Peptides and anti-Cancer activity
Larry H. Bernstein, MD, FCAP, Curator
LPBI
PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties
http://www.cell.com/cms/attachment/2035808117/2051293431/gr1.jpgFigure 1
Schematic representation of membrane disruption by peptides and the experimental system. The helical peptide Polybia-MP1 is shown according to the helical wheel projections. Amino acids: (blue) polar with positive net charge; (purple) polar with negative net charge; (red) polar noncharged; and (green) nonpolar. Confocal microscopy was performed to investigate the influx of three dyes with distinct sizes in GUVs in the presence and absence of PE lipids: 0.37 kDa CF (green), 3k-CB (blue), 10k-AF647 (magenta), and the scale bars correspond to 10 μm. Lipid membranes are labeled with Rh-DOPE (red). The peptide interacts with the GUVs, disturbs their structure, and then enables the passage of fluorescent dyes by formation of pore-like structures. To see this figure in color, go online.
http://www.cell.com/cms/attachment/2035808117/2051293432/gr2.jpg
Figure 2
Binding isoterms show that MP1 has a higher affinity for PS-containing membranes. The binding isoterms and the partition coefficients (Kp) obtained using CD by lipid titration at 10 μM MP1 solution. LUVs are composed of (a) PC, (b) PC/PE, (c) PC/PS, and (d) PC/PE/PS.

http://www.cell.com/cms/attachment/2035808117/2051293428/gr4.jpg
Figure 4
Fluorescence requenching assays for MP1 reveal all-or-none leakage in the four lipid compositions studied. Qin is constant as a function of fout for MP1, which is in agreement with the all-or-none mechanism of dye release.) (Lines) Theoretical curves for ideal graded and all-or-none dye release (18). To see this figure in color, go online.

http://www.cell.com/cms/attachment/2035808117/2051293430/gr6.jpg
Figure 6
PE lipids facilitate much greater membrane permeability in GUV membranes. (a) Typical log-linear plot of time-dependent dye influx: −R/3ln(1−c) (10−5) versus time, for the three dyes in a single GUV of PC/PS. (b) Distributions of the obtained permeabilities in single GUVs composed of PC/PS. (c) Typical log-linear plot of time-dependent dye influx: −R/3ln(1−c) (10−5) versus time, for the three dyes in a single GUV of PC/PE/PS. (d) Distributions of the obtained permeabilities in single GUVs composed of PC/PE/PS. The permeabilities are obtained from the slopes of the log-linear plots of the time-dependent influx of dyes into single GUVs. To see this figure in color, go online.
Discussion
Introduction
Materials and Methods
Materials
Peptide synthesis and purification
Mass spectrometry analysis
GUV formation
LUV preparation
CD spectroscopy for binding isotherms
Confocal microscopy
Analysis of confocal images and movies
ANTS/DPX requenching measurements
AFM
Phase contrast microscopy
Results
PS lipids significantly enhance peptide binding to the membrane
MP1 dose-response studies reveal that PE and PS lipids enhance membrane permeability at lower peptide concentrations
Confirmation of the pore-formation hypothesis in lipid vesicles
Synergistic enhancement of GUV leakage kinetics by PE and PS lipids
PE lipids significantly enhance pore size and membrane permeability
Direct imaging of peptide-induced pores by AFM
Discussion
Biophysical implications for MP1-lipid membrane interactions
Implications for the chemotherapeutic potential of MP1 peptides
Author Contributions
Supporting Material
References
Biophysical implications for MP1-lipid membrane interactions
We have shown a synergistic enhancement of the rate and extent of membrane permeabilization by MP1 peptides when PE and PS lipids are present in the lipid membrane. This picture is confirmed and corroborated by complementary experiments using three different model membrane systems: LUVs, GUVs, and planar-supported bilayers. We consider the perturbation of the membrane by MP1 peptides in two steps: 1) binding of the peptides to the membrane, and 2) perturbation of the bilayer structure by bound peptides to induce leakage.
