogenesis have failed to provide therapeutic effects. A key factor for achieving effective revascularization is the durability of the microvasculature and the formation of new arterial vessels. Accordingly, we carried out experiments to test whether intramyocardial injection of self-assembling peptide nanofibers (NFs) combined with vascular endothelial growth factor (VEGF) could create an intramyocardial microenvironment with prolonged VEGF release to improve post-infarct neovascularization in rats. Our data showed that when injected with NF, VEGF delivery was sustained within the myocardium for up to 14 days, and the side effects of systemic edema and proteinuria were significantly reduced to the same level as that of control. NF/VEGF injection significantly improved angiogenesis, arteriogenesis, and cardiac performance 28 days after myocardial infarction. NF/VEGF injection not only allowed controlled local delivery but also transformed the injected site into a favorable microenvironment that recruited endogenous myofibroblasts and helped achieve effective revascularization. The engineered vascular niche further attracted a new population of cardiomyocyte-like cells to home to the injected sites, suggesting cardiomyocyte regeneration. Follow-up studies in pigs also revealed healing benefits consistent with observations in rats. In summary, this study demonstrates a new strategy for cardiovascular repair with potential for future clinical translation.

Manufacturing Challenges in Regenerative Medicine

I. Martin, P. J. Simmons, D. F. Williams.
Sci. Transl. Med. 2014; 6(232): fs16.   http://dx.doi.org/10.1126/scitranslmed.3008558

Along with scientific and regulatory issues, the translation of cell and tissue therapies in the routine clinical practice needs to address standardization and cost-effectiveness through the definition of suitable manufacturing paradigms.

 

 

 

Read Full Post »

Summary of Translational Medicine – e-Series A: Cardiovascular Diseases, Volume Four – Part 1


Summary of Translational Medicine – e-Series A: Cardiovascular Diseases, Volume Four – Part 1

Author and Curator: Larry H Bernstein, MD, FCAP

and

Curator: Aviva Lev-Ari, PhD, RN

 

Part 1 of Volume 4 in the e-series A: Cardiovascular Diseases and Translational Medicine, provides a foundation for grasping a rapidly developing surging scientific endeavor that is transcending laboratory hypothesis testing and providing guidelines to:

  • Target genomes and multiple nucleotide sequences involved in either coding or in regulation that might have an impact on complex diseases, not necessarily genetic in nature.
  • Target signaling pathways that are demonstrably maladjusted, activated or suppressed in many common and complex diseases, or in their progression.
  • Enable a reduction in failure due to toxicities in the later stages of clinical drug trials as a result of this science-based understanding.
  • Enable a reduction in complications from the improvement of machanical devices that have already had an impact on the practice of interventional procedures in cardiology, cardiac surgery, and radiological imaging, as well as improving laboratory diagnostics at the molecular level.
  • Enable the discovery of new drugs in the continuing emergence of drug resistance.
  • Enable the construction of critical pathways and better guidelines for patient management based on population outcomes data, that will be critically dependent on computational methods and large data-bases.

What has been presented can be essentially viewed in the following Table:

 

Summary Table for TM - Part 1

Summary Table for TM – Part 1

 

 

 

There are some developments that deserve additional development:

1. The importance of mitochondrial function in the activity state of the mitochondria in cellular work (combustion) is understood, and impairments of function are identified in diseases of muscle, cardiac contraction, nerve conduction, ion transport, water balance, and the cytoskeleton – beyond the disordered metabolism in cancer.  A more detailed explanation of the energetics that was elucidated based on the electron transport chain might also be in order.

2. The processes that are enabling a more full application of technology to a host of problems in the environment we live in and in disease modification is growing rapidly, and will change the face of medicine and its allied health sciences.

 

Electron Transport and Bioenergetics

Deferred for metabolomics topic

Synthetic Biology

Introduction to Synthetic Biology and Metabolic Engineering

Kristala L. J. Prather: Part-1    <iBiology > iBioSeminars > Biophysics & Chemical Biology >

http://www.ibiology.org Lecturers generously donate their time to prepare these lectures. The project is funded by NSF and NIGMS, and is supported by the ASCB and HHMI.
Dr. Prather explains that synthetic biology involves applying engineering principles to biological systems to build “biological machines”.

Dr. Prather has received numerous awards both for her innovative research and for excellence in teaching.  Learn more about how Kris became a scientist at
Prather 1: Synthetic Biology and Metabolic Engineering  2/6/14IntroductionLecture Overview In the first part of her lecture, Dr. Prather explains that synthetic biology involves applying engineering principles to biological systems to build “biological machines”. The key material in building these machines is synthetic DNA. Synthetic DNA can be added in different combinations to biological hosts, such as bacteria, turning them into chemical factories that can produce small molecules of choice. In Part 2, Prather describes how her lab used design principles to engineer E. coli that produce glucaric acid from glucose. Glucaric acid is not naturally produced in bacteria, so Prather and her colleagues “bioprospected” enzymes from other organisms and expressed them in E. coli to build the needed enzymatic pathway. Prather walks us through the many steps of optimizing the timing, localization and levels of enzyme expression to produce the greatest yield. Speaker Bio: Kristala Jones Prather received her S.B. degree from the Massachusetts Institute of Technology and her PhD at the University of California, Berkeley both in chemical engineering. Upon graduation, Prather joined the Merck Research Labs for 4 years before returning to academia. Prather is now an Associate Professor of Chemical Engineering at MIT and an investigator with the multi-university Synthetic Biology Engineering Reseach Center (SynBERC). Her lab designs and constructs novel synthetic pathways in microorganisms converting them into tiny factories for the production of small molecules. Dr. Prather has received numerous awards both for her innovative research and for excellence in teaching.

VIEW VIDEOS

https://www.youtube.com/watch?feature=player_embedded&v=ndThuqVumAk#t=0

https://www.youtube.com/watch?feature=player_embedded&v=ndThuqVumAk#t=12

https://www.youtube.com/watch?feature=player_embedded&v=ndThuqVumAk#t=74

https://www.youtube.com/watch?feature=player_embedded&v=ndThuqVumAk#t=129

https://www.youtube.com/watch?feature=player_embedded&v=ndThuqVumAk#t=168

https://www.youtube.com/watch?feature=player_embedded&v=ndThuqVumAk

 

II. Regulatory Effects of Mammalian microRNAs

Calcium Cycling in Synthetic and Contractile Phasic or Tonic Vascular Smooth Muscle Cells

in INTECH
Current Basic and Pathological Approaches to
the Function of Muscle Cells and Tissues – From Molecules to HumansLarissa Lipskaia, Isabelle Limon, Regis Bobe and Roger Hajjar
Additional information is available at the end of the chapter
http://dx.doi.org/10.5772/48240
1. Introduction
Calcium ions (Ca ) are present in low concentrations in the cytosol (~100 nM) and in high concentrations (in mM range) in both the extracellular medium and intracellular stores (mainly sarco/endo/plasmic reticulum, SR). This differential allows the calcium ion messenger that carries information
as diverse as contraction, metabolism, apoptosis, proliferation and/or hypertrophic growth. The mechanisms responsible for generating a Ca signal greatly differ from one cell type to another.
In the different types of vascular smooth muscle cells (VSMC), enormous variations do exist with regard to the mechanisms responsible for generating Ca signal. In each VSMC phenotype (synthetic/proliferating and contractile [1], tonic or phasic), the Ca signaling system is adapted to its particular function and is due to the specific patterns of expression and regulation of Ca.
For instance, in contractile VSMCs, the initiation of contractile events is driven by mem- brane depolarization; and the principal entry-point for extracellular Ca is the voltage-operated L-type calcium channel (LTCC). In contrast, in synthetic/proliferating VSMCs, the principal way-in for extracellular Ca is the store-operated calcium (SOC) channel.
Whatever the cell type, the calcium signal consists of  limited elevations of cytosolic free calcium ions in time and space. The calcium pump, sarco/endoplasmic reticulum Ca ATPase (SERCA), has a critical role in determining the frequency of SR Ca release by upload into the sarcoplasmic
sensitivity of  SR calcium channels, Ryanodin Receptor, RyR and Inositol tri-Phosphate Receptor, IP3R.
Synthetic VSMCs have a fibroblast appearance, proliferate readily, and synthesize increased levels of various extracellular matrix components, particularly fibronectin, collagen types I and III, and tropoelastin [1].
Contractile VSMCs have a muscle-like or spindle-shaped appearance and well-developed contractile apparatus resulting from the expression and intracellular accumulation of thick and thin muscle filaments [1].
Schematic representation of Calcium Cycling in Contractile and Proliferating VSMCs

Schematic representation of Calcium Cycling in Contractile and Proliferating VSMCs

 

Figure 1. Schematic representation of Calcium Cycling in Contractile and Proliferating VSMCs.

Left panel: schematic representation of calcium cycling in quiescent /contractile VSMCs. Contractile re-sponse is initiated by extracellular Ca influx due to activation of Receptor Operated Ca (through phosphoinositol-coupled receptor) or to activation of L-Type Calcium channels (through an increase in luminal pressure). Small increase of cytosolic due IP3 binding to IP3R (puff) or RyR activation by LTCC or ROC-dependent Ca influx leads to large SR Ca IP3R or RyR clusters (“Ca -induced Ca SR calcium pumps (both SERCA2a and SERCA2b are expressed in quiescent VSMCs), maintaining high concentration of cytosolic Ca and setting the sensitivity of RyR or IP3R for the next spike.
Contraction of VSMCs occurs during oscillatory Ca transient.
Middle panel: schematic representa tion of atherosclerotic vessel wall. Contractile VSMC are located in the media layer, synthetic VSMC are located in sub-endothelial intima.
Right panel: schematic representation of calcium cycling in quiescent /contractile VSMCs. Agonist binding to phosphoinositol-coupled receptor leads to the activation of IP3R resulting in large increase in cytosolic Ca calcium pumps (only SERCA2b, having low turnover and low affinity to Ca depletion leads to translocation of SR Ca sensor STIM1 towards PM, resulting in extracellular Ca influx though opening of Store Operated Channel (CRAC). Resulted steady state Ca transient is critical for activation of proliferation-related transcription factors ‘NFAT).
Abbreviations: PLC – phospholipase C; PM – plasma membrane; PP2B – Ca /calmodulin-activated protein phosphatase 2B (calcineurin); ROC- receptor activated channel; IP3 – inositol-1,4,5-trisphosphate, IP3R – inositol-1,4,5- trisphosphate receptor; RyR – ryanodine receptor; NFAT – nuclear factor of activated T-lymphocytes; VSMC – vascular smooth muscle cells; SERCA – sarco(endo)plasmic reticulum Ca sarcoplasmic reticulum.

 

Time for New DNA Synthesis and Sequencing Cost Curves

By Rob Carlson

I’ll start with the productivity plot, as this one isn’t new. For a discussion of the substantial performance increase in sequencing compared to Moore’s Law, as well as the difficulty of finding this data, please see this post. If nothing else, keep two features of the plot in mind: 1) the consistency of the pace of Moore’s Law and 2) the inconsistency and pace of sequencing productivity. Illumina appears to be the primary driver, and beneficiary, of improvements in productivity at the moment, especially if you are looking at share prices. It looks like the recently announced NextSeq and Hiseq instruments will provide substantially higher productivities (hand waving, I would say the next datum will come in another order of magnitude higher), but I think I need a bit more data before officially putting another point on the plot.

 

cost-of-oligo-and-gene-synthesis

cost-of-oligo-and-gene-synthesis

Illumina’s instruments are now responsible for such a high percentage of sequencing output that the company is effectively setting prices for the entire industry. Illumina is being pushed by competition to increase performance, but this does not necessarily translate into lower prices. It doesn’t behoove Illumina to drop prices at this point, and we won’t see any substantial decrease until a serious competitor shows up and starts threatening Illumina’s market share. The absence of real competition is the primary reason sequencing prices have flattened out over the last couple of data points.

Note that the oligo prices above are for column-based synthesis, and that oligos synthesized on arrays are much less expensive. However, array synthesis comes with the usual caveat that the quality is generally lower, unless you are getting your DNA from Agilent, which probably means you are getting your dsDNA from Gen9.

Note also that the distinction between the price of oligos and the price of double-stranded sDNA is becoming less useful. Whether you are ordering from Life/Thermo or from your local academic facility, the cost of producing oligos is now, in most cases, independent of their length. That’s because the cost of capital (including rent, insurance, labor, etc) is now more significant than the cost of goods. Consequently, the price reflects the cost of capital rather than the cost of goods. Moreover, the cost of the columns, reagents, and shipping tubes is certainly more than the cost of the atoms in the sDNA you are ostensibly paying for. Once you get into longer oligos (substantially larger than 50-mers) this relationship breaks down and the sDNA is more expensive. But, at this point in time, most people aren’t going to use longer oligos to assemble genes unless they have a tricky job that doesn’t work using short oligos.

Looking forward, I suspect oligos aren’t going to get much cheaper unless someone sorts out how to either 1) replace the requisite human labor and thereby reduce the cost of capital, or 2) finally replace the phosphoramidite chemistry that the industry relies upon.

IDT’s gBlocks come at prices that are constant across quite substantial ranges in length. Moreover, part of the decrease in price for these products is embedded in the fact that you are buying smaller chunks of DNA that you then must assemble and integrate into your organism of choice.

Someone who has purchased and assembled an absolutely enormous amount of sDNA over the last decade, suggested that if prices fell by another order of magnitude, he could switch completely to outsourced assembly. This is a potentially interesting “tipping point”. However, what this person really needs is sDNA integrated in a particular way into a particular genome operating in a particular host. The integration and testing of the new genome in the host organism is where most of the cost is. Given the wide variety of emerging applications, and the growing array of hosts/chassis, it isn’t clear that any given technology or firm will be able to provide arbitrary synthetic sequences incorporated into arbitrary hosts.

 TrackBack URL: http://www.synthesis.cc/cgi-bin/mt/mt-t.cgi/397

 

Startup to Strengthen Synthetic Biology and Regenerative Medicine Industries with Cutting Edge Cell Products

28 Nov 2013 | PR Web

Dr. Jon Rowley and Dr. Uplaksh Kumar, Co-Founders of RoosterBio, Inc., a newly formed biotech startup located in Frederick, are paving the way for even more innovation in the rapidly growing fields of Synthetic Biology and Regenerative Medicine. Synthetic Biology combines engineering principles with basic science to build biological products, including regenerative medicines and cellular therapies. Regenerative medicine is a broad definition for innovative medical therapies that will enable the body to repair, replace, restore and regenerate damaged or diseased cells, tissues and organs. Regenerative therapies that are in clinical trials today may enable repair of damaged heart muscle following heart attack, replacement of skin for burn victims, restoration of movement after spinal cord injury, regeneration of pancreatic tissue for insulin production in diabetics and provide new treatments for Parkinson’s and Alzheimer’s diseases, to name just a few applications.

While the potential of the field is promising, the pace of development has been slow. One main reason for this is that the living cells required for these therapies are cost-prohibitive and not supplied at volumes that support many research and product development efforts. RoosterBio will manufacture large quantities of standardized primary cells at high quality and low cost, which will quicken the pace of scientific discovery and translation to the clinic. “Our goal is to accelerate the development of products that incorporate living cells by providing abundant, affordable and high quality materials to researchers that are developing and commercializing these regenerative technologies” says Dr. Rowley

 

Life at the Speed of Light

http://kcpw.org/?powerpress_pinw=92027-podcast

NHMU Lecture featuring – J. Craig Venter, Ph.D.
Founder, Chairman, and CEO – J. Craig Venter Institute; Co-Founder and CEO, Synthetic Genomics Inc.

J. Craig Venter, Ph.D., is Founder, Chairman, and CEO of the J. Craig Venter Institute (JVCI), a not-for-profit, research organization dedicated to human, microbial, plant, synthetic and environmental research. He is also Co-Founder and CEO of Synthetic Genomics Inc. (SGI), a privately-held company dedicated to commercializing genomic-driven solutions to address global needs.

In 1998, Dr. Venter founded Celera Genomics to sequence the human genome using new tools and techniques he and his team developed.  This research culminated with the February 2001 publication of the human genome in the journal, Science. Dr. Venter and his team at JVCI continue to blaze new trails in genomics.  They have sequenced and a created a bacterial cell constructed with synthetic DNA,  putting humankind at the threshold of a new phase of biological research.  Whereas, we could  previously read the genetic code (sequencing genomes), we can now write the genetic code for designing new species.

The science of synthetic genomics will have a profound impact on society, including new methods for chemical and energy production, human health and medical advances, clean water, and new food and nutritional products. One of the most prolific scientists of the 21st century for his numerous pioneering advances in genomics,  he  guides us through this emerging field, detailing its origins, current challenges, and the potential positive advances.

His work on synthetic biology truly embodies the theme of “pushing the boundaries of life.”  Essentially, Venter is seeking to “write the software of life” to create microbes designed by humans rather than only through evolution. The potential benefits and risks of this new technology are enormous. It also requires us to examine, both scientifically and philosophically, the question of “What is life?”

J Craig Venter wants to digitize DNA and transmit the signal to teleport organisms

https://pharmaceuticalintelligence.com/2013/11/01/j-craig-venter-wants-to-digitize-dna-and-transmit-the-signal-to-teleport-organisms/

2013 Genomics: The Era Beyond the Sequencing of the Human Genome: Francis Collins, Craig Venter, Eric Lander, et al.

https://pharmaceuticalintelligence.com/2013/02/11/2013-genomics-the-era-beyond-the-sequencing-human-genome-francis-collins-craig-venter-eric-lander-et-al/

Human Longevity Inc (HLI) – $70M in Financing of Venter’s New Integrative Omics and Clinical Bioinformatics

https://pharmaceuticalintelligence.com/2014/03/05/human-longevity-inc-hli-70m-in-financing-of-venters-new-integrative-omics-and-clinical-bioinformatics/

 

 

Where Will the Century of Biology Lead Us?

By Randall Mayes

A technology trend analyst offers an overview of synthetic biology, its potential applications, obstacles to its development, and prospects for public approval.

  • In addition to boosting the economy, synthetic biology projects currently in development could have profound implications for the future of manufacturing, sustainability, and medicine.
  • Before society can fully reap the benefits of synthetic biology, however, the field requires development and faces a series of hurdles in the process. Do researchers have the scientific know-how and technical capabilities to develop the field?

Biology + Engineering = Synthetic Biology

Bioengineers aim to build synthetic biological systems using compatible standardized parts that behave predictably. Bioengineers synthesize DNA parts—oligonucleotides composed of 50–100 base pairs—which make specialized components that ultimately make a biological system. As biology becomes a true engineering discipline, bioengineers will create genomes using mass-produced modular units similar to the microelectronics and computer industries.

Currently, bioengineering projects cost millions of dollars and take years to develop products. For synthetic biology to become a Schumpeterian revolution, smaller companies will need to be able to afford to use bioengineering concepts for industrial applications. This will require standardized and automated processes.

