Feeds:
Posts
Comments

Posts Tagged ‘Obesity’

Reporter: Gail S. Thornton, M.A.

Studies have shown that regular physical activity can contribute to longer life and less risk for serious health problems, such as heart disease, type 2 diabetes, obesity and some cancers.  The Centers for Disease Control (CDC) continues to partner with national groups, states and communities to provide quality education around the physical activity.

An analysis, Adult Physical Inactivity Prevalence Maps by Race/Ethnicity, published on the CDC web site in January 2020 demonstrated that “all states and territories had more than 15 percent of adults who were physically inactive.” The analysis included state maps that used combined data from 2015 through 2018 with “noticeable differences in the prevalence of physical inactivity by race/ethnicity.” Physical inactivity is reported as “no leisure-time physical activity.”

Here are findings from their analysis:

  • The South (28.0%) had the highest prevalence of physical inactivity, followed by the Northeast (25.6%), Midwest (25.0%), and the West (20.5%).
  • In 7 states (Tennessee, Oklahoma, Louisiana, Alabama, Kentucky, Arkansas, and Mississippi), and 2 US territories (Puerto Rico, and Guam), 30% or more of adults were physically inactive.
  • In 4 states (Colorado, Washington, Utah, and Oregon) and the District of Columbia, 15% to less than 20% of adults were physically inactive.
  • In 24 states, 20% to less than 25% of adults were physically inactive.
  • In 15 states, 25% to less than 30% of adults were physically inactive.

More analysis showed:

  • Hispanics (31.7%) had the highest prevalence of physical inactivity, followed by non-Hispanic blacks (30.3%) and non-Hispanic whites (23.4%).
  • In the majority of states, non-Hispanic blacks and Hispanics had a significantly higher prevalence of inactivity than non-Hispanic whites.
  • 5 states and Puerto Rico had a physical inactivity prevalence of 30% or higher among non-Hispanic white adults.

###

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Obesity is a global concern that is associated with many chronic complications such as type 2 diabetes, insulin resistance (IR), cardiovascular diseases, and cancer. Growing evidence has implicated the digestive system, including its microbiota, gut-derived incretin hormones, and gut-associated lymphoid tissue in obesity and IR. During high fat diet (HFD) feeding and obesity, a significant shift occurs in the microbial populations within the gut, known as dysbiosis, which interacts with the intestinal immune system. Similar to other metabolic organs, including visceral adipose tissue (VAT) and liver, altered immune homeostasis has also been observed in the small and large intestines during obesity.

 

A link between the gut microbiota and the intestinal immune system is the immune-derived molecule immunoglobulin A (IgA). IgA is a B cell antibody primarily produced in dimeric form by plasma cells residing in the gut lamina propria (LP). Given the importance of IgA on intestinal–gut microbe immunoregulation, which is directly influenced by dietary changes, scientists hypothesized that IgA may be a key player in the pathogenesis of obesity and IR. Here, in this study it was demonstrate that IgA levels are reduced during obesity and the loss of IgA in mice worsens IR and increases intestinal permeability, microbiota encroachment, and downstream inflammation in metabolic tissues, including inside the VAT.

 

IgA deficiency alters the obese gut microbiota and its metabolic phenotype can be recapitulated into microbiota-depleted mice upon fecal matter transplantation. In addition, the researchers also demonstrated that commonly used therapies for diabetes such as metformin and bariatric surgery can alter cellular and stool IgA levels, respectively. These findings suggested a critical function for IgA in regulating metabolic disease and support the emerging role for intestinal immunity as an important modulator of systemic glucose metabolism.

 

Overall, the researchers demonstrated a critical role for IgA in regulating intestinal homeostasis, metabolic inflammation, and obesity-related IR. These findings identify intestinal IgA+ immune cells as mucosal mediators of whole-body glucose regulation in diet-induced metabolic disease. This research further emphasized the importance of the intestinal adaptive immune system and its interactions with the gut microbiota and innate immune system within the larger network of organs involved in the manifestation of metabolic disease.

 

Future investigation is required to determine the impact of IgA deficiency during obesity in humans and the role of metabolic disease in human populations with selective IgA deficiency, especially since human IgA deficiency is associated with an altered gut microbiota that cannot be fully compensated with IgM. However, the research identified IgA as a critical immunological molecule in the intestine that impacts systemic glucose homeostasis, and treatments targeting IgA-producing immune populations and SIgA may have therapeutic potential for metabolic disease.

 

References:

 

https://www.nature.com/articles/s41467-019-11370-y?elqTrackId=dc86e0c60f574542b033227afd0fdc8e

 

https://www.jci.org/articles/view/88879

 

https://www.nature.com/articles/nm.2353

 

https://diabetes.diabetesjournals.org/content/57/6/1470

 

https://www.sciencedirect.com/science/article/pii/S1550413115001047?via%3Dihub

 

https://www.sciencedirect.com/science/article/pii/S1550413115002326?via%3Dihub

 

https://www.sciencedirect.com/science/article/pii/S1931312814004636?via%3Dihub

 

https://www.nature.com/articles/nature15766

 

https://www.sciencedirect.com/science/article/pii/S1550413116000371?via%3Dihub

 

https://www.nature.com/articles/nm.2001

 

https://www.sciencedirect.com/science/article/abs/pii/S1550413118305047?via%3Dihub

 

Read Full Post »

Benefits of Fiber in Diet

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

UPDATED on 1/15/2019

This is How Much Daily Fiber to Eat for Better Health – More appears better in meta-analysis — as in more than 30 g/day

by Ashley Lyles, Staff Writer, MedPage Today

In the systematic review, observational data showed a 15% to 30% decline in cardiovascular-related death, all-cause mortality, and incidence of stroke, coronary heart disease, type 2 diabetes, and colorectal cancer among people who consumed the most dietary fiber compared to those consuming the lowest amounts.

Whole grain intake yielded similar findings.

Risk reduction associated with a range of critical outcomes was greatest when daily intake of dietary fibre was between 25 g and 29 g. Dose-response curves suggested that higher intakes of dietary fibre could confer even greater benefit to protect against cardiovascular diseases, type 2 diabetes, and colorectal and breast cancer.

https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(18)31809-9.pdf

Eating more dietary fiber was linked with lower risk of disease and death, a meta-analysis showed.

According to observational studies, risk was reduced most for a range of critical outcomes from all-cause mortality to stroke when daily fiber consumption was between 25 grams and 29 grams, reported Jim Mann, PhD, of University of Otago in Dunedin, New Zealand, and colleagues in The Lancet.

By upping daily intake to 30 grams or more, people had even greater prevention of certain conditions: colorectal and breast cancer, type 2 diabetes, and cardiovascular diseases, according to dose-response curves the authors created.

Quantitative guidelines relating to dietary fiber have not been available, the researchers said. With the GRADE method, they determined that there was moderate and low-to-moderate certainty of evidence for the benefits of dietary fiber consumption and whole grain consumption, respectively.

Included in the systematic review were 58 clinical trials and 185 prospective studies for a total of 4,635 adult participants with 135 million person-years of information (one trial in children was included, but analyzed separately from adults). Trials and prospective studies assessing weight loss, supplement use, and participants with a chronic disease were excluded.

 

Food is digested by bathing in enzymes that break down its molecules. Those molecular fragments then pass through the gut wall and are absorbed in our intestines. But our bodies make a limited range of enzymes, so that we cannot break down many of the tough compounds in plants. The term “dietary fiber” refers to those indigestible molecules. These dietary fibers are indigestible only to us. The gut is coated with a layer of mucus, on which sits a carpet of hundreds of species of bacteria, part of the human microbiome. Some of these microbes carry the enzymes needed to break down various kinds of dietary fibers.

 

Scientists at the University of Gothenburg in Sweden are running experiments that are yielding some important new clues about fiber’s role in human health. Their research indicates that fiber doesn’t deliver many of its benefits directly to our bodies. Instead, the fiber we eat feeds billions of bacteria in our guts. Keeping them happy means our intestines and immune systems remain in good working order. The scientists have recently reported that the microbes are involved in the benefits obtained from the fruits-and-vegetables diet. Research proved that low fiber diet decreases the gut bacteria population by tenfold.

 

Along with changes to the microbiome there were also rapid changes observed in the experimental mice. Their intestines got smaller, and its mucus layer thinner. As a result, bacteria wound up much closer to the intestinal wall, and that encroachment triggered an immune reaction. After a few days on the low-fiber diet, mouse intestines developed chronic inflammation. After a few weeks, they started putting on fat and developing higher blood sugar levels. Inflammation can help fight infections, but if it becomes chronic, it can harm our bodies. Among other things, chronic inflammation may interfere with how the body uses the calories in food, storing more of it as fat rather than burning it for energy.

 

In a way fiber benefits human health is by giving, indirectly, another source of food. When bacteria finished harvesting the energy in the dietary fiber, they cast off the fragments as waste. That waste — in the form of short-chain fatty acids — is absorbed by intestinal cells, which use it as fuel. But the gut’s microbes do more than just make energy. They also send messages. Intestinal cells rely on chemical signals from the bacteria to work properly. The cells respond to the signals by multiplying and making a healthy supply of mucus. They also release bacteria-killing molecules. By generating these responses, gut bacteria help to maintain a peaceful coexistence with the immune system. They rest on the gut’s mucus layer at a safe distance from the intestinal wall. Any bacteria that wind up too close get wiped out by antimicrobial poisons.

 

A diet of fiber-rich foods, such as fruits and vegetables, reduces the risk of developing diabetes, heart disease and arthritis. Eating more fiber seems to lower people’s mortality rate, whatever be the cause. Researchers hope that they will learn more about how fiber influences the microbiome to use it as a way to treat disorders. Lowering inflammation with fiber may also help in the treatment of immune disorders such as inflammatory bowel disease. Fiber may also help reverse obesity. They found that fiber supplements helped obese people to lose weight. It’s possible that each type of fiber feeds a particular set of bacteria, which send their own important signals to our bodies.

 

References:

 

https://www.nytimes.com/2018/01/01/science/food-fiber-microbiome-inflammation.html

 

 

https://www.ncbi.nlm.nih.gov/pubmed/29276171

 

https://www.ncbi.nlm.nih.gov/pubmed/29276170

 

https://www.ncbi.nlm.nih.gov/pubmed/29486139

 

https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/fiber/art-20043983

 

https://nutritiouslife.com/eat-empowered/high-fiber-diet/

 

http://www.eatingwell.com/article/287742/10-amazing-health-benefits-of-eating-more-fiber/

 

http://www.cookinglight.com/eating-smart/nutrition-101/what-is-a-high-fiber-diet

 

https://www.helpguide.org/articles/healthy-eating/high-fiber-foods.htm

 

https://www.gicare.com/diets/high-fiber-diet/

 

Read Full Post »

Consuming Risk Free Food & Beverages

Author: Debashree Chakrabarti, MSc., Biological Sciences, UMass Lowell (Expected May 2016)

Leading researchers and medical health professionals have raised their concern about the over all declining status of health and well being world wide. A rising trend in childhood obesity, cardiovascular diseases, clinical depression syndrome in young adults is reason enough to try and broaden the scope of plausible agents which result in people making bad health decisions.  As a witness to the emerging dietary trends adopted by children and young adults, it is natural to question the ethics of processed food and beverages industry. Does it seem reasonable the 2L bottles of soda cost $2 USD? There are more people claiming to not like water since it is flavorless. 100% fresh juices are subject to scrutiny for their lack of adequate fiber content and excess presence of sugars. Products with high fructose corn syrups, added preservatives in processed meat, ‘read to eat’ meals are agreeably cost effective and saves a lot of time, however the over riding damage is in the long run with deficient immune system and gain of unnatural toxins which the body finds hard to eliminate. Another marketing frenzy is visible in the neutraceuticals range of instant energy drinks, protein shakes and over the counter pills. The focus is towards having the visibly attractive, muscular body regardless of the compromised health. The companies do their bit of limiting the usage by adding a precaution statement and dosage remarks on the product labels. This is however not translated as useful information to the young consumers who do not foresee the detrimental outcomes in advance.

As the prices of insurance packages and medical aid is negotiated, the same effort needs invested in the regulation of consumer dietary products. We do not want a ban on Colas however, we do not also need them to be sold at prices cheaper than water. Fresh fruits and vegetables need not be price tagged astronomically driving population to adopt a risk driven lifestyle. Taking initiatives to promote urban farming and local gardens, reaching out to the people about their choices and how it impacts the global financial predicament is a need of the hour. We are ok with the attitude of “Don’t tell me how to live my life” in a world relying heavily on subsidized medicines. This has to change. Subsidized medicine is a privilege and should be benefited to those responsible. Researchers and big pharma companies are not the only stake holders in this fight against an exponentially growing illness of misinformed decisions. People need to be brought in and educated. This includes strong arming anyone who feels they have a right to abuse their health or the health of the world.

92ab5dd0-9921-4c26-9a7c-cdf20397cb42.jpg

Another paradigm to this discussion is the need for more extensive research hubs world wide and making the accessibility of advanced medicines available to the dense population regions in Asia, Africa and Middle East Arab countries which host the majority of the population and have the least of the resources. We need 100 Massachusetts world wide with cutting edge researchers deep diving and venture capitalists backing them up. A vision for 2050 must encompass every individual being aware of what it takes to damage a human body which is a very robust machine. Eating right and being able to afford health must not be difficult. Choices available in the stores must be rational to the level where the most ignorant of the lot is still consuming risk free substances. Given the fantastic evolutionary armaments we have, it takes a lot to be unwell and yet we seem to making it fairly easy to catch cold. Healthy people translate to healthy economy.

Read Full Post »

BET Proteins Connect Diabetes and Cancer

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

New Proteins Discovered That Link Obesity-Driven Diabetes to Cancer

http://www.dddmag.com/news/2016/03/new-proteins-discovered-link-obesity-driven-diabetes-cancer

 Killer T cells surround a cancer cell. Credit: NIH

Killer T cells surround a cancer cell. Credit: NIH

 

For the first time, researchers have determined how bromodomain (BRD) proteins work in type 2 diabetes, which may lead to a better understanding of the link between adult-onset diabetes and certain cancers.

The findings, which appear in PLOS ONE, show that reducing levels in pancreatic beta cells of individual BRDs, called BET proteins, previously shown to play a role in cancer, may also help patients who are obese and diabetic.

The research was led by Gerald V. Denis, PhD, associate professor of pharmacology and medicine at Boston University School of Medicine, who was the first to show that BET protein functions are important in cancer development.

Adult-onset diabetes has been known for decades to increase the risk for specific cancers. The three main members of the BET protein family, BRD2, BRD3 and BRD4, are closely related to each other and often cooperate. However at times, they work independently and sometimes against each other.

According to the researchers new small molecule BET inhibitors have been developed that block all three BET proteins in cancer cells, but they interfere with too many functions.

“The BET proteins provide a new pathway to connect adult-onset diabetes with cancer, so properly targeting BET proteins may be helpful for both,” explained Denis, who is the corresponding author of the study.

He believes this discovery shows the need for deeper analysis of individual BET proteins in all human cell types, starting with boosting insulin and improving metabolism in the pancreas of adults who are obese.

