Feeds:
Posts
Comments

Archive for the ‘Diabetes Mellitus’ Category

Patients with type 2 diabetes may soon receive artificial pancreas and a smartphone app assistance

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

In a brief, randomized crossover investigation, adults with type 2 diabetes and end-stage renal disease who needed dialysis benefited from an artificial pancreas. Tests conducted by the University of Cambridge and Inselspital, University Hospital of Bern, Switzerland, reveal that now the device can help patients safely and effectively monitor their blood sugar levels and reduce the risk of low blood sugar levels.

Diabetes is the most prevalent cause of kidney failure, accounting for just under one-third (30%) of all cases. As the number of people living with type 2 diabetes rises, so does the number of people who require dialysis or a kidney transplant. Kidney failure raises the risk of hypoglycemia and hyperglycemia, or unusually low or high blood sugar levels, which can lead to problems ranging from dizziness to falls and even coma.

Diabetes management in adults with renal failure is difficult for both the patients and the healthcare practitioners. Many components of their therapy, including blood sugar level targets and medications, are poorly understood. Because most oral diabetes drugs are not indicated for these patients, insulin injections are the most often utilized diabetic therapy-yet establishing optimum insulin dose regimes is difficult.

A team from the University of Cambridge and Cambridge University Hospitals NHS Foundation Trust earlier developed an artificial pancreas with the goal of replacing insulin injections for type 1 diabetic patients. The team, collaborating with experts at Bern University Hospital and the University of Bern in Switzerland, demonstrated that the device may be used to help patients with type 2 diabetes and renal failure in a study published on 4 August 2021 in Nature Medicine.

The study’s lead author, Dr Charlotte Boughton of the Wellcome Trust-MRC Institute of Metabolic Science at the University of Cambridge, stated:

Patients living with type 2 diabetes and kidney failure are a particularly vulnerable group and managing their condition-trying to prevent potentially dangerous highs or lows of blood sugar levels – can be a challenge. There’s a real unmet need for new approaches to help them manage their condition safely and effectively.

The Device

The artificial pancreas is a compact, portable medical device that uses digital technology to automate insulin delivery to perform the role of a healthy pancreas in managing blood glucose levels. The system is worn on the outside of the body and consists of three functional components:

  • a glucose sensor
  • a computer algorithm for calculating the insulin dose
  • an insulin pump

The artificial pancreas directed insulin delivery on a Dana Diabecare RS pump using a Dexcom G6 transmitter linked to the Cambridge adaptive model predictive control algorithm, automatically administering faster-acting insulin aspart (Fiasp). The CamDiab CamAPS HX closed-loop app on an unlocked Android phone was used to manage the closed loop system, with a goal glucose of 126 mg/dL. The program calculated an insulin infusion rate based on the data from the G6 sensor every 8 to 12 minutes, which was then wirelessly routed to the insulin pump, with data automatically uploaded to the Diasend/Glooko data management platform.

The Case Study

Between October 2019 and November 2020, the team recruited 26 dialysis patients. Thirteen patients were randomly assigned to get the artificial pancreas first, followed by 13 patients who received normal insulin therapy initially. The researchers compared how long patients spent as outpatients in the target blood sugar range (5.6 to 10.0mmol/L) throughout a 20-day period.

Patients who used the artificial pancreas spent 53 % in the target range on average, compared to 38% who utilized the control treatment. When compared to the control therapy, this translated to approximately 3.5 more hours per day spent in the target range.

The artificial pancreas resulted in reduced mean blood sugar levels (10.1 vs. 11.6 mmol/L). The artificial pancreas cut the amount of time patients spent with potentially dangerously low blood sugar levels, known as ‘hypos.’

The artificial pancreas’ efficacy improved significantly over the research period as the algorithm evolved, and the time spent in the target blood sugar range climbed from 36% on day one to over 60% by the twentieth day. This conclusion emphasizes the need of employing an adaptive algorithm that can adapt to an individual’s fluctuating insulin requirements over time.

When asked if they would recommend the artificial pancreas to others, everyone who responded indicated they would. Nine out of ten (92%) said they spent less time controlling their diabetes with the artificial pancreas than they did during the control period, and a comparable amount (87%) said they were less concerned about their blood sugar levels when using it.

