Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘artificial pancreas’


World’s first artificial pancreas

Reporter: Irina Robu, PhD

Diabetes is a life-long condition where your body does not produce enough insulin (Type 1) or your body cannot use the insulin it has effectively. Since there is no cure for diabetes, the artificial pancreas system comes as a relief for patients that are suffering with this disease.

The artificial pancreas, MiniMed 670G hybrid closed loop system designed by Medtronic is the first FDA-approved device that measures glucose levels and delivers the appropriate dose of basal insulin. The system comprises Medtronic’s MiniMed 670G insulin pump that is strapped to the body, an infusion patch that delivers insulin via catheter from the pump and a sensor which measures glucose levels under the skin and can be worn for 7 days at a time. While the device regulates basal, or background, insulin, patients must still manually request bolus insulin at mealtimes.

The device is intended for people age 14 or older with Type 1 diabetes and is intended to regulate insulin levels with “little to no input” from the patient. The artificial pancreas measures blood sugar levels using a constant glucose monitor (CGM) and communicates the information to an insulin pump which calculates and releases the required amount of insulin into the body, just as the pancreas does in people without diabetes.

The 2016 FDA approval was done in just three months which is a record for any medical device. The agency evaluated data from a clinical trial in which 123 patients with Type 1 diabetes used the system’s hybrid closed-loop feature as repeatedly during a three-month period. The trial presented the device to be safe for use in those 14 and older, showing no serious adverse events. The system is on sale since spring 2017.

While further clinical research is needed to ensure that the strength of the device in different settings is consistent, several researchers support the view that “artificial pancreas systems are a safe and effective treatment approach for people with type 1 diabetes. Medtronic counts this device as a step toward a fully automated, closed-loop system.

SOURCE

https://www.fiercebiotech.com/medical-devices/fda-approves-medtronic-s-artificial-pancreas-world-s-first

Advertisements

Read Full Post »


Adipocyte Derived Stroma Cells: Their Usage in Regenerative Medicine and Reprogramming into Pancreatic Beta-Like Cells

Curator: Evelina Cohn, Ph.D.

The following presentation can be dowloaded in PowerPoint form by clicking on the link below:

adipocytes (1)

 

In Summary:

There are different results related to betatrophin and its characteristic to induce insulin and/or expand the pancreas beta cells. All the experiments so far were performed in mice. Some of the authors like Elisabeth Kugelberg from Harvard University agrees that betatrophin can induce insulin and expansion of secreting beta cells in mice (E. Kugelberg , 2014). Levitsky et al., 2014, come to the conclusion that betatrophin stimulate growth of beta cells in mice, while Gusarova et al., 2014, said that Betatrophin doesn’t control cell expansion in mice ( Gusarova et al., 2014) All three results are based on experiments on mice.

To make sure what are the characteristics of betatrophin in human pancreatic beta cells I suggest to try to determine the concentration and effect on those concentrations on immortal beta cells from human, CM cell line (insulinoma-obtained from ascitic fluid of cancer patients ) ( they are not producing any insulin under the glucose stimulation, therefore they may be a good for our model if they respond to betatrophin) TRM-1 (foetal Human SV40 T antigen)-Express small amount of insulin, not responsive to glucose stimulation) and finally Blox5 ( foetal Human SV40 T –antigen) which Exhibit glucose responsive. and Low insulin content. Blox5 may be the second good cell line to experiment, because they are responsive to glucose and they may be responsive to betatrophin as well.

If we found that those cell lines are inducing insulin then we may try primary beta cells. There is an article of 2013 (Ilie and Ilie, 2013) in which there is a possibility of regeneration of beta cells in vivo by neogenesis from adult pancreas. We can use their model to see if betatrophin indeed induce insulin in those cells. ( see the article attached)

On the other hand there are possibilities of growing beta cells directly onto pancreatic duct as it shows below:

pharmacoogicalapproaches to islet regeneration

 

 

 

 

 

 

 

 

 

 

From: https://infodiabet.wordpress.com/2010/08/31/new-sources-of-pancreatic-beta-cells/

Therefore, I suggest of producing pancreatic duct by using 3D printing and grow the cells by neogenesis

directly on the pancreatic duct.

References:

Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S,

Cohen JC, Hobbs HH, Murphy AJ, Yancopoulos GD, Gromada J (2014), ANGPTL8/Betatrophin Does Not Control Pancreatic Beta Cell Expansion. Cell 159: 691-696.

Kugelberg E. (2013) Diabetes: Betatrophin—inducing β-cell expansion to treat diabetes mellitus? Nature Reviews Endocrinology 9: 379

Levitsky LL, Ardestani G, Rhoads DB (2014). Role of growth factors in control of pancreatic beta cell mass: focus on betatrophin. Curr Opin Pediatr. August 26 (4):475-9

 

 

 

Slide1Slide2Slide3Slide4Slide5Slide6Slide7Slide8Slide9Slide10Slide11Slide12Slide13Slide14

 

 

 

 

 

Read Full Post »


Clinical Trials Could Lead to FDA Approval for Artificial Pancreas

 Reported by: Irina Robu, PhD

Approximately 1.25 million American have type 1 diabetes accroding to the U.S. Centers for Disease Control and Prevention. A device that automatically monitors and regulates blood-sugar levels in people with type 1 diabetes developed by University of Virginia School of Medicine undergo two clinical trials starting early 2016.

The goal of the artificial pancreas is to eliminate the need for people with type 1 diabetes to stick their fingers multiple times daily to check their blood-sugar levels and to inject insulin manually.The artificial pancreas is designed to oversee and adjust insulin delivery as needed. At the center of the artificial pancreas platform is a reconfigured smartphone running advanced algorithms that is linked wirelessly to a blood-sugar monitor and an insulin pump, as well as a remote-monitoring site. People with the artificial pancreas can also access assistance via telemedicine.

Beneficial results from these long-term clinical trials examining how the artificial pancreas works in real-life settings could lead the U.S. Food and Drug Administration and other international regulatory groups to approve the device for use by people with type 1 diabetes, whose bodies do not produce enough insulin. The trials will conducted at nine locations in the U.S. and Europe sustained by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.

The first study – the International Diabetes Closed-Loop trial – will test technology developed at UVA by a research team led by Boris Kovatchev, director of the UVA Center for Diabetes Technology. That technology has been refined for clinical use by TypeZero Technologies, a startup company in Charlottesville that has licensed the UVA system.
The second trial will examine a new control algorithm developed by the team of Dr. Francis Doyle III at the Harvard John A. Paulson School of Engineering and Applied Sciences to test whether it further improves control of blood-sugar levels.

Along with UVA, the artificial pancreas will be tested at eight additional sites: Harvard University, Mount Sinai School of Medicine, Mayo Clinic, University of Colorado, Stanford University, University of Montpellier in France, University of Padova in Italy and Academic Medical Center at the University of Amsterdam in The Netherlands.

Source

Read Full Post »