“Without better targeted drugs, some ongoing cancer clinical trials for BET inhibitors are premature. These new results offer useful insight into drug treatments that have failed so far to appreciate the complexities in the BET family.”

 

Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells

eLife. 2014; 3: e04631.     doi:  10.7554/eLife.04631

Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a ‘combination therapy’ currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration.

DOI:http://dx.doi.org/10.7554/eLife.04631.001

eLife digest

The DNA inside a cell is often tightly wrapped around proteins to form a compact structure called chromatin. Chemical groups added to the chromatin can encourage nearby genes to either be switched on or off; and several enzymes and other proteins help to read, add, or remove these marks from the chromatin. If these chromatin modifications (or the related enzymes and proteins) are disturbed it can lead to diseases like cancer. It has also been suggested that similar changes may influence autoimmune diseases, in which the immune system attacks the body’s own tissues.

Drugs that target the proteins that read, add, or remove these chromatin modifications are currently being developed to treat cancer. For example, drugs that inhibit one family of these proteins called BET have helped to treat tumors in mice that have cancers of the blood or lymph nodes. However, because these drugs target pathways involved in the immune system they may also be useful for treating autoimmune diseases.

Now Fu et al. have tested whether a BET inhibitor might be a useful treatment for type-1 diabetes. In patients with type-1 diabetes, the cells in the pancreas that produce the insulin hormone are killed off by the immune system. Without adequate levels of insulin, individuals with type-1 diabetes may experience dangerous highs and lows in their blood sugar levels and must take insulin and sometimes other medications.

Using mice that spontaneously develop type-1 diabetes when still relatively young, Fu et al. tested what would happen if the mice received a BET inhibitor for just 2 weeks early on in life. Treated mice were protected from developing type-1 diabetes for the rest of their lives. Specifically, the treatment protected the insulin-producing cells and allowed them to continue producing insulin. The drug reduced inflammation in the pancreas and increased the expression of genes that promote the regeneration of insulin-producing cells.

Diabetes researchers have been searching for drug combinations that protect the insulin-producing cells and boost their regeneration. As such, Fu et al. suggest that these findings justify further studies to see if BET inhibitors may help to treat or prevent type-1 diabetes in humans.

Introduction

Acetylation of lysine residues on histones and non-histone proteins is an important epigenetic modification of chromatin (Kouzarides, 2000). Multiple ‘writers’, ‘erasers’, and ‘readers’ of this modification have been identified: histone acetyltransferases (HATs) that introduce acetyl groups, histone deacetylases (HDACs) that remove them, and bromodomain (BRD)-containing proteins that specifically recognize them. Chromatin acetylation impacts multiple fundamental cellular processes, and its dysregulation has been linked to a variety of disease states, notably various cancers (Dawson and Kouzarides, 2012). Not surprisingly, then, drugs that modulate the activities of HATs or HDACs or, most recently, that block acetyl-lysine:BRD interactions are under active development in the oncology field.

BRDs, conserved from yeast to humans, are domains of approximately 110 amino-acids that recognize acetylation marks on histones (primarily H3 and H4) and certain non-histone proteins (e.g., the transcription factor, NF-κB), and serve as scaffolds for the assembly of multi-protein complexes that regulate transcription (Dawson et al., 2011; Prinjha et al., 2012). The BET subfamily of BRD-containing proteins (BRDs 2, 3, 4 and T) is distinguished as having tandem bromodomains followed by an ‘extra-terminal’ domain. One of its members, Brd4, is critical for both ‘bookmarking’ transcribed loci post-mitotically (Zhao et al., 2011) and surmounting RNA polymerase pausing downstream of transcription initiation (Jang et al., 2005; Hargreaves et al., 2009; Anand et al., 2013; Patel et al., 2013).

Recently, small-molecule inhibitors of BET proteins, for example, JQ1 and I-BET, were found to be effective inhibitors of multiple types of mouse tumors, including a NUT midline carcinoma, leukemias, lymphomas and multiple myeloma (Filippakopoulos et al., 2010; Dawson et al., 2011; Delmore et al., 2011; Zuber et al., 2011). A major, but not the unique, focus of inhibition was the Myc pathway (Delmore et al., 2011; Mertz et al., 2011; Zuber et al., 2011; Lockwood et al., 2012). In addition, BET-protein inhibitors could prevent or reverse endotoxic shock induced by systemic injection of bacterial lipopolysaccharide (LPS) (Nicodeme et al., 2010; Seal et al., 2012; Belkina et al., 2013). The primary cellular focus of action was macrophages, and genes induced by the transcription factor NF-κB were key molecular targets (Nicodeme et al., 2010; Belkina et al., 2013).

Given several recent successes at transposing drugs developed for cancer therapy to the context of autoimmunity, it was logical to explore the effect of BET-protein inhibitors on autoimmune disease. We wondered how they might impact type-1 diabetes (T1D), hallmarked by specific destruction of the insulin-producing β cells of the pancreatic islets (Bluestone et al., 2010). NOD mice, the ‘gold standard’ T1D model (Anderson and Bluestone, 2005), spontaneously and universally develop insulitis at 4–6 weeks of age, while overt diabetes manifests in a subset of individuals beginning from 12–15 weeks, depending on the particular colony. NOD diabetes is primarily a T-cell-mediated disease, but other immune cells—such as B cells, natural killer cells, macrophages (MFs) and dendritic cells (DCs)—also play significant roles. We demonstrate that a punctual, 2-week, treatment of early- or late-stage prediabetic NOD mice with I-BET151 affords long-term protection from diabetes. Mechanistic dissection of this effect revealed important drug influences on both MFs and β cells, in particular on the NF-κB pathway. On the basis of these findings, we argue that epigenetic modifiers are an exciting, emerging option for therapeutic intervention in autoimmune diabetes.

I-BET151 protects NOD mice from development of diabetes

T1D progresses through identifiable phases, which are differentially sensitive to therapeutic intervention (Bluestone et al., 2010). Therefore, we treated NOD mice with the BET-protein inhibitor, I-BET151 (GSK1210151A [Dawson et al., 2011;Seal et al., 2012]) according to three different protocols: from 3–5 weeks of age (incipient insulitis), from 12–14 weeks of age (established insulitis), or for 2 weeks beginning within a day after diagnosis of hyperglycemia (diabetes). Blood-glucose levels of insulitic mice were monitored until 30 weeks of age, after which animals in our colony generally do not progress to diabetes.

I-BET151 prevented diabetes development, no matter whether the treated cohort had incipient (Figure 1A) or established (Figure 1B) insulitis. However, the long-term protection afforded by a 2-week treatment of pre-diabetic mice was only rarely observed with recent-onset diabetic animals. Just after diagnosis, individuals were given a subcutaneous insulin implant, which lowers blood-glucose levels to the normal range within 2 days, where they remain for only about 7 days in the absence of further insulin supplementation (Figure 1C, upper and right panels). Normoglycemia was significantly prolonged in mice treated for 2 weeks with I-BET151; but, upon drug removal, hyperglycemia rapidly ensued in most animals (Figure 1C, lower and right panels). The lack of disease reversal under these conditions suggests that β-cell destruction had proceeded to the point that dampening the autoinflammatory attack was not enough to stem hyperglycemia. However, there was prolonged protection from diabetes in a few cases, suggesting that it might prove worthwhile to explore additional treatment designs in future studies.

I-BET151 inhibits diabetes and insulitis in NOD mice.

…..

BET protein inhibition has a minimal effect on T cells in NOD mice

Given that NOD diabetes is heavily dependent on CD4+ T cells (Anderson and Bluestone, 2005), and that a few recent reports have highlighted an influence of BET-protein inhibitors on the differentiation of T helper (Th) subsets in induced models of autoimmunity (Bandukwala et al., 2012; Mele et al., 2013), we explored the effect of I-BET151 treatment on the transcriptome of CD4+ T cells isolated from relevant sites; that is, the infiltrated pancreas, draining pancreatic lymph nodes (PLNs), and control inguinal lymph nodes (ILNs). Microarray analysis of gene expression revealed surprisingly little impact of the 2-week treatment protocol on any of these populations, similar to what was observed when comparing randomly shuffled datasets (Figure 2A). It is possible that the above protocol missed important effects on T cells because those remaining after prolonged drug treatment were skewed for ‘survivors’. Therefore, we also examined the transcriptomes of pancreas-infiltrating CD4+ T cells at just 12, 24 or 48 hr after a single administration of I-BET151. Again, minimal, background-level, differences were observed in the gene-expression profiles of drug- and vehicle-treated mice (Figure 2B).

Little impact of BET-protein inhibition on CD4+T cells in NOD mice.

I-BET151 induces a regulatory phenotype in the pancreatic macrophage population

I-BET151 treatment promotes an MF-like, anti-inflammatory transcriptional program in pancreatic CD45+ cells.
The NF-κB signaling pathway is a major focus of I-BET151’s influence on NOD leukocytes.

BET-protein inhibition promotes regeneration of NOD β cells

BET-protein inhibition promotes regeneration of islet β cells

The studies presented here showed that treatment of NOD mice with the epigenetic modifier, I-BET151, for a mere 2 weeks prevented the development of NOD diabetes life-long. I-BET151 was able to inhibit impending insulitis as well as clear existing islet infiltration. The drug had a dual mechanism of action: it induced the pancreatic MF population to adopt an anti-inflammatory phenotype, primarily via the NF-κB pathway, and promoted β-cell proliferation (and perhaps differentiation). These findings raise a number of intriguing questions, three of which we address here.

First, why do the mechanisms uncovered in our study appear to be so different from those proposed in the only two previous reports on the effect of BET-protein inhibitors on autoimmune disease? Bandukwala et al. found that I-BET762 (a small-molecule inhibitor similar to I-BET151) altered the differentiation of Th subsets in vitro, perturbing the typical profiles of cytokine production, and reducing the neuropathology provoked by transfer of in-vitro-differentiated Th1, but not Th17, cells reactive to a peptide of myelin oligodendrocyte glycoprotein (Bandukwala et al., 2012). Unfortunately, with such transfer models, it is difficult to know how well the in vitro processes reflect in vivo events, and to distinguish subsidiary effects on cell survival and homing. Mele et al. reported that JQ1 primarily inhibited the differentiation of and cytokine production by Th17 cells, and strongly repressed collagen-induced arthritis and experimental allergic encephalomyelitis (Mele et al., 2013). However, with adjuvant-induced disease models such as these, it is difficult to discriminate influences of the drug on the unfolding of autoimmune pathology vs on whatever the adjuvant is doing. Thus, the very different dual mechanism we propose for I-BET151’s impact on spontaneously developing T1D in NOD mice may reflect several factors, including (but not limited to): pathogenetic differences in induced vs spontaneous autoimmune disease models; our broader analyses of immune target cell populations; and true mechanistic differences between T1D and the other diseases. As concerns the latter, it has been argued that T1D is primarily a Th1-driven disease, with little, or even a negative regulatory, influence by Th17 cells (discussed in [Kriegel et al., 2011]).

Second, how does I-BET151’s effect, focused on MFs and β cells, lead to life-long protection from T1D? MFs seem to play a schizophrenic role in the NOD disease. They were shown long ago to be an early participant in islet infiltration (Jansen et al., 1994), and to play a critical effector role in diabetes pathogenesis, attributed primarily to the production of inflammatory cytokines and other mediators, such as iNOS (Hutchings et al., 1990; Jun et al., 1999a, 1999b; Calderon et al., 2006). More recently, there has been a growing appreciation of their regulatory role in keeping diabetes in check. For example, the frequency of a small subset of pancreatic MFs expressing the complement receptor for immunoglobulin (a.k.a. CRIg) at 6–10 weeks of age determined whether or not NOD diabetes would develop months later (Fu et al., 2012b), and transfer of in-vitro-differentiated M2, but not M1, MFs protected NOD mice from disease development (Parsa et al., 2012).

One normally thinks of immunological tolerance as being the purview of T and B cells, but MFs seem to be playing the driving role in I-BET151’s long-term immunologic impact on T1D. Chronic inflammation (as is the insulitis associated with T1D) typically entails three classes of participant: myeloid cells, in particular, tissue-resident MFs; lymphoid cells, including effector and regulatory T and B cells; and tissue-target cells, that is, islet β cells in the T1D context. The ‘flavor’ and severity of inflammation is determined by three-way interactions amongst these cellular players. One implication of this cross-talk is that a perturbation that targets primarily one of the three compartments has the potential to rebalance the dynamic process of inflammation, resetting homeostasis to a new level either beneficial or detrimental to the individual. BET-protein inhibition skewed the phenotype of pancreatic MFs towards an anti-inflammatory phenotype, whether this be at the population level through differential influx, efflux or death, or at the level of individual cells owing to changes in transcriptional programs. The ‘re-educated’ macrophages appeared to be more potent at inhibiting T cell proliferation. In addition, it is possible that MFs play some role in the I-BET151 influences on β-cell regeneration. The findings on Rag1-deficient mice ruled out the need for adaptive immune cells in the islet infiltrate for I-BET151’s induction of β-cell proliferation, but MFs are not thought to be compromised in this strain. Relatedly, the lack of a consistent I-BET151 effect on cultured mouse and human islets might result from a dearth of MFs under our isolation and incubation conditions (e.g., [Li et al., 2009]). Several recent publications have highlighted a role for MFs, particularly M2 cells, in promoting regeneration of β cells in diverse experimental settings (Brissova et al., 2014; Xiao et al., 2014), a function foretold by the reduced β-cell mass in MF-deficient Csf1op/op mice reported a decade ago (Banaei-Bouchareb et al., 2004).

Whether reflecting a cell-intrinsic or -extrinsic impact of the drug, several pro-regenerative pathways appear to be enhanced in β-cells from I-BET151-treated mice. Increased β-cell proliferation could result from up-regulation of the genes encoding Neurod1 (Kojima et al., 2003), GLP-1R (De Leon et al., 2003), or various of the Reg family members (Unno et al., 2002; Liu et al., 2008), the latter perhaps a consequence of higher IL-22R expression (Hill et al., 2013) (see Figure 6B and Supplementary file 4). Protection of β-cells from apoptosis is likely to be an important outcome of inhibiting the NF-κB pathway (Takahashi et al., 2010), but could also issue from enhanced expression of other known pro-survival factors, such as Cntfr (Rezende et al., 2007) and Tox3 (Dittmer et al., 2011) (see Figures 4 and 6B). Lastly, β-cell differentiation and function should be fostered by up-regulation of genes encoding transcription factors such as Neurod1, Pdx1, Pax6, Nkx6-1 and Nkx2-2. The significant delay in re-onset of diabetes in I-BET151-treated diabetic mice suggests functionally relevant improvement in β-cell function. In brief, the striking effect of I-BET151 on T1D development in NOD mice seems to reflect the fortunate concurrence of a complex, though inter-related, set of diabetes-protective processes.