A major challenge to developing synthetic biology is the complexity of biological systems. When bioengineers assemble synthetic parts, they must prevent cross talk between signals in other biological pathways. Until researchers better understand these undesired interactions that nature has already worked out, applications such as gene therapy will have unwanted side effects. Scientists do not fully understand the effects of environmental and developmental interaction on gene expression. Currently, bioengineers must repeatedly use trial and error to create predictable systems.

Similar to physics, synthetic biology requires the ability to model systems and quantify relationships between variables in biological systems at the molecular level.

The second major challenge to ensuring the success of synthetic biology is the development of enabling technologies. With genomes having billions of nucleotides, this requires fast, powerful, and cost-efficient computers. Moore’s law, named for Intel co-founder Gordon Moore, posits that computing power progresses at a predictable rate and that the number of components in integrated circuits doubles each year until its limits are reached. Since Moore’s prediction, computer power has increased at an exponential rate while pricing has declined.

DNA sequencers and synthesizers are necessary to identify genes and make synthetic DNA sequences. Bioengineer Robert Carlson calculated that the capabilities of DNA sequencers and synthesizers have followed a pattern similar to computing. This pattern, referred to as the Carlson Curve, projects that scientists are approaching the ability to sequence a human genome for $1,000, perhaps in 2020. Carlson calculated that the costs of reading and writing new genes and genomes are falling by a factor of two every 18–24 months. (see recent Carlson comment on requirement to read and write for a variety of limiting  conditions).

Startup to Strengthen Synthetic Biology and Regenerative Medicine Industries with Cutting Edge Cell Products

https://pharmaceuticalintelligence.com/2013/11/28/startup-to-strengthen-synthetic-biology-and-regenerative-medicine-industries-with-cutting-edge-cell-products/

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

https://pharmaceuticalintelligence.com/2013/05/17/synthetic-biology-on-advanced-genome-interpretation-for-gene-variants-and-pathways-what-is-the-genetic-base-of-atherosclerosis-and-loss-of-arterial-elasticity-with-aging/

Synthesizing Synthetic Biology: PLOS Collections

https://pharmaceuticalintelligence.com/2012/08/17/synthesizing-synthetic-biology-plos-collections/

Capturing ten-color ultrasharp images of synthetic DNA structures resembling numerals 0 to 9

https://pharmaceuticalintelligence.com/2014/02/05/capturing-ten-color-ultrasharp-images-of-synthetic-dna-structures-resembling-numerals-0-to-9/

Silencing Cancers with Synthetic siRNAs

https://pharmaceuticalintelligence.com/2013/12/09/silencing-cancers-with-synthetic-sirnas/

Genomics Now—and Beyond the Bubble

Futurists have touted the twenty-first century as the century of biology based primarily on the promise of genomics. Medical researchers aim to use variations within genes as biomarkers for diseases, personalized treatments, and drug responses. Currently, we are experiencing a genomics bubble, but with advances in understanding biological complexity and the development of enabling technologies, synthetic biology is reviving optimism in many fields, particularly medicine.

BY MICHAEL BROOKS    17 APR, 2014     http://www.newstatesman.com/

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is The Secret Anarchy of Science.

The basic idea is that we take an organism – a bacterium, say – and re-engineer its genome so that it does something different. You might, for instance, make it ingest carbon dioxide from the atmosphere, process it and excrete crude oil.

That project is still under construction, but others, such as using synthesised DNA for data storage, have already been achieved. As evolution has proved, DNA is an extraordinarily stable medium that can preserve information for millions of years. In 2012, the Harvard geneticist George Church proved its potential by taking a book he had written, encoding it in a synthesised strand of DNA, and then making DNA sequencing machines read it back to him.

When we first started achieving such things it was costly and time-consuming and demanded extraordinary resources, such as those available to the millionaire biologist Craig Venter. Venter’s team spent most of the past two decades and tens of millions of dollars creating the first artificial organism, nicknamed “Synthia”. Using computer programs and robots that process the necessary chemicals, the team rebuilt the genome of the bacterium Mycoplasma mycoides from scratch. They also inserted a few watermarks and puzzles into the DNA sequence, partly as an identifying measure for safety’s sake, but mostly as a publicity stunt.

What they didn’t do was redesign the genome to do anything interesting. When the synthetic genome was inserted into an eviscerated bacterial cell, the new organism behaved exactly the same as its natural counterpart. Nevertheless, that Synthia, as Venter put it at the press conference to announce the research in 2010, was “the first self-replicating species we’ve had on the planet whose parent is a computer” made it a standout achievement.

Today, however, we have entered another era in synthetic biology and Venter faces stiff competition. The Steve Jobs to Venter’s Bill Gates is Jef Boeke, who researches yeast genetics at New York University.

Boeke wanted to redesign the yeast genome so that he could strip out various parts to see what they did. Because it took a private company a year to complete just a small part of the task, at a cost of $50,000, he realised he should go open-source. By teaching an undergraduate course on how to build a genome and teaming up with institutions all over the world, he has assembled a skilled workforce that, tinkering together, has made a synthetic chromosome for baker’s yeast.

 

Stepping into DIYbio and Synthetic Biology at ScienceHack

Posted April 22, 2014 by Heather McGaw and Kyrie Vala-Webb

We got a crash course on genetics and protein pathways, and then set out to design and build our own pathways using both the “Genomikon: Violacein Factory” kit and Synbiota platform. With Synbiota’s software, we dragged and dropped the enzymes to create the sequence that we were then going to build out. After a process of sketching ideas, mocking up pathways, and writing hypotheses, we were ready to start building!

The night stretched long, and at midnight we were forced to vacate the school. Not quite finished, we loaded our delicate bacteria, incubator, and boxes of gloves onto the bus and headed back to complete our bacterial transformation in one of our hotel rooms. Jammed in between the beds and the mini-fridge, we heat-shocked our bacteria in the hotel ice bucket. It was a surreal moment.

While waiting for our bacteria, we held an “unconference” where we explored bioethics, security and risk related to synthetic biology, 3D printing on Mars, patterns in juggling (with live demonstration!), and even did a Google Hangout with Rob Carlson. Every few hours, we would excitedly check in on our bacteria, looking for bacterial colonies and the purple hue characteristic of violacein.

Most impressive was the wildly successful and seamless integration of a diverse set of people: in a matter of hours, we were transformed from individual experts and practitioners in assorted fields into cohesive and passionate teams of DIY biologists and science hackers. The ability of everyone to connect and learn was a powerful experience, and over the course of just one weekend we were able to challenge each other and grow.

Returning to work on Monday, we were hungry for more. We wanted to find a way to bring the excitement and energy from the weekend into the studio and into the projects we’re working on. It struck us that there are strong parallels between design and DIYbio, and we knew there was an opportunity to bring some of the scientific approaches and curiosity into our studio.

 

 

Read Full Post »


Regeneration: Cardiac System (cardiomyogenesis) and Vasculature (angiogenesis)

Author and Curator: Aviva Lev-Ari, PhD, RN

 

UPDATED on 4/8/2014

Stem-Cell Therapy for Ischemic Heart Failure: Clinical Trial MSC Demonstrates Efficacy

https://pharmaceuticalintelligence.com/2014/04/08/stem-cell-therapy-for-ischemic-heart-failure-clinical-trial-msc-demonstrates-efficacy/ 

This article represents the FRONTIER on Cardiac Regeneration as developed by Anthony Rosenzweig in Science 338, 1549 (2012).

Point #1: Current Pharmacotherapy for Cardiovascular Diseases and Heart Failure

Point #2: Dynamic model for the Adult heart capacity for cardiomyogenesis to compensate for losses occurring in heart failure: recognition of even limited regenerative capacity in the heart 

Point #3: Results of Multiple Cell Therapy Clinical Trials

Point #4:  The Endogenous Regeneration Potential

Point #5: On pathways regulating cardiomyocyte regeneration in animal models

Point #6: Prof. A. Rosenzweig’s Summary and His Future Outlook of Cardiac Regeneration

This article represents a continuation of the following articles on this topic that were published in this Open Access Online Scientific Journal:

Bernstein HL and A. Lev-Ari 1/14/2014 Circulating Endothelial Progenitors Cells (cEPCs) as Biomarkers

https://pharmaceuticalintelligence.com/2014/01/14/circulating-endothelial-progenitors-cells-as-biomarkers/

Lev-Ari, A. 2/28/2013 The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN

https://pharmaceuticalintelligence.com/2013/02/28/the-heart-vasculature-protection-a-concept-based-pharmacological-therapy-including-thymosin/

Lev-Ari, A. 2/27/2013 Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel

https://pharmaceuticalintelligence.com/2013/02/27/arteriogenesis-and-cardiac-repair-two-biomaterials-injectable-thymosin-beta4-and-myocardial-matrix-hydrogel/

Lev-Ari, A. 11/13/2012 Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

https://pharmaceuticalintelligence.com/2012/11/13/peroxisome-proliferator-activated-receptor-ppar-gamma-receptors-activation-pparγ-transrepression-for-angiogenesis-in-cardiovascular-disease-and-pparγ-transactivation-for-treatment-of-dia/

Lev-Ari, A. 8/29/2012 Positioning a Therapeutic Concept for Endogenous Augmentation of cEPCs — Therapeutic Indications for Macrovascular Disease: Coronary, Cerebrovascular and Peripheral

https://pharmaceuticalintelligence.com/2012/08/29/positioning-a-therapeutic-concept-for-endogenous-augmentation-of-cepcs-therapeutic-indications-for-macrovascular-disease-coronary-cerebrovascular-and-peripheral/

Lev-Ari, A. 8/28/2012 Cardiovascular Outcomes: Function of circulating Endothelial Progenitor Cells (cEPCs): Exploring Pharmaco-therapy targeted at Endogenous Augmentation of cEPCs

https://pharmaceuticalintelligence.com/2012/08/28/cardiovascular-outcomes-function-of-circulating-endothelial-progenitor-cells-cepcs-exploring-pharmaco-therapy-targeted-at-endogenous-augmentation-of-cepcs/

Lev-Ari, A. 8/27/2012 Endothelial Dysfunction, Diminished Availability of cEPCs, Increasing CVD Risk for Macrovascular Disease – Therapeutic Potential of cEPCs

https://pharmaceuticalintelligence.com/2012/08/27/endothelial-dysfunction-diminished-availability-of-cepcs-increasing-cvd-risk-for-macrovascular-disease-therapeutic-potential-of-cepcs/

Lev-Ari, A. 8/24/2012 Vascular Medicine and Biology: CLASSIFICATION OF FAST ACTING THERAPY FOR PATIENTS AT HIGH RISK FOR MACROVASCULAR EVENTS Macrovascular Disease – Therapeutic Potential of cEPCs

https://pharmaceuticalintelligence.com/2012/08/24/vascular-medicine-and-biology-classification-of-fast-acting-therapy-for-patients-at-high-risk-for-macrovascular-events-macrovascular-disease-therapeutic-potential-of-cepcs/

Lev-Ari, A. 7/19/2012 Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production

https://pharmaceuticalintelligence.com/2012/07/19/cardiovascular-disease-cvd-and-the-role-of-agent-alternatives-in-endothelial-nitric-oxide-synthase-enos-activation-and-nitric-oxide-production/

Lev-Ari, A. 4/30/2012 Resident-cell-based Therapy in Human Ischaemic Heart Disease: Evolution in the PROMISE of Thymosin beta4 for Cardiac Repair

https://pharmaceuticalintelligence.com/2012/04/30/93/

Lev-Ari, A. 7/2/2012 Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk

https://pharmaceuticalintelligence.com/2012/07/02/macrovascular-disease-therapeutic-potential-of-cepcs-reduction-methods-for-cv-risk/

This article represent the FRONTIER on Cardiac Regeneration as developed by Anthony Rosenzweig in Science 338, 1549 (2012).

Prof. A. Rosenzweig is with the Cardiovascular Division at Beth Israel Deaconess Medical Center, Harvard Medical School, and the Harvard Stem Cell Institute, Boston, MA 02215, USA. E-mail: arosenzw@bidmc.harvard.edu

In the United States, heart failure afflicts about 6 million people (1), costs $34.4 billion each year (2), and is now the single most common discharge diagnosis in those over 65 (3). Although enormous progress has been made in managing acute cardiovascular illnesses such as heart attacks, many patients go on to develop late sequelae of their disease, including heart failure and arrhythmia. Thus, the growing number of these patients in some ways represents a burden of our success. It also reflects the incomplete success of most current therapies, which mitigate and manage but do not cure the disease.

Point #1: Current Pharmacotherapy for Cardiovascular Diseases and Heart Failure include:

  • Beta-blockers
  • Angiotensin-converting enzyme inhibitors, and
  • Mineralocorticoid antagonists – in congestive heart failure, they are used in addition to other drugs for additive diuretic effect, which reduces edema and the cardiac workload, and Potassium-sparing diuretics are diuretic drugs that do not promote the secretion of potassium into the urine

These medicines block pathways that are likely compensatory initially but become progressively more maladaptive, thus, prognosis and quality of life remain poor for many heart failure patients.

Point #2: Dynamic model for the Adult heart capacity for cardiomyogenesis to compensate for losses occurring in heart failure: recognition of even limited regenerative capacity in the heart

  • The heart has some endogenous regenerative potential
  • New cardiomyocytes may arise from existing cardiomyocytes  and from
  • Progenitor or stem cells

Point #3: Results of Multiple Cell Therapy Clinical Trials

  • the largest randomized trial thus far— the REPAIR-AMI trial which delivered unfractionated bone marrow cells (BMCs) to patients after a heart attack—as well as
  • a recent meta-analysis of 50 similar trials enrolling 2625 patients (16) suggest that adverse clinical events may actually be less common in BMC-treated patients
  • Autologous BMCs are by far the most common cells used to date but have yielded mixed results. Two recent trials report results with heart-derived donor cells are summariezed, below.  Although both of these studies break new conceptual ground, it is still too early to know how these approaches will hold up in larger studies or impact clinical outcomes, and whether heart-derived cells will have demonstrable advantages over other cell types.

1. The SCIPIO trial targeted patients with cardiac dysfunction undergoing bypass surgery for subsequent delivery of c-kit–positive cells derived from heart tissue harvested at surgery. In interim analyses, cardiac function was substantially better at 4 months in the 14 cell-treated patients available for comparison to seven control patients.

2. In CADUCEUS, autologous cells derived from cardiospheres grown from cardiac biopsies (CDCs) were delivered to patients randomized after myocardial infarction to receive CDCs or usual care. In this trial, although overall heart function was not significantly improved by cell treatment, scar (determined by magnetic resonance imaging) was reduced at 6 and 12 months in the 17 CDC-treated patients but unchanged in the eight control patients.

Point #4:  The Endogenous Regeneration Potential

  • Donor cells have often been selected for their apparent ability to form new cardiomyocytes, the limited clinical data available suggest that relatively few of the donor cells may remain in the heart (20).
  • Other benefits of the cells or molecules delivered with them could include enhanced angiogenesis, cardiomyocyte survival, or endogenous regeneration.
  • The success or failure of cardiovascular cell therapy will ultimately depend on its ability to improve clinical outcomes whatever the mechanisms, and advocates argue that
  • the donor cells may provide a particularly potent mixture of salutary effects. However,
  • the complex and sometimes heterogeneous cell preparations being infused make standardization and reconciling discrepant results particularly challenging. It seems likely that
  • identification and purification of the essential cellular and molecular components mediating any observed benefits will ultimately provide the most effective, safe, and consistent approach.

Point #5: On pathways regulating cardiomyocyte regeneration in animal models

  • Recent work has begun to elucidate the settings and pathways regulating cardiomyocyte regeneration in animal models. Porrello et al. demonstrated a remarkable though transient regenerative capacity of the neonatal murine heart (14), and
  • related studies have begun to define the signaling mechanisms leading to withdrawal of cardiomyocytes from the cell cycle (21).
  • The Hippo pathway is a potent negative regulator of Wnt signaling and cardiomyocyte proliferation (22), which also intersects via Yap with insulin growth factor I (IGF-I) signaling (23).
  • How effectively these pathways can be coopted to promote regeneration after injury is of great interest.
  • Individual pathways may also have multiple effects.
  • Huang et al. ( 24) demonstrate that C/EBP inhibition, previously implicated in exercise-induced cardiac growth and possible cardiomyogenesis (25), also reduces ischemic injury by mitigating inflammation. In addition to
  • Endogenous pathways, reprogramming resident nonprogenitor cells such as fibroblasts through gene delivery has generated contractile cardiomyocyte-like cells (26, 27) that mitigate scar formation and improve function after heart attacks in mice (28).
  • These promising developments have yet to be translated clinically but could provide a path to cardiac repair that obviates the need for exogenous cells.

Point #6: Prof. A. Rosenzweig’s Summary and His Future Outlook of Cardiac Regeneration

  • We are still relatively early in the development of new approaches to cardiovascular disease. It will be some time before we know the conclusion of what will likely be a long and challenging road ahead.
  • Almost as challenging is conveying to patients and policymakers an appropriate perspective that balances unmitigated enthusiasm for the scientific discoveries, cautious optimism for the broader implications, and humble acknowledgment that though even the most appealing ideas may fail, there is only one way to find out.

REFERENCES and NOTES in  Science 338, 1549 (2012).

1. V. L. Roger et al., Circulation 125, e2 (2012).

2. CDC (2012), http://www.cdc.gov/dhdsp/data_statistics/fact_

sheets/docs/fs_heart_failure.pdf

3. C. J. DeFrances, M. N. Podgornik, Adv. Data 371, 1

(2006).

4. T. E. Owan et al., N. Engl. J. Med. 355, 251 (2006).

5. R. S. Bhatia et al., N. Engl. J. Med. 355, 260 (2006).

6. J. Narula et al., N. Engl. J. Med. 335, 1182 (1996).

7. G. Olivetti et al., N. Engl. J. Med. 336, 1131 (1997).

8. A. P. Beltrami et al., Cell 114, 763 (2003).

9. K. Bersell, S. Arab, B. Haring, B. Kühn, Cell 138, 257

(2009).

10. P. C. H. Hsieh et al., Nat. Med. 13, 970 (2007).

11. O. Bergmann et al., Science 324, 98 (2009).

12. J. Kajstura et al., Circ. Res. 107, 305 (2010).

13. K. Kikuchi et al., Nature 464, 601 (2010).

14. E. R. Porrello et al., Science 331, 1078 (2011).

15. V. Schächinger et al., N. Engl. J. Med. 355, 1210 (2006).

16. V. Jeevanantham et al., Circulation 126, 551 (2012).

17. A. Rosenzweig, N. Engl. J. Med. 355, 1274 (2006).

18. R. Bolli et al., Lancet 378, 1847 (2011).

19. R. R. Makkar et al., Lancet 379, 895 (2012).

20. M. Hofmann et al., Circulation 111, 2198 (2005).

21. E. R. Porrello et al., Circ. Res. 109, 670 (2011).

22. T. Heallen et al., Science 332, 458 (2011).

23. M. Xin et al., Sci. Signal. 4, ra70 (2011).

24. G. N. Huang et al., Science 338, 1599 (2012);

10.1126/science.1229765.