Other advantages of the artificial pancreas mentioned by study participants included fewer finger-prick blood sugar tests, less time spent managing their diabetes, resulting in more personal time and independence, and increased peace of mind and reassurance. One disadvantage was the pain of wearing the insulin pump and carrying the smartphone.

Professor Roman Hovorka, a senior author from the Wellcome Trust-MRC Institute of Metabolic Science, mentioned:

Not only did the artificial pancreas increase the amount of time patients spent within the target range for the blood sugar levels, but it also gave the users peace of mind. They were able to spend less time having to focus on managing their condition and worrying about the blood sugar levels, and more time getting on with their lives.

The team is currently testing the artificial pancreas in outpatient settings in persons with type 2 diabetes who do not require dialysis, as well as in difficult medical scenarios such as perioperative care.

The artificial pancreas has the potential to become a fundamental part of integrated personalized care for people with complicated medical needs,” said Dr Lia Bally, who co-led the study in Bern.

The authors stated that the study’s shortcomings included a small sample size due to “Brexit-related study funding concerns and the COVID-19 epidemic.”

Boughton concluded:

We would like other clinicians to be aware that automated insulin delivery systems may be a safe and effective treatment option for people with type 2 diabetes and kidney failure in the future.

Main Source:

Boughton, C. K., Tripyla, A., Hartnell, S., Daly, A., Herzig, D., Wilinska, M. E., & Hovorka, R. (2021). Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial. Nature Medicine, 1-6.

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Developing Machine Learning Models for Prediction of Onset of Type-2 Diabetes

Reporter: Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/05/29/developing-machine-learning-models-for-prediction-of-onset-of-type-2-diabetes/

Artificial pancreas effectively controls type 1 diabetes in children age 6 and up

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/08/artificial-pancreas-effectively-controls-type-1-diabetes-in-children-age-6-and-up/

Google, Verily’s Uses AI to Screen for Diabetic Retinopathy

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/04/08/49900/

World’s first artificial pancreas

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/05/16/worlds-first-artificial-pancreas/

Artificial Pancreas – Medtronic Receives FDA Approval for World’s First Hybrid Closed Loop System for People with Type 1 Diabetes

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/09/30/artificial-pancreas-medtronic-receives-fda-approval-for-worlds-first-hybrid-closed-loop-system-for-people-with-type-1-diabetes/

Read Full Post »

Artificial pancreas effectively controls type 1 diabetes in children age 6 and up

Reporter: Irina Robu, PhD

A new trial funded by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institute of Health created a clinical trial at four pediatric diabetes centers in the US of a new artificial pancreas system, which monitors and regulates blood glucose levels automatically. The artificial pancreas technology, the Control-IQ system has an insulin pump programmed with advanced control algorithms based on a mathematical model using the person’s glucose monitoring information to automatically adjust the insulin dose, and it was originally developed at University of Virginia (UVA), Charlottesville with funding support from NIDDK.

The artificial pancreas closed-loop control is all in one diabetes management system which monitors and tracks blood glucose levels using a continuous glucose monitor and at the same time delivers the insulin when needed via an insulin pump. The system is not only useful in children age 6 and up, but it also replaces reliance on testing by fingerstick or delivering insulin via injection multiple times a day.

The study contains 101 children between ages of 6 and 13 and the children are assigned either to the control or experimental group. The control group uses a standard injection method and separate insulin pump and the experimental uses the artificial pancreas system. Data was conducted every week for four months, while the participants continue on daily lives.

The results of the study showed that using an artificial pancreas system has a 7% improvement in keeping blood glucose in range during the daytime, and a 26% improvement in nighttime control compared to the control group. However, night time control group is important in people with type 1 diabetes, since unchecked hypoglycemia can lead to seizure, coma or even death. The artificial pancreas system shows about 11 % improvement to the standard method and it shows that the improvement in blood glucose control is impressive and safer for kids. No severe case of hypoglycemia or diabetic ketoacidosis occurred during the study, only some minor issues with the equipment.

After the clinical trial and based on the data received, Tandem Diabetes Care has received clearance from the U.S. FDA for use of the Control-IQ system in children as young as age 6 years.