Binding isotherms (Fig. 2) reveal that PS lipids cause a 7–8-fold increase in peptide bound to the membrane. This strongly outweighs the small ∼10% reduction in bound peptide concentration caused by the PE lipids. Therefore, we find that the dominant role of PS lipids’ contribution to the membrane disruption by MP1 is a large increase in peptide binding to the membrane.
The role of PE lipids in MP1-induced membrane disruption is twofold: 1) PE increases the susceptibility of the membrane to permeabilization by bound peptides, and 2) PE facilitates the formation of larger transmembrane pores. First, when the extent of GUV leakage is normalized to bound peptide concentration in the dose-response curves in Fig. 3, c and d, it can be seen that 4–5 times lower bound peptide concentration is required to induce a similar leakage response compared to comparable GUVs without PE lipids. Second, GUV and AFM experiments corroborate the effect of larger pores forming in the presence of PE. Quantitative analysis of GUV leakage profiles in Fig. 6 andTable 2 reveal that the presence of PE increases the permeability of membranes by an order of magnitude compared to membranes lacking in PE. Furthermore, once pores formed in GUVs, they quickly (within seconds) grew large enough in size to allow larger macromolecules (3 and 10 kDa) to permeate the membrane (Table 1); this compared to several tens of seconds for larger pores to form in GUVs lacking PE. Crucially, the formation of larger pores for PE-containing membranes is directly visualized by AFM (Fig. 8), where the observed pore diameters are ∼5 times larger in the presence of PE (and hence ∼20–30 times larger in average pore area, consistent with the order-of-magnitude increase in permeability reported for the GUVs).
The formation of transmembrane pores was confirmed by complementary experimental systems and techniques. Rapid translocation of membrane-impermeable leakage markers across GUV membranes, an all-or-none LUV fluorescence leakage assay, and direct visualization of transmembrane defects by AFM imaging of planar bilayers, all confirm this to be true. While these pores are fairly long lived, the membranes were sometimes observed to temporarily reseal, regaining their barrier properties. This can clearly be seen in the leakage profiles of individual GUVs in Figs. 5a, S4, and S5. GUV and planar bilayer imaging experiments also strongly suggest differences in the mechanism of pore formation depending on whether PE lipids are present. Images of GUVs that did not contain PE lipids often exhibited bright spots of increased local lipid concentrations on the membrane, which we interpret to be local aggregation of peptides and lipid (Fig. 7). Similarly, AFM images showed locally raised regions of lipid scattered across the membrane for these lipid compositions (Fig. S9) before the formation of pores (Fig. S10). This contrasted to the pore-formation mechanism observed in the presence of PE, where local aggregates were not directly observed on the GUV surface and time-resolved AFM imaging showed pore growth to occur by the stepwise micellization and loss of lipid from the edge of the pores (Fig. S8).
Besides the increased binding due to PS and the increased membrane susceptibility and pore size due to PE, the synergistic enhancement of membrane disruption facilitated by these lipids can be observed in the kinetics of initial permeabilization events. GUV experiments showed that PC/PE/PS GUVs leaked a factor-of-two quicker than other membrane compositions (Table 1). This is again corroborated by the AFM studies where defects were observed in PC/PE/PS membranes almost immediately after peptide addition, whereas perturbations of other membrane compositions took a few 10 s of minutes to evolve. The complementary pore-promoting effects of PS on bound peptide concentrations and PE on membrane susceptibility far outweigh their slight inhibitory effects on each other’s roles (PE causes a slight reduction in binding affinity (Fig. 2) and PS causes a decrease in the membrane susceptibility to bound peptide (Fig. 3, c and d)). This is apparent from the effects of MP1 on GUVs, where PC/PE/PS membranes experience the greatest membrane perturbation for any given total peptide concentration (Fig. 3, a and b) and the larger number of pores observed on the membrane surface by AFM (Fig. 8). Therefore, our combined results provide a detailed mechanistic picture of the importance of increased PS and PE lipid concentrations in synergistically enhancing the membrane’s propensity for significant disruption of its barrier properties by MP1 peptides.