25. P. Boström et al., Cell 143, 1072 (2010).

26. M. Ieda et al., Cell 142, 375 (2010).

27. L. Qian et al., Nature 485, 593 (2012).

28. K. Song et al., Nature 485, 599 (2012).

 

Read Full Post »


Circulating Endothelial Progenitors Cells (cEPCs) as Biomarkers

Article Curator: Larry H. Bernstein, MD, FCAP

and

Topic Curator: Aviva Lev-Ari, PhD, RN

Circulating progenitor cells have gained much interest rapidly in the past year primarily in identification of damaged tissue that has turnover of cells that are identifiable in the circulation.  This has to require a sensitivity for identification at one or two logs lower than circulating hematopoietic cells.  I mention this untested view only because cells of the circulation are detected routinely by automated hematology instruments like those of Beckman-Coulter and Siemens, with graphical presentation of results.  The Sysmex also reports immature granulocytes that are a small percent of the neutrophil count.  In the evaluation of leukemias, flow cytometry has been used for years, but require a preparative step.  Cell types have been identified by acidic and basic dye stains to identify basophilic, acidophilic and neutrophilic granulocyte series, and by size of the cell population, and nuclear features, differentiating mature and nucleated red cells, the granulocyte series, monocytes and lymphocytes, as well as platelets (aggregation gives an underestimate of platelet count).  But to detect cancer cells or damaged endothelial cells, the number of cells in the circulation requires and antibody to the surface with a visualizable ligand attached to an antibody for identification.  Visualization could be by a fluorophor, or perhaps a luciferase reaction.  Here are two articles that identify circulating endothelial cells, making them suitable for biomarkers of cardiovascular injury.  Whether they can detect early predictive ischemia, or frank AMI needs investigation.  The concept of piecemeal necrosis in the heart may be applicable to cardiomyocyte injury that is found unexpectedly at autopsy as “silent infarct”.

Circulating endothelial progenitors–cells as biomarkers

Rosenzweig, Anthony
N Engl J Med. 2005 Sep 8;353(10):1055-7

Comment on

Circulating endothelial progenitor cells and cardiovascular outcomes

[N Engl J Med. 2005]  PMID: 16148292 [PubMed – indexed for MEDLINE]

Endothelial injury and dysfunction are thought to be critical events in the  pathogenesis of atherosclerosis. Thus,

  • understanding the mechanisms that  maintain and restore endothelial function
    • may have important clinical  implications.

A series of clinical and basic studies prompted by the discovery 

  • of bone marrow derived endothelial progenitor cells1 have
  • provided insights into these processes and
    • opened a door to the development of new therapeutic approaches.

Growing evidence suggests that bone marrow derived endothelial progenitor cells circulate in the blood and

  • play an important role in the formation of new blood vessels as well as
  • contribute to vascular homeostasis in the adult.

Circulating endothelial progenitor cells were initially identified

  • through their expression of CD34
    (a surface marker common to hematopoietic stem cells and mature endothelial cells)
  • and vascular endothelial cell growth-factor receptor 2
    (VEGFR2 or kinase-domain related [KDR] receptor),

but not of other markers seen on fully differentiated endothelial cells.1

Subsequent studies have also used other identifiers, such as

  • the stem-cell marker CD133, and
  • functional assays, including
    • the ability to form endothelial colonies.

Endothelial progenitor cells defined in these ways probably represent

  • a heterogeneous population, which,
  • in combination with the lack of a consensual definition,

complicates the interpretation of work in this field.

Nevertheless, numerous studies in animals have shown that endothelial  progenitor cells can integrate into new and existing blood vessels.2,3,4
Intravenous injection of cytokine-mobilized human endothelial progenitor cells

  • improved myocardial neoangiogenesis and
  • the recovery of functioning in a rat model of infarction.3

Repeated injection of bone marrow derived cells in a mouse model of atherosclerosis

  • reduced the rate of plaque formation without altering serum lipids levels, and
  • donor endothelial progenitor cells could subsequently be identified in the recipient’s blood vessels.4

Previous clinical studies have shown that

  • traditional risk factors for coronary atherosclerosis
  • are associated with low levels of circulating endothelial progenitor cells,5 whereas
  • protective interventions, including statin therapy6 and exercise,7
    • appear to increase the supply of these cells.

Hill et al. found that even in healthy volunteers,

  • levels of endothelial progenitor cells were inversely correlated with the Framingham risk score and
  • actually appeared to predict vascular function better than the Framingham risk score.5

Together, these data suggest that circulating endothelial progenitor cells may participate

  • not only in forming new blood vessels
  • but also in maintaining the integrity and function of vascular  endothelium,

thereby mitigating disease processes such as atherosclerosis.

In this issue of the Journal, Werner and colleagues have further advanced our understanding of the clinical implications of endothelial progenitor cells.8 Endothelial progenitor cells were quantitated in 519 patients with coronary artery disease who

  • were followed for one year after undergoing catheterization.

Patients with higher levels of endothelial progenitor cells had

  • a reduced risk of death from cardiovascular causes and of
  • the composite end point of major cardiovascular events.

These relationships were preserved even

  • after adjustment for traditional risk factors and prognostic variables.

A similar relationship was seen

  • whether endothelial progenitor cells were  identified by virtue of expression
    either of CD34 and KDR or of CD133 or
  • because of their ability to form endothelial colonies,

further strengthening the authors’ conclusions. Repeated catheterization was not performed in this  cohort, so

  • we do not know whether the reduction in clinical events reflected a slowed progression of atherosclerosis or some other clinical effect.

A  dissociation between anatomical measures of atherosclerosis and clinical events has been well documented in other settings.

Although this study is consistent with prior work suggesting that circulating endothelial progenitor cells may play a protective role in vascular homeostasis, other explanations

  • for the association between endothelial progenitor number and outcome remain possible.

Changes in the number of endothelial progenitor cells and

  • in clinical events might reflect a common underlying etiology,
      • rather than a causal relation.

For example, a defect in the production of nitric oxide, which plays an important role

  • in both the mobilization of endothelial progenitor cells9 and blood-vessel function, might account for both observations.

Similarly, the number of endothelial progenitor cells

  • may mirror a person’s regenerative capacity more broadly and
  • predict clinical events on that basis.

Even if endothelial progenitor cells are mechanistically linked to clinical cardiovascular events,

  • such clinical studies do not distinguish between the possibility
  • that the protection is mediated through the integration of endothelial  progenitor cells into blood vessels and

its possible mediation by other  mechanisms, such as the

  • paracrine benefits of endothelial progenitor  cell secreted products.

Although such questions will undoubtedly continue to provide fertile ground  for fundamental investigation,

  • the report by Werner and colleagues has more  immediate clinical implications.

First, it suggests that circulating cell  populations may represent a new class of biomarkers

  • that naturally integrate  diverse genetic and environmental effects,
  • thereby providing robust  physiological and prognostic insights.

Second, in the context of coronary  disease, the study shows that

  • the number of endothelial progenitor cells is an independent predictor of hard clinical outcomes.

As with other biomarkers, a demonstration of clinical usefulness will ultimately require

  • the examination of other patient populations, as well as
  • a demonstration that clinical therapy can be guided and enhanced by this information.

Finally, the increased risk associated with reduced levels of endothelial progenitor cells

  • supports the growing interest in the therapeutic potential of enhancing the level of these cells.

The most dramatic extension of this line of reasoning involves

transferring  bone marrow or peripheral blood cells that are likely to include endothelial  progenitor cells to patients with coronary artery disease. Although it would be premature to judge the clinical success of these strategies, early trials, including one randomized (though incompletely blinded) trial, have suggested

  • at least short-term functional benefits of intracoronary infusion of bone marrow cells after acute infarction.10

Trials are planned to address more definitively the potential benefits of such cells

  • in the settings of acute infarction and chronic ischemic cardiomyopathy.

Such efforts would be aided substantially by the identification of specific markers as well as

  • an improved understanding of the role of subtypes of endothelial progenitor cells and
  • of the mechanisms by which they work.

Ironically, the data presented by Werner and colleagues in combination with work showing

  • the impaired functioning of endothelial progenitor cells in high-risk patients5 suggest
  • that the patients most in need of endothelial progenitor cells may be
      • those who are least able to donate them for autologous transplantation.

Whether these limitations can be overcome through

  • ex vivo expansion or  genetic modification of endothelial progenitor cells is unclear.

In addition to possible cell-based therapies, work on endothelial progenitor cells provides yet another rationale

  • for redoubling efforts to comply with established therapeutic guidelines,
  • including lifestyle modifications and the use of statin therapy,
      • both of which appear to enhance the number of circulating endothelial progenitor cells.

Whether there will be a downside to enhancing the number and function of  endothelial progenitor cells remains unclear,

  • although obvious concerns  include exacerbating conditions that are characterized by adverse vessel  formation,
    • such as diabetic retinopathy and tumor angiogenesis.

Small studies have suggested an association between high levels of circulating endothelial progenitor cells and the risk of certain cancers, such as multiple myeloma.11 Moreover, studies in animals show that

  • bone marrow derived endothelial progenitors participate in tumor angiogenesis, thereby
      • enhancing tumor growth.12

In the study by Werner and colleagues,

  • the number of deaths from cardiovascular causes among patients with high levels of endothelial progenitor cells
  • was substantially lower than that among patients with lower levels of these cells,
  • without a reduction in the risk of death overall.8

Although this finding could raise the specter of a counterbalancing adverse effect of endothelial progenitor cells,

  • there was no apparent pattern in the deaths due to other causes,
  • and no deaths from cancer were noted in this population.

It is possible that as we learn more about the biology of endothelial progenitor cells, there may be opportunities

  • to target vessel formation more specifically.

In addition, therapeutic strategies

  • tailored to individualized risk will undoubtedly help in practice.

For example, in the study by Werner et al.,

  • patients in the group with the lowest baseline levels of endothelial progenitor cells
  • had a risk of death from cardiovascular causes of 8.3 percent during one year of follow-up,
  • suggesting that the benefits of enhancing the function and number of endothelial progenitor cells
      • may well outweigh the risks in such high-risk populations.

Additional studies will be necessary to address these questions definitively. Larger studies

  • of longer duration performed in different cohorts will be required to determine fully
    • the clinical usefulness of endothelial progenitor cells as a biomarker.

Rigorous interventional studies will indicate

  • whether levels of endothelial progenitor cells can be used to guide therapy and
  • whether cell transfer has a role in augmenting the levels of these cells.

Basic-science studies should help guide these clinical efforts by

  • further defining the desirable subpopulations of endothelial progenitor cells and
  • the mechanisms by which they mediate their effects.

By establishing a connection between circulating endothelial progenitor cells and hard clinical end points, Werner and colleagues

  • provide a potent stimulus for clinical and basic studies to address these important issues.

Source Information

From the Program in Cardiovascular Gene Therapy, Massachusetts General  Hospital, and Harvard Medical School ― both in Boston.

References

Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor  endothelial cells for angiogenesis. Science 1997;275:964-967.

Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced  mobilization of bone marrow-derived endothelial progenitor cells for  neovascularization. Nat Med 1999;5:434-438.

Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7: 430-436.

Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 2003; 108: 457-463.

Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003;348:593-600.

Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial  progenitor cells by statin therapy in patients with stable coronary artery  disease. Circulation 2001; 103: 2885-2890.

Laufs U, Werner N, Link A, et al. Physical training increases endothelial  progenitor cells, inhibits neointima formation, and enhances angiogenesis.  Circulation 2004; 109: 220-226.

Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999-1007.

Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med  2003; 9: 1370-1376.

Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow  cell transfer after myocardial infarction: the BOOST randomised controlled  clinical trial. Lancet 2004; 364: 141-148.

Zhang H, Vakil V, Braunstein M, et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 2005; 105: 3286-3294.

Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7:1194-1201.

Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction.

Kelly Bethel, Madelyn S Luttgen, Samir Damani, Anand Kolatkar, Rachelle Lamy, Mohsen Sabouri-Ghomi, Sarah Topol, Eric J Topol, Peter Kuhn

Physical Biology (Impact Factor: 2.62). 01/2014; 11(1):016002. http://dx.doi.org/10.1088/1478-3975/11/1/016002
Source: PubMed

Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted

  • a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay),
  • to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs.

Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined

  • by positive staining for DAPI, CD146 and von Willebrand Factor
  • and negative staining for CD45.

In addition, CECs exhibited distinct morphological features that

  • enable differentiation from surrounding white blood cells.
  1. CECs were found both as individual cells and as aggregates.
  2. CEC numbers were higher in MI patients compared with healthy controls.
  3. VS patients had lower CEC counts when compared with MI patients

but were not different from healthy controls.

Both HD-CEC and CellSearch® assays could discriminate

  • MI patients from healthy controls with comparable accuracy

but the HD-CEC assay exhibited

  • higher specificity while maintaining high sensitivity.

Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.

MicroRNA function in endothelial cells

Solving the mystery of an unknown target gene using microRNA Target Site Blockers
Dr. Virginie Mattot
Dr. Virgine Mattot works in the team “Angiogenesis, endothelium activation and Cancer” directed by Dr. Fabrice Soncin at the Institut de Biologie de Lille in France where she studies the roles played by microRNAs in endothelial cells during physiological and pathological processes such as angiogenesis or endothelium activation. She has been using Target Site Blockers to investigate the role of microRNAs on putative targets which functions are yet unknown.
What is the main focus of the research conducted in your lab?
We are studying endothelial cell functions with a particular interest
  • in angiogenesis and endothelium activation during physiological and tumoral vascular development.
How did your research lead to the study of microRNAs?
A few years ago, we identified in my team
  • a new endothelial cell-specific gene which harbors a microRNA in its intronic sequence.

We have since been working on understanding

  • the functions of both this new gene and
  • its intronic microRNA in endothelial cells

What is the aim of your current project?

While we were searching for the functions of the intronic microRNA,
  • we identified an unknown gene as a putative target.
The aim of my project was to investigate if this unknown gene was actually a genuine target and
  • if regulation of this gene by the microRNA was involved in endothelial cell function.
We had already characterized the endothelial cell phenotype associated with the inhibition of our intronic microRNA.
We then used miRCURY LNA™ Target Site Blockers to demonstrate
  • that the expression of this unknown gene is actually controlled by this microRNA.
Further, we also demonstrated that the microRNA regulates
  • specific endothelial cell properties through regulation of this unknown gene.
How did you perform the experiments and analyze the results?
LNA™ enhanced target site blockers (TSB) for our microRNA were designed by Exiqon.
We transfected the TSBs into endothelial cells using our standard procedure and
  • analysed the induced phenotype.
As a control for these experiments, a mutated version of the TSB was designed by Exiqon and
  • transfected into endothelial cells.
We first verified that this TSB was functional by
  • analyzing the expression of the miRNA target
      • against which the TSB was directed in transfected cells.
Finally, we showed that the TSB induced similar phenotypes as those found when we inhibited the microRNA in the same cells. 
What were some specific challenges in your experiments and how did you overcome them?
The fact that the target gene for our microRNA was unknown was a major challenge. Without specific available tools, like antibodies,
  • it becomes difficult to demonstrate the effect of the microRNA on the gene in question and
  • to show that the unknown gene is indeed responsible for the functions of the microRNA.
However through the use of specific target site blockers, we were able to demonstrate
  • that this unknown gene was associated with the phenotype observed
    • when the microRNA was inhibited in endothelial cells.
How do you feel about your results so far?
We are very pleased with the results of the TSB experiments and
  • altogether these results demonstrate that our miRNA of interest
  • is functional in endothelial cells
    • through the regulation of a target gene with a previously unknown role.
What do you find to be the main benefits/advantage of the LNA™ microRNA target site blockers from Exiqon?
Target Site Blockers are efficient tools to demonstrate the

  • specific involvement of putative microRNA targets
  • in the function played by this microRNA.
The use of LNA™ allows the design of short oligonucleotides that are very specific and easy to work with. 
What would be your advice to colleagues about getting started with microRNA functional analysis?
In order to address the role played by a microRNA,
  • it is essential to perform both gain and loss of functions experiments.
What are the next steps in the current project and how do you plan to perform them?
We plan to use microRNA inhibitor libraries to identify
  • more microRNAs specifically involved in the processes that we currently study.
When and where will be hear /read more about your studies?
We are currently in the process of submitting a manuscript regarding the function of my microRNA of interest.

Read Full Post »


HOT TOPICS 2014: Heart – The medpage TODAY View

Reporter: Aviva Lev-Ari, PhD, RN

HOT TOPICS 2014: Heart – Medical 1
(Post Date: 1/2/14)

VIEW VIDEO

http://www.medpagetoday.com/HOTTOPICS2014/special-reports/SpecialReports-Videos/365

HOT TOPICS 2014: Heart – Medical 1
(Post Date: 1/2/14)
Discussants: 
Steven Nissen, MD – Cleveland Clinic
Clyde Yancy, MD – Northwestern University, Feinberg School of Medicine
Robert Califf, MD – Duke Medical Center
Elliott Antman, MD – BWH

 

Read Full Post »


Platelet Endothelial Aggregation Receptor-1 (PEAR1) Gene to be most strongly associated with Dual Antiplatelet Therapy Response: Genetic Determinants of Variable Response to Aspirin (alone and in combination with Clopidogrel)

Reporter: Aviva Lev-Ari, PhD, RN

4 Genetic Variation in PEAR1 is Associated with Platelet Aggregation and Cardiovascular Outcomes

Joshua P. Lewis1Kathleen Ryan1Jeffrey R. O’Connell1Richard B. Horenstein1,Coleen M. Damcott1Quince Gibson1Toni I. Pollin1Braxton D. Mitchell1Amber L. Beitelshees1Ruth Pakzy1Keith Tanner1Afshin Parsa1Udaya S. Tantry2Kevin P. Bliden2Wendy S. Post3Nauder Faraday3William Herzog4Yan Gong5Carl J. Pepine6Julie A. Johnson5Paul A. Gurbel2 and Alan R. Shuldiner7*

Author Affiliations

1University of Maryland School of Medicine, Baltimore, MD

2Sinai Hospital of Baltimore, Baltimore, MD

3Johns Hopkins University School of Medicine, Baltimore, MD

4Sinai Hospital of Baltimore & Johns Hopkins University School of Medicine, Baltimore, MD

5University of Florida College of Pharmacy, Gainesville, FL

6University of Florida College of Medicine, Gainesville, FL

7University of Maryland School of Medicine & Veterans Administration Medical Center, Baltimore, MD

* University of Maryland School of Medicine & Veterans Administration Medical Center, Baltimore, MD ashuldin@medicine.umaryland.edu

Abstract

Background-Aspirin or dual antiplatelet therapy (DAPT) with aspirin and clopidogrel is standard therapy for patients at increased risk for cardiovascular events. However, the genetic determinants of variable response to aspirin (alone and in combination with clopidogrel) are not known.