SOURCE
https://www.nih.gov/news-events/news-releases/artificial-pancreas-effectively-controls-type-1-diabetes-children-age-6

 

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Obesity is a global concern that is associated with many chronic complications such as type 2 diabetes, insulin resistance (IR), cardiovascular diseases, and cancer. Growing evidence has implicated the digestive system, including its microbiota, gut-derived incretin hormones, and gut-associated lymphoid tissue in obesity and IR. During high fat diet (HFD) feeding and obesity, a significant shift occurs in the microbial populations within the gut, known as dysbiosis, which interacts with the intestinal immune system. Similar to other metabolic organs, including visceral adipose tissue (VAT) and liver, altered immune homeostasis has also been observed in the small and large intestines during obesity.

 

A link between the gut microbiota and the intestinal immune system is the immune-derived molecule immunoglobulin A (IgA). IgA is a B cell antibody primarily produced in dimeric form by plasma cells residing in the gut lamina propria (LP). Given the importance of IgA on intestinal–gut microbe immunoregulation, which is directly influenced by dietary changes, scientists hypothesized that IgA may be a key player in the pathogenesis of obesity and IR. Here, in this study it was demonstrate that IgA levels are reduced during obesity and the loss of IgA in mice worsens IR and increases intestinal permeability, microbiota encroachment, and downstream inflammation in metabolic tissues, including inside the VAT.

 

IgA deficiency alters the obese gut microbiota and its metabolic phenotype can be recapitulated into microbiota-depleted mice upon fecal matter transplantation. In addition, the researchers also demonstrated that commonly used therapies for diabetes such as metformin and bariatric surgery can alter cellular and stool IgA levels, respectively. These findings suggested a critical function for IgA in regulating metabolic disease and support the emerging role for intestinal immunity as an important modulator of systemic glucose metabolism.

 

Overall, the researchers demonstrated a critical role for IgA in regulating intestinal homeostasis, metabolic inflammation, and obesity-related IR. These findings identify intestinal IgA+ immune cells as mucosal mediators of whole-body glucose regulation in diet-induced metabolic disease. This research further emphasized the importance of the intestinal adaptive immune system and its interactions with the gut microbiota and innate immune system within the larger network of organs involved in the manifestation of metabolic disease.

 

Future investigation is required to determine the impact of IgA deficiency during obesity in humans and the role of metabolic disease in human populations with selective IgA deficiency, especially since human IgA deficiency is associated with an altered gut microbiota that cannot be fully compensated with IgM. However, the research identified IgA as a critical immunological molecule in the intestine that impacts systemic glucose homeostasis, and treatments targeting IgA-producing immune populations and SIgA may have therapeutic potential for metabolic disease.

 

References:

 

https://www.nature.com/articles/s41467-019-11370-y?elqTrackId=dc86e0c60f574542b033227afd0fdc8e

 

https://www.jci.org/articles/view/88879

 

https://www.nature.com/articles/nm.2353

 

https://diabetes.diabetesjournals.org/content/57/6/1470

 

https://www.sciencedirect.com/science/article/pii/S1550413115001047?via%3Dihub

 

https://www.sciencedirect.com/science/article/pii/S1550413115002326?via%3Dihub

 

https://www.sciencedirect.com/science/article/pii/S1931312814004636?via%3Dihub

 

https://www.nature.com/articles/nature15766

 

https://www.sciencedirect.com/science/article/pii/S1550413116000371?via%3Dihub

 

https://www.nature.com/articles/nm.2001

 

https://www.sciencedirect.com/science/article/abs/pii/S1550413118305047?via%3Dihub

 

Read Full Post »

Will Lab-Grown Insulin-Producing Cells be the Next Insulin Pill?

Reporter: Irina Robu, PhD

Type 1 diabetes is an autoimmune disorder that destroys the insulin-producing beta cells of the pancreas, typically in childhood. Starved of insulin’s ability to regulate glucose levels in the blood, spikes in blood sugar can cause serious organ damage and eventually death. Replacing insulin cells lost in patients with Type 1 diabetes, has been a goal in regenerative medicine, but until now researchers had not been able to figure out how to produce cells in a lab dish that work as they do in healthy adults.

Dr. Matthias Hebrok, director of Diabetes Center at UCSF published a study on Feb 1, 2019 in Nature Cell Biology looked into generating insulin-producing cells that look and act a lot like the pancreatic beta cell. Hebrok and colleagues replicated the physical process by which the cells separate from the rest of the pancreas and form the so-called islets of Langerhans in the lab.