Lastly, why does a drug that inhibits BET proteins, which include general transcription factors such as Brd4, have such circumscribed effects? A 2-week I-BET151 treatment might be expected to provoke numerous side-effects, but this regimen seemed in general to be well tolerated in our studies. This conundrum has been raised in several contexts of BET-inhibitor treatment, and was recently discussed at length (Shi and Vakoc, 2014). The explanation probably relates to two features of BET-protein, in particular Brd4, biology. First: Brd4 is an important element of so-called ‘super-enhancers’, defined as unusually long transcriptional enhancers that host an exceptionally high density of TFs—both cell-type-specific and general factors, including RNA polymerase-II, Mediator, p300 and Brd4 (Hnisz et al., 2013). They are thought to serve as chromatin depots, collecting TFs and coordinating their delivery to transcriptional start-sites via intra-chromosome looping or inter-chromosome interactions. Super-enhancers are preferentially associated with loci that define and control the biology of particular cell-types, notably developmentally regulated and inducible genes; intriguingly, disease-associated, including T1D-associated, nucleotide polymorphisms are especially enriched in the super-enhancers of disease-relevant cell-types (Hnisz et al., 2013;Parker et al., 2013). Genes associated with super-enhancers show unusually high sensitivity to BET-protein inhibitors (Chapuy et al., 2013; Loven et al., 2013;Whyte et al., 2013). Second: although the bromodomain of Brd4 binds to acetyl-lysine residues on histone-4, and I-BET151 was modeled to inhibit this interaction, it is now known to bind to a few non-histone chromosomal proteins as well, notably NF-κB, a liaison also blocked by BET-protein inhibitors (Huang et al., 2009; Zhang et al., 2012; Zou et al., 2014). Abrogating specific interactions such as these, differing according to the cellular context, might be the dominant impact of BET inhibitors, a scenario that would be consistent with the similar effects we observed with I-BET151 and BAY 11–7082 treatment. Either or both of these explanations could account for the circumscribed effect of I-BET151 on NOD diabetes. Additionally, specificity might be imparted by different BET-family members or isoforms—notably both Brd2 and Brd4 are players in MF inflammatory responses (Belkina et al., 2013). According to either of these explanations, higher doses might unleash a broader array of effects.

 

Islet inflammation: A unifying target for diabetes treatment?

In the last decade, islet inflammation has emerged as a contributor to the loss of functional β cell mass in both type 1 (T1D) and type 2 diabetes (T2D). Evidence supports that over-nutrition and insulin resistance result in the production of proinflammatory mediators by β cells. In addition to compromising β cell function and survival, cytokines may recruit macrophages into islets, thus augmenting inflammation. Limited, but intriguing, data implies a role of adaptive immune response in islet dysfunction in T2D. Clinical trials validated anti-inflammatory therapies in T2D, while immune therapy for T1D remains challenging. Further research is required to improve our understanding of islet inflammatory pathways, and to identify more effective therapeutic targets for T1D and T2D.
Islet inflammation: an emerging and unifying target for diabetes treatment

The current epidemic of T2D is closely associated with increases in obesity [1]. Excessive energy balance results in insulin resistance that is compensated for by increasing insulin secretion. However, insufficient compensation results in T2D, which is characterized by the reduction in islet mass and function. In recent years, overwhelming evidence defines insulin resistance as a state of chronic inflammation involving both innate and adaptive immune responses [1]. Although the presence of islet inflammation is acknowledged for autoimmune destruction of β cells in T1D, new data implicates overlapping pathogenesis between T1D and T2D. Epidemiologic studies suggest that obesity modifies the risk of T1D development [2, 3]. Importantly, small but seminal human studies have also provided evidences that anti-inflammatory therapy can improve glycemia and β cell function in T2D [4, 5]. Here, we focus on recent discoveries (past five years) to discuss the contribution of inflammatory pathways to islet dysfunction in T2D, and to provide updates on the pathogenesis of T1D.

What triggers inflammation in islets under insulin resistance?

Ample evidence from rodent and human studies indicates that in obesity, adipose tissue (AT) inflammation is a major source of pro-inflammatory mediators, and a primary response to excessive caloric intake. AT contributes to inflammation in obesity by means of increased mass, modified adipocyte phenotype, and increased infiltration of immune cells, which affects islet function through humoral and neuronal pathways [1, 6, 7]. In addition, it is noteworthy that pancreatic islets are under similar stress as adipocytes in T2D. The chronic inflammatory state of T2D is reflected in the elevation of circulatory cytokines that potentially affect islets as well as adipocytes [6, 8]. Both islets and adipocytes are exposed to excess glucose and lipids, especially free fatty acids (FFA). Over-nutrition forces adipose tissue to remodel and accommodate enlarged adipocytes, which results in endoplasmic reticulum (ER) stress, hypoxia, and mechanical stresses [911]. Under insulin resistance, insulin production increases to meet the high demand, resulting in the expansion of islet mass [12]. Recent findings revealed that obesity is associated with the activation of inflammatory pathway in the hypothalamus, which may alter functions of AT and islets through neuronal regulation [13]. Considering the multiple stressors potentially shared by AT and islets, it is plausible that islets exist also in a chronic inflammatory state, in T2D.

Adipose tissue dysfunction in obesity: a contributor to β cell inflammation in T2D?

The relationship between the pancreatic islet and AT was thought to be unidirectional, by placing insulin secretion as the major determinant of adipocyte glucose uptake and triglyceride storage. However, several recent studies suggest that insulin resistance in AT significantly contributes to β cell failure, through altered secretion of humoral factors from adipocytes and signals from the adipocyte sensory nerve (Figure. 1) [6, 7]. Of particular interest are adipocytokines that are uniquely produced by adipocytes, such as leptin, adiponectin, omentin, resistin, and visfatin, which may contribute to β cell dysfunction during insulin resistance (Box 1). Circulating cytokines may also connect AT inflammation to β cell dysfunction. Overnight exposure of mouse islets to tumor necrosis factor-alpha (TNFα), Interleukin beta (IL-1β), plus Interferon-gamma (IFNγ), at levels comparable to those seen in human obesity, disrupts the regulation of intracellular calcium [8]. Although glucose stimulated insulin secretion (GSIS) was maintained in this study, circulating cytokines might contribute to islet dysfunction after a prolonged period of exposure and when combined with other stresses [8]. TNFα, a cytokine implicated in insulin resistance, reportedly increased islet amyloid polypeptide (IAPP, amylin) expression in β cells with no concurrent expression of proinsulin. This may lead to amyloid production and β cell death [14]. Recent findings showed that the enzyme dipeptidyl peptidase-4 (DPPIV) is secreted by human adipocytes, and therefore may reduce the half-life of DPPIV substrate glucagon-like peptide-1 (GLP-1) with important implications on the insulinotropic effects of this gut peptide on the β cells [15]. Although it is not clear if obesity is associated with increased levels of DPPIV, inhibition of the latter by sitagliptin in a rodent model of obesity and insulin resistance reduced inflammatory cytokine production both in islets and in AT, and improved glucose-stimulated insulin secretion (GSIS) in islets in vitro [16]. Collectively, dysfunctional AT in obesity produces cytokines and peptides that affect islet health and potentially contribute to islet inflammation in T2D.

Read Full Post »

Obesity Pharmaceutics

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Battling the Bulge

Weight-loss drugs that target newly characterized obesity-related receptors and pathways could finally offer truly effective fat control.

By Bob Grant | November 1, 2015

http://www.the-scientist.com//?articles.view/articleNo/44322/title/Battling-the-Bulge/

http://www.the-scientist.com/November2015/NovBioBiz2_640px.jpg

Several years ago, antiobesity drug development was not looking so hot. In 2007, Sanofi-Aventis failed to win US Food and Drug Administration (FDA) approval for rimonabant—a pill that successfully helped people shed pounds—because the drug carried risks of depression and suicidal thoughts. Then, in 2008, Merck pulled the plug on its Phase 3 trials of taranabant because it also engendered suicidal thoughts and neurological effects in some participants. And a decade before those late-stage disappointments, a couple of FDA-approved weight-loss drugs were making headlines for carrying dangerous side effects. In 1997, the FDA pulled the obesity medications fenfluramine (of the wildly popular fen-phen drug combination) and dexfenfluramine (Redux) off the market after research turned up evidence of heart valve damage in people taking the drugs.

By 2009, Big Pharma was backing out of the weight-loss market, with Merck and Pfizer abandoning their programs to develop drugs similar to rimonabant and taranabant, which block cannabinoid receptors in the brain. Although the antiobesity drug market was big—according to CDC estimates, about 35 percent of adults in the U.S. are obese—a blockbuster weight-loss pill that didn’t have serious side effects was proving elusive.

But a few firms, including several small biotechs, decided to stick with it. “Some of the prior experience with drugs on the market, like fen-phen and Redux, have likely led large pharma to view the therapeutic space with some conservatism,” says Preston Klassen, executive vice president and head of global development at Orexigen Therapeutics, a small, California-based firm. “And generally, when you have that situation, smaller companies will step into that void when the science makes sense.” And their perseverance is starting to pay off. After a years-long drought in approvals for antiobesity medications, in the past few years the FDA has approved four new drugs specifically for general obesity: Belviq and Qsymia in 2012, and Contrave and Saxenda in late 2014. Three of these four were developed by small companies whose success hinges on one or a few compounds aimed directly at treating general obesity.

The recent burst of antiobesity drug approvals reflects an evolving appreciation for the molecular intricacies of this multifaceted, chronic disease. Today’s antiobesity drugs—including the four recent approvals and several more in development—have traded the blunt cudgel of appetite suppression for more precise targeting of pathways known to play roles in obesity. “With our understanding of the complex biology of obesity and all of the different molecules and receptors involved in the process, we’re much better able to target those molecules and receptors,” says Arya Sharma, chair in obesity research and management at the University of Alberta in Canada. “These are very specific agents that are designed for very specific actions. There is renewed enthusiasm in this field.”

Looking to combos

In the mid-20th century, the FDA approved several weight-loss drugs, starting with the appetite suppressant desoxyephedrine (methamphetamine hydrochloride) in 1947. Like the other appetite-suppressing drugs the FDA later approved through the 1950s and ’60s, desoxyephedrine accomplished short-term weight loss, but the transient benefit did not justify the side effects of long-term use, such as addiction, psychosis, and violent behavior. In 1973, as the nation voiced concern about the overuse of amphetamines, the FDA decreed that all obesity drugs were approved only for short-term use. The most recently approved obesity drugs, on the other hand, all have the FDA’s okay for long-term weight management.

Three of the newly approved drugs, Contrave, Belviq, and Qsymia, also aim to suppress appetite, and like many previous weight-loss therapies, all do so by targeting the hypothalamus, the brain region thought to be the seat of appetite control. Although the precise mechanism of Belviq, which is manufactured by San Diego–based Arena Pharmaceuticals, is unknown, researchers think that the key is its activation of serotonin-binding 5-HT2C receptors in proopiomelanocortin (POMC) neurons in the hypothalamus. When activated, these neurons reduce appetite and increase energy expenditure, according to Orexigen’s Klassen. His company’s Contrave also activates POMC neurons in the hypothalamus, while at the same time inhibiting opioid receptors, which would otherwise work to shut down POMC neuron firing, in the brain’s mesolimbic reward pathway. Contrave achieves this one-two punch because it is a combination therapy, incorporating two different compounds into a single weight-loss pill.

“The concept of a silver or magic bullet whereby one drug meets all of the needs within the obesity space has thus far proven to be inadequate,” says Klassen. “Right now I think the predominant opinion is that combination therapy is an appropriate way to go.”

Vivus’s Qsymia is also a combination drug, composed of phentermine—the other half of fen-phen and an activator of a G protein–coupled receptor called TAAR1—and an extended-release form of topiramate, an anticonvulsant with weight-loss side effects. Novo Nordisk—one of the few Big Pharma firms that stayed in the obesity game as others fled—is also turning its attention to combo therapies, testing its pipeline of investigational weight-loss compounds with Saxenda, its recently approved medicine that mimics glucagon peptide-1 (GLP-1), an appetite and calorie-intake regulator in the brain. “You need to combine at least two molecules to get the optimum effect,” says Novo Nordisk executive vice president and chief scientific officer Mads Krogsgaard Thomsen. The company has five other weight-loss compounds in development, and “we’re actually combining Saxenda with all of these new molecules,” he adds.

The University of Alberta’s Sharma agrees that combination therapies are a smart approach for attacking the multilayered mechanisms at play in obesity. “You’re dealing with a system that is very complex and very redundant. When you block one, other molecules or other parallel systems kick in,” he says. “My prediction for the future is that in order to get good results, one will have to move toward combinations . . . of more-specific and more-novel agents.”

On the horizon

On the heels of the recent FDA approvals, several new compounds with novel mechanisms of action are making their way through the drug-development pipeline. While most antiobesity drugs to date have aimed to suppress appetite by targeting brain regions involved in feelings of hunger and satiety, Boston-based Zafgen (for which Sharma serves as a paid advisor) is going after methionine aminopeptidase 2 (MetAP2) receptors in the liver and adipose tissue. “We’ve been one of the first ones to show that there is a significant and major weight-regulation center that the body has that exists outside the hypothalamus,” says Zafgen chief medical officer Dennis Kim. “Our drug [beloranib] is tapping into that mechanism.”

 

Zafgen researchers are investigating beloranib’s mechanism of action in patients that became very obese after their hypothalamus was damaged or removed as a result of craniopharyngioma, a type of brain cancer. “In about half of these cases, patients wake up hungry after surgery and it’s unrelenting, and they become morbidly obese very rapidly,” Kim says. Because the hypothalamus is damaged or missing, antiobesity drugs that target this brain region are ineffective. But beloranib “works just as well in these patients compared to patients with intact hypothalamus,” Kim says. As a result, beloranib may work in isolation without the need to combine different compounds, he adds. “If you can target a nodal point that’s much more upstream of simple circuitry-controlled hunger in the hypothalamus, you have the potential to reset the entire system.”

Meanwhile, another Boston-based firm, Rhythm Pharmaceuticals, is conducting clinical trials on obese patients with rare genetic disorders that compromise the melanocortin-4 (MC4) pathway, known to be involved in body weight regulation. Rhythm’s setmelanotide (RM-493) is a first-in-class drug that activates the MC4 pathway. And several companies, including the Japanese pharma firm Shionogi, are developing compounds that block the receptor of a neurotransmitter called neuropeptide Y, which plays a role in appetite stimulation and meal initiation.

Other new antiobesity targets include cyclic nucleotides, second messengers in signaling cascades such as the 3′-5′-cyclic guanosine monophosphate pathway, which conveys feelings of satiety and ramps up thermogenesis; amylin, a peptide hormone that slows gastric emptying and promotes satiety; ghrelin, a gut hormone that stimulates food intake; and a handful of pathways that affect nutrient absorption and metabolism. As more of obesity’s molecular complexities are sorted out, even more new drug targets will present themselves.

“I think we are on the verge of understanding obesity and the mechanisms underlying obesity,” says Novo Nordisk’s Thomsen. “That means that there is going to be a lot of good news for obesity going forward.”

 

WEIGHT-LOSS DRUG APPROVAL

© ISTOCK.COM/QUISP65Getting a weight-loss treatment approved by the FDA is a little different than the regulatory path taken by other drugs. To earn approval, companies must demonstrate that their drugs afford at least a 5 percent reduction in body weight over a year. And after a therapy reaches the market, companies have to conduct more research, specifically, into the drugs’ safety. Contrave, for example, which was approved in September 2014, is currently subject to rigorous post-marketing surveillance concerning evidence that the drug may lead to suicidal thoughts and behaviors. Other recently approved antiobesity drugs are under similar surveillance regimens.