Methods and Results-We measured ex-vivo platelet aggregation before and after DAPT in individuals (n=565) from the Pharmacogenomics of Antiplatelet Intervention (PAPI) Study and conducted a genome-wide association study (GWAS) of drug response. Significant findings were extended by examining genotype and cardiovascular outcomes in two independent aspirin-treated cohorts: 227 percutaneous coronary intervention (PCI) patients, and 1,000 patients of the International VErapamil SR/trandolapril Study (INVEST) GENEtic Substudy (INVEST-GENES). GWAS revealed a strong association between single nucleotide polymorphisms on chromosome 1q23 and post-DAPT platelet aggregation. Further genotyping revealed rs12041331 in the platelet endothelial aggregation receptor-1 (PEAR1) gene to be most strongly associated with DAPT response (P=7.66×10-9). In Caucasian and African American patients undergoing PCI, A-allele carriers of rs12041331 were more likely to experience a cardiovascular event or death compared to GG homozygotes (hazard ratio = 2.62, 95%CI 0.96-7.10, P=0.059 and hazard ratio = 3.97, 95%CI 1.10-14.31, P=0.035 respectively). In aspirin-treated INVEST-GENES patients, rs12041331 A-allele carriers had significantly increased risk of myocardial infarction compared to GG homozygotes (OR=2.03, 95%CI 1.01-4.09, P=0.048).

Conclusions – Common genetic variation in PEAR1 may be a determinant of platelet response and cardiovascular events in patients on aspirin, alone and in combination with clopidogrel.

Clinical Trial Registration Information-clinicaltrials.gov; Identifiers:NCT00799396 and NCT00370045

SOURCE:

http://www.ncbi.nlm.nih.gov/pubmed/23392654

http://circgenetics.ahajournals.org/content/6/2/184.short?rss=1

Circulation: Cardiovascular Genetics.2013; 6: 184-192 Published online before print February 7, 2013,doi: 10.1161/​CIRCGENETICS.111.964627

 

 

 

Read Full Post »


Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker

 

Co-Author of the FIRST Article: Larry H. Bernstein, MD, FCAP

Reviewer and Curator of the SECOND and of the THIRD Articles: Larry H. Bernstein, MD, FCAP

and

Article Architecture Curator: Aviva Lev-Ari, PhD, RN

This article presents Advances in the Treatment using Subcutaneous Erythropoietin (EPO) and Intravenous Iron (Fe) for IMPROVEMENT of Severe and Resistant Congestive Heart Failure and its resultant Anemia.  The Leading Biomarker for Congestive Heart Failure is an Independent Predictor identified as an Elevated N-terminal proBNP.

NT-proBNP schematic diagram-Copy.pdf_page_1

FIRST ARTICLE

Anemia as an Independent Predictor of Elevated N-terminal proBNP

Salman A. Haq, MD1, Mohammad E. Alam2, Larry Bernstein, MD, FCAP3,  LB Banko 1, Leonard Y. Lee, MD, FACS4, Barry I. Saul, MD, FACC5, Terrence J. Sacchi, MD, FACC6,  John F. Heitner, MD, FACC7
1Cardiology Fellow,  2  Clinical Chemistry Laboratories, 3 Program Director, Cardiothoracic Surgery, 4 Division of Cardiology,  Department of Medicine, New York Methodist Hospital-Weill Cornell, Brooklyn, NY

(Unpublished manuscript)  Poster Presentation

SECOND ARTICLE

The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study

Donald S Silverberg, MDa; Dov Wexler, MDa; David Sheps, MDa; Miriam Blum, MDa; Gad Keren, MDa; Ron Baruch, MDa; Doron Schwartz, MDa; Tatyana Yachnin, MDa; Shoshana Steinbruch, RNa; Itzhak Shapira, MDa; Shlomo Laniado, MDa; Adrian Iaina, MDa

J Am Coll Cardiol. 2001;37(7):1775-1780. doi:10.1016/S0735-1097(01)01248-7

http://content.onlinejacc.org/article.aspx?articleid=1127229

THIRD ARTICLE

The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations

Donald S Silverberg, MDa; Dov Wexler, MDa; Miriam Blum, MDa; Gad Keren, MDa; David Sheps, MDa; Eyal Leibovitch, MDa; David Brosh, MDa; Shlomo Laniado, MDa; Doron Schwartz, MDa; Tatyana Yachnin, MDa; Itzhak Shapira, MDa; Dov Gavish, MDa; Ron Baruch, MDa; Bella Koifman, MDa; Carl Kaplan, MDa; Shoshana Steinbruch, RNa; Adrian Iaina, MDa

J Am Coll Cardiol. 2000;35(7):1737-1744. doi:10.1016/S0735-1097(00)00613-6

http://content.onlinejacc.org/article.aspx?articleid=1126474

Perspective

This THREE article sequence is related by investigations occurring by me, a very skilled cardiologist and his resident, and my premedical student at New York Methodist Hospital-Weill Cornell, in Brooklyn, NY, while a study had earlier been done applying the concordant discovery, which the team in Israel had though was knowledge neglected.  There certainly was no interest in the problem of the effect of anemia on the patient with severe congestive heart failure, even though erythropoietin was used widely in patients with end-stage renal disease requiring dialysis, and also for patients with myelofibrosis.  The high cost of EPO was only one factor, the other being a guideline to maintain the Hb concentration at or near 11 g/dl – not higher.  In the first article, the authors sought to determine whether the amino terminal pro– brain type natriuretic peptide (NT-pro BNP) is affected by anemia, and to determine that they excluded all patients who had renal insufficiency and/or CHF, since these were associated with elevated NT-proBNP.  It was already well established that this pro-peptide is secreted by the heart with the action as a urinary sodium retention hormone on the kidney nephron, the result being an increase in blood volume.  Perhaps the adaptation would lead to increased stroke volume from increased venous return, but that is not conjectured.  However, at equilibrium, one would expect there to be increased red cell production to maintain the cell to plasma volume ratio, thereby, resulting in adequate oxygen exchange to the tissues.  Whether that is always possible is uncertain because any reduction in the number of functioning nephrons would make the kidney not fully responsive at the Na+ exchange level, and the NT-pro BNP would rise.  This introduces complexity into the investigation, requiring a removal of confounders to establish the effect of anemia.

The other two articles are related studies by the same group in Israel.  They surmised that there was evidence that was being ignored as to the effect of anemia, and the treatment of anemia was essential in addition to other treatments.  They carried out a randomized trial to determine just that, a benefit to treating the anemia.  But they also conjectured that an anemia with a Hb concentration below 12 g/dl has an deleterious effect on the targeted population.  Treatment by intermittent transfusions could potentially provide the added oxygen-carrying capacity, but the fractionation of blood, the potential for transfusion-transmitted disease and transfusion-reactions, combined with the need for the blood for traumatic blood loss made EPO a more favorable alternative to packed RBCs.  The proof-of-concept is told below.  Patients randomized to receive EPO at a lower than standard dose + iron did better.

 

Introduction

In this article, Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker we provides a summary of three articles on the topic and we shading new light on the role that Anemia Hb < 12 g%  plays as a Biomarker for CHF and for

  • prediction of elevated BNP, known as an indicator for the following Clinical Uses:
Clinical Use
  • Rule out congestive heart failure (CHF) in symptomatic individuals
  • Determine prognosis in individuals with CHF or other cardiac disease
  • Maximize therapy in individuals with heart failure by the use of Subcutaneous Erythropoietin (EPO) and Intravenous Iron (Fe)
Evaluation of BNP and NT-proBNP Clinical Performance
Study Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Diagnose impaired LVEF3
BNP 73 77 70 79
NT-proBNP 70 73 61 80
Diagnose LV systolic dysfunction after MI2
BNP 68 69 56 79
NT-proBNP 71 69 56 80
Diagnose LV systolic dysfunction after MI12
BNP 94 40 NG 96
NT-proBNP 94 37 NG 96
Prognosis in newly diagnosed heart failure patients: prediction of mortality/survival1
BNP 98 22 42 94
NT-proBNP 95 37 47 93
Prognosis post myocardial infarction: prediction of mortality2
BNP 86 72 39 96
NT-proBNP 91 72 39 97
Prognosis post myocardial infarction: prediction of heart failure2
BNP 85 73 54 93
NT-proBNP 82 69 50 91
PPV, positive predictive value; NPV, negative predictive value; LVEF, left ventricular ejection fraction; NG, not given.
Reference Range
BNP: < 100 pg/mL13
proBNP, N-terminal: 300 pg/mL
The NT-proBNP reference range is based on EDTA plasma. Other sample types will produce higher values.
Interpretive Information
Symptomatic patients who present with a BNP or NT-proBNP level within the normal reference range are highly unlikely to have CHF. Conversely, an elevated baseline level indicates the need for further cardiac assessment and indicates the patient is at increased risk for future heart failure and mortality.BNP levels increase with age in the general population, with the highest concentrations seen in those greater than 75 years of age.14 Heart failure is unlikely in individuals with a BNP level <100 pg/mL and proBNP level ≤300 pg/mL. Heart failure is very likely in individuals with a BNP level >500 pg/mL and proBNP level ≥450 pg/mL who are <50 years of age, or ≥900 pg/mL for patients ≥50 years of age. Patients in between are either hypertensive or have mild ischemic or valvular disease and should be observed closely.15BNP is increased in CHF, left ventricular hypertrophy, acute myocardial infarction, atrial fibrillation, cardiac amyloidosis, and essential hypertension. Elevations are also observed in right ventricular dysfunction, pulmonary hypertension, acute lung injury, subarachnoid hemorrhage, hypervolemic states, chronic renal failure, and cirrhosis.NT-proBNP levels are increased in CHF, left ventricular dysfunction, myocardial infarction, valvular disease, hypertensive pregnancy, and renal failure, even after hemodialysis.Although levels of BNP and NT-proBNP are similar in normal individuals, NT-proBNP levels are substantially greater than BNP levels in patients with cardiac disease due to increased stability (half-life) of NT-proBNP in circulation. Thus, results from the two tests are not interchangeable.
References
  1. Cowie MR and Mendez GF. BNP and congestive heart failure. Prog Cardiovasc Dis. 2002;44:293-321.
  2. Richards AM, Nicholls MG, Yandle TG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin. New neurohormonal predictors of left ventricular function and prognosis after myocardial infarction. Circulation. 1998:97:1921-1929.
  3. Hammerer-Lercher A, Neubauer E, Muller S, et al. Head-to-head comparison of N-terminal pro-brain natriuretic peptide, brain natriuretic peptide and N-terminal pro-atrial natriuretic peptide in diagnosing left ventricular dysfunction. Clin Chim Acta. 2001;310:193-197.
  4. McDonagh TA, Robb SD, Murdoch DR, et al. Biochemical detection of left-ventricular systolic dysfunction. Lancet. 1998;351:9-13.
  5. Mukoyama Y, Nakao K, Hosoda K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans: Evidence for an exquisite dual natriuretic peptide system, ANP and BNP. J Clin Invest. 1991;87:1402-1412.
  6. Hunt PJ, Richards AM, Nicholls MG, et al. Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): a new marker of cardiac impairment. Clin Endocrinol. 1997;47:287-296.
  7. Davis M, Espiner E, Richards G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet. 1994;343:440-444.
  8. Kohno M, Horio T, Yokokawa K, et al. Brain natriuretic peptide as a cardiac hormone in essential hypertension. Am J Med. 1992;92:29-34.
  9. Bettencourt P, Ferreira A, Pardal-Oliveira N, et al. Clinical significance of brain natriuretic peptide in patients with postmyocardial infarction. Clin Cardiol. 2000;23:921-927.
  10. Jernberg T, Stridsberg M, Venge P, et al. N-terminal pro brain natriuretic peptide on admission for early risk stratification of patients with chest pain and no ST-segment elevation. J Am Coll Cardiol. 2002;40:437-445.
  11. Richards AM, Troughton RW. Use of natriuretic peptides to guide and monitor heart failure therapy. Clin Chem. 2012;58:62-71.
  12. Pfister R, Scholz M, Wielckens K, et al. The value of natriuretic peptides NT-pro-BNP and BNP for the assessment of left-ventricular volume and function. A prospective study of 150 patients.Dtsch Med Wochenschr. 2002;127:2605-2609.
  13. Siemens ADVIA Centaur® BNP directional insert; 2003.
  14. Redfield MM, Rodeheffer RJ, Jacobsen SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol. 2002;40:976-982.
  15. Weber M, Hamm C. Role of B-type natriuretic peptid (BNP) and NT-proBNP in clinical routine.Heart. 2006;92:843-849.

SOURCE

B-type Natriuretic Peptide and proBNP, N-terminal

http://www.questdiagnostics.com/testcenter/testguide.action?dc=TS_BNP_proBNP

FIRST ARTICLE

Anemia as an Independent Predictor of Elevated N-terminal proBNP

Salman A. Haq, MD1, Mohammad E. Alam2, Larry Bernstein, MD, FCAP3,  LB Banko 1, Leonard Y. Lee, MD, FACS4, Barry I. Saul, MD, FACC5, Terrence J. Sacchi, MD, FACC6,  John F. Heitner, MD, FACC7
1Cardiology Fellow,  2  Clinical Chemistry Laboratories, 3 Program Director, Cardiothoracic Surgery, 4 Division of Cardiology,  Department of Medicine, New York Methodist Hospital-Weill Cornell, Brooklyn, NY

(Unpublished manuscript)  Poster Presentation:

Anemia as an Independent Predictor of Elevated N-Terminal proBNP Levels in
Patients without Evidence of Heart Failure and Normal Renal Function.

Haq SA, Alam ME, Bernstein L, Banko LB, Saul BI, Lee LY, Sacchi TJ, Heitner JF.

Table 1.  Patient Characteristics

Variable No Anemia(n=138) Anemia(n=80)
Median Age (years) 63 76
Men (%) 35 33
Creatinine (mg/dl) 0.96 1.04
Hemoglobin (g/dl) 13.7 10.2
LVEF (%) 67 63
Median NT-proBNP (pg/ml) 321.6 1896.0

Poster-ProBNP_final[1]

A series of slide showing the determination of the representation of normal NT-proBNP range
after removal of patient confounders.

Slide1

Slide10

Slide5

Slide8

ABSTRACT

Introduction

N-terminal proBNP (NT-proBNP) has emerged as a primary tool for diagnosing congestive heart failure (CHF). Studies have shown that the level of

  • NT-proBNP is affected by renal insufficiency (RI) and age, independent of the diagnosis of CHF.

There is some suggestion from recent studies that

  • anemia may also independently affect NT-proBNP levels.

Objective

To assess the affect of anemia on NT-proBNP independent of CHF, RI, and age.

Methods

We evaluated 746 consecutive patients presenting to the Emergency Department (ED) with shortness of breath and underwent evaluation with serum NT-proBNP.

All patients underwent a trans-thoracic echocardiogram (TTE) and clinical evaluation for CHF. Patients were included in this study if they had a normal TTE (normal systolic function, mitral inflow pattern and left ventricular (LV) wall thickness) and no evidence of CHF based on clinical evaluation. Patients were excluded if they had RI (creatinine > 2 mg/dl) or a diagnosis of sepsis. Anemia was defined using the World Health Organization (W.H.O.) definition of

  • hemoglobin (hgb) < 13 g/dl for males and hgb < 12 g/dl for females.

Results

Of the 746 consecutive patients, 218 patients (138 anemia, 80 no anemia) met the inclusion criteria. There was a markedly significant difference between

  • NT- proBNP levels based on the W.H.O. diagnosis of anemia.

Patients with anemia had a

  • mean NT- proBNP of 4,735 pg/ml compared to 1,230 pg/ml in patients without anemia (p=0.0001).

There was a markedly

  • significant difference in patients who had a hgb > 12 (median 295 pg/ml) when compared to
  • both patients with an hgb of 10.0 to 11.9 (median 2,102 pg/ml; p = 0.0001) and
  • those with a hgb < 10 (median 2,131 pg/ml; p = 0.001).

Linear regression analysis comparing hgb with log NT-proBNP was statistically significant (r = 0.395; p = 0.0001). MANOVA demonstrated that

  • elevated NT- proBNP levels in patients with anemia was independent of age.

Conclusion

This study shows that NT-proBNP is associated with anemia independent of CHF, renal insufficiency, sepsis or age.

INTRODUCTION

B-type natriuretic peptide (BNP) is secreted from the myocardium in response to myocyte stretch. 1-2 BNP is released from the myocytes as a 76 aminoacid N-terminal fragment (NT-proBNP) and a 32-amino acid active hormone (BNP). 3 These peptides have emerged as a primary non-invasive modality for the diagnosis of congestive heart failure (CHF). 4- 7 In addition, these peptides have demonstrated prognostic significance in patients with invasive modality for the diagnosis of

  • congestive heart failure (CHF). 4- 7
  • heart failure 8-9,
  • stable coronary artery disease 10, and
  • in patients with acute coronary syndromes. 11-14

Studies have shown that the level of NT- proBNP is affected by

  • age and renal insufficiency (RI) independent of the diagnosis of CHF. 15,16

There is some suggestion from the literature that

  • anemia may also independently affect NT-proBNP levels. 17-20

Willis et al. demonstrated in a cohort of 209 patients without heart failure that anemia was associated with an elevated NT- proBNP. 17 Similarly, in 217 patients undergoing cardiac catheterization, blood samples were drawn from the descending aorta prior to contrast ventriculography for BNP measurements and

  • anemia was found to be an independent predictor of plasma BNP levels. 18

The objective of this study is to assess the effect of anemia on NT-proBNP independent of CHF, sepsis, age or renal insufficiency.

METHODS

Patient population

The study population consisted of 746 consecutive patients presenting to the emergency room who underwent NT-proBNP evaluation for the evaluation of dyspnea. Transthoracic echocardiogram (TTE) was available on 595 patients. Patients were included in this study if they had a normal TTE, which was defined as normal systolic function (left ventricular ejection fraction [LVEF] > 45%), normal mitral inflow pattern and normal LV wall thickness. CHF was excluded based on thorough clinical evaluation by the emergency department attending and the attending medical physician. Patients with disease states that may affect the NT- proBNP levels were also excluded:

  1. left ventricular systolic dysfunction (LVEF < 45%),
  2. renal insufficiency defined as a creatinine > 2 mg/dl and
  3. sepsis (defined as positive blood cultures with two or more of the following systemic inflammatory response syndrome (SIRS) criteria: heart rate > 90 beats per minute;
  4. body temperature < 36 (96.8 °F) or > 38 °C (100.4 °F);
  5. hyperventilation (high respiratory rate) > 20 breaths per minute or, on blood gas, a PaCO2 less than 32 mm Hg;
  6. white blood cell count < 4000 cells/mm3 or > 12000 cells/mm³ (< 4 x 109 or > 12 x 109 cells/L), or greater than 10% band forms (immature white blood cells). 21

The study population was then divided into two groups, anemic and non- anemic. Anemia was defined using the world health organization (W.H.O.) definition of hemoglobin (hgb) < 13 g/dl for males and < 12 g/dl for females.The data was also analyzed by dividing the patients into three groups based on hgb levels i.e. hgb > 12, hgb 10 to 11.9 and hgb < 10.