When the researchers replicated that process in lab dishes by artificially separating partially differentiated pancreatic stem cells and reforming them into islet-like clusters, the cells’ development unexpectedly leap forward. Not only did the beta cells begin responding to blood sugar more like mature insulin-producing cells, but similarly appeared to develop in ways that had never been realized in a laboratory setting. The scientist then transplanted these lab-grown islets into healthy mice and found that that in a matter of days, they produce more insulin than the animals’ own islets.

In partnership with bioengineers, geneticists, and other colleagues at UCSF, Hebrok’s team is by now working to move regenerative therapies to reality by using CRISPR gene editing to make these cells transplantable into patients without the necessity for immune-suppressing drugs or by screening drugs that could reinstate proper islet function in patients with Type 1 diabetes by protecting and expanding the few remaining beta cells to restart pancreatic insulin production.

SOURCE
https://www.universityofcalifornia.edu/news/functional-insulin-producing-cells-grown-lab?utm_source=fiat-lux

 

Read Full Post »

Google, Verily’s Uses AI to Screen for Diabetic Retinopathy

Reporter : Irina Robu, PhD

Google and Verily, the life science research organization under Alphabet designed a machine learning algorithm to better screen for diabetes and associated eye diseases. Google and Verily believe the algorithm can be beneficial in areas lacking optometrists.

The algorithm is being integrated for the first time in a clinical setting at Aravind Eye Hospital in Madurai, India where it is designed to screen for diabetic retinopathy and diabetic macular edema. After a patient is imaged by trained staff using a fundus camera, the image is uploaded to the screening algorithm through management software. The algorithm then analyzes the images for the diabetic eye diseases before returning the results.

Numerous AI-driven approaches have lately been effective in detecting diabetic retinopathy with high accuracy. An AI-based grading system was able to effectively diagnose two patients with the disease. Furthermore, an AI-driven approach for detecting an early sign of diabetic retinopathy attained an accuracy rate of more than 98 percent.

According to the R. Usha Kim, Chief of retina services at the Aravind Eye Hospital the algorithm permits physicians to work closely with patients on treatment and management of their disease, whereas increasing the volume of screenings we can perform. Automated grading of diabetic retinopathy has possible benefits such as increasing efficiency, reproducible, and coverage of screening programs and improving patient outcomes by providing early detection and treatment.

Even if the technology sounds promising, current research show there are long way until it can directly transfer from the lab into clinic.

SOURCE
https://www.healthcareitnews.com/news/google-verily-using-ai-screen-diabetic-retinopathy-india

Read Full Post »

Reprogrammed Human Pancreatic Cells Reprogrammed to Create Insulin

Reporter: Irina Robu, PhD

A  new study proposes that various cells can be modified to take a place of an insulin producing cell to help control sugar levels.  Researchers from University of Lincoln, UK report coaxing human pancreatic cells that don’t normally make insulin (a hormone that regulates the amount of glucose in the blood), to change their identity and begin producing the hormone. When implanted in mice, these reprogrammed cells relieved symptoms of diabetes, raising the opportunity that the method could one day be used as a treatment in people.

It is known that beta cells normally respond by releasing insulin when blood sugar levels rise after eating, which in turn stimulates to start absorbing sugars. In people with diabetes, this system breaks down, leading to high blood sugar levels that can harm the body and cause illness. In type 1 diabetes, the immune system attacks and destroys β-cells; in type 2, the β-cells do not produce enough of the hormone, or the body becomes resistant to insulin.

Scientists have previously revealed in mouse studies that if β-cells are destroyed, alternative type of pancreatic cell, called α-cells become more β-like and start making insulin. These α-cells normally yield the hormone glucagon which are originate together with β-cells in clumps of hormone-secreting cells called pancreatic islets or islets of Langerhans. Preceding studies showed that two proteins that control gene expression seemed to have an important role in coaxing α-cells to produce insulin in mice: Pdx1 and MafA.

At the same time as researchers from University of Lincoln, researchers from Pedro Herrera group at University of Geneva, wondered whether producing more of these proteins in human α-cells would have a similar result. They first took islet cells from human pancreases, and separated out the individual cell types which were then introduced DNA that encoded Pdx1 and MafA proteins into the α-cells, before clumping them back together.