The FDA also requires companies to test some approved weight-loss drugs specifically for their cardiovascular side effects. “Serious safety concerns have arisen with several obesity drugs in the past, which have informed our approach to drug development,” FDA spokesperson Eric Pahon wrote in an email to The Scientist. “All drugs approved for chronic weight management since 2012 have either had a cardiovascular outcome trial (CVOT) underway at the time of approval or have been required to initiate a CVOT as a post-marketing requirement.”

This additional testing, however, may scare off some drug developers from entering the antiobesity arena, Vivus spokesperson Dana Shinbaum wrote in an email to The Scientist. “The hurdles remain high . . . [and] may discourage innovation in this area.”

But even with the significant regulatory hurdles, it’s tough to deny the potential that exists in the antiobesity drug market. “We view obesity as one of the few remaining untapped therapeutic areas within primary care,” says Preston Klassen of Orexigen Therapeutics. “We think it’s tremendously important from a medical perspective, and we think it’s been well documented that even small reductions in body weight have meaningful and sustained impact on improved health.”

 

 

Read Full Post »

reducing obesity-related inflammation

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

NIH researchers find potential target for reducing obesity-related inflammation

Study sheds light on preventing or reversing certain obesity-associated diseases.

http://www.nih.gov/news-events/news-releases/nih-researchers-find-potential-target-reducing-obesity-related-inflammation

Scientists at the National Institutes of Health have identified a potential molecular target for reducing obesity-related inflammation. Researchers have known that overeating (that is, excess calorie consumption) by individuals with obesity often triggers inflammation, which has been linked to such diseases as asthma and Type 2 diabetes. In their study, published recently in The Journal of Clinical Investigation (Nov. 3, 2015, online version(link is external)), the investigators found that a protein called SIRT3 provides resistance to this inflammatory response and could potentially prevent or reverse obesity-associated diseases of inflammation.

Lead researcher Michael N. Sack, M.D., Ph.D., a senior investigator at NIH’s National Heart, Lung, and Blood Institute, explained that he and his team identified the role of SIRT3 through an investigation involving 19 healthy volunteers who fasted for a 24-hour period.

“Previous research has shown that intermittent fasting or intermittent calorie restriction — by way of eating fewer calories for a few days a month — reduces inflammation,” said Dr. Sack. “We found through our study that this effect is mediated, in part, on a molecular level when SIRT3 blocks the activity of another molecule known as the NLRP3 inflammasome.” He explained that NLRP3 inflammasomes are components of an intracelluar immune response triggered when mitochondria undergo stress, such as from excess calorie intake.

By using cultured cells from a group of eight volunteers who did not fast, Dr. Sack and his team found evidence suggesting that SIRT3 can be activated not only through fasting, but also through the use of nicotinamide riboside, a vitamin B derivative. “Taken together, these early results point to a potential mechanism for addressing obesity-related inflammation, and thus diseases linked to this type of inflammation, such as asthma, Type 2 diabetes, rheumatoid arthritis, and atherosclerosis — conditions associated with a reduced quality of life and/or premature death,” Dr. Sack said.

Obesity remains a substantial health problem for the nation, affecting more than a third of adults and 17 percent of children, according to the Centers for Disease Control and Prevention. Efforts to manage weight, however, can be hindered by the effects of obesity-related diseases. “It is a vicious cycle,” said Dr. Sack. “Take asthma for example. An increase in obesity incidence has been associated with an increase in asthma incidence, but asthma makes it difficult for some to be physically active enough to lose weight.”

Dr. Sack and colleagues — who include researchers from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and Weill Cornell Medical College — are conducting a follow-up study at the NIH Clinical Center to determine whether the vitamin B derivative nicotinamide riboside can specifically reduce bronchial inflammation in individuals with asthma. If the results of the study are promising, Dr. Sack and colleagues will aim to conduct larger clinical trials to validate the findings and potentially inform treatment of obesity-related inflammation in asthma.

The National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at www.nhlbi.nih.gov.

Read Full Post »

Excess Eating, Overweight, and Diabetic

Larry H Bernstein, MD, FCAP, Curator

LPBI

 

You Did NOT Eat Your Way to Diabetes!

http://www.phlaunt.com/diabetes/14046739.php

 

The myth that diabetes is caused by overeating also hurts the one out of five people who are not overweight when they contract Type 2 Diabetes. Because doctors only think “Diabetes” when they see a patient who fits the stereotype–the grossly obese inactive patient–they often neglect to check people of normal weight for blood sugar disorders even when they show up with classic symptoms of high blood sugar such as recurrent urinary tract infections or neuropathy.

Where Did This Toxic Myth Come From?

The way this myth originated is this: Because people with Type 2 Diabetes are often overweight and because many people who are overweight have a syndrome called “insulin resistance” in which their cells do not respond properly to insulin so that they require larger than normal amounts of insulin to lower their blood sugar, the conclusion was drawn years ago that insulin resistance was the cause of Type 2 Diabetes.

It made sense. Something was burning out the beta cells in these people, and it seemed logical that the something must be the stress of pumping out huge amounts of insulin, day after day. This idea was so compelling that it was widely believed by medical professionals, though few realized it had never been subjected to careful investigation by large-scale research.

That is why any time there is an article in the news about Type 2 Diabetes you are likely to read something that says, “While Type 1 diabetes (sometimes called Juvenile Diabetes) is a condition where the body does not produce insulin, Type 2 Diabetes is the opposite: a condition where the body produces far too much insulin because of insulin resistance caused by obesity.”

When your doctor tells you the same thing, the conclusion is inescapable: your overeating caused you to put on excess fat and that your excess fat is what made you diabetic.

Blaming the Victim

This line of reasoning leads to subtle, often unexpressed, judgmental decisions on the part of your doctor, who is likely to believe that had you not been such a pig, you would not have given yourself this unnecessary disease.

And because of this unspoken bias, unless you are able to “please” your doctor by losing a great deal of weight after your diagnosis you may find yourself treated with a subtle but callous disregard because of the doctor’s feeling that you brought this condition down on yourself. This bias is similar to that held by doctors who face patients who smoke a pack a day and get lung cancer and still refuse to stop smoking.

You also see this bias frequently expressed in the media. Articles on the “obesity epidemic” blame overeating for a huge increase in the number of people with diabetes, including children and teenagers who are pictured greedily gorging on supersized fast foods while doing no exercise more strenuous than channel surfing. In a society where the concepts “thin” and “healthy” have taken on the overtones of moral virtue and where the only one of the seven deadly sins that still inspires horror and condemnation is gluttony, being fat is considered by many as sure proof of moral weakness. So it is not surprising that the subtext of media coverage of obesity and diabetes is that diabetes is nothing less than the just punishment you deserve for being such a glutton.

Except that it’s not true.

Obesity Has Risen Dramatically While Diabetes Rates Have Not

The rate of obesity has grown alarmingly over the past decades, especially in certain regions of the U.S. The NIH reports that “From 1960-2 to 2005-6, the prevalence of obesity increased from 13.4 to 35.1 percent in U.S. adults age 20 to 74.7.”

If obesity was causing diabetes, you’d exect to see a similar rise in the diabetes rate. But this has not happened. The CDC reports that “From 1980 through 2010, the crude prevalence of diagnosed diabetes increased …from 2.5% to 6.9%.” However, if you look at the graph that accompanies this statement, you see that the rate of diabetes diagnoses rose only gradually through this period–to about 3.5% until it suddenly sped upward in the late 1990s. This sudden increase largely due to the fact that in 1998 the American Diabetes Association changed the criteria by which diabetes was to be diagnosed, lowering the fasting blood sugar level used to diagnose diabetes from 141 mg/dl to 126 mg/dl. (Details HERE)

Analyzing these statistics, it becomes clear that though roughtly 65 million more Americans became fat over this period, only 13 million more Americans became diabetic.

And to further confuse the matter, several factors other than the rise in obesity and the ADA’s lowering of the diagnostic cutoff also came into play during this period which also raised the rate of diabetes diagnoses:

Diabetes becomes more common as people age as the pancreas like other organs, becames less efficient. In 1950 only 12% of the U.S. population was over 65. By 2010 40% was, and of those 40%, 19% were over 75.(Details HERE.)

At the same time, the period during which the rate of diabetes rose was also the period in which doctors began to heavily prescribe statins, a class of drugs we now know raises the risk of developing diabetes. (Details HERE.)

Why Obesity Doesn’t Cause Diabetes: The Genetic Basis of Diabetes

While people who have diabetes are often heavy, one out of five people diagnosed with diabetes are thin or normal weight. And though heavy people with diabetes are, indeed, likely to be insulin resistant, the majority of people who are overweight will never develop diabetes. In fact, they will not develop diabetes though they are likely to be just as insulin resistant as those who do–or even more so.

The message that diabetes researchers in academic laboratories are coming up with about what really causes diabetes is quite different from what you read in the media. What they are finding is that to get Type 2 Diabetes you need to have some combination of a variety of already-identified genetic flaws which produce the syndrome that we call Type 2 Diabetes. This means that unless you have inherited abnormal genes or had your genes damaged by exposure to pesticides, plastics and other environmental toxins known to cause genetic damage, you can eat until you drop and never develop diabetes.

Now let’s look in more depth at what peer reviewed research has found about the true causes of diabetes

Twin Studies Back up a Genetic Cause for Diabetes

Studies of identical twins showed that twins have an 80% concordance for Type 2 Diabetes. In other words, if one twin has Type 2 Diabetes, the chance that the other will have it two are 4 out of 5. While you might assume that this might simply point to the fact that twins are raised in the same home by mothers who feed them the same unhealthy diets, studies of non-identical twins found NO such correlation. The chances that one non-identical twin might have Type 2 Diabetes if the other had it were much lower, though these non-identical twins, born at the same time and raised by the same caregivers were presumably also exposed to the same unhealthy diets.

This kind of finding begins to hint that there is more than just bad habits to blame for diabetes. A high concordance between identical twins which is not shared by non-identical twins is usually advanced as an argument for a genetic cause, though because one in five identical twins did not become diabetic, it is assumed that some additional factors beyond the inherited genome must come into play to cause the disease to appear. Often this factor is an exposure to an environmental toxin which knocks out some other, protective genetic factor.

The Genetic Basis of Type 2 Diabetes Mellitus: Impaired Insulin Secretion versus Impaired Insulin Sensitivity. John E. Gerich. Endocrine Reviews 19(4) 491-503, 1998.

The List of Genes Associated with Type 2 Keeps Growing

Here is a brief list of some of the abnormal genes that have been found to be associated with Type 2 Diabetes in people of European extraction: TCF7L2, HNF4-a, PTPN, SHIP2, ENPP1, PPARG, FTO, KCNJ11, NOTCh3, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX.

People from non-European ethnic groups have been found to have entirely different sets of diabetic genes than do Western Europeans, like the UCP2 polymorphism found in Pima Indians and the three Calpain-10 gene polymorphisms that have been found to be associated with diabetes in Mexicans. The presence of a variation in yet another gene, SLC16A11, was recently found to be associated with a 25% higher risk of a Mexican developing Type 2 diabetes.

The More Diabetes Genes You Have The Worse Your Beta Cells Perform

A study published in the Journal Diabetologia in November 2008 studied how well the beta cells secreted insulin in 1,211 non-diabetic individuals. They then screened these people for abnormalities in seven genes that have been found associated with Type 2 Diabetes.

They found that with each abnormal gene found in a person’s genome, there was an additive effect on that person’s beta cell dysfunction with each additional gene causing poorer beta cell function.

The impact of these genetic flaws becomes clear when we learn that in these people who were believed to be normal, beta cell glucose sensitivity and insulin production at meal times was decreased by 39% in people who had abnormalities in five genes. That’s almost half. And if your beta cells are only putting out half as much insulin as a normal person’s it takes a lot less stress on those cells to push you into becoming diabetic.

Beta cell glucose sensitivity is decreased by 39% in non-diabetic individuals carrying multiple diabetes-risk alleles compared with those with no risk alleles L. Pascoe et al. Diabetologia, Volume 51, Number 11 / November, 2008.

Gene Tests Predict Diabetes Independent of Conventional “Risk Factors”

A study of 16,061 Swedish and 2770 Finnish subjects found that

Variants in 11 genes (TCF7L2, PPARG, FTO, KCNJ11, NOTCh3, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX) were significantly associated with the risk of Type 2 Diabetes independently of clinical risk factors [i.e. family history, obesity etc.]; variants in 8 of these genes were associated with impaired beta-cell function.

Note that though the subjects here were being screened for Type 2 Diabetes, the defect found here was NOT insulin resistance, but rather deficient insulin secretion. This study also found that:

The discriminative power of genetic risk factors improved with an increasing duration of follow-up, whereas that of clinical risk factors decreased.

In short, the longer these people were studied, the more likely the people with these gene defects were to develop diabetes.

Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes Valeriya Lyssenko, M.D. et. al. New England Journal of Medicine, Volume 359:2220-2232, November 20, 2008,Number 21.

What A Common Diabetes Gene Does

A study published in July of 2009 sheds light on what exactly it is that an allele (gene variant) often found associated with diabetes does. The allele in question is one of TCF7L2 transcription factor gene. The study involved 81 normal healthy young Danish men whose genes were tested. They were then given a battery of tests to examine their glucose metabolisms. The researchers found that:

Carriers of the T allele were characterised by reduced 24 h insulin concentrations … and reduced insulin secretion relative to glucose during a mixed meal test … but not during an IVGTT [intravenous glucose tolerance test].

This is an interesting finding, because what damages our bodies is the blood sugar we experience after eating “a mixed meal” but so much research uses the artificial glucose tolerance (GTT) test to assess blood sugar health. This result suggests that the GTT may be missing important signs of early blood sugar dysfunction and that the mixed meal test may be a better diagnostic test than the GTT. I have long believed this to be true, since so many people experience reactive lows when they take the GTT which produces a seemingly “normal reading” though they routinely experience highs after eating meals. These highs are what damage our organs.

Young men with the TCF7L2 allele also responded with weak insulin secretion in response to the incretin hormone GLP-1 and “Despite elevated hepatic [liver] glucose production, carriers of the T allele had significantly reduced 24 h glucagon concentrations … suggesting altered alpha cell function.”

Here again we see evidence that long before obesity develops, people with this common diabetes gene variant show highly abnormal blood sugar behavior. Abnormal production of glucose by the liver may also contribute to obesity as metformin, a drug that that blocks the liver’s production of glucose blocks weight gain and often causes weight loss.

The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. K. Pilgaard et al. Diabetologia, Issue Volume 52, Number 7 / July, 2009. DOI 10.1007/s00125-009-1307-x

Genes Linked to African Heritage Linked to Poor Carbohydrate Metabolism

It has long been known that African-Americans have a much higher rate of diabetes and metabolic syndrome than the American population as a whole. This has been blamed on lifestyle, but a 2009 genetic study finds strong evidence that the problem is genetic.