Baseline patient data

Patient’s baseline data including age, gender, ethnicity, hemoglobin (hgb), hematocrit (hct), creatinine, NT- proBNP were recorded from the electronic medical record system in our institution. Chemistry results were performed on the Roche Modular System (Indianapolis, IN), with the NT- proBNP done by chemiluminescence assay. The hemogram was performed on the Beckman Coulter GenS. All TTE’s were performed on Sonos 5500 machine. TTE data collected included LVEF, mitral inflow pattern and LV wall thickness assessment.

Statistical analysis

The results are reported in the means with p < 0.05 as the measure of significance for difference between means. Independent Student’s t-tests were done comparing NT proBNP and anemia. Univariate ANOVAs and multivariate ANOVA (MANOVA) with post hoc tests using the Bonferroni method were used to compare NT- proBNP levels with varying ranges of hgb and age using SPSS 13.0 (SPSS, Chicago, IL). A linear regression analysis was performed using SYSTAT. Calculations included Wilks’Lamda, Pillai trace and Hotelling-Lawley trace. A GOLDMineR® plot was constructed to estimate the effects of age and anemia on NT- proBNP levels. The GOLDMineR® effects plot displays the odds-ratios for predicted NT-proBNP elevation versus the predictor values. Unlike the logistic regression, the ordinal regression, which the plot is derived from, can have polychotomous as well as dichotomous values, as is the case for NT-proBNP.

RESULTS

Of the 746 consecutive patients, 218 patients met the inclusion criteria (fig 1). Baseline characteristics of patients are listed in table 1. The median age for anemic patients was 76 years and 63 years for patients without anemia. One third of patients in both groups were men. The mean hemoglobin for

  • anemic patients was 10.2 g/dl as compared to 13.7 g/dl for non-anemic patients.
  • The mean LVEF of patients with anemia was 64% as compared to 67% for non-anemic patients.

Based on the WHO definition of anemia, 138 patients were determined to be anemic while 80 patients were diagnosed as non-anemic. There was a markedly  significant difference between NT-proBNP levels based on the WHO diagnosis of anemia.

Patients with anemia had a

  • mean NT-proBNP of 4,735 pg/ml compared to 1,230 pg/ml in patients without anemia (p = 0.0001).

Of the 218 patients in the study, 55 patients had a hgb of < 10 g/dl. Analysis using

  • hgb < 10 g/dl for anemia demonstrated a statistically significant difference in the NT-proBNP values.

Patients with a hgb < 10 g/dl had a mean NT- proBNP of 5,130 pg/ml

  • compared to 2,882 pg/ml in patients with a hgb of > 10 g/dl (p = 0.01)

The groups were also divided into three separate categories of hgb for subset analysis:

  • hgb > 12 g/dl,
  • hgb 10 to 11.9 g/dl and
  • hgb < 10 g/dl.

There was a markedly significant difference in

  •  the NT- ProBNP levels of patients who had a hgb > 12 g/dl (median 295 pg/ml) when
  • compared to those with a hgb range of 10.0 g/dl to 11.9 g/dl (median 2,102 pg/ml) (p = 0.0001),

and also a significant difference in

  • NT- proBNP levels of patients with a hgb > 12 g/dl (median 295 pg/ml) when
  • compared to a hgb of < 10 g/dl (median 2,131 pg/ml) (p = 0.001).

However, there was no statistically significant difference in NT-proBNP levels of patients with hgb 10 g/dl to 11.9 g/dl

  • when compared to those with a hgb of < 10 g/dl (p = 1.0).

A scatter plot comparing hgb with log NT-proBNP and fitting of a line to the data by ordinary least squares regression was significant (p = 0.0001) and demonstrated

  • a correlation between anemia and NT-proBNP levels (r = 0.395) (fig. 2).

MANOVA demonstrated that elevated NT- proBNP levels in patients with anemia was independent of age (Wilks’ Lambda [p = 0.0001]). In addition, using GOLDMineR® plots (figure 3a and 3b) with a combination of age and hb scaled as predictors of elevated NT-proBNP,

  • both age and hgb were required as independent predictors.

What about the effect of anemia? The GOLDminer analysis of ordinal regression was carried out in a database from which renal insufficiency and CHF were removed. The anemia would appear to have an independent effect on renal insufficiency. Figure 4 is a boxplot comparison of NT – proBNP, the age normalized function NKLog (NT- proBNP)/eGFR formed from taking 1000*Log(NT- proBNP) divided by the MDRD at eGFR exceeding 60 ml/min/m2 and exceeding 30 ml/min/m2. The transformed variable substantially makes the test independent of age and renal function. The boxplot shows the medians, 97.5, 75, 25 and 2.5 percentiles. There appears to be no significance in the NKLog(NT pro-BNP)/MDRD plot. Table II compares the NT-proBNP by WHO criteria at eGFR 45, 60 and 75 ml/mln/m2 using the t-test with unequal variance assumed, and the Kolmogorov-Smirnov test for nonparametric measures of significance. The significance at 60 ml/min/m2 is marginal and nonexistent at 75 ml/min/m2. This suggests that the contribution from renal function at above 60 ml/min2 can be ignored. This is consistent with the findings using the smaller, trimmed database, but there is an interaction between

  •  anemia, and
  •  eGFR at levels below 60 ml/min/m2

DISCUSSION

The findings in this study indicate that

  • anemia was associated with elevated NT-proBNP levels independent of CHF, renal insufficiency, sepsis or age.

These findings have been demonstrated with NT-proBNP in only one previous study. Wallis et al. demonstrated that after adjusting for age, sex, BMI, GFR, LVH and valvular disease;

  1. only age,
  2. valvular disease and
  3. low hemoglobin

were significantly associated with increased NT-proBNP. 18.

In our study, CHF was excluded based on both a normal TTE and a thorough clinical evaluation. In the only other study directly looking at NT- proBNP levels in anemic patients without heart failure

  • only 25% of patients had TTEs, with one patient having an LVEF of 40%. 17

BNP, the active molecule released after cleavage along with NT- proBNP, has also been studied in relation to blood hemoglobin levels. 18 In 263 patients undergoing cardiac catheterization  blood samples were drawn from the descending aorta prior to contrast ventriculography to determine the value of BNP. Anemia was present in 217 patients. Multivariate linear regression model adjusting for

  1.  age,
  2.  gender,
  3.  body mass index,
  4.  history of myocardial infarction,
  5.  estimated creatinine clearance, and
  6.  LVEF
  • found hgb to be an independent predictor of BNP levels.

In our study, patients with anemia were slightly older than those without anemia. However, both MANOVA and GOLDMineR® plot demonstrated that

  • elevated NT-proBNP levels in patients with anemia was independent of age.

Other studies have found that BNP is dependent on renal insufficiency and age. Raymond et al. randomly selected patients to complete questionnaires regarding CHF and

  1. then underwent pulse and blood pressure measurements,
  2.  electrocardiogram (ECG),
  3.  echocardiography and
  4.  blood sampling. 15

A total of 672 subjects were screened and 130 were determined to be normal, defined as

  • no CHF or ischemic heart disease,
  • normal LVEF,
  • no hypertension,
  • diabetes mellitus,
  • lung disease, and
  • not on any cardiovascular drugs.

They found

  1. older age,
  2. increasing dyspnea,
  3. high plasma creatinine and a
  4. LVEF < 45%

to be independently associated with an elevated NT-proBNP plasma level by multiple linear regression analysis. In another study, McCullough et al. evaluated the patients from the Breathing Not Properly Multinational Study

  • looking at the relationship between BNP and renal function in CHF. 16

Patients were excluded if they were on hemodialysis or had a estimated glomerular filteration rate (eGFR) of < 15 ml/min. They found that the BNP levels correlated significantly with the eGFR, especially in patients without CHF, suggesting

  1. chronic increased blood volume and
  2. increased left ventricular wall tension as a possible cause. 16

Our study was designed to exclude patients with known diseases such as CHF and renal insufficiency in order to demonstrate

  • the independent effect of anemia on elevated NT-proBNP levels.

The mechanism for elevated NT-proBNP levels in patients with anemia is unknown. Some possible mechanisms that have been reported in the literature include

  • hemodilution secondary to fluid retention in patients with CHF 18,
  • decreased oxygen carrying capacity with accompanying tissue hypoxia which
  • stimulates the cardio-renal compensatory mechanism leading to increased release of NT-proBNP. 17

The findings from our study suggest that

  •  NT-proBNP values should not be interpreted in isolation of hemoglobin levels and
  • should be integrated with other important clinical findings for the diagnosis of CHF.

Further studies are warranted

  1.  to assess the relationship between anemia and plasma natriuretic peptides, and
  2. possibly modify the NT-proBNP cutoff points for diagnosing acutely decompensated CHF in patients with anemia.

CONCLUSION

This study shows that elevated NT-proBNP levels are associated with anemia independent of

  •   CHF,
  •  renal insufficiency,
  •  sepsis and
  •  age.

NT-proBNP levels should be interpreted with caution in patients who have anemia.

 REFERENCES

1. Brunea BG, Piazza LA, de Bold AJ. BNP gene expression is specifically modulated by stretch and ET-1 in a new model of isolated rat atria.Am J Physiol  1997; 273:H2678-86.

2. Wiese S, Breyer T, Dragu A, et al. Gene expression of brain natriuretic peptide  in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circ 2000; 102:3074-79.

3. de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet 2003; 362:316-22.

4.   Dao Q, Krishnaswamy P, Kazanegra R, et al. Utility of B-type natriuretic  peptide in the diagnosis of congestive heart failure in an urgent care setting. J Am  Coll Cardiol 2001; 37:379-85.

5. Morrison LK, Harrison A, Krishnaswamy P, Kazanegra R, Clopton P, Maisel A. Utility of rapid natriuretic peptide assay in differentiating congestive heart failure from lung  disease in patients presenting with dyspnea.
J Am Coll Cardiol  2003; 39:202-09.

6.  Maisel AS, Krishnaswamy P, Nowak RM, et al.  Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347:161-67.

7. Januzzi JL, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J  Cardiol 2005; 95:948-954.

8.  Tsutamoto T, Wada A, Meada K, et al.   Attenuation of compensation of  endogenous cardiac natriuretic peptide system  in chronic heart failure: prognostic role  of plasma  brain natriuretic peptide concentration in patients with chronic  symptomatic  left ventricular dysfunction.
Circulation 1997; 96(2): 509-16.

9.  Anand IS, Fisher LD, Chiang YT, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HEFT). Circulation 2003; 107:1278-1283.

10. Omland T, Richards AM, Wergeland R and Vik-Mo H. B-type natriuretic peptide and long term survival in patients with stable coronary artery disease.
Am J Cardiol 2005; 95:24-28.

11. Omland T, Aakvaag A, Bonarjee VV. et al. Plasma brain natriuretic peptide as an indicator of left ventricular systolic dysfunction and long term prognosis after acute myocardial infarction. Comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide.
Circulation 1996; 93:1963-1969.

12. de Lemos JA, Morrow DA, Bently JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 2001; 345:1014-1021.

13. Richards AM, Nicholls MG, Espiner EA, et al. B-type natriuretic peptides and  ejection fraction for prognosis after myocardial infarction. Circulation 2003; 107:2786-2792.

14. Sabatine MS, Morrow DA, de Lemos JA, et al.  Multimarker approach to risk  stratification in non-ST elevation acute coronary syndromes: simultaneous  assessment of troponin I, C-reactive protein and B-type natriuretic peptide.
Circulation 2002; 105:1760-1763.

15. Raymond I, Groenning BA, Hildebrandt PR, Nilsson JC, Baumann M, Trawinski   J, Pedersen F.  The influence of age, sex andother variables on the plasma level of N-terminal pro brain natriureticpeptide in a large sample of the general  population. Heart 2003; 89:745-751.

16. McCollough PA, Duc P, Omland T, McCord J, Nowak RM, Hollander JE, et al. B-type natriuretic peptide and renal function in the diagnosis of heartfailure:  an analysis from the  Breathing Not Properly Multinational Study.
Am J Kidney Dis 2003; 41:571-579.

17. Willis MS, Lee ES, Grenache DG. Effect of anemia on plasma concentrations of  NT-proBNP.
Clinica Chim Acta 2005; 358:175-181.

18. Wold Knudsen C, Vik-Mo H, Omland T. Blood hemoglobin is an independent  predictor of B-type natriuretic peptide.
Clin Sci 2005; 109:69-74.

19. Tsuji H, Nishino N, Kimura Y, Yamada K, Nukui M, et al. Haemoglobin level influences plasma brain natriuretic peptide concentration. Acta Cardiol 2004;59:527-31.

20. Wu AH, Omland T, Wold KC, McCord J, Nowak RM, et al. Relationship  of B-type natriuretic peptide and anemia  in patients withand without heart failure:  A substudy from the Breathing Not Properly(BNP) Multinational Study.
Am J  Hematol 2005; 80:174-80.

22. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, et al.  Definitions for sepsis and organ failure and guidelines for theuse of innovative therapies in sepsis.  The ACCP/SCCM Consensus Conference Committee. Chest. 1992;101(6):1644-55.

Table Legends

Table I. Clinical characteristics of the study population

Table II. Comparison of NT- proBNP means under WHO criteria at different GFR

Table I
Variable No Anemia(n=80) Anemia(n=138)
Median age (years) 63 76
Gender
    Men (%) 27 (34) 47 (34)
    Women (%) 53 (66) 91 (66)
Weight (kg) 82.9 80.1
Chest Pain 21 (26) 3 (2)
Hemoglobin (g/dl) 13.7 10.2
Hematocrit (%) 40.5 30.5
Mean Corpuscular Volume 97 87
Creatinine (mg/dl) 0.99 1.07
Median NT-proBNP (pg/ml) 321 1896
Medical History
    HTN (%) 12 (15) 51 (37)
    Prior MI (%) 11 (14) 5 (4)
    ACS (%) 16 (20) 3 (2)
    CAD (%) 2 (1) 3 (2)
     DM (%) 18 (22) 11 (8)
Medication
   Clopidogrel 58 (72) 15 (11)
   Beta Blockers 68 (85) 27 (20)
   Ace Inhibitors 45 (56) 18 (13)
   Statins 57 (71) 17 (12)
   Calcium Channel Blocker 17 (21) 8 (6)
LVEF (%) 67 64

HTN: Hypertension CAD: Coronary Artery Disease
MI: Myocardial Infarction DM: Diabetes Mellitus
ACS: Acute Coronary Syndrome LVEF: Left Ventricular Ejection Fraction

Table II
GFR WHO Mean P (F) N NPar
> 45 0 3267 0.022 (4.33) 661
1 4681
> 60* 0 2593 0.031 (5.11) 456 0.018
1 4145
> 60r 0 786 0.203 (3.63) 303 0.08
1 3880
> 75 0 2773 > 0.80 320 0.043
1 3048

*AF, valve disease and elevated troponin T included
r AF, valve disease and elevated troponin T removed

FIGURE LEGENDS

FIGURE 1. Study population flow chart. (see poster)
FIGURE 2. Relationship between proBNP and hemoglobin. (see above)
FIGURE 3. NT-proBNP levels in relation to anemia (see above)

Supplementary Material

Table based on LatentGOLD Statistical Innovations, Inc., Belmont, MA., 2000: Jeroen Vermunt & Jay Magidson)

4-Cluster Model

Number of cases                                   408
Number of parameters (Npar)             24

Chi-squared Statistics
Degrees of freedom (df)                          71                     p-value
L-squared (L²)                                    80.2033                    0.21
X-squared                                            80.8313                     0.20
Cressie-Read                                        76.6761                     0.30
BIC (based on L²)                          -346.5966
AIC3 (based on L²)                        -132.7967
CAIC (based on L²)                       -417.5966

Model for Clusters
 Intercept                Cluster1      Cluster2     Cluster3     Cluster4     Wald     p-value
————–           0.1544           0.1434        0.0115        -0.3093     1.1981     0.75
Cluster Size           0.2870          0.2838       0.2487          0.1805
(across)

LogNTpr
< 1.5                       0.0843           0.2457       0.0006          0.0084
1.6-2.5                   0.6179            0.6458       0.0709          0.2809
2.5-3.5                  0.2848           0.1067         0.5319          0.5883
> 3.5                      0.0130           0.0018         0.3966         0.1224
MDRD
> 90                     0.1341             0.7919         0.0063         0.6106
61-90                  0.6019            0.2040          0.1633         0.3713
41-60                  0.2099            0.0041          0.3317         0.0175
< 41                     0.0542            0.0001         0.4987        0.0006
age
under 51           0.0668           0.5646          0.0568        0.0954
51-70                 0.3462            0.3602          0.3271         0.3880
over 70             0.5870            0.0752          0.6161         0.5166
WHO
No anemia      0.7518             0.6556          0.2041         0.0998
Anemia            0.2482             0.3444          0.7959         0.9002

———          Cluster1          Cluster2      Cluster3      Cluster4
Overall           0.2870            0.2838         0.2487        0.1805
(down)

LogNTpro
< 1.5                0.2492              0.7379           0.0013         0.0116
1.6-2.5            0.4163               0.4243           0.0427        0.1167
2.6-3.5           0.2296               0.0887          0.3723        0.3095
> 3.5              0.0328                0.0023          0.7982        0.1666
MDRD
> 90              0.1001                0.5998           0.0043        0.2958
61-90           0.5198                 0.1716           0.1136         0.1950
41-60           0.3860                 0.0055          0.5847         0.0238
< 41             0.1205                  0.0002          0.8785         0.0008
 age
< 51            0.0720                 0.7458           0.0910          0.0912
51-70         0.3036                 0.3084           0.2013          0.1867
over 70     0.3773                  0.0409          0.3633           0.2186
 WHO
No anemia 0.4589              0.3957           0.1076           0.0378
Anemia     0.1342                 0.1844            0.3742           0.3073

Hemoglobin on NT proBNP 3

SECOND ARTICLE

The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study

Donald S Silverberg, MDa; Dov Wexler, MDa; David Sheps, MDa; Miriam Blum, MDa; Gad Keren, MDa; Ron Baruch, MDa; Doron Schwartz, MDa; Tatyana Yachnin, MDa; Shoshana Steinbruch, RNa; Itzhak Shapira, MDa; Shlomo Laniado, MDa; Adrian Iaina, MDa

J Am Coll Cardiol. 2001;37(7):1775-1780. doi:10.1016/S0735-1097(01)01248-7

http://content.onlinejacc.org/article.aspx?articleid=1127229

OBJECTIVES

This is a randomized controlled study of anemic patients with severe congestive heart failure (CHF) to assess the effect of correction of the anemia on cardiac and renal function and hospitalization.