After one week in culture, almost 40% of the human α-cells were producing insulin, while control cells that hadn’t been reprogrammed were not. The reprogrammed cells showed an increase in the expression of other genes related to β-cells, which were then implanted into diabetic mice, which had their β-cells destroyed and found that blood-sugar levels went down to normal levels. When the cell grafts were removed, the mice’s blood sugar shot back up.

Results of the experiment show that if α-cells or other kinds of islet cells could be made to start producing insulin in this way in diabetes patients’ quality of life will improve. According to Herrera before drawing conclusions about the efficacy of their approach, they will need to test the hybrid cells with other antibodies present in type-1 diabetes that could potentially attack those cells. But the research demonstrates that there is a lot of plasticity in the hormonal system of the human pancreas.

SOURCE

https://www.nature.com/articles/d41586-019-00578-z

Read Full Post »

Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals

Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

3.3.7

3.3.7   Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

Digital Therapeutics (DTx) have been defined by the Digital Therapeutics Alliance (DTA) as “delivering evidence based therapeutic interventions to patients, that are driven by software to prevent, manage or treat a medical disorder or disease”. They might come in the form of a smart phone or computer tablet app, or some form of a cloud-based service connected to a wearable device. DTx tend to fall into three groups. Firstly, developers and mental health researchers have built digital solutions which typically provide a form of software delivered Cognitive-Behaviour Therapies (CBT) that help patients change behaviours and develop coping strategies around their condition. Secondly there are the group of Digital Therapeutics which target lifestyle issues, such as diet, exercise and stress, that are associated with chronic conditions, and work by offering personalized support for goal setting and target achievement. Lastly, DTx can be designed to work in combination with existing medication or treatments, helping patients manage their therapies and focus on ensuring the therapy delivers the best outcomes possible.

Pharmaceutical companies are clearly trying to understand what DTx will mean for them. They want to analyze whether it will be a threat or opportunity to their business. For a long time, they have been providing additional support services to patients who take relatively expensive drugs for chronic conditions. A nurse-led service might provide visits and telephone support to diabetics for example who self-inject insulin therapies. But DTx will help broaden the scope of support services because they can be delivered cost-effectively, and importantly have the ability to capture real-world evidence on patient outcomes. They will no-longer be reserved for the most expensive drugs or therapies but could apply to a whole range of common treatments to boost their efficacy. Faced with the arrival of Digital Therapeutics either replacing drugs, or playing an important role alongside therapies, pharmaceutical firms have three options. They can either ignore DTx and focus on developing drug therapies as they have done; they can partner with a growing number of DTx companies to develop software and services complimenting their drugs; or they can start to build their own Digital Therapeutics to work with their products.

Digital Therapeutics will have knock-on effects in health industries, which may be as great as the introduction of therapeutic apps and services themselves. Together with connected health monitoring devices, DTx will offer a near constant stream of data about an individuals’ behavior, real world context around factors affecting their treatment in their everyday lives and emotional and physiological data such as blood pressure and blood sugar levels. Analysis of the resulting data will help create support services tailored to each patient. But who stores and analyses this data is an important question. Strong data governance will be paramount to maintaining trust, and the highly regulated pharmaceutical industry may not be best-placed to handle individual patient data. Meanwhile, the health sector (payers and healthcare providers) is becoming more focused on patient outcomes, and payment for value not volume. The future will say whether pharmaceutical firms enhance the effectiveness of drugs with DTx, or in some cases replace drugs with DTx.

Digital Therapeutics have the potential to change what the pharmaceutical industry sells: rather than a drug it will sell a package of drugs and digital services. But they will also alter who the industry sells to. Pharmaceutical firms have traditionally marketed drugs to doctors, pharmacists and other health professionals, based on the efficacy of a specific product. Soon it could be paid on the outcome of a bundle of digital therapies, medicines and services with a closer connection to both providers and patients. Apart from a notable few, most pharmaceutical firms have taken a cautious approach towards Digital Therapeutics. Now, it is to be observed that how the pharmaceutical companies use DTx to their benefit as well as for the benefit of the general population.