The study reports,

Using genetic samples obtained from a cohort of subjects undergoing cardiac-related evaluation, a strict algorithm that filtered for genomic features at multiple levels identified 151 differentially-expressed genes between Americans of African ancestry and those of European ancestry. Many of the genes identified were associated with glucose and simple sugar metabolism, suggestive of a model whereby selective adaptation to the nutritional environment differs between populations of humans separated geographically over time.

In the full text discussion the authors state,

These results suggest that differences in glucose metabolism between Americans of African and European may reside at the transcriptional level. The down-regulation of these genes in the AA cohorts argues against these changes being a compensatory response to hyperglycemia and suggests instead a genetic adaptation to changes in the availability of dietary sugars that may no longer be appropriate to a Western Diet.

In conclusion the authors note that the vegetarian diet of the Seventh Day Adventists, often touted as proof of the usefulness of the “Diet Pyramid” doesn’t provide the touted health benefits to people of African American Heritage. Obviously, when hundreds of carbohydrate metabolizing genes aren’t working properly the diet needed is a low carbohydrate diet.

The study is available in full text here:

Stable Patterns of Gene Expression Regulating Carbohydrate Metabolism Determined by Geographic AncestryJonathan C. Schisler et. al. PLoS One 4(12): e8183. doi:10.1371/journal.pone.0008183

Gene that Disrupts Circadian Clock Associated with Type 2 Diabetes

It has been known for a while that people who suffer from sleep disturbances often suffer raised insulin resistance. In December of 2008, researchers identified a gene, “rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose.” They conclude,

Our data suggest a possible link between circadian rhythm regulation and glucose homeostasis through the melatonin signaling pathway.

Melatonin levels appear to control the body clock which, in turn, regulates the secretion of substances that modify blood pressure, hormone levels, insulin secretion and many other processes throughout the body.

A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nabila Bouatia-Naji et al. Nature Genetics Published online: 7 December 2008, doi:10.1038/ng.277

There’s an excellent translation of what this study means, translated into layman’s terms at Science Daily:

Body Clock Linked to Diabetes And High Blood Sugar In New Genome-wide Study

 

The Environmental Factors That Push Borderline Genes into Full-fledged Diabetes

We’ve seen so far that to get Type 2 Diabetes you seem to need to have some diabetes gene or genes, but that not everyone with these genes develops diabetes. There are what scientists call environmental factors that can push a borderline genetic case into full fledged diabetes. Let’s look now at what the research has found about what some of these environmental factors might be.

 

Your Mother’s Diet During Pregnancy May Have Caused Your Diabetes

Many “environmental factors” that scientists explore occur in the environment of the womb. Diabetes is no different, and the conditions you experienced when you were a fetus can have life-long impact on your blood sugar control.

Researchers following the children of mothers who had experienced a Dutch famine during World War II found that children of mothers who had experienced famine were far more likely to develop diabetes in later life than a control group from the same population whose mothers had been adequately fed.

Glucose tolerance in adults after prenatal exposure to famine. Ravelli AC et al.Lancet. 1998 Jan 17;351(9097):173-7.,

A study of a Chinese population found a link between low birth weight and the development of both diabetes and impaired glucose regulation (i.e. prediabetes) that was independent of “sex, age, central obesity, smoking status, alcohol consumption, dyslipidemia, family history of diabetes, and occupational status.” Low birth weight in this population may well be due to less than optimal maternal nutrition during pregnancy.

Evidence of a Relationship Between Infant Birth Weight and Later Diabetes and Impaired Glucose Regulation in a Chinese Population Xinhua Xiao et. al. Diabetes Care31:483-487, 2008.

This may not seem all that relevant to Americans whose mothers have not been exposed to famine conditions. But to conclude this is to forget how many American teens and young women suffer from eating disorders and how prevalent crash dieting is in the group of women most likely to get pregnant.

It is also true that until the 1980s obstetricians routinely warned pregnant women against gaining what is now understood to be a healthy amount of weight. When pregnant women started to gain weight, doctors often put them on highly restrictive diets which resulted in many case in the birth of underweight babies.

Your Mother’s Gestational Diabetes May Have Caused Your Diabetes

Maternal starvation is not the only pre-birth factor associated with an increased risk of diabetes. Having a well-fed mother who suffered gestational diabetes also increases a child’s risk both of obesity and of developing diabetes.

High Prevalence of Type 2 Diabetes and Pre-Diabetes in Adult Offspring of Women With Gestational Diabetes Mellitus or Type 1 Diabetes The role of intrauterine hyperglycemia Tine D. Clausen, MD et al. Diabetes Care 31:340-346, 2008

Pesticides and PCBs in Blood Stream Correlate with Incidence of Diabetes

A study conducted among members of New York State’s Mohawk tribe found that the odds of being diagnosed with diabetes in this population was almost 4 times higher in members who had high concentrations of PCBs in their blood serum. It was even higher for those with high concentrations of pesticides in their blood.

Diabetes in Relation to Serum Levels of Polychlorinated Biphenyls and Chlorinated Pesticides in Adult Native Americans Neculai Codru, Maria J. Schymura,Serban Negoita,Robert Rej,and David O. Carpenter.Environ Health Perspect. 2007 October; 115(10): 1442-1447.Published online 2007 July 17. doi: 10.1289/ehp.10315.

It is very important to note that there is no reason to believe this phenomenon is limited to people of Native American heritage. Upstate NY has a well-known and very serious PCB problem–remember Love Canal? And the entire population of the U.S. has been overexposed to powerful pesticides for a generation.

More evidence that obesity may be caused by exposure to toxic pollutants which damage genes comes in a study published January of 2009. This study tracked the exposure of a group of pregnant Belgian woman to several common pollutants: hexachlorobenzene, dichlorodiphenyldichloroethylene (DDE) , dioxin-like compounds, and polychlorinated biphenyls (PCBs). It found a correlation between exposure to PCBs and DDE and obesity by age 3, especially in children of mothers who smoked.

Intrauterine Exposure to Environmental Pollutants and Body Mass Index during the First 3 Years of Life Stijn L. Verhulst et al., Environmental Health Perspectives. Volume 117, Number 1, January 2009

These studies, which garnered no press attention at all, probably have more to tell us about the reason for the so-called “diabetes epidemic” than any other published over the last decade.

BPA and Plasticizers from Packaging Are Strongly Linked to Obesity and Insulin Resistance

BPA, the plastic used to line most metal cans has long been suspected of causing obesity. Now we know why. A study published in 2008 reported that BPA suppresses a key hormone, adiponectin, which is responsible for regulating insulin sensitivity in the body and puts people at a substantially higher risk for metabolic syndrome.

Science Daily: Toxic Plastics: Bisphenol A Linked To Metabolic Syndrome In Human Tissue

The impact of BPA on children is dramatic. Analysis of 7 years of NHANES epidemiological data found that having a high urine level of BPA doubles a child’s risk of being obese.

Bisphenol A and Chronic Disease Risk Factors in US Children. Eng, Donna et al.Pediatrics Published online August 19, 2013. doi: 10.1542/peds.2013-0106

You, and your children are getting far more BPA from canned foods than what health authorities assumed they were getting. A research report published in 2011 reported that the level of BPA actually measured in people’s bodies after they consumed canned soup turned out to be extremely high. People who ate a serving of canned soup every day for five days had BPA levels of 20.8 micrograms per liter of urine, whereas people who instead ate fresh soup had levels of 1.1 micrograms per liter.

Canned Soup Consumption and Urinary Bisphenol A: A Randomized Crossover Trial Carwile, JL et al. JAMA. November 23/30, 2011, Vol 306, No. 20

Nevertheless, the FDA caved in to industry pressure in 2012 and refused to regulate BPA claiming that, as usual, more study was needed. (FDA: BPA)

BPA is not the only toxic chemical associated with plastics that may be promoting insulin resistance. . Phthalates are compounds added to plastic to make it flexible. They rub off on our food and are found in our blood and urine. A study of 387 Hispanic and Black, New York City children who were between six and eight years old measured the phthalates in their urine and found that the more phthalates in their urine, the fatter the child was a year later.

Associations between phthalate metabolite urinary concentrations and body size measures in New York City children.
Susan L. Teitelbaum et al.Environ Res. 2012 Jan;112:186-93.

This finding was echosed by another study:

Urinary phthalates and increased insulin resistance in adolescents Trasande L, et al. Pediatrics 2013; DOI: 10.1542/peds.2012-4022.

And phthalates are everywhere. A study of 1,016 Swedes aged 70 years and older found that four phthalate metabolites were detected in the blood serum of almost all the participants. High levels of three of these were associated with the prevalence of diabetes. The researchers explain that one metabolite was mainly related to poor insulin secretion, whereas two others were related to insulin resistance. The researchers didn’t check to see whether this relationship held for prediabetes.

Circulating Levels of Phthalate Metabolites Are Associated With Prevalent Diabetes in the Elderly.Lind, MP et al. Diabetes. Published online before print April 12, 2012, doi: 10.2337/dc11-2396

Chances are very good that these same omnipresent phthalates are also causing insulin resistance and damaging insulin secretion in people whose ages fall between those of the two groups studied here.

Use of Herbicide Atrazine Maps to Obesity, Causes Insulin Resistance

A study published in April of 2009 mentions that “There is an apparent overlap between areas in the USA where the herbicide, atrazine (ATZ), is heavily used and obesity-prevalence maps of people with a BMI over 30.”

It found that when rats were given low doses of this pesticide in thier water, “Chronic administration of ATZ decreased basal metabolic rate, and increased body weight, intra-abdominal fat and insulin resistance without changing food intake or physical activity level.” In short the animals got fat even without changing their food intake. When the animals were fed a high fat,high carb diet, the weight gain was even greater.

Insulin resistance was increased too, which if it happens in people, means that people who have genetically-caused borderline capacity to secrete insulin are more likely to become diabetic when they are exposed to this chemical via food or their drinking water.

Chronic Exposure to the Herbicide, Atrazine, Causes Mitochondrial Dysfunction and Insulin Resistance PLoS ONE Published 13 Apr 2009

2,4-D A Common Herbicide Blocks Secretion of GLP-1–A Blood Sugar Lowering Gastric Peptide

In 2007 scientists at New York’s Mount Sinai Hospital discovered that the intestine has receptors for sugar identical to those found on the tongue and that these receptors regulate secretion of glucagon-like peptide-1 (GLP-1). GLP-1 is the peptide that is mimicked by the diabetes drug Byetta and which is kept elevated by Januvia and Onglyza. You can read about that finding in this Science Daily report:

Science Daily: Your Gut Has Taste Receptors

In November 2009, these same scientists reported that a very common herbicide 2,4 D blocked this taste receptor, effectively turning off its ability to stimulate the production GLP-1. The fibrate drugs used to lower cholesterol were also found to block the receptor.

Science Daily: Common Herbicides and Fibrates Block Nutrient-Sensing Receptor Found in Gut and Pancreas

What was even more of concern was the discovery that the ability of these compounds to block this gut receptor “did not generalize across species to the rodent form of the receptor.” The lead researcher was quoted as saying,

…most safety tests were done using animals, which have T1R3 receptors that are insensitive to these compounds,

This takes on additional meaning when you realize that most compounds released into the environment are tested only on animals, not humans. It may help explain why so many supposedly “safe” chemicals are damaging human glucose metabolisms.

Trace Amounts of Arsenic in Urine Correlate with Dramatic Rise in Diabetes

A study published in JAMA in August of 2008 found of 788 adults who had participated in the 2003-2004 National Health and Nutrition Examination Survey (NHANES) found those who had the most arsenic in their urine, were nearly four times more likely to have diabetes than those who had the least amount.

The study is reported here:

Arsenic Exposure and Prevalence of Type 2 Diabetes in US Adults. Ana Navas-Acien et al. JAMA. 2008;300(7):814-822.

The New York Times report about this study (no longer online) added this illuminating bit of information to the story:

Arsenic can get into drinking water naturally when minerals dissolve. It is also an industrial pollutant from coal burning and copper smelting. Utilities use filtration systems to get it out of drinking water.

Seafood also contains nontoxic organic arsenic. The researchers adjusted their analysis for signs of seafood intake and found that people with Type 2 Diabetes had 26 percent higher inorganic arsenic levels than people without Type 2 Diabetes.

How arsenic could contribute to diabetes is unknown, but prior studies have found impaired insulin secretion in pancreas cells treated with an arsenic compound.

Prescription Drugs, Especially SSRI Antidepressants Cause Obesity and Possibly Diabetes

Another important environmental factor is this: Type 2 Diabetes can be caused by some commonly prescribed drugs. Beta blockers and atypical antipsychotics like Zyprexa have been shown to cause diabetes in people who would not otherwise get it. This is discussed here.

There is some research that suggests that SSRI antidepressants may also promote diabetes. It is well known that antidepressants cause weight gain.

Spin doctors in the employ of the drug companies who sell these high-profit antidepressants have long tried to attribute the relationship between depression and obesity to depression, rather than the drugs used to treat the condition.

However, a new study published in June 2009 used data from the Canadian National Population Health Survey (NPHS), a longitudinal study of a representative cohort of household residents in Canada and tracked the incidence of obesity over ten years.

The study found that, “MDE [Major Depressive Episode] does not appear to increase the risk of obesity. …Pharmacologic treatment with antidepressants may be associated with an increased risk of obesity. [emphasis mine]. The study concluded,

Unexpectedly, significant effects were seen for serotonin-reuptake-inhibiting antidepressants [Prozac,Celexa, Lovox, Paxil, Zoloft] and venlafaxine [Effexor], but neither for tricyclic antidepressants nor antipsychotic medications.

Scott B. Patten et al. Psychother Psychosom 2009;78:182-186 (DOI: 10.1159/000209349)

Here is an article posted by the Mayo Clinic that includes the statement “weight gain is a reported side effect of nearly all antidepressant medications currently available.

Antidepressants and weight gain – Mayoclinic.com

Here is a report about a paper presented at the 2006 ADA Conference that analyzed the Antidepressant-Diabetes connection in a major Diabetes prevention study:

Medscape: Antidepressant use associated with increased type 2 diabetes risk.

Treatment for Cancer, Especially Radiation, Greatly Increases Diabetes Risk Independent of Obesity or Exercise Level

A study published in August 2009 analyzed data for 8599 survivors in the Childhood Cancer Survivor Study. It found that after adjusting for body mass and exercise levels, survivors of childhood cancer were 1.8 times more likely than the siblings to report that they had diabetes.

Even more significantly, those who had had full body radiation were 7.2 times more likely to have diabetes.

This raises the question of whether exposure to radiation in other contexts also causes Type 2 diabetes.

Diabetes Mellitus in Long-term Survivors of Childhood Cancer: Increased Risk Associated With Radiation Therapy: A Report for the Childhood Cancer Survivor Study.Lillian R. Meacham et al. Arch. Int. Med.Vol. 169 No. 15, Aug 10/24, 2009.

More Insight into the Effect of Genetic Flaws

Now that we have a better idea of some of the underlying physiological causes of diabetes, lets look more closely at the physiological processes that takes place as these genetic flaws push the body towards diabetes.

Insulin Resistance Develops in Thin Children of People with Type 2 Diabetes

Lab research has come up with some other intriguing findings that challenge the idea that obesity causes insulin resistance which causes diabetes. Instead, it looks like the opposite happens: Insulin resistance precedes the development of obesity.