BACKGROUND

Although mild anemia occurs frequently in patients with CHF, there is very little information about the effect of correcting it with erythropoietin (EPO) and intravenous iron.

METHODS

Thirty-two patients with moderate to severe CHF (New York Heart Association [NYHA] class III to IV)
who had a left ventricular ejection fraction (LVEF) of 40% despite maximally tolerated doses of CHF medications and
  • whose hemoglobin (Hb) levels were persistently between 10.0 and 11.5 g% were randomized into two groups.
Group A (16 patients) received subcutaneous EPO and IV iron to increase the level of Hb to at least 12.5 g%. In Group B (16 patients) the anemia was not treated. The doses of all the CHF medications were maintained at the maximally tolerated levels except for oral and intravenous (IV) furosemide, whose doses were increased or decreased according to the clinical need.

RESULTS

Over a mean of 8.2 +/- 2.6 months,
  • four patients in Group B and none in Group A died of CHF-related illnesses.
  • The mean NYHA class improved by 42.1% in A and worsened by 11.4% in B.
  • The LVEF increased by 5.5% in A and decreased by 5.4% in B.
  • The serum creatinine did not change in A and increased by 28.6% in B.
  • The need for oral and IV furosemide decreased by 51.3% and 91.3% respectively in A and increased by 28.5% and 28.0% respectively in B.
  • The number of days spent in hospital compared with the same period of time before entering the study decreased by 79.0% in A and increased by 57.6% in B.

CONCLUSIONS

When anemia in CHF is treated with EPO and IV iron, a marked improvement in cardiac and patient function is seen,
  • associated with less hospitalization and renal impairment and less need for diuretics. (J Am Coll Cardiol 2001;37:1775– 80)

Anemia of any cause is known to be capable of causing congestive heart failure (CHF) (1). In patients hospitalized with CHF the 

  • mean hemoglobin (Hb) is about 12 g% (2,3),

which is considered the lower limit of normal in adults (4). Thus, anemia appears to be

common in CHF. Recently, in 142 patients in our special CHF outpatient clinic, we found that

  • as the CHF worsened, the mean Hb concentration decreased, from 13.7 g% in mild CHF (New York Heart Association [NYHA] class I) to 10.9 g% in severe CHF (NYHA 4), and
  • the prevalence of a Hb 12 g% increased from 9.1% in patients with NYHA 1 to 79.1% in those with NYHA 4 (5).
The Framingham Study has shown that anemia is an
  • independent risk factor for the production of CHF (6).
Despite this association of CHF with anemia,
  • its role is not mentioned in the 1999 U.S. guidelines for the diagnosis and treatment of CHF (7), and
  • many studies consider anemia to be only a rare contributing cause of hospitalization for CHF (8,9).
Recently, we performed a study in which the anemia of severe CHF that was resistant to maximally tolerated doses of standard medications
  • was corrected with a combination of subcutaneous (sc) erythropoietin (EPO) and intravenous iron (IV Fe) (5).
We have found this combination to be safe, effective and additive
  • in the correction of the anemia of chronic renal failure (CRF) in both
  • the predialysis period (10) and the dialysis period (11).
The IV Fe appears to be more effective than oral iron (12,13). In our previous study of CHF patients (5), the treatment resulted in
  • improved cardiac function,
  • improved NYHA functional class,
  • increased glomerular filtration rate,
  • a marked reduction in the need for diuretics and
  • a 92% reduction in the hospitalization rate
compared with a similar time period before the intervention. In the light of these positive results, a prospective randomized study was undertaken
  • to determine the effects of the correction of anemia in severe symptomatic CHF resistant to maximally tolerated CHF medication.

Abbreviations and Acronyms

CABG coronary artery bypass graft
CHF congestive heart failure
CRF chronic renal failure
EPO erythropoietin
%Fe Sat percent iron saturation
GFR glomerular filtration rate
Hb hemoglobin
Hct hematocrit
IU international units
IV intravenous
LVEF left ventricular ejection fraction
NYHA New York Heart Association
PA pulmonary artery
sc subcutaneous
SOLVD Studies Of Left Ventricular Dysfunction

MATERIALS AND METHODS

Patients.Thirty-two patients with CHF were studied. Before the study, the patients were treated for least six months in the CHF clinic with

  • maximally tolerated doses of angiotensin-converting enzyme inhibitors, the beta-blockers bisoprolol or carvedilol, aldospirone, long-acting nitrates, digoxin and oral and intravenous (IV) furosemide.

In some patients these agents could not be given because of contraindications and in others they had to be stopped because of side effects. Despite this maximal treatment

  • the patients still had severe CHF  (NYHA classIII), with  fatigue and/or shortness of breath  on even mild exertion or at rest.  All had levels of
  • Hb in the range of 10 to 11.5 g%  on at least three consecutive visits over a three-week period.
  • All had a LVEF of 40%.

Secondary causes of anemia including hypothyroidism, and folic acid and vitamin B12 deficiency were ruled out and

  • there was no clinical evidence of gastrointestinal bleeding.

The patients were randomized consecutively into two groups:

  • Group A, 16 patients, was treated with sc EPO and IV Fe to achieve a target Hb of at least 12.5 g%.
  • Group B, 16 patients, did not receive the EPO and IV Fe.

Treatment protocol for correction of anemia.

All patients in Group A received the combination of sc EPO and IV Fe. The EPO was given once a week at a starting dose of 4,000 international units (IU) per week  and
the dose was increased  to two  or  three  times a week or decreased to once every few weeks as  necessary

  • to achieve and maintain a target Hb of 12.5 g%.

The IV Fe (Venofer-Vifor International, Switzerland), a ferric sucrose product, was given in a dose of 200 mg IV in 150 ml saline over 60 min every two weeks

  • until the serum ferritin reached 400 g/l or
  • the %Fe saturation (%Fe Sat is serum iron/total iron binding capacity 100) reached 40% or
  • the Hb reached 12.5g%. 

The IV Fe was then given at longer intervals as needed to maintain these levels.

Investigations. 

Visits to the clinic were at two- to three week intervals depending on the patient’s status. This was the same frequency of visits to the CHF clinic as before then,

  • potassium and ferritin and %Fe Sat were performed on every visit.
  • blood pressure was measured by an electronic device on every visit.
  • LVEF was measured initially and at four- to six-month intervals by MUGA radioisotope ventriculography.

This technique measures

  • the amount of blood in the ventricle at the end of systole and at the end of diastole, thus giving
  • a very accurate assessment of the ejection fraction.

It has been shown to be an accurate and reproducible method of measuring the ejection fraction (14).  Hospital records were reviewed at the end of the intervention period to compare

  • the number of days hospitalized during the study with 
  • the number of days hospitalized during a similar period 
    • when the patients were treated in the CHF clinic before the initial randomization and entry into the study.

Clinic records were reviewed to evaluate the types and doses of CHF medications used before and during the study. The mean follow-up for patients was 8.2 +/-  2.7 months (range 5 to 12 months).  The study was done with the approval of the local ethics committee.Statistical analysis.

An analysis of variance with repeated measures (over time) was performed to compare the two study groups (control vs. treatment) and

  • to assess time trend and the interactions between the two factors.
  • A separate analysis was carried out for each of the outcome parameters.
  • The Mann-Whitney test was used to compare the change in NYHA class between two groups.

All the statistical analysis was performed by SPSS (version 10).

RESULTS

The mean age in Group A (EPO and Fe) was 75.3 +/-  14.6 years and in group B was 72.2 +/-  9.9 years. There were 11 and 12 men in Groups A and B, respectively.
Before the study the two groups were similar in
  1. cardiac function,
  2. comorbidities,
  3. laboratory investigations and
  4. medications
  • (Tables 1, 2 and 3), except for IV furosemide (Table 3),
which was higher in the treatment group. The mean NYHA class of Group A before the study was 3.8  0.4 and was 3.5  0.5 in Group B. The contributing factors to CHF in Groups A and B, respectively, are seen in Table 1 and were similar.
Table 1. Medical Conditions and Contributing Factors to Congestive Heart Failure in the 16 Patients Treated for the Anemia and in the 16 Controls

Table 1 medical conditions heart failure anemia

Table 2. The Effect of Correction of Anemia by Intravenous Iron and Erythropoietin Therapy on Various Parameters in 16 Patients in the Treatment (A) and 16 in the Control (B) Group

Table 2 medications to treat heart failure anemia

p values are given for analysis of variance with repeated measures and for independent t tests for comparison of baseline levels between the two groups.
BP  blood pressure; Fe Sat  iron saturation; Hb  hemoglobin; IV  intravenous; NS  not stated; Std Dev.  standard deviation.

The main contributing factors to CHF were considered to be

  • ischemic heart disease (IHD) in 11 and 10 patients respectively,
  • hypertension in two and two patients,
  • valvular heart disease in twoand two patients, and
  • idiopathic cardiomyopathy in one and two patients, respectively.

A significant change after treatment was observed in the two groups in the following parameters:

  • IV furosemide,
  • days in hospital,
  • Hb,
  • ejection fraction,
  • serum creatinine and
  • serum ferritin.
In addition, the interaction between the study group and time trend was significant in all measurements except for blood pressure and %Fe Sat. This interaction indicates that
  • the change over time was significantly different in the two groups.
Table 3. The Effect of Correction of Anemia by Intravenous Iron and Erythropoietin Therapy on Various Parameters in 16 Patients in the Treatment (A) and 16 in the Control (B) Group

Table 3  CHF aneia EPO

p values are given for analysis of variance with repeated measures and for independent t tests for comparison of baseline levels between the two groups.
BP  blood pressure; Fe Sat  iron saturation; Hb  hemoglobin; IV  intravenous; NS  not stated; Std Dev.  standard deviation.

We find in the comparisons of Tables 2 and 3:

  1. before treatment the level of oral furosemide was higher in the control group (136.2 mg/day) compared with the treatment group (132.2 mg/day).
  2. after treatment, while the dose of oral furosemide of the treated patients was reduced  to 64.4 mg/day
  • the dose of the nontreated patients was increased to 175 mg/day.

The same results of improvement in the treated group and deterioration in the control group are expressed in the following parameters:

  1. IV furosemide, days in hospital,
  2. Hb,
  3. ejection fraction and
  4. serum creatinine.

The NYHA class was

  • 3.8 +/- 0.4 before treatment and 2.2 +/- 0.7 after treatment in Group A  (delta mean = – 1.6) and
  • 3.5 +/-  0.7 before treatment and 3.9 +/- 0.3 after treatment in Group B. (delta mean = 0.4)

The improvement in NYHA class was significantly higher (p < 0.0001) in the treatment group compared with the control group (Table 4).

Table 4. Changes from Baseline to Final New York Heart Association (NYHA) Class
Initial minus final

Table 4  changes from NYHA baseline  CHF anemia

The improvement in NYHA class was statistically higher (p <  0.0001) in the treatment group compared with control.

There were no deaths in Group A and four deaths in Group B.

Case 1: A 71-year-old woman with severe mitral insufficiency and severe pulmonary hypertension  (a pulmonary artery [PA] pressure of 75 mm Hg) had persistent NYHA 4 CHF  and died during mitral valve surgery  seven months after onset of the study. She was hospitalized for 21 days  in the seven months before randomization and for 28 days  during the seven months after randomization.

Case 2:

A 62-year-old man with a longstanding history of hypertension complicated by IHD, coronary artery bypass graft (CABG) and atrial fibrillation had persistent NYHA 4 CHF  and a PA pressure of 35 mm Hg,  and died from pneumonia and septic shock eight months after onset of the study. He was hospitalized for seven days in the eight months before randomization and for 21 days during the eight months  after
randomization.

Case 3:
A 74-year old man with IHD, CABG, chronic obstructive pulmonary disease, a history of heavy smoking and diabetes had persistent NYHA 4 CHF and a PA pressure of  28 mm Hg, and died of pulmonary  edema and cardiogenic shock nine months after onset of the study. He was hospitalized for 14 days in the nine months before  randomization and for 41 days during the nine months after randomization.

Case 4:
A 74-year-old man with a history of IHD, CABG, diabetes, dyslipidemia, hypertension and atrial fibrillation, had persistent NYHA 4 CHF and a PA pressure of 30 mm Hg,  and died of pneumonia and septic shock   six months after onset of the study. He was hospitalized for five days in the six months before randomization and for 16 days during the nine months after randomization.

DISCUSSION

 Main findings.

The main finding of the present study is that the correction of

  • even mild anemia in patients with symptoms of very severe CHF despite being on maximally tolerated drug therapy
  • resulted in a significant improvement in their cardiac function and NYHA functional class.

There  was also a large

  • reduction in the number of days of  hospitalization compared with a similar period before the  intervention.
  • all this was achieved despite a marked reduction in the dose of oral and IV furosemide.

In the group in whom the anemia was not treated, four  patients died during the study. In all four cases

  • the CHF was unremitting and contributed to the deaths. 

In addition,  for the group as a whole, 

  • the LVEF, the NYHA class and  the renal function worsened.

There was also need for

  • increased oral and IV furosemide as well as increased  hospitalization.

Study limitations.

The major limitations of this study are

  1. the smallness of the sample size and
  2. the fact that randomization and treatment were not done in a blinded fashion.

Nevertheless, the two groups were almost identical in

  1. cardiac, renal and anemia status;
  2. in the types and doses of medication they were taking before and during the intervention and
  3. in the number of hospitalization days before the intervention.

Although the results of this study, like those of  our previous uncontrolled study (5), suggest that

  • anemia may play an important role in the mortality and morbidity of  CHF,
  • a far larger double-blinded controlled study should be carried out to verify our findings.

Anemia as a risk factor for hospitalization and death in CHF.

Our results are consistent with a recent analysis of 91,316 patients hospitalized with CHF (15). Anemia was found to be a stronger predictor of

  • the need for early rehospitalization than  was hypertension,  IHD or the presence of a previous CABG.  

A recent analysis of the Studies Of Left Ventricular Dysfunction (SOLVD) (16) showed that

  • the level of hematocrit (Hct) was an independent risk factor for mortality.

During a mean follow-up of 33 months the mortality was

  • 22%, 27% and 34% for those with a Hct of 40, 35 to 40 and 35 respectively.

The striking response of our patients to

  • correction of mild anemia suggests that the failing heart may be very susceptible to anemia.

It has, in fact, been found in both animal (17) and human studies (17–19) that

  • the damaged heart is more vulnerable to anemia and/or ischemia than is the normal heart.

These stimuli may result in a more marked reduction in cardiac function than occurs in the normal heart and may explain why,  in our study,

  • the patients were so resistant to high doses of CHF medications and
  • responded so well when the anemia was treated.

Our findings about the importance of anemia in CHF are not surprising when one considers that, in dialysis patients,

  • anemia has been shown to be associated with an increased prevalence and incidence of CHF (20) and that
  • correction of anemia in these patients is associated with improved
    • cardiac function (21,22),
    • less mortality (23,24) and
    • fewer hospitalizations (23,25).

Effect of improvement of CHF on CRF.

Congestive heart failure can cause progressive renal failure (26,27). Renal ischemia is found very early on

  • in patients with cardiac dysfunction (28,29), and
  • chronic ischemia may cause progression of renal failure (30). Indeed, the development of
  • CHF in patients with essential hypertension has been found to be one of the most powerful predictors of
  • the eventual development of end-stage renal disease (31).

Patients who develop CHF after a myocardial infarction experience a

  • fall in the glomerular filtration rate (GFR) of about 1 ml/min/month if the CHF is not treated (32).

In another recent analysis of the SOLVD study, treating the CHF with

  • both angiotensin-converting enzyme inhibitors and beta-blockers resulted in better preservation of the renal function than did
  • angiotensin-converting enzyme inhibitors alone (26),
suggesting that the more aggressive the treatment of the CHF, the better the renal function is preserved. In the present study, as in our previous one (5), we found that the deterioration of GFR was prevented with
  • successful treatment of the CHF, including correction of the anemia, whereas
  • the renal function worsened when the CHF remained severe

All these findings suggest that early detection and treatment of CHF and systolic and/or diastolic dysfunction from whatever cause could prevent

  • the deterioration not only of the cardiac function
  • but of the renal function as well.

This finding has very broad implications in the prevention of CRFbecause most patients with advanced CRF have

  • either clinical evidence of CHF or at least some degree of systolic dysfunction (33).

Systolic and/or diastolic dysfunction can occur early on in many  conditions, such as

  • essential hypertension (34),
  • renal disease of any cause (35,36) or
  • IHD, especially after a myocardial infarction (37).

The early detection and adequate treatment of this cardiac dysfunction, including correction of the anemia, could prevent this cardiorenal insufficiency. To detect cardiac dysfunction early on, one would need  at least an echocardiogram and MUGA radio-nucleotide ventriculography. These tests should probably be done not only in patients with signs and symptoms of CHF,   but in all patients where CHF or systolic  and/or diastolic dysfunction are suspected, such as those with a history of heart disease or suggestive changes of ischemia or hypertrophy on the electrocardiogram, or in patients with hypertension or renal disease.

Other positive cardiovascular effects of EPO treatment.

Another possible explanation for the improved cardiac function in this study may be the direct effect that EPO itself has on improving cardiac muscle function (38,39) and myocardial cell growth (39,40) unrelated to its  effect of the anemia. In fact EPO may be  crucial in the formation of the heart muscle in utero (40). It may also improve  endothelial function (41).  Erythropoietin may be superior to blood transfusions  not only  because adverse reactions to EPO are infrequent, but also because

  • EPO causes the production and release of young cells from the bone marrow into the blood.

These cells have an oxygen dissociation curve that is shifted to the right of the normal curve, causing the release of

  • much greater amounts of oxygen into the tissues than occurs normally (42).

On the other hand, transfused blood consists of older red cells with an oxygen dissociation curve that is

  • shifted to the left, causing the release of much less oxygen into the tissues than occurs normally (42).

The combination of IV Fe and EPO. The use of IV Fe along with EPO has been found to have an additive effect, 

  • increasing the Hb even more than would occur with EPO alone while at the same time
  • allowing the dose of EPO to be reduced (10 –13).
  • The lower dose of EPO will be cost-saving and also reduce the chances of hypertension developing (43).
 We used iron sucrose (Venofer) as our IV Fe medication because, in our experience, it is extremely well tolerated (10,11) and  
  • has not been  associated  with any serious side effects in more than 1,200 patients over six years.

Implications of treatment of anemia in CHF. The correction of anemia is not a substitute for the well-documented effective therapy of CHF but seems to be  an important, if not vital,  addition to the therapy. It is surprising, therefore,  that judging from  the  literature  on CHF,

  • such an obvious treatment for improving CHF is so rarely considered.

We believe that correction of the anemia will have an important role to play in

  • the amelioration of cardiorenal insufficiency, and that this improvement will have
  • significant economic  implications as well.