References:

https://eloqua.eyeforpharma.com/LP=23674?utm_campaign=EFP%2007MAR19%20EFP%20Database&utm_medium=email&utm_source=Eloqua&elqTrackId=73e21ae550de49ccabbf65fce72faea0&elq=818d76a54d894491b031fa8d1cc8d05c&elqaid=43259&elqat=1&elqCampaignId=24564

https://www.s3connectedhealth.com/resources/white-papers/digital-therapeutics-pharmas-threat-or-opportunity/

http://www.pharmatimes.com/web_exclusives/digital_therapeutics_will_transform_pharma_and_healthcare_industries_in_2019._heres_how._1273671

https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/exploring-the-potential-of-digital-therapeutics

https://player.fm/series/digital-health-today-2404448/s9-081-scaling-digital-therapeutics-the-opportunities-and-challenges

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Stroke is a leading cause of death worldwide and the most common cause of long-term disability amongst adults, more particularly in patients with diabetes mellitus and arterial hypertension. Increasing evidence suggests that disordered physiological variables following acute ischaemic stroke, especially hyperglycaemia, adversely affect outcomes.

 

Post-stroke hyperglycaemia is common (up to 50% of patients) and may be rather prolonged, regardless of diabetes status. A substantial body of evidence has demonstrated that hyperglycaemia has a deleterious effect upon clinical and morphological stroke outcomes. Therefore, hyperglycaemia represents an attractive physiological target for acute stroke therapies.

 

However, whether intensive glycaemic manipulation positively influences the fate of ischaemic tissue remains unknown. One major adverse event of management of hyperglycaemia with insulin (either glucose-potassium-insulin infusions or intensive insulin therapy) is the occurrence of hypoglycaemia, which can also induce cerebral damage.

 

Doctors all over the world have debated whether intensive glucose management, which requires the use of IV insulin to bring blood sugar levels down to 80-130 mg/dL, or standard glucose control using insulin shots, which aims to get glucose below 180 mg/dL, lead to better outcomes after stroke.

 

A period of hyperglycemia is common, with elevated blood glucose in the periinfarct period consistently linked with poor outcome in patients with and without diabetes. The mechanisms that underlie this deleterious effect of dysglycemia on ischemic neuronal tissue remain to be established, although in vitro research, functional imaging, and animal work have provided clues.

 

While prompt correction of hyperglycemia can be achieved, trials of acute insulin administration in stroke and other critical care populations have been equivocal. Diabetes mellitus and hyperglycemia per se are associated with poor cerebrovascular health, both in terms of stroke risk and outcome thereafter.

 

Interventions to control blood sugar are available but evidence of cerebrovascular efficacy are lacking. In diabetes, glycemic control should be part of a global approach to vascular risk while in acute stroke, theoretical data suggest intervention to lower markedly elevated blood glucose may be of benefit, especially if thrombolysis is administered.

 

Both hypoglycaemia and hyperglycaemia may lead to further brain injury and clinical deterioration; that is the reason these conditions should be avoided after stroke. Yet, when correcting hyperglycaemia, great care should be taken not to switch the patient into hypoglycaemia, and subsequently aggressive insulin administration treatment should be avoided.

 

Early identification and prompt management of hyperglycaemia, especially in acute ischaemic stroke, is recommended. Although the appropriate level of blood glucose during acute stroke is still debated, a reasonable approach is to keep the patient in a mildly hyperglycaemic state, rather than risking hypoglycaemia, using continuous glucose monitoring.

 

The primary results from the Stroke Hyperglycemia Insulin Network Effort (SHINE) study, a large, multisite clinical study showed that intensive glucose management did not improve functional outcomes at 90 days after stroke compared to standard glucose therapy. In addition, intense glucose therapy increased the risk of very low blood glucose (hypoglycemia) and required a higher level of care such as increased supervision from nursing staff, compared to standard treatment.