One of these studies took two groups of thin subjects with normal blood sugar who were evenly matched for height and weight. The two groups differed only in that one group had close relatives who had developed Type 2 Diabetes, and hence, if there were a genetic component to the disorder, they were more likely to have it. The other group had no relatives with Type 2 Diabetes. The researchers then and examined the subjects’ glucose and insulin levels during a glucose tolerance test and calculated their insulin resistance. They found that the thin relatives of the people with Type 2 Diabetes already had much more insulin resistance than did the thin people with no relatives with diabetes.

Insulin resistance in the first-degree relatives of persons with Type 2 Diabetes. Straczkowski M et al. Med Sci Monit. 2003 May;9(5):CR186-90.

This result was echoed by a second study published in November of 2009.

That study compared detailed measurements of insulin secretion and resistance in 187 offspring of people diagnosed with Type 2 diabetes against 509 controls. Subjects were matched with controls for age, gender and BMI. It concluded:

The first-degree offspring of type 2 diabetic patients show insulin resistance and beta cell dysfunction in response to oral glucose challenge. Beta cell impairment exists in insulin-sensitive offspring of patients with type 2 diabetes, suggesting beta cell dysfunction to be a major defect determining diabetes development in diabetic offspring.

Beta cell (dys)function in non-diabetic offspring of diabetic patients M. Stadler et al. Diabetologia Volume 52, Number 11 / November, 2009, pp 2435-2444. doi 10.1007/s00125-009-1520-7

Mitochondrial Dysfunction is Found in Lean Relatives of People with Type 2 Diabetes

One reason insulin resistance might precede obesity was explained by a landmark 2004 study which looked at the cells of the “healthy, young, lean” but insulin-resistant relatives of people with Type 2 Diabetes and found that their mitochondria, the “power plant of the cells” that is the part of the cell that burns glucose, appeared to have a defect. While the mitochondria of people with no relatives with diabetes burned glucose well, the mitochondria of the people with an inherited genetic predisposition to diabetes were not able to burn off glucose as efficiently, but instead caused the glucose they could not burn and to be stored in the cells as fat.

Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. Petersen KF et al. New England J Med 2004 Feb 12; 350(7);639-41

More Evidence that Abnormal Insulin Resistance Precedes Weight Gain and Probably Causes It

A study done by the same researchers at Yale University School of Medicine who discovered the mitochondrial problem we just discussed was published in Proceedings of the National Academy of Science (PNAS) in July 2007. It reports on a study that compared energy usage by lean people who were insulin resistant and lean people who were insulin sensitive.

The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome Petersen,KF et al. PNAS July 31, 2007 vol. 104 no. 31 12587-12594.

Using new imaging technologies, the researchers found that lean but insulin resistant subjects converted glucose from high carbohydrate meals into triglycerides–i.e. fat. Lean insulin-sensitive subjects, in contrast, stored the same glucose in the form of muscle and liver glycogen.

The researchers conclude that:

the insulin resistance, in these young, lean, insulin resistant individuals, was independent of abdominal obesity and circulating plasma adipocytokines, suggesting that these abnormalities develop later in the development of the metabolic syndrome.”

In short, obesity looked to be a result, not a cause of the metabolic flaw that led these people to store carbohydrate they ate in the form of fat rather than burn it for energy.

The researchers suggested controlling insulin resistance with exercise. It would also be a good idea for people who are insulin resistant, or have a family history of Type 2 Diabetes to cut back on their carb intake, knowing that the glucose from the carbs they eat is more likely to turn into fat.

Beta Cells Fail to Reproduce in People with Diabetes

A study of pancreas autopsies that compared the pancreases of thin and fat people with diabetes with those of thin and fat normal people found that fat, insulin-resistant people who did not develop diabetes apparently were able to grow new beta-cells to produce the extra insulin they needed. In contrast, the beta cells of people who developed diabetes were unable to reproduce. This failure was independent of their weight.

Beta-Cell Deficit and Increased Beta-Cell Apoptosis in Humans With Type 2 Diabetes. Alexandra E. Butler, et al. Diabetes 52:102-110, 2003

Once Blood Sugars Rise They Impair a Muscle Gene that Regulates Insulin Sensitivity

Another piece of the puzzle falls into place thanks to a research study published on Feb 8, 2008.

Downregulation of Diacylglycerol Kinase Delta Contributes to Hyperglycemia-Induced Insulin Resistance. Alexander V. Chibalin et. al. Cell, Volume 132, Issue 3, 375-386, 8 February 2008.

As reported in Diabetes in Control (which had access to the full text of the study)

The research team identified a “fat-burning” gene, the products of which are required to maintain the cells insulin sensitivity. They also discovered that this gene is reduced in muscle tissue from people with high blood sugar and type 2-diabetes. In the absence of the enzyme that is made by this gene, muscles have reduced insulin sensitivity, impaired fat burning ability, which leads to an increased risk of developing obesity.

“The expression of this gene is reduced when blood sugar rises, but activity can be restored if blood sugar is controlled by pharmacological treatment or exercise”, says Professor Juleen Zierath. “Our results underscore the importance of tight regulation of blood sugar for people with diabetes.”

In short, once your blood sugar rises past a certain point, you become much more insulin resistant. This, in turn, pushes up your blood sugar more.

A New Model For How Diabetes Develops

These research findings open up a new way of understanding the relationship between obesity and diabetes.

Perhaps people with the genetic condition underlying Type 2 Diabetes inherit a defect in the beta cells that make those cells unable to reproduce normally to replace cells damaged by the normal wear and tear of life.Or perhaps exposure to an environmental toxin damages the related genes.

Perhaps, too, a defect in the way that their cells burn glucose inclines them to turn excess blood sugar into fat rather than burning it off as a person with normal mitochondria might do.

Put these facts together and you suddenly get a fatal combination that is almost guaranteed to make a person fat.

Studies have shown that blood sugars only slightly over 100 mg/dl are high enough to render beta cells dysfunctional.

Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Gastaldelli A, et al. Diabetologia. 2004 Jan;47(1):31-9. Epub 2003 Dec 10.

In a normal person who had the ability to grow new beta cells, any damaged beta cells would be replaced by new ones, which would keep the blood sugar at levels low enough to avoid further damage. But the beta cells of a person with a genetic heritage of diabetes are unable to reproduce So once blood sugars started to rise, more beta cells would succumb to the resulting glucose toxicity, and that would, in turn raise blood sugar higher.

As the concentration of glucose in their blood rose, these people would not be able to do what a normal person does with excess blood sugar–which is to burn it for energy. Instead their defective mitochondria will cause the excess glucose to be stored as fat. As this fat gets stored in the muscles it causes the insulin resistance so often observed in people with diabetes–long before the individual begins to gain visible weight. This insulin resistance puts a further strain on the remaining beta cells by making the person’s cells less sensitive to insulin. Since the person with an inherited tendency to diabetes’ pancreas can’t grow the extra beta cells that a normal person could grow when their cells become insulin resistant this leads to ever escalating blood sugars which further damage the insulin-producing cells, and end up in the inevitable decline into diabetes.

Low Fat Diets Promote the Deterioration that Leads to Diabetes in People with the Genetic Predisposition

In the past two decades, when people who were headed towards diabetes begin to gain weight, they were advised to eat a low fat diet. Unfortunately, this low fat diet is also a high carbohydrate diet–one that exacerbates blood sugar problems by raising blood sugars dangerously high, destroying more insulin-producing beta-cells, and catalyzing the storage of more fat in the muscles of people with dysfunctional mitochondria. Though they may have stuck to diets to low fat for weeks or even months these people were tormented by relentless hunger and when they finally went off their ineffective diets, they got fatter. Unfortunately, when they reported these experiences to their doctors, they were almost universally accused of lying about their eating habits.

It has only been documented in medical research during the past two years that that many patients who have found it impossible to lose weight on the low fat high carbohydrate can lose weight–often dramatically–on a low carbohydrate diet while improving rather than harming their blood lipids.

Very low-carbohydrate and low-fat diets affect fasting lipids and postprandial lipemia differently in overweight men. Sharman MJ, et al. J Nutr. 2004 Apr;134(4):880-5.

An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial lipemic responses compared with a low fat diet in normal weight, normolipidemic women. Volek JS, et al. J Nutr. 2003 Sep;133(9):2756-61.

The low carb diet does two things. By limiting carbohydrate, it limits the concentration of blood glucose which often is enough to bring moderately elevated blood sugars down to normal or near normal levels. This means that there will be little excess glucose left to be converted to fat and stored.

It also gets around the mitochondrial defect in processing glucose by keeping blood sugars low so that the body switches into a mode where it burns ketones rather than glucose for muscle fuel.

Relentless Hunger Results from Roller Coaster Blood Sugars

There is one last reason why you may believe that obesity caused your diabetes, when, in fact, it was undiagnosed diabetes that caused your obesity.

Long before a person develops diabetes, they go through a phase where they have what doctors called “impaired glucose tolerance.” This means that after they eat a meal containing carbohydrates, their blood sugar rockets up and may stay high for an hour or two before dropping back to a normal level.

What most people don’t know is that when blood sugar moves swiftly up or down most people will experience intense hunger. The reasons for this are not completely clear. But what is certain is that this intense hunger caused by blood sugar swings can develop years before a person’s blood sugar reaches the level where they’ll be diagnosed as diabetic.

This relentless hunger, in fact, is often the very first diabetic symptom a person will experience, though most doctors do not recognize this hunger as a symptom. Instead, if you complain of experiencing intense hunger doctors may suggest you need an antidepressant or blame your weight gain, if you are female, on menopausal changes.

This relentless hunger caused by impaired glucose tolerance almost always leads to significant weight gain and an increase in insulin resistance. However, because it can take ten years between the time your blood sugar begins to rise steeply after meals and the time when your fasting blood sugar is abnormal enough for you to be diagnosed with diabetes, most people are, indeed, very fat at the time of diagnosis.

With better diagnosis of diabetes (discussed here) we would be able to catch early diabetes before people gained the enormous amounts of weight now believed to cause the syndrome. But at least now people with diabetic relatives who are at risk for developing diabetes can go a long way towards preventing the development of obesity by controlling their carbohydrate intake long before they begin to put on weight.

You CAN Undo the Damage

No matter what your genetic heritage or the environmental insults your genes have survived, you can take steps right now to lower your blood sugar, eliminate the secondary insulin resistance caused by high blood sugars, and start the process that leads back to health. The pages linked here will show you how.

How To Get Your Blood Sugar Under Control

What Can You Eat When You Are Cutting The Carbs?

What is a Normal Blood Sugar

Research Connecting Blood Sugar Level with Organ Damage

The 5% Club: They Normalized Their Blood Sugar and So Can You

Read Full Post »

Obesity Issues

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

The Changing Face of Obesity

Science tells us obesity is a chronic disease. Why does the outmoded and injurious notion that it is a problem of willpower persist?

By Joseph Proietto | November 1, 2015   http://www.the-scientist.com//?articles.view/articleNo/44288/title/The-Changing-Face-of-Obesity/

In Dante Alighieri’s Divine Comedy the narrator meets a man named Ciacco who had been sent to Hell for the “Damning sin of Gluttony.” According to Catholic theology, in order to end up in Hell one must willfully commit a serious sin. So Dante believed that fat people chose to be fat. This antiquated view of the cause of obesity is still widespread, even among medical professionals. The consequences of this misconception are significant, because it forms the basis for the discrimination suffered by the obese; for the wasting of scarce resources in attempts to change lifestyle habits by public education; and for the limited availability of subsidized obesity treatments.

http://www.the-scientist.com/November2015/critic1.jpg

While obesity is often labeled a lifestyle disease, poor lifestyle choices alone account for only a 6 to 8 kg weight gain. The body has a powerful negative feedback system to prevent excessive weight gain. The strongest inhibitor of hunger, the hormone leptin, is made by fat cells. A period of increased energy intake will result in fat deposition, which will increase leptin production. Leptin suppresses hunger and increases energy expenditure. This slows down weight gain. To become obese, it may be necessary to harbor a genetic difference that makes the individual resistant to the action of leptin.

Evidence from twin and adoption studies suggests that obesity has a genetic basis, and over the past two decades a number of genes associated with obesity have been described. The most common genetic defect in European populations leading to severe obesity is due to mutations in the gene coding for the melanocortin 4 receptor (MCR4). Still, this defect can explain severe obesity in only approximately 6 percent to 7 percent of cases (J Clin Invest, 106:271-79, 2000). Other genes have been discovered that can cause milder increases in weight; for example, variants of just one gene (FTO) can explain up to 3 kg of weight variation between individuals (Science, 316:889-94, 2007).

Genes do not directly cause weight gain. Rather, genes influence the desire for food and the feeling of satiety. In an environment with either poor access to food or access to only low-calorie food, obesity may not develop even in persons with a genetic predisposition. When there is an abundance of food and a sedentary lifestyle, however, an obesity-prone person will experience greater hunger and reduced satiety, increasing caloric intake and weight gain.

Since the 1980s, there has been a rapid rise in the prevalence of obesity worldwide, a trend that likely results from a variety of complex causes. There is increasing evidence, for example, that the development of obesity on individual or familial levels may be influenced by environmental experiences that occur in early life. For example, if a mother is malnourished during early pregnancy, this results in epigenetic changes to genes involved in the set points for hunger and satiety in the developing child. These changes may then become fixed, resulting in a tendency towards obesity in the offspring.

The biological basis of obesity is further highlighted by the vigorous defense of weight following weight loss. There are at least 10 circulating hormones that modulate hunger. Of these, only one has been confirmed as a hunger-inducing hormone (ghrelin), and it is made and released by the stomach. In contrast, nine hormones suppress hunger, including CCK, PYY, GLP-1, oxyntomodulin, and uroguanylin from the small bowel; leptin from fat cells; and insulin, amylin, and pancreatic polypeptide from the pancreas.

 

After weight loss, regardless of the diet employed, there are changes in circulating hormones involved in the regulation of body weight. Ghrelin levels tend to increase and levels of multiple appetite-suppressing hormones decrease. There is also a subjective increase in appetite. Researchers have shown that even after three years, these hormonal changes persist (NEJM, 365:1597-604, 2011; Lancet Diabetes and Endocrinology, 2:954-62, 2014). This explains why there is a high rate of weight regain after diet-induced weight loss.

Given that the physiological responses to weight loss predispose people to regain that weight, obesity must be considered a chronic disease. Data show that those who successfully maintain their weight after weight loss do so by remaining vigilant and constantly applying techniques to oppose weight regain. These techniques may involve strict diet and exercise practices and/or pharmacotherapy.

It is imperative for society to move away from a view that obesity is simply a lifestyle issue and to accept that it is a chronic disease. Such a change would not only relieve the stigma of obesity but would also empower politicians, scientists and clinicians to tackle the problem more effectively.

Joseph Proietto was the inaugural Sir Edward Dunlop Medical Research Foundation Professor of Medicine in the Department of Medicine, Austin Health at the University of Melbourne in Australia. He is a researcher and clinician investigating and treating obesity and type 2 diabetes.

 

 

A Weighty Anomaly

Why do some obese people actually experience health benefits?