Variations in lipid composition are responsible for differences in membrane properties such as charge, fluidity, lateral pressure profiles, and mechanical moduli. Changes in these fundamental membrane properties directly affect their interactions with extraneous compounds, such as antimicrobial peptides. The cationic nature of the MP1 peptide is likely an important component in the initial step of peptide action, in which the peptide recognizes the target membrane due to electrostatic interactions and binds to it in a structured form, most of the time as a helix. Therefore, the inclusion of anionic PS lipids in these membranes increases these electrostatic interactions with the MP1 peptide (net charge = +2e). However, MP1-membrane interactions cannot be solely driven by electrostatics as these peptides were also found to disrupt zwitterionic PC and PC/PE membranes, likely through secondary hydrophobic initial binding interactions that lead to a significantly lower bound concentration of peptide compared to the anionic membranes.
Next, insertion of the peptide into the bilayer likely takes place due to the hydrophobic effect, where nonpolar MP1 residues insert into the bilayer core, and defects may then be opened within the membrane structure, leading to its disruption. Furthermore, taking account of the fact that MP1 is a short peptide (14 amino acids) and hence not long enough to form a bilayer-spanning barrel stave pore (9, 32), we anticipate that these pores will be disorganized toroidal structures formed by lipids and peptides, as described by many molecular-dynamics studies (33, 34). PE is known to significantly modulate the lateral pressure profile through membranes and thereby induce negative curvature stress in the bilayer. Negative curvature stress has been shown to enhance the formation of toroidal lipid pores within a membrane by stabilizing the curvature of these structures (35). Therefore, PE would be expected to favor the formation of pore-like defects in the membrane, consistent with the increase susceptibility of these membranes to MP1-induced poration and the order-of-magnitude increase in membrane permeability that we find for PE-containing membranes upon interaction with MP1 peptides.
Introduction
Materials and Methods
Materials
Peptide synthesis and purification
Mass spectrometry analysis
GUV formation
LUV preparation
CD spectroscopy for binding isotherms
Confocal microscopy
Analysis of confocal images and movies
ANTS/DPX requenching measurements
AFM
Phase contrast microscopy
Results
PS lipids significantly enhance peptide binding to the membrane
MP1 dose-response studies reveal that PE and PS lipids enhance membrane permeability at lower peptide concentrations
Confirmation of the pore-formation hypothesis in lipid vesicles
Synergistic enhancement of GUV leakage kinetics by PE and PS lipids
PE lipids significantly enhance pore size and membrane permeability
Direct imaging of peptide-induced pores by AFM
Discussion
Biophysical implications for MP1-lipid membrane interactions
Implications for the chemotherapeutic potential of MP1 peptides
Author Contributions
Supporting Material
References
Implications for the chemotherapeutic potential of MP1 peptides
The MP1 peptide has been shown to have selective inhibition against numerous cancer lines compared to healthy cells (2, 3). Such malignant cells are also known to have increased expression of PS and PE lipids on their outer plasma membrane (5, 6, 7). This study strongly correlates the enhanced tumor inhibitory effects of these peptides with this pathological change in plasma membrane lipid composition, where the upregulation of PS and PE lipids can synergistically enhance the membrane-permeabilizing activity of MP1. This membrane permeabilization is likely to be the primary mechanism of cancer cell death induced by these peptides.
This suggests that MP1 might be a candidate therapeutic for development of novel cancer therapies, or at least guide the development of novel lead compounds for treatment of these diseases. One challenge for the application of antimicrobial peptides in medicine is that they often do not show high enough selectivity to their target cells to result in a favorable therapeutic index for these compounds (36). However, MP1 does not exhibit hemolytic activity to rat erythrocytes but presents chemotaxis for polymorphonucleated leukocytes and potent antimicrobial action against Gram-positive and Gram-negative bacteria (12), suggesting it could have favorable selectivity. It may also be of interest to test MP1 in a combination therapy with other chemotherapeutics that have intracellular targets. The selectivity of the MP1 peptide to disrupt the membranes of cancer cells may act synergistically with these other drugs to significantly enhance the therapeutic potency. Therefore, the therapeutic potential of this and other membrane-active peptides within the field of oncology is worthy of further investigation.