 

References:

 

https://www.nih.gov/news-events/news-releases/nih-study-provides-answer-long-held-debate-blood-sugar-control-after-stroke

 

https://www.ncbi.nlm.nih.gov/pubmed/27873213

 

https://www.ncbi.nlm.nih.gov/pubmed/19342845

 

https://www.ncbi.nlm.nih.gov/pubmed/20491782

 

https://www.ncbi.nlm.nih.gov/pubmed/21211743

 

https://www.ncbi.nlm.nih.gov/pubmed/18690907

 

Read Full Post »

Hypertriglyceridemia: Evaluation and Treatment Guideline

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Severe and very severe hypertriglyceridemia increase the risk for pancreatitis, whereas mild or moderate hypertriglyceridemia may be a risk factor for cardiovascular disease. Individuals found to have any elevation of fasting triglycerides should be evaluated for secondary causes of hyperlipidemia including endocrine conditions and medications. Patients with primary hypertriglyceridemia must be assessed for other cardiovascular risk factors, such as central obesity, hypertension, abnormalities of glucose metabolism, and liver dysfunction. The aim of this study was to develop clinical practice guidelines on hypertriglyceridemia.

The diagnosis of hypertriglyceridemia should be based on fasting levels, that mild and moderate hypertriglyceridemia (triglycerides of 150–999 mg/dl) be diagnosed to aid in the evaluation of cardiovascular risk, and that severe and very severe hypertriglyceridemia (triglycerides of >1000 mg/dl) be considered a risk for pancreatitis. The patients with hypertriglyceridemia must be evaluated for secondary causes of hyperlipidemia and that subjects with primary hypertriglyceridemia be evaluated for family history of dyslipidemia and cardiovascular disease.

The treatment goal in patients with moderate hypertriglyceridemia should be a non-high-density lipoprotein cholesterol level in agreement with National Cholesterol Education Program Adult Treatment Panel guidelines. The initial treatment should be lifestyle therapy; a combination of diet modification, physical activity and drug therapy may also be considered. In patients with severe or very severe hypertriglyceridemia, a fibrate can be used as a first-line agent for reduction of triglycerides in patients at risk for triglyceride-induced pancreatitis.

Three drug classes (fibrates, niacin, n-3 fatty acids) alone or in combination with statins may be considered as treatment options in patients with moderate to severe triglyceride levels. Statins are not be used as monotherapy for severe or very severe hypertriglyceridemia. However, statins may be useful for the treatment of moderate hypertriglyceridemia when indicated to modify cardiovascular risk.

 

References:

 

https://www.medpagetoday.com/clinical-connection/cardio-endo/77242?xid=NL_CardioEndoConnection_2019-01-21

https://www.ncbi.nlm.nih.gov/pubmed/19307519

https://www.ncbi.nlm.nih.gov/pubmed/23009776

https://www.ncbi.nlm.nih.gov/pubmed/6827992

https://www.ncbi.nlm.nih.gov/pubmed/22463676

https://www.ncbi.nlm.nih.gov/pubmed/17635890

 

Read Full Post »

Cardiovascular (CV) Disease and Diabetes: New ACC Guidelines for use of two major new classes of diabetes drugs — sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide 1 receptor agonists (GLP-1RAs) for reduction of adverse outcomes

Reporter: Aviva Lev-Ari, PhD, RN

 

“The main aim for this report is to educate cardiologists, who might not otherwise think about prescribing diabetes drugs, about these two new classes of medications that have important cardiovascular benefits for their patients,” cochair of the writing committee for the new consensus document, Brendan Everett, MD, assistant professor of medicine, Brigham and Women’s Hospital, Boston, commented to theheart.org | Medscape Cardiology.

We hope to help them understand which of their patients might benefit, and to help them understand how to prescribe these new drugs appropriately to their patients with both atherosclerotic cardiovascular disease and diabetes.”

The document is published online November 26 in the Journal of the American College of Cardiology, and is endorsed by the American Diabetes Association.

Journal of the American College of Cardiology

2018 ACC Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease

A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways Writing Committee: 

4 Pathway Summary Graphic

Figure 1 provides an overview of what is covered in the Expert Consensus Decision Pathway. See each section for more detailed considerations and guidance.

Figure 1

Summary Graphic

Figure 2 offers 1 approach to deciding which drug to use in which patient, Table 11 outlines patient and clinician preferences to consider when selecting an SGLT2 inhibitor or GLP-1RA. Table 12 provides an overview of considerations for initiating and monitoring an SGLT2 inhibitor. Table 13 provides an overview of considerations for initiating and monitoring a GLP-1RA.

Figure 2

Approach to Managing Patients With Established ASCVD and T2D

SOURCE

Read Full Post »

Older Posts »