Acknowledgments

The authors thank Rina Issaky, Miriam Epstein, Hava Ehrenfeld and Hava Rapaport for their secretarial assistance.
Reprint requests and correspondence: Dr. D. S. Silverberg, Department of Nephrology, Tel Aviv Medical Center, Weizman 6, Tel Aviv, 64239, Israel.

 THIRD ARTICLE

The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations

Donald S Silverberg, MDa; Dov Wexler, MDa; Miriam Blum, MDa; Gad Keren, MDa; David Sheps, MDa; Eyal Leibovitch, MDa; David Brosh, MDa; Shlomo Laniado, MDa; Doron Schwartz, MDa; Tatyana Yachnin, MDa; Itzhak Shapira, MDa; Dov Gavish, MDa; Ron Baruch, MDa; Bella Koifman, MDa; Carl Kaplan, MDa; Shoshana Steinbruch, RNa; Adrian Iaina, MDa

J Am Coll Cardiol. 2000;35(7):1737-1744. doi:10.1016/S0735-1097(00)00613-6

http://content.onlinejacc.org/article.aspx?articleid=1126474

OBJECTIVES

This study evaluated the prevalence and severity of anemia in patients with congestive heart failure (CHF) and

  • the effect of its correction on cardiac and renal function and hospitalization.

BACKGROUND

The prevalence and significance of mild anemia in patients with CHF is uncertain, and the role of erythropoietin with intravenous iron supplementation in treating this anemia is unknown.

METHODS

In a retrospective study, the records of the 142 patients in our CHF clinic were reviewed to find
  • the prevalence and severity of anemia (hemoglobin [Hb]12 g).
In an intervention study, 26 of these patients, despite maximally tolerated therapy of CHF for at least six months, still had had severe CHF and were also anemic. They were treated with
  • subcutaneous erythropoietin and intravenous iron sufficient to increase the Hb to 12 g%.
The doses of the CHF medications, except for diuretics, were not changed during the intervention period.

RESULTS

The prevalence of anemia in the 142 patients increased with the severity of CHF,
  • reaching 79.1% in those with New York Heart Association class IV.
In the intervention study, the anemia of the 26 patients was treated for a mean of 7.2 5.5 months.
  • The mean Hb level and mean left ventricular ejection fraction increased significantly.
  • The mean number of hospitalizations fell by 91.9% compared with a similar period before the study.
  • The New York Heart Association class fell significantly,
  • as did the doses of oral and intravenous furosemide.
  • The rate of fall of the glomerular filtration rate slowed with the treatment.

CONCLUSIONS

Anemia is very common in CHF and its successful treatment is associated with a significant improvement in
  • cardiac function,
  • functional class,
  • renal function and
  • in a marked fall in the need for diuretics and hospitalization.
Abbreviations and Acronyms
ACE Angiotensin-converting enzyme
CHF congestive heart failure
COPD chronic obstructive pulmonary disease
CRF chronic renal failure
CVA cerebrovascular accident
EPO erythropoietin
Fe iron
g% grams Hb /100 ml blood
GFR glomerular filtration rate
Hb hemoglobin
Hct hematocrit
IV intravenous
LVEF left ventricular ejection fraction
LVH left ventriculr hypertrophy
NYHA New York Heart Association
%Fe Sat percent iron saturation
sc subcutaneous
TNF tumor becrosis factor
ACE Angiotensin-converting enzyme
CHF congestive heart failure
COPD chronic obstructive pulmonary disease
CRF chronic renal failure
CVA cerebrovascular accident
EPO erythropoietin
Fe iron
g% grams Hb /100 ml blood
GFR glomerular filtration rate
Hb hemoglobin
Hct hematocrit
IV intravenous
LVEF left ventricular ejection fraction
LVH left ventriculr hypertrophy
NYHA New York Heart Association
%Fe Sat percent iron saturation
sc subcutaneous
TNF tumor becrosis factor

The mean hemoglobin (Hb) in patients with congestive heart failure (CHF) is about 12 g Hb per 100 ml blood (g%) (1–3), which is considered to be the lower limit of normal in adult men and postmenopausal women (4). Thus, many patients with CHF are anemic, and

  • this anemia has been shown to worsen as the severity of the CHF progresses (5,6).
Severe anemia of any cause can produce CHF, and treatment of the anemia can improve it (7). In patients with chronic renal failure (CRF) who are anemic,
  • treatment of the anemia with erythropoietin (EPO) has improved many of the abnormalities seen in CHF,
  • reducing left ventricular hypertrophy (LVH) (8 –10),
  • preventing left ventricular dilation (11) and,
    • in those with reduced cardiac function, increasing the left ventricular ejection fraction (LVEF)(8 –10),
    • the stroke volume (12) and
    • the cardiac output (12).
In view of the high prevalence of anemia in CHF, it is surprising that we could find no studies in which EPO was used in the treatment of the anemia of CHF, and the use of EPO is not included in U.S. Public Health Service guide-lines of treatment of the anemia of CHF (13). In fact, anemia has been considered
  • only a rare contributing factor to the worsening of CHF, estimated as contributing to
  • no more than 0% to 1.5% of all cases (14 –16).
Perhaps for this reason, recent guidelines for the prevention and treatment of CHF do not mention treatment of anemia at all (17). If successful treatment of anemia could improve cardiac function and patient function in CHF,
  • this would have profound implications, because,
  • despite all the advances made in the treatment of CHF, it is still a major and steadily increasing cause of hospitalizations, morbidity and mortality (18 –20).
The purpose of this study is to examine
  • the prevalence of anemia (Hb 12 g%) in patients with different levels of severity of CHF and
  • to assess the effect of correction of this anemia in severe CHF patients
  • resistant to maximally tolerated doses of CHF medication.
A combination of subcutaneous (SC) EPO and intravenous (IV) iron (Fe) was used. We have found this combination to be additive in improving the anemia of CRF (21,22).

METHODS 

Patients.

The medical records of the 142 CHF patients being treated in our special outpatient clinic devoted to CHF were reviewed to determine the prevalence and severity of anemia and CRF in these patients. These patients were referred to the clinic either from general practice or from the various wards in the hospital.

Intervention study.

Despite at least six months of treatment in the CHF clinic,
  • 26 of the above patients had persistent, severe CHF (New York Heart Association [NYHA] class III),
  • had a Hb level of 12 g% and were on
    • angiotensin-converting enzyme [ACE] inhibitors, the 
    • alpha-beta-blocker carvedilol,
    • long-acting nitrates,
    • digoxin, 
    • aldactone and
    • oral and IV furosemide.

These 26 patients participated in an intervention study. The mean age was 71.76  8.12 years. There were 21 men and 5 women. They  all had a

  • LVEF below 35%,
  • persistent fatigue and
  • shortness

    of breath on mild to moderate exertion and often at rest, and had

  • required hospitalizations at least once during their follow-up in the CHF clinic for pulmonary edema.
In 18 of the 26 patients, the CHF was associated with ischemic heart disease either
  • alone in four patients, or
  • with hypertension in six,
  • diabetes in four,
  • the two together in three, or with
  • valvular heart disease in one.
Of the remaining eight patients,
  • four had valvular heart disease alone and
  • four had essential hypertension alone.
Secondary causes of anemia including
  • gastrointestinal blood loss (as assessed by history and by three negative stool occult blood examinations),
  • folic acid and vitamin B12 deficiency and
  • hypothyroidism were ruled out.
Routine gastrointestinal endoscopy was not carried out. The study passed an ethics committee.
Table 1. Initial Characteristics of the 142 Patients With CHF Seen in the CHF Clinic
Age, yearsMale/female,  %Associated conditionsDiabetesHypertensionDyslipidemiaSmoking

Main cardiac diagnosis
Ischemic heart disease

Dilated CMP

Valvular heart disease

Hypertension

LVEF,  %

Left atrial area (n 15 cm2)

Pulmonary artery pressure  (15 mm Hg)

Previous hospitalizations/year

Serum Na, mEq/liter

Serum creatinine, mg%

Hemoglobin, g%

70.1 +/- 11.1

79/21

28%

64%

72%

40%

74%

15%

6%

5%

32.5 +/- 12.2

31.3  +/- 10.3

43.1  +/-14.9

3.2  +/- 1.5

139.8  +/- 4.0

1.6   +/-  1.1

11.9   +/- 1.5

CMP  cardiomyopathy; LVEF  left ventricular ejection fraction; NYHA  New York Heart Association class.

Correction of the anemia.

All patients received the combination of SC EPO and IV Fe. The EPO was given once a week at a starting dose of 2,000 IU per week subcutaneously, and the dose was increased or decreased as necessary to achieve and maintain a target Hb of 12 g%. The IV Fe (Venofer-Vifor International, St. Gallen, Switzerland), a ferric sucrose product, was given in a dose of 200 mg IV in 150 ml saline over 60 min every week until the serum ferritin reached 400  g/liter or the percent Fe saturation (%Fe Sat: serum iron/total iron binding capacity   100) reached 40% or until the Hb reached 12 g%. The IV Fe was then given at longer intervals as needed to maintain these levels.

Medication dose.

Except for oral and IV furosemide therapy, the doses of all the other CHF medications, which were used in the maximum tolerated doses before the intervention, were kept unchanged during the intervention period.

Duration of the study.

The study lasted for a mean of 7.2  5.5 months (range four to 15 months).

Investigations.

Visits were at weekly intervals initially and then at two- to three-week intervals depending on the patient’s status. This was the same frequency of visits to the CHF clinic as before the intervention study.
  • A complete blood count, serum creatinine, serum ferritin and % Fe Sat were performed on every visit.
  •  An electronic device measured the blood pressure on every visit.
  • The LVEF was measured by a multiple gated ventricular angiography heart scan initially and at four- to six-month intervals.
Hospital records were reviewed to compare the number of hospitalizations during the time the patients were treated for the anemia with the number of hospitalizations
  • during a similar period of time that they were treated in the CHF clinic 
    before the anemia was treated.
Clinic records were reviewed to evaluate the types and doses of CHF medications used 
before and during the study.

Period of time that they were treated in the CHF clinic before the anemia was treated.

Clinic records were reviewed to evaluate the types and doses of CHF medications used before and during the study.  The glomerular filtration rate (GFR) was calculated from the serum creatinine by the formula: 1/serum creatinine in mg% x 100 GFR in ml/min. The rate of change of the GFR before and during the intervention period was calculated by comparing the change in GFR per month in the year before the intervention with that during the intervention.

Statistical analysis.

Mean standard deviation was calculated. One-way analysis of variance (ANOVA) was performed to compare parameter levels between the four NYHA groups. Hochberg’s method of multiple comparisons (23) was used for pair-wise comparison between two groups. A p value of less than 0.05 was considered statistically significant. In the intervention study, the significance of the difference between the initial values and those at the end of the study for the individual parameters in the 26 treated patients was assessed by paired student’s t test; p < 0.05 was considered statistically significant. All the statistical analysis was performed by the SPSS program (Version 9, Chicago, Illinois).

 RESULTS

CHF: the whole study group.

The clinical, biochemical and hematological characteristics of the 142 patients seen in the clinic are shown in Tables 1 and 2.

  • Sixty-seven patients (47%) had severe CHF as judged by a NYHA class of IV (Table 2).
  • Seventy- nine of the 142 patients (55.6%) were anemic (Hb  12 g%).

The mean Hb level fell progressively from 13.73 +/- 0.83 g% in class I NYHA to 10.90 +/- 1.70 g% in class IV NYHA (p  0.01). The percentage of patients with Hb  12 g% increased from 9.1% in class I to 79.1% in class IV.
Fifty eight patients (40.8%) had CRF as defined as a serum creatinine  1.5 mg%. The mean serum creatinine increased from 1.18 +/_  0.38 mg% in class I NYHA, to 2.0 +/-    1.89 mg% in class IV NYHA, p  0.001. The percentage of patients with an elevated serum creatinine ( 1.5 mg%)      increased from 18.2% in class I to 58.2% in class IV.

The mean ejection fraction fell from 37.67 +/-  15.74% in class I to 27.72 +/-  9.68% (p  0.005) in class IV.

Table 2. LVEF and Biochemical and Hematological Parameters by NYHA Class in 142 Patients With CHF 
NYHA Class I II III IV  Significantly Different Pairs*

 *p  0.05 at least between the two groups by pair-wise comparison between groups.

†p  0.05 at least between the groups by ANOVA.

No. of patients

11

26  

38

67

(total 142) (%)

    (7.7)    (18.3)    (26.8)    (47.2)

Hb, g%†

13.73 (0.83)

13.38 (1.26)

11.95 (1.48)

10.90 (1.70) 

1–3, 1–4, 2–3, 2–4

Serum creatinine,

1.18

1.22

1.32

2.00

1–2, 1–3, 1–4

mg%†

    (0.38)     (0.29)      (0.38)     (1.89)

LVEF, %†

37.67 (15.74)

32.88 (12.41)

32.02 (10.99)

27.72 (9.68)

1–4, 2–4

Hb 12 g%,  (%)

1
(9.1)

5 (19.2) 

20 (52.6) 

53 (79.1)

Serum creatinine

    2      5     12     39

1.5 mg%,  (%) 

 (18.2)

(19.2)

(31.6)

 (58.2)

The intervention study: medications.

The percentage of patients receiving each CHF medication before and after the intervention period and the reasons for not receiving  them are seen in Table 3.

Table 3. Number (%) of the 26 Patients Taking Each Type of Medication Before and During the Intervention Period and the Reason Why the Medication Was Not Used

Medication    No. of Patients  (%)         Reason for Not Receiving the Medications (No. of Patients)
BP  blood pressure; CRF  chronic renal failure; IV  intravenous.

The main reason for not receiving:

  • 1) ACE inhibitors was the presence of reduced renal function;
  • 2) carvedilol was the presence of chronic obstructive pulmonary disease (COPD);
  • 3) nitrates was low blood pressure and aortic stenosis and
  • 4) aldactone was hyperkalemia.
Table 4. Mean Dose of Each Medication Initially and at the End of the Intervention Period in the 26 Patients

                                       No. of Patients                                 Initial Dose ^                 Final Dose^
Carvedilol (mg/day)                      20                                                        26.9 15.5                                   28.8 14.5
Captopril (mg/day)                          7                                                        69.6 40.0                                 70.7 40.4
Enalapril (mg/day)                        13                                                        25.7 12.5                                   26.9 12.6
Digoxin (mg/day)                          25                                                       0.10 0.07                                    0.10 0.07
Aldactone (mg/day)                       19                                                        61.2 49.2                                   59.9 47.1
Long-acting nitrates                      23                                                        53.2 13.2                                   54.1 14.4
Oral furosemide (mg/day)           26                                                      200.9 120.4                                78.3 41.3*
IV furosemide (mg/month)         26                                                      164.7 178.9                                  19.8 47.0*
*p  0.05 at least vs. before by paired Student’s t test.
^  +/-

The mean doses of the medications are shown in Table 4. 

The mean dose of oral furosemide was 200.9 +/-  120.4 mg/day before and 78.3 +/-  41.3 mg/day after the intervention (p   0.05). The dose of IV furosemide was 164.7 +/-  19.8,  178.9 mg/month before and  7.0 mg/month after the intervention (p  0.05).  

The doses of the other CHF medications were almost identical in the two periods.

Clinical results.

DEATHS.
There were three deaths during the intervention period. An 83-year-old man died after eight months of respiratory failure after many years of COPD, a 65-year-old man at eight months of a CVA with subsequent pneumonia and septic shock and a 70-year-old man at four months of septicemia related to an empyema that developed after aortic valve replacement.
HEMODIALYSIS.
Three patients, a 76-year-old man, an 85-year-old woman and a 72-year-old man, required chronic hemodialysis after six, 16 and 18 months, respectively. The serum creatinines of these three patients at onset of the anemia treatment were 4.2, 3.5 and 3.6 mg%, respectively. All three had improvement in their NYHA status but
  • their uremia worsened as the renal function deteriorated, demanding the initiation of dialysis.

In no cases, however, was pulmonary congestion an indication for starting dialysis.

Functional results (Table 5).

During the treatment period, the NYHA class fell from a mean of 3.66 +/- 0.47 to 2.66 +/- 0.70 (p 0.05), and
  • 24 had some improvement in their functional class.
The mean LVEF increased from 27.7 +/- 4.8 to 35.4  +/- 7.6% (p 0.001), an increase of 27.8%.
Compared with a similar period of time before the onset of the anemia treatment, the mean number of hospitalizations fell from 2.72 +/-  1.21 to 0.22 +/-  0.65 per patient (p   0.05)a decrease of 91.9%.
No significant changes were found in the mean systolic/diastolic blood pressure.

Hematological results (Table 5).

  • The mean hematocrit (Hct) increased from 30.14 +/- 3.12%) to 35.9  +/- 4.22% (p < 0.001).
  • The mean Hb increased from 10.16 +/- 0.95 g%) to 12.10 +/-  1.21 g% (p <  0.001).
  • The mean serum ferritin increased from 177.07 +/-  113.80  g/liter to 346.73 +/- 207.40 g/liter (p  0.005).
  • The mean serum Fe increased from 60.4 +/- 19.0 g% to 74 +/- .80  20.7 g% (p  0.005). 
  • The mean %Fe Sat increased from 20.05   6.04% to 26.14 =/- 5.23% (p  0.005).
  • The mean dose of EPO used throughout the treatment period was 5,227  +/- 455 IU per week, and
  • the mean dose of IV Fe used was 185.1 +/- 57.1 mg per month.
In four of the patients, the target Hb of 12 g% was maintained despite stopping the EPO for at least four months.

Renal results (Table 5).

The changes in serum creatinine were not significant. The estimated creatinine clearance fell at a rate of 0.95 + 1.31 ml/min/month before the onset of treatment of the anemia and increased at a rate of 0.85 + 2.77 ml/min/month during the treatment period.
Table 5. The Hematological and Clinical Data of the 26 CHF Patients at Onset and at the End of the Intervention Period

————–                                         Initial ^                                    Final^
Hematocrit, vol%                              30.14 3.12                            35.90 4.22*
Hemoglobin, g%                                10.16 0.95                              2.10 1.21*
Serum ferritin, g/liter                    177.07 113.80                       346.73  207.40*
Serum iron, g%                                  60.4 19.0                               74.8  20.7*
% iron saturation                              20.5 6.04                               26.14 5.23*
Serum creatinine, mg%                   2.59 0.77                                 2.73 1.55
LVEF, %                                              27.7 4.8                                   35.4  7.6*
No. hospitalizations/patient          2.72 1.21                                 0.22   0.65*
Systolic BP, mm Hg                       127.1 19.4                                128.9  26.4
Diastolic BP, mm Hg                       73.9 9.9                                   74.0   12.7
NYHA (0–4)                                     3.66 0.47                                2.66 0.70*
*p  0.05 at least vs before by paired Student’s t test.     ^ +/-
BP  blood pressure; LVEF  left ventricular ejection fraction; NYHA  New York Heart Association.