By Jyoti Madhusoodanan | November 1, 2015     http://www.the-scientist.com//?articles.view/articleNo/44304/title/A-Weighty-Anomaly/

http://www.the-scientist.com/November2015/notebook4.jpg

THE ENDOCRINE THEORY: Some researchers have posited that fat cells may secrete molecules that affect glucose homeostasis in muscle or liver tissue.COURTESY OF MITCHELL LAZAR

In the early 19th century, Belgian mathematician Adolphe Quetelet was obsessed with a shape: the bell curve. While helping with a population census, Quetelet proposed that the spread of human traits such as height and weight followed this trend, also known as a Gaussian or normal distribution. On a quest to define a “normal man,” he showed that human height and weight data fell along his beloved bell curves, and in 1823 devised the “Quetelet Index”—more familiar to us today as the BMI, or body mass index, a ratio of weight to height.

Nearly two centuries later, clinicians, researchers, and fitness instructors continue to rely on this metric to pigeonhole people into categories: underweight, healthy, overweight, or obese. But Quetelet never intended the metric to serve as a way to define obesity. And now, a growing body of evidence suggests these categories fail to accurately reflect the health risks—or benefits—of being overweight.

Although there is considerable debate surrounding the prevalence of metabolically healthy obesity, when obesity is defined in terms of BMI (a BMI of 30 or higher), estimates suggest that about 10 percent of adults in the U.S. are obese yet metabolically healthy, while as many as 80 percent of those with a normal BMI may be metabolically unhealthy, with signs of insulin resistance and poor circulating lipid levels, even if they suffer no obvious ill effects. “If all we know about a person is that they have a certain body weight at a certain height, that’s not enough information to know their health risks from obesity,” says health-science researcher Paul McAuley of Winston-Salem State University. “We need better indicators of metabolic health.”

The dangers of being overweight, such as a higher risk of heart disease, type 2 diabetes, and other complications, are well known. But some obese individuals—dubbed the “fat fit”—appear to fare better on many measures of health when they’re heavier. Studies have found lower mortality rates, better response to hemodialysis in chronic kidney disease, and lower incidence of dementia in such people. Mortality, it’s been found, correlates with obesity in a U-shaped curve (J Sports Sci, 29:773-82, 2011). So does extra heft help or hurt?

To answer that question, researchers are trying to elucidate the metabolic reasons for this obesity paradox.

In a recent study, Harvard University epidemiologist Goodarz Danaei and his colleagues analyzed data from nine studies involving a total of more than 58,000 participants to tease apart how obesity and other well-known metabolic risk factors influence the risk of coronary heart disease. Controlling these other risk factors, such as hypertension or high cholesterol, with medication is simpler than curbing obesity itself, Danaei explains. “If you control a person’s obesity you get rid of some health risks, but if you control hypertension or diabetes, that also reduces health risks, and you can do the latter much more easily right now.”

Danaei’s team assessed BMI and metabolic markers such as systolic blood pressure, total serum cholesterol, and fasting blood glucose. The three metabolic markers only explained half of the increased risk of heart disease across all study participants. In obese individuals, the other half appeared to be mediated by fat itself, perhaps via inflammatory markers or other indirect mechanisms (Epidemiology, 26:153-62, 2015). While Danaei’s study was aimed at understanding how obesity hurts health, the results also uncovered unknown mechanisms by which excess adipose tissue might exert its effects. This particular study revealed obesity’s negative effects, but might these unknown mechanisms hold clues that explain the obesity paradox?

Other researchers have suggested additional possibilities—for example, that inflammatory markers such as TNF-α help combat conditions such as chronic kidney disease, or that obesity makes a body more capable of making changes to, and tolerating changes in, blood flow depending on systemic needs (Am J Clin Nutr, 81:543-54, 2005).

According to endocrinologist Mitchell Lazar at the University of Pennsylvania, the key to explaining the obesity paradox may be two nonexclusive ways fat tissue is hypothesized to function. One mechanism, termed the endocrine theory, suggests that fat cells secrete, or don’t secrete enough of, certain molecules that influence glucose homeostasis in other tissues, such as muscle or liver. The first such hormone to be discovered was leptin; later studies reported several other adipocyte-secreted factors, including adiponectin, resistin, and various cytokines.

The other hypothesis, dubbed the spillover theory, suggests that storing lipids in fat cells has some pluses. Adipose tissue might sequester fat-soluble endotoxins, and produce lipoproteins that can bind to and clear harmful lipids from circulation. When fat cells fill up, however, these endotoxins are stashed in the liver, pancreas, or other organs—and that’s when trouble begins. In “fat fit” people, problems typically linked to obesity such as high cholesterol or diabetes may be avoided simply because their adipocytes mop up more endotoxins.

“In this model, one could imagine that if you could store even more fat in fat cells, you could be even more obese, but you might be protected from problems [associated with] obesity because you’re protecting the other tissues from filling up with lipids that cause problems,” says Lazar. “This may be the most popular current model to explain the fat fit.”

Although obesity greatly increases the risk of type 2 diabetes—up to 93-fold in postmenopausal women, for example—not all obese people suffer from the condition. Similarly, a certain subtype of individuals with “normal” BMIs are at greater risk of developing insulin resistance and type 2 diabetes than others with BMIs in the same range. Precisely what distinguishes these two cohorts is still unclear. “Just as important as explaining why some obese people don’t get diabetes is to explain why other subgroups—normal-weight people or those with lipodystrophy—sometimes get it,” Lazar says. “If there are multiple subtypes of obesity and diabetes, can we figure out genetic aspects or biomarkers that cause one of these phenotypes and not the other?”

To Lazar, McAuley, and other researchers, it’s increasingly evident that BMI may not be that metric. Finding better ways to assess a healthy weight, however, has proven challenging. Researchers have tested measures, such as the body shape index (ABSI) or the waist-hip ratio, which attempt to gauge visceral fat—considered to be more metabolically harmful than fat in other body locations. However, these metrics have yet to be implemented widely in clinics, and few are as simple to understand as the BMI (Science, 341:856-58, 2013).

Independent of metrics, however, the health message regarding weight is still unanimous: exercise and healthy dietary choices benefit everyone. “At a certain point, despite all the so-called fit-fat people, the demographics say that there’s a huge risk of diabetes and heart disease at very high BMI,” notes Lazar. “We can’t assume we’ll be one of the lucky ones who will have a BMI in the obese category but will still be protected from heart disease.”

Correction (November 2): The original version of this article misattributed the pull quote above. The attribution for this quote has been corrected, and The Scientist regrets the error.

 

 

THE HEALTH RISK OF OBESITY—BETTER METRICS IMPERATIVE

 Science 23 Aug 2013;  341(6148): 856858     DOI: http://dx.doi.org:/10.1126/science.1241244
Obesity paradoxes.
In this review, we examine the original obesity paradox phenomenon (i.e. in cardiovascular disease populations, obese patients survive better), as well as three other related paradoxes (pre-obesity, “fat but fit” theory, and “healthy” obesity). An obesity paradox has been reported in a range of cardiovascular and non-cardiovascular conditions. Pre-obesity (defined as a body mass index of 25.0-29.9 kg · m⁻²) presents another paradox. Whereas “overweight” implies increased risk, it is in fact associated with decreased mortality risk compared with normal weight. Another paradox concerns the observation than when fitness is taken into account, the mortality risk associated with obesity is offset. The final paradox under consideration is the presence of a sizeable subset of obese individuals who are otherwise healthy. Consequently, a large segment of the overweight and obese population is not at increased risk for premature death. It appears therefore that low cardiorespiratory fitness and inactivity are a greater health threat than obesity, suggesting that more emphasis should be placed on increasing leisure time physical activity and cardiorespiratory fitness as the main strategy for reducing mortality risk in the broad population of overweight and obese adults.
Obesity, insulin resistance, and cardiovascular disease.
Recent Prog Horm Res. 2004;59:207-23.
The ability of insulin to stimulate glucose disposal varies more than six-fold in apparently healthy individuals. The one third of the population that is most insulin resistant is at greatly increased risk to develop cardiovascular disease (CVD), type 2 diabetes, hypertension, stroke, nonalcoholic fatty liver disease, polycystic ovary disease, and certain forms of cancer. Between 25-35% of the variability in insulin action is related to being overweight. The importance of the adverse effects of excess adiposity is apparent in light of the evidence that more than half of the adult population in the United States is classified as being overweight/obese, as defined by a body mass index greater than 25.0 kg/m(2). The current epidemic of overweight/obesity is most-likely related to a combination of increased caloric intake and decreased energy expenditure. In either instance, the fact that CVD risk is increased as individuals gain weight emphasizes the gravity of the health care dilemma posed by the explosive increase in the prevalence of overweight/obesity in the population at large. Given the enormity of the problem, it is necessary to differentiate between the CVD risk related to obesity per se, as distinct from the fact that the prevalence of insulin resistance and compensatory hyperinsulinemia are increased in overweight/obese individuals. Although the majority of individuals in the general population that can be considered insulin resistant are also overweight/obese, not all overweight/obese persons are insulin resistant. Furthermore, the cluster of abnormalities associated with insulin resistance – namely, glucose intolerance, hyperinsulinemia, dyslipidemia, and elevated plasma C-reactive protein concentrations — is limited to the subset of overweight/obese individuals that are also insulin resistant. Of greater clinical relevance is the fact that significant improvement in these metabolic abnormalities following weight loss is seen only in the subset of overweight/obese individuals that are also insulin resistant. In view of the large number of overweight/obese subjects at potential risk to be insulin resistant/hyperinsulinemic (and at increased CVD risk), and the difficulty in achieving weight loss, it seems essential to identify those overweight/obese individuals who are also insulin resistant and will benefit the most from weight loss, then target this population for the most-intensive efforts to bring about weight loss.
Long-Term Persistence of Hormonal Adaptations to Weight Loss

Priya Sumithran, Luke A. Prendergast, Elizabeth Delbridge, Katrina Purcell, Arthur Shulkes, Adamandia Kriketos, and Joseph Proietto

N Engl J Med 2011; 365:1597-1604   October 27, 2011http://dx.doi.org:/10.1056/NEJMoa1105816

After weight loss, changes in the circulating levels of several peripheral hormones involved in the homeostatic regulation of body weight occur. Whether these changes are transient or persist over time may be important for an understanding of the reasons behind the high rate of weight regain after diet-induced weight loss.

Weight loss (mean [±SE], 13.5±0.5 kg) led to significant reductions in levels of leptin, peptide YY, cholecystokinin, insulin (P<0.001 for all comparisons), and amylin (P=0.002) and to increases in levels of ghrelin (P<0.001), gastric inhibitory polypeptide (P=0.004), and pancreatic polypeptide (P=0.008). There was also a significant increase in subjective appetite (P<0.001). One year after the initial weight loss, there were still significant differences from baseline in the mean levels of leptin (P<0.001), peptide YY (P<0.001), cholecystokinin (P=0.04), insulin (P=0.01), ghrelin (P<0.001), gastric inhibitory polypeptide (P<0.001), and pancreatic polypeptide (P=0.002), as well as hunger (P<0.001).

What’s new in endocrinology and diabetes mellitus

Large genome wide association studies have demonstrated that variants in the FTO gene have the strongest association with obesity risk in the general population, but the mechanism of the association has been unclear. However, a nonocoding causal variant in FTO has now been identified that changes the function of adipocytes from energy utilization (beige fat) to energy storage (white fat) with a fivefold decrease in mitochondrial thermogenesis [17]. When the effect of the variant was blocked in genetically engineered mice, thermogenesis increased and weight gain did not occur, despite eating a high-fat diet. Blocking the gene’s effect in human adipocytes also increased energy utilization. This observation has important implications for potential new anti-obesity drugs. (See “Pathogenesis of obesity”, section on ‘FTO variants’.)

Liraglutide for the treatment of obesity (July 2015)

Along with diet, exercise, and behavior modification, drug therapy may be a helpful component of treatment for select patients who are overweight or obese. Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist, used for the treatment of type 2 diabetes, and can promote weight loss in patients with diabetes, as well as those without diabetes.

In a randomized trial in nondiabetic patients who had a body mass index (BMI) of ≥30 kg/m2 or ≥27 kg/m2 with dyslipidemia and/or hypertension, liraglutide 3 mg once daily, compared with placebo, resulted in greater mean weight loss (-8.0 versus -2.6 kg with placebo) [18]. In addition, cardiometabolic risk factors, glycated hemoglobin (A1C), and quality of life improved modestly. Gastrointestinal side effects transiently affected at least 40 percent of the liraglutide group and were the most common reason for withdrawal (6.4 percent). Liraglutide is an option for select overweight or obese patients, although gastrointestinal side effects (nausea, vomiting) and the need for a daily injection may limit the use of this drug. (See “Obesity in adults: Drug therapy”, section on ‘Liraglutide’.)

In a trial designed specifically to evaluate the effect of liraglutide on weight loss in overweight or obese patients with type 2 diabetes (mean weight 106 kg), liraglutide, compared with placebo, resulted in greater mean weight loss (-6.4 kg and -5.0 kg for liraglutide 3 mg and 1.8 mg, respectively, versus -2.2 kg for placebo) [19]. Treatment with liraglutide was associated with better glycemic control, a reduction in the use of oral hypoglycemic agents, and a reduction in systolic blood pressure. Although liraglutide is not considered as initial therapy for the majority of patients with type 2 diabetes, it is an option for select overweight or obese patients with type 2 diabetes who fail initial therapy with lifestyle intervention and metformin.  (See “Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes mellitus”, section on ‘Weight loss’.)

The Skinny on Fat Cells

Bruce Spiegelman has spent his career at the forefront of adipocyte differentiation and metabolism.

By Anna Azvolinsky | November 1, 2015

http://www.the-scientist.com//?articles.view/articleNo/44312/title/The-Skinny-on-Fat-Cells/

Bruce Spiegelman
Stanley J. Korsmeyer Professor of Cell Biology
and Medicine
Harvard Medical School
Director, Center for Energy Metabolism
and Chronic
Disease, Dana-Farber Cancer Institute, Boston

It’s hard to know whether you have the right stuff to be a scientist, but I had a passion for the research,” says Bruce Spiegelman, professor of cell biology at Harvard Medical School and the Dana-Farber Cancer Institute. After receiving his PhD in biochemistry from Princeton University in 1978, Spiegelman sent an application to do postdoctoral research to just one lab. “I wasn’t thinking I should apply to five different labs. I just marched forward more or less in a straight line,” he says. Spiegelman did know that he had no financial backup and depended on research fellowships throughout the early phase of his science career. “I thought it was fantastic, and still think so, that a PhD in science is supported by the government. I certainly appreciated that, because many of my friends in the humanities had to support themselves by cobbling together fellowships and teaching every semester, whereas we didn’t face similar challenges in the sciences.”

Since his graduate student days, Spiegelman has realized his potential, pioneering the study of adipose tissue biology and metabolism. He was introduced to the field in Howard Green’s laboratory, then at MIT, where Spiegelman began his one and only postdoc in 1978. Green had recently developed a system for culturing adipose cells and asked Spiegelman if he wanted to study fat cell differentiation. “I knew nothing about adipose tissue, but I was really interested in any model of how one cell switches to another. Whether skin or fat didn’t matter too much to me, because I was not coming at this from the perspective of physiology but from the perspective of how do these switches work at a molecular level?”