DISCUSSION

The main findings in the present study are that anemia is common in CHF patients and becomes progressively more prevalent and severe as CHF progresses. In addition, for patients with resistant CHF, the treatment of the associated anemia causes a marked improvement in their

  1. functional status,
  2. ejection fraction and
  3. GFR.
        • All these changes were associated with a markedly
            • reduced need for hospitalization and
            • for oral and IV furosemide.

The effect of anemia on the ischemic myocardium.

We used the IV Fe together with EPO to avoid the Fe deficiency caused by the use of EPO alone (38,39).
The Fe deficiency will cause

  • a resistance to EPO therapy and
  • increase the need for higher and higher doses to maintain the Hb level (39,40).

These high doses will not only be expensive but may increase the blood pressure excessively (41). The IV Fe reduces the dose of EPO needed to correct the anemia, because

  • the combination of SC EPO and IV Fe has been shown to have an additive effect on correction of the anemia of CRF (21,22,39,42).

Oral Fe, however, has no such additive effect (39,42). The relatively low dose of EPO needed to control the anemia in our study may explain why

  • the blood pressure did not increase significantly in any patient.

We used Venofer, an Fe sucrose product, as our IV Fe supplement because, in our experience (21,22,43), it has very few side effects and, indeed, no side effects with its use were encountered in this study.

The Effect of Anemia Correction on Renal Function.

Congestive heart failure is often associated with some degree of CRF (1–3,27–29), and

  • this is most likely due to renal vasoconstriction and ischemia (28,29).

When the anemia is treated and the cardiac function improves,

  • an increase in renal blood flow and glomerular filtration is seen (7,28).

In the present study, renal function decreased as the CHF functional class worsened (Table 2). The rate of deterioration of renal function was slower during the intervention period. Treatment of anemia in CRF has been associated with

  • a rate of progression of the CRF that is either unchanged (30) or is slowed (31–33).

It is possible, therefore, that adequate treatment of the anemia in CHF may, in the long term, help slow down the progression of CRF.

Possible Adverse Effects of Correction of the Anemia.

There has been concern, in view of the recent Amgen study (34), that correction of the Hct to a mean 42% in hemodialysis patients might increase cardiovascular events in those receiving EPO compared with those maintained at a Hct of 30%. Although there is much uncertainty about how to interpret this study (35), there is a substantial body of evidence that shows

  • correction of the anemia up to a Hb of 12 g% (Hct 36%) in CRF on dialysis is safe and desirable (35–38), and
  • results in a reduction in mortality, morbidity and in the number and length of hospitalizations.

The same likely holds true for the anemia of CHF with or without associated CRF. Certainly, our patients’ symptoms were strikingly improved, as was their cardiac function (LVEF) and need for hospitalization and diuretics. It remains to be established

  • if correction of the anemia up to a normal Hb level of 14 g% might be necessary in order to further improve the patient’s clinical state.

The Role of Fe Deficiency and its Treatment in the Anemia of CHF.

We used the IV Fe together with EPO to avoid the Fe deficiency caused by the use of EPO alone (38,39). The Fe deficiency will cause

  • a resistance to EPO therapy and increase the need for higher and higher doses to maintain the Hb level (39,40).

These high doses will not only be expensive but may

  • increase the blood pressure excessively (41).

The IV Fe reduces the dose of EPO needed to correct the anemia, because the combination of SC EPO and IV Fe has been shown to have an additive effect on correction of the anemia of CRF (21,22,39,42). Oral Fe,  however, has no such additive effect (39,42). The relatively low dose of EPO needed to control the anemia in our study may explain

  • why the blood pressure did not increase significantly in any patient.

We used Venofer, an Fe sucrose product, as our IV Fe supplement because, in our experience (21,22,43), it has very few side effects and, indeed, no side effects with its use were encountered in this study.

Read Full Post »

Cardiology, Genomics and Individualized Heart Care: Framingham Heart Study (65 y-o study) & Jackson Heart Study (15 y-o study)


Cardiology, Genomics and Individualized Heart Care

Curator: Aviva Lev-Ari, PhD, RN

The topic of Cardiology, Genomics and Individualized Heart Care is been developed in the following forthcoming e-Book on a related subject matter:

Curators: Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

This e-Book has the following Parts:

PART 1
Genomics and Medicine

Introduction to Volume Three
1.1: Genomics and Medicine: The Physician’s View
1.2: Ribozymes and RNA Machines – Work of Jennifer A. Doudn
1.3: Genomics and Medicine: The Geneticist’s View
1.4: Genomics in Medicine – Establishing a Patient-Centric View of Genomic Data

PART 2
Epigenetics- Modifiable Factors Causing Cardiovascular Diseases

2.1 Diseases Etiology

2.1.1 Environmental Contributors Implicated as Causing Cardiovascular Diseases
2.1.2 Diet: Solids and Fluid Intake
2.1.3 Physical Activity and Prevention of Cardiovascular Diseases
2.1.4 Psychological Stress and Mental Health: Risk for Cardiovascular Diseases
2.1.5 Correlation between Cancer and Cardiovascular Diseases
2.1.6 Medical Etiologies for Cardiovascular Diseases: Evidence-based Medicine – Leading DIAGNOSES of Cardiovascular Diseases, Risk Biomarkers and Therapies
2.1.7 Signaling Pathways
2.1.8 Proteomics and Metabolomics

2.2 Assessing Cardiovascular Disease with Biomarkers

2.2.1 Issues in Genomics of Cardiovascular Diseases
2.2.2 Endothelium, Angiogenesis, and Disordered Coagulation
2.2.3 Hypertension BioMarkers
2.2.4 Inflammatory, Atherosclerotic and Heart Failure Markers
2.2.5 Myocardial Markers

2.3  Therapeutic Implications: Focus on Ca(2+) signaling, platelets, endothelium

2.3.1 The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors

2.3.2 Platelets in Translational Research ­ 2

2.3.3 The Final Considerations of the Role of Platelets and Platelet Endothelial Reactions in Atherosclerosis

2.3.4 Nitric Oxide Synthase Inhibitors (NOS-I)

2.3.5 Resistance to Receptor of Tyrosine Kinase

2.3.6 Oxidized Calcium Calmodulin Kinase and Atrial Fibrillation

2.3.7 Advanced Topics in Sepsis and the Cardiovascular System at its End Stage

2.4 Comorbidity of Diabetes and Aging

PART 3
Determinants of Cardiovascular Diseases
Genetics, Heredity and Genomics Discoveries

Introduction
3.1 Why cancer cells contain abnormal numbers of chromosomes (Aneuploidy)
3.2 Functional Characterization of Cardiovascular Genomics: Disease Case Studies @ 2013 ASHG
3.3 Leading DIAGNOSES of Cardiovascular Diseases covered in Circulation: Cardiovascular Genetics, 3/2010 – 3/2013
3.4  Commentary on Biomarkers for Genetics and Genomics of Cardiovascular Disease

PART 4
Individualized Medicine Guided by Genetics and Genomics Discoveries

4.1 Preventive Medicine: Cardiovascular Diseases
4.2 Gene-Therapy for Cardiovascular Diseases
4.3 Congenital Heart Disease/Defects
4.4 Pharmacogenomics for Cardiovascular Diseases

SOURCE

https://pharmaceuticalintelligence.com/biomed-e-books/series-a-e-books-on-cardiovascular-diseases/volume-three-etiologies-of-cardiovascular-diseases-epigenetics-genetics-genomics/

The Next Frontier in Heart Care

Research Aims to Personalize Treatment With Genetics

Nov. 25, 2013 7:18 p.m. ET

VIEW VIDEO

http://online.wsj.com/news/articles/SB10001424052702304281004579220373600912930#!

Two influential heart studies are joining forces to bring the power of genetics and other 21st century tools to battle against heart disease and stroke. Ron Winslow and study co-director Dr. Vasan Ramachandran explain. Photo: Shubhangi Ganeshrao Kene/Corbis.

Scientists from two landmark heart-disease studies are joining forces to wield the power of genetics in battling the leading cause of death in the U.S.

Cardiologists have struggled in recent years to score major advances against heart disease and stroke. Although death rates have been dropping steadily since the 1960s, progress combating the twin diseases has plateaued by other measures.

Genetics has had a profound impact on cancer treatment in recent years. Now, heart-disease specialists hope genetics will reveal fresh insight into the interaction between a

  • person’s biology,
  • living habits and
  • medications

that can better predict who is at risk of a heart attack or stroke.

“There’s a promise of new treatments with this research,” said Daniel Jones, chancellor of the University of Mississippi and former principal investigator of the 15-year-old Jackson Heart Study, a co-collaborator in the new genetics initiative.

Scienc e Source /Photo Researchers Inc. (hearts); below, l-r: Boston University; Robert Jordan/Univ. of Miss.; Jay Ferchaud/Univ. of Miss Medical Center

Prevention efforts also could improve with the help of genetics research, Dr. Jones said. For example, an estimated 75 million Americans currently have high blood pressure, or hypertension, but only about half of those are able to control it with medication. It can take months of trial-and-error for a doctor to get the right dose or combination of pills for a patient. Researchers hope genetic and other information might enable doctors to identify subgroups of hypertension that respond to specific treatments and target patients with an appropriate therapy.

Also collaborating on the genetics project is the 65-year-old Framingham Heart Study. Its breakthrough findings decades ago linked heart disease to such factors as smoking, high blood pressure and high cholesterol. Framingham findings have been a foundation of cardiovascular disease prevention policy for a half-century.

More than 15,000 people have participated in the Framingham study. The Jackson study, with more than 5,000 participants, was launched in 1998 to better understand risk factors in African-Americans, who were underrepresented in Framingham and who bear a higher burden of cardiovascular disease than the rest of the population. Both studies are funded by the National Heart, Lung, and Blood Institute, part of the National Institutes of Health.

Exactly how the collaboration, announced last week, will proceed hasn’t been determined. One promising area is the “biobank,” the collection of more than one million blood and other biological samples gathered during biennial checkups of Framingham study participants going back more than a half century.

The samples are stored in freezers in an underground earthquake-proof facility in Massachusetts, said Vasan Ramachandran, a Boston University scientist who takes over at the beginning of next year as principal investigator of the Framingham Heart Study. Another 40,000 samples from the Jackson study are kept in freezers in Vermont. By subjecting samples to DNA sequencing and other tests, researchers say they may be able to identify variations linked to progression of cardiovascular disease—or protection from it.

Each study is likely to enroll new participants as part of the collaboration to allow tracking of risk factors and diet and exercise habits, for instance, in real time instead of only during infrequent checkups.

Heart disease is linked to about 800,000 deaths a year in the U.S. In 2010, some 200,000 of those deaths could have been avoided, including more than 112,300 deaths among people younger than 65, according to a recent analysis by the Centers for Disease Control and Prevention. But those avoidable deaths reflected a 3.8% per year decline in mortality rates during the previous 10 years.

Now, widespread prevalence of obesity and diabetes threatens to undermine such gains. And a large gap remains between how white patients and minorities—especially African-Americans—benefit from effective strategies.

There have been few new transformative cardiovascular treatments since the mid-1980s to early 1990s, when a stream of large-scale trials of new agents ranging from clot-busters to treat heart attacks to the mega class of statins electrified the cardiology field with evidence of significant improvements in survival from the disease. One reason: Some of those remedies have proven tough to beat with new treatments.

What’s more, use of the current menu of medicines for reducing heart risk remains an imprecise art. Besides

  • blood pressure drugs,
  • cholesterol-lowering statins

also are widely prescribed. Drug-trial statistics show that to prevent a single first heart attack in otherwise healthy patients can require prescribing a statin to scores of patients, but no one knows for sure who actually benefits and who doesn’t.

“It would be great if we could make some more paradigm-shifting discoveries,” said Michael Lauer, director of cardiovascular sciences at the NHLBI, which is a part of the National Institutes of Health.

Finding new treatments isn’t the only aim of the new project. “You could use existing therapies smarter,” said Joseph Loscalzo, chairman of medicine at Brigham and Women’s Hospital in Boston.

The American Heart Association launched the initiative and has committed $30 million to it over the next five years. The AHA sees the project as critical to its goal to achieve a 20% improvement in cardiovascular health in the U.S. while also reducing deaths from heart disease and stroke by 20% for the decade ending in 2020, said Nancy Brown, the nonprofit organization’s chief executive.

The Jackson study has already identified characteristics of cardiovascular risk among African-American patients “that may have promise for new insights” in a collaborative effort, said Adolfo Correa, professor of medicine and pediatrics at University of Mississippi Medical Center and interim director of the Jackson study.

For instance, there is a higher prevalence of obesity among Jackson participants than seen in the Framingham cohorts. Obesity is associated with high blood pressure, diabetes and cardiovascular risk. Diabetes is also more prevalent among blacks than whites.

But African-Americans of normal weight appear to have higher rates of hypertension and diabetes than whites of normal weight. “The question is, should [measures] for defining diabetes be different or the same for the [different] populations and are they associated with the same risk of cardiovascular disease?” said Dr. Correa. The collaboration, he said, may provide better comparisons.

Researchers, who plan to use tools other than genetics, think more might be learned about blood pressure and heart and stroke risk by monitoring patients in real time using mobile devices rather than taking readings only in periodic office visits. For example, high blood pressure during sleep or spikes during exercise could indicate risks that don’t show up in a routine measurement in the doctors’ office.

A big challenge is making sense of the huge amounts of data involved in sequencing DNA and linking it to

  • medical records,
  • diet and
  • exercise habits and other variables that influence risk.

“The analytical methods for sorting out these complex relationships are still in evolution,” said Dr. Loscalzo, of Brigham and Women’s Hospital. “The cost of sequencing is getting cheaper and cheaper. The hard part is analyzing the data.”

Write to Ron Winslow at ron.winslow@wsj.com

SOURCE

http://online.wsj.com/news/articles/SB10001424052702304281004579220373600912930#!

The e-Reader is advised to to review tightly related articles in

https://pharmaceuticalintelligence.com/biomed-e-books/series-a-e-books-on-cardiovascular-diseases/volume-three-etiologies-of-cardiovascular-diseases-epigenetics-genetics-genomics/

Read Full Post »


FDA Issues Warning on Regadenoson, Adenosine

Reporter: Aviva Lev-Ari, PhD, RN

Safety Announcement

[11-20-2013]  The U.S. Food and Drug Administration (FDA) is warning health care professionals of the rare but serious risk of heart attack and death with use of the cardiac nuclear stress test agents Lexiscan (regadenoson) and Adenoscan (adenosine).  We have approved changes to the drug labels to reflect these serious events and updated our recommendations for use of these agents.  Health care professionals should avoid using these drugs in patients with signs or symptoms of unstable angina or cardiovascular instability, as these patients may be at greater risk for serious cardiovascular adverse reactions.

Lexiscan and Adenoscan are FDA approved for use during cardiac nuclear stress tests in patients who cannot exercise adequately. Lexiscan and Adenoscan help identify coronary artery disease. They do this by dilating the arteries of the heart and increasing blood flow to help identify blocks or obstructions in the heart’s arteries. Lexiscan and Adenoscan cause blood to flow preferentially to the healthier, unblocked or unobstructed arteries, which can reduce blood flow in the obstructed artery. In some cases, this reduced blood flow can lead to a heart attack, which can be fatal.

The Warnings & Precautions section of the Lexiscan and Adenoscan labels previously contained information about the possible risk of heart attack and death with use of these drugs.  However, recent reports of serious adverse events in the FDA Adverse Event Reporting System (FAERS) database and the medical literature1,2 (see Data Summary) prompted us to approve changes to the drug labels to include updated recommendations for use.  Some events occurred in patients with signs or symptoms of acute myocardial ischemia, such as unstable angina or cardiovascular instability.  Cardiac resuscitation equipment and trained staff should be available before administering Lexiscan or Adenoscan.  At this time, data limitations prevent us from determining if there is a difference in risk of heart attack or death between Lexiscan and Adenoscan.

We recommend that health care professionals and their patients discuss any questions or concerns.

 

 

Contact FDA

1-800-332-1088
1-800-FDA-0178 Fax
Report a Serious Problem

MedWatch Online

Regular Mail: Use postage-paid FDA Form 3500

Mail to: MedWatch 5600 Fishers Lane

Rockville, MD 20857

SOURCE

DisclosuresNovember 20, 2013

Clinicians should avoid using the imaging agents regadenoson (Lexiscan, Astellas Pharma US) and adenosine (Adenoscan, Astellas Pharma US) for cardiac nuclear stress tests of patients with signs or symptoms of unstable angina or cardiovascular instability because the drugs may increase their risk for a fatal heart attack, the US Food and Drug Administration (FDA) announced today.

The recommendation will appear on updated labels for both drugs.

The agency approved adenosine in 1995 and regadenoson in 2008 for radionuclide myocardial perfusion imaging in patients who cannot undergo exercise stress testing. Both agents dilate coronary arteries and increase blood flow to help spot blockages.

The FDA placed regadenoson on its quarterly list of drugs to monitor in September after it received reports possibly linking the drug to myocardial infarctions (MI) and death during the second quarter of 2013 through its FDA Adverse Event Reporting System (FAERS) database. The labels for both regadenoson and adenosine had previously warned of the risk for MI.

An FDA review of the FAERS database found 26 MI cases and 29 deaths that occurred after the administration of regadenoson since its approval. Six MI cases and 27 deaths turned up for adenosine following that drug’s debut.

The most common adverse events associated in fatal cases of regadenoson use included cardiac arrest, MI, loss of consciousness, and respiratory arrest. For adenosine, common adverse events linked to death were cardiorespiratory arrest, dyspnea, cardiac arrest, respiratory arrest, and ventricular tachycardia.

“At this time, data limitations prevent us from determining if there is a difference in risk of heart attack or death between Lexiscan and Adenoscan,” the FDA stated in a news release.

The agency advised clinicians to do the following:

  • Screen all candidates for nuclear stress tests to determine their cardiovascular fitness for the 2 drugs.
  • Ensure that cardiac resuscitation equipment and trained staff are available before administering adenosine or regadenoson.
  • Consider 2 other nuclear stress test agents — intravenous dipyridamole, which is FDA-approved for this use, and dobutamine, which is not FDA-approved.

More information on today’s announcement is available on the FDA Web site.

To report problems with regadenoson or adenosine, contact MedWatch, the FDA’s safety information and adverse event reporting program, by telephone at 1-800-FDA-1088; by fax at 1-800-FDA-0178; online athttps://www.accessdata.fda.gov/scripts/medwatch/medwatch-online.htm; with postage-paid FDA form 3500, available at http://www.fda.gov/MedWatch/getforms.htm; or by mail to MedWatch, 5600 Fishers Lane, Rockville, Maryland 20852-9787.

SOURCE

http://www.medscape.com/viewarticle/814727?nlid=39483_1984&src=wnl_edit_medn_card&uac=93761AJ&spon=2

 

Read Full Post »

Older Posts »