Spiegelman has stuck with studying the biology and differentiation of fat cells for more than 30 years. While looking for the master transcriptional regulator of fat development—which his laboratory found in 1994—Spiegelman’s group also discovered one of the first examples of a nuclear oncogene that functions as a transcription factor, and, more recently, the team found that brown fat and white fat come from completely different origins and that brown and beige fat are distinct cell types. Spiegelman was also the first to provide evidence for the connection between inflammation, insulin resistance, and fat tissue.

Here, Spiegelman talks about his strong affinity for the East Coast, his laboratory’s search for molecules that can crank up brown fat production and activity, and the culture of his laboratory’s weekly meeting.

Spiegelman Sets Out

First publication. Spiegelman grew up in Massapequa, New York, a town on Long Island. “Birds, insects, fish, and animals were fascinating to me. As a kid, I imagined I would be a wildlife ranger,” he says. Spiegelman and his brother were the first in their family to attend college; Spiegelman entered the College of William and Mary in 1970 thinking he would major in psychology. But before taking his first psychology course, he had to take a biology course, really loved it, and switched his major. For his senior thesis, he chose one of the few labs that did biochemistry-related research. He studied cultures of the filamentous fungus Aspergillus ornatus in which he induced the upregulation of a metabolic enzyme. Spiegelman applied a calculus transformation that related the age of the culture to the age of individual cells, something that had not been previously done. The work earned him his first first-author publication in 1975. “It was not a great breakthrough, but I think it showed that I was maybe applying myself more than the typical undergraduate.”

Full steam ahead. “My interest in laboratory research was intense. Even though it was not particularly inspired work, the first-author publication in a college where not many of the professors published a lot gave me a lot of confidence. It was probably out of proportion to the quality of the actual work.” That confidence and Spiegelman’s interest in the chemistry of living things led him to pursue a PhD in biochemistry at Princeton University. “Very early on, I felt that I couldn’t understand biology if it didn’t go to the molecular level. To me, just describing how an animal lived without understanding how it worked was very unsatisfying. I think it was one of the best decisions that I made in my life, to do a PhD in biochemistry,” he says, “because if you really want to understand living systems, you are very limited in how you can understand them without having a strong background in biochemistry because these are, essentially, chemical systems.”

Embracing molecular biology. Spiegelman initially joined Arthur Pardee’s laboratory, but switched when Pardee left Princeton for Harvard University in 1975. Because he was already collaborating with Marc Kirschner, a cell biologist and biochemist who studies the regulation of the cell cycle and how the cytoskeleton works, it was an easy transition to transfer to the new laboratory. In Kirschner’s group, Spiegelman became the cell biologist among many protein biochemists working on microtubule assembly in vitro. Rather than understanding how the proteins fit together to form the filamentous structures, Spiegelman wanted to understand what controlled their assembly inside cells. Working in mammalian cells, Spiegelman published three consecutive Cell papers on how microtubule assembly occurs in vivo. The firstpaper, from 1977, demonstrated that a nucleotide functions to stabilize the tubulin molecule rather than to regulate tubulin assembly in vivo.

Spiegelman Simmers

A new tool. For his next move, Spiegelman wanted to marry his background in biochemistry and molecular biology with a good cellular model system. He became interested in differentiation at the end of his PhD, while studying how the cytoskeleton is reorganized during neural differentiation, and settled on Green’s MIT laboratory for his postdoc. Green had developed a way to study both skin and fat cell differentiation. Again, Spiegelman was the odd man out, working on the molecular biology of fat cell differentiation while most of the graduate students and postdocs focused on the cellular biology of skin cell differentiation. While there, Spiegelman learned how to clone cDNA—a new method that some researchers thought was just another new fad, he says. “I thought it was pretty obvious that this was a tool that would be a game changer. I could see how I could clone some of the cDNAs and genes that were regulated in the fat cell lineage and then try to understand the regulation of these genes.”

Setting the stage. Spiegelman demonstrated that cAMP regulates the synthesis of certain enzymes in fat cells during differentiation. But while this was the most influential paper from his postdoc, says Spiegelman, it was his demonstration of cloning mRNAs from adipocytes, published in 1983, that set the stage for cloning fat-selective genes. The work, mostly done when Spiegelman was already a new faculty member at the Dana-Farber Cancer Institute, stemmed from his learning molecular cloning in Phillip Sharp’s lab at MIT and Bryan Roberts’s lab at Harvard. “This was the raw material from which we eventually cloned PPARγ and showed it to be the master regulator of fat [cell] development.”

Roots. Spiegelman became an assistant professor at the Harvard Medical School in 1982, when he was not yet 30. Although he had entertained the idea of moving to the West Coast with his wife, whom he had met at Princeton where she obtained a PhD in French literature, Spiegelman says he is really an East Coaster at heart. “My wife and I came to love Boston and were very comfortable there. Our families were both in New York, which was close, but not too close, and we really enjoyed the culture and pace of Boston; it was more ‘us.’ We really liked to visit California but didn’t particularly want to move there. We’re both real Northeastern people.”

Relating to Sisyphus. The transition from doing a postdoc to setting up his own laboratory was “very exciting and terribly stressful,” says Spiegelman. “When I think back, I always tried to be professional with my laboratory, but I was so stressed at suddenly being on my own with no management training.” The people resources he had encountered in his graduate and postdoctoral training labs were also not there yet, and he says his first publication as a principal investigator was like pushing a rock up a hill. But eventually, Spiegelman’s lab built a reputation and reached a critical mass of talented people who advanced the science. Again in 1983, Spiegelman produced a publication showing that morphological manipulation can affect gene expression and adipose differentiation.

End goal. Spiegelman’s goal was to find a master molecule that  orchestrates the conversion of adipocyte precursor cells into bona fide fat cells. Piece by piece, his lab identified the enhancers, promoters, and other regulatory elements involved in adipocyte differentiation. In 1994, graduate student Peter Tontonoz finallyfound that the PPARγ gene, inserted via a retroviral vector into fibroblasts, could induce the cells to become adipose cells. “It took 10 years,” Spiegelman says. Along the way, the laboratory found that c-fos, the product of a famous nuclear oncogene, bound to the promoters of fat-specific genes and worked as a transcription factor. “It was not really known how nuclear oncogenes worked. This was one of the first papers showing that these oncogenes bound to gene promoters and were transcription factors.”

A wider scope. In 1993, graduate student Gökhan Hotamisligil found that tumor necrosis factor-alpha(TNF-α), is induced in the fat tissue of rodent models of obesity and diabetes. The paper sparked the formation of the field of immunometabolism and resulted in the expansion of Spiegelman’s lab into the physiology arena, partly thanks to the guidance of C. Ronald Kahn and Jeff Flier, who both study metabolism and diabetes. But the work initially encountered pushback, says Spiegelman, partly because it was the merging of two fields.

Spiegelman Scales Up

Fat color palette. Brown fat tissue, abundant in infants but scarce in adults, is a metabolically active form of fat that is chock full of mitochondria and is found in pockets in the body distinct from white fat tissue.Pere Puigserver, then a postdoc in Spiegelman’s lab, found that the coactivator PCG-1, binding to PPARγ and other nuclear receptors, could stimulate mitochondrial biogenesis. The PCG-1 gene is turned on by stimuli such as exercise or a cold environment. Later, postdoc Patrick Seale, Spiegelman, and their colleagues showed brown fat cells derive from the same lineage that gives rise to skeletal muscle. “This was a big surprise, maybe the biggest surprise we ever uncovered in the lab,” says Spiegelman.

A paler shade of brown. More recently, in 2012, Spiegelman’s laboratory showed that within adult white adipose tissue, there are pockets of a yet another type of fat tissue that he called beige fat. “I think the evidence is very good from rodents that if you activate brown and beige fat, you get metabolic benefit both in obesity and diabetes. So the question now is: Can that be done in humans in a way that’s beneficial and not toxic?”  The lab is now looking to identify molecules that can either ramp up the activity of brown and beige fat or increase the production of both cell types as possible therapeutics for metabolic disorders or even cancer-associated cachexia. “Anyone who says that either approach will work better is being foolish. We just don’t know enough to go after just one or the other.”

On the irisin controversy. After reporting in 2012 that a muscle-related hormone called irisin could switch white fat to metabolically active brown fat, Spiegelman became embroiled in a media-covered debate about whether the molecule really exists; he was also the victim of a potential fraud plot. Most recently, Spiegelman provided thorough evidence that irisin does in fact exist. On the controversy, he says it’s a fine line between defending his scientific integrity and not adding more fuel to the fire or engaging with his harassers. “We have a long track record of doing credible and reproducible science and it was not that complicated to address the paper that claimed irisin was ‘a myth.’ That study used very outmoded scientific approaches.”

Raw talent. Many of Spiegelman’s trainees have gone on to become very successful scientists, including Tontonoz, Hotamisligil, Evan Rosen, and Randy Johnson. “It’s a quantum change in the experience of doing science when you get people who have their own visions. I would have thought that interacting with smart people would mainly help me get my scientific vision accomplished. And that was partly true, but also it changed my vision. When you have people challenging you on a day-to-day basis, you learn from them through the questions they ask and the way they challenge you in a constructive way. They made me a much better scientist.”

Rigorous mentorship.  “I feel very passionately that a major part of my job is to prepare the next generation of scientists. Everyone who comes through my lab will tell you that I take that very seriously. We make sure my students give a lot of talks and get critical assessments of their presentations to our lab group. I am very hands-on both scientifically and in developing the way students project their vision. I had a very good mentor, Marc Kirschner, and I’d like to think that I learned how to be a mentor from him. I want to make sure that when people walk out of my lab they are prepared to run independent research programs.”

Greatest Hits

  • Identified the master regulator of adipogenesis, the nuclear receptor PPARγ
  • Was the first to show that a nuclear oncogene, c-fos, codes for a transcription factor that binds to the promoters of genes
  • Demonstrated that adipose tissue synthesizes tumor necrosis factor-alpha (TNF-α), providing the first direct link between obesity, inflammation, insulin resistance, and fat tissue.
  • Showed that brown fat cells are not developmentally related to white fat
  • Identified beige fat as a distinct cell type, different from either white or brown fat

 

Fanning the Flames

Obesity triggers a fatty acid synthesis pathway, which in turn helps drive T cell differentiation and inflammation.

By Kate Yandell | November 1, 2015

http://www.the-scientist.com//?articles.view/articleNo/44306/title/Fanning-the-Flames/

EDITOR’S CHOICE IN IMMUNOLOGY

The paper
Y. Endo et al., “Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1,” Cell Reports, 12:1042-55, 2015.

Cell Rep. 2015 Aug 11;12(6):1042-55.   http://dx.doi.org:/10.1016/j.celrep.2015.07.014. Epub 2015 Jul 30.
Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1.
  • A high-fat diet augments Th17 cell development and the expression of Acaca
  • ACC1 controls Th17 cell development in vitro and Th17 cell pathogenicity in vivo
  • ACC1 modulates RORγt function in developing Th17 cells
  • Obesity in humans induces ACACA and IL-17A expression in CD4 T cells

Chronic inflammation due to obesity contributes to the development of metabolic diseases, autoimmune diseases, and cancer. Reciprocal interactions between metabolic systems and immune cells have pivotal roles in the pathogenesis of obesity-associated diseases, although the mechanisms regulating obesity-associated inflammatory diseases are still unclear. In the present study, we performed transcriptional profiling of memory phenotype CD4 T cells in high-fat-fed mice and identified acetyl-CoA carboxylase 1 (ACC1, the gene product of Acaca) as an essential regulator of Th17 cell differentiation in vitro and of the pathogenicity of Th17 cells in vivo. ACC1 modulates the DNA binding of RORγt to target genes in differentiating Th17 cells. In addition, we found a strong correlation between IL-17A-producing CD45RO(+)CD4 T cells and the expression of ACACA in obese subjects. Thus, ACC1 confers the appropriate function of RORγt through fatty acid synthesis and regulates the obesity-related pathology of Th17 cells.

Figure thumbnail fx1

http://www.cell.com/cms/attachment/2035221719/2050630604/fx1.jpg

 

 

http://www.the-scientist.com/November2015/NovMediLit_310px.jpg

FEEDING INFLAMMATION: When mice eat a diet high in fat, their CD4 T cells show increased expression of the fatty acid biosynthesis gene Acaca, which encodes the enzyme ACC1 (1). Products of the ACC1 fatty acid synthesis pathway encourage the transcription factor RORγt to bind near the gene encoding the cytokine IL-17A (2). There, RORγt recruits an enzyme called p300 to modify the genome epigenetically and turn on IL-17A. The memory T cells then differentiate into inflammatory T helper 17 cells.
See full infographic: PDF
© STEVE GRAEPEL

Obesity often comes with a side of chronic inflammation, causing inflammatory chemicals and immune cells to flood adipose tissue, the hypothalamus, the liver, and other areas of the body. Inflammation is a big part of what makes obesity such an unhealthy condition, contributing to Type 2 diabetes, heart disease, cancers, autoimmune disorders, and possibly even neurodegenerative diseases.

To better understand the relationship between obesity and inflammation, Toshinori Nakayama, Yusuke Endo, and their colleagues at Chiba University in Japan started with what often leads to obesity: a high-fat diet. They fed mice rich meals for a couple of months and looked at how gene expression in the animals’ T cells compared to gene expression in the T cells of mice fed a normal diet. Most notably, they found increased expression ofAcaca, a gene that codes for a fatty acid synthesis enzyme called acetyl coA carboxylase 1 (ACC1). They went on to show that the resulting increase in fatty acid levels pushed CD4 T cells to differentiate into inflammatory T helper 17 (Th17) cells.

Th17 cells help fight off invading fungi and some bacteria. But these immune cells can also spin out of control in autoimmune diseases such as multiple sclerosis. Nakayama’s team showed that either blocking ACC1 activity with a drug called TOFA or deleting a key portion of Acaca in mouse CD4 T cells reduced the generation of pathologic Th17 cells. Overexpressing Acaca increased Th17-cell generation.

The researchers also demonstrated that mice fed a high-fat diet had elevated susceptibility to a multiple sclerosis–like disease, and that TOFA reduced the symptoms.

“This is a very intriguing finding, suggesting not only that obesity can directly induce Th17 differentiation but also indicating that pharmacologic targeting of fatty acid synthesis may help to interfere with obesity-associated inflammation,” Tim Sparwasser of the Twincore Center for Experimental and Clinical Infection Research in Hannover, Germany, says in an email. Sparwasser and his colleagues had previously shown that ACC1 is required for the differentiation of Th17 cells in mice and humans.

Nakayama explains that CD4 T cells must undergo profound metabolic changes as they mature and differentiate. “The intracellular metabolites, including fatty acids, are essential for cell proliferation and cell growth,” he says in an email. When fatty acid levels in T cells increase, the cells are activated and begin to proliferate.

“It’s a nice illustration of how, really, immune response is so highly connected to the metabolic state of the cell,” says Gökhan S. Hotamisligil of Harvard University’s T.H. Chan School of Public Health who was not involved in the study. “The immune system launches its responses commensurate with the sources of nutrients and energy from the environment,” he adds in an email.

There are still missing pieces in the path from high-fat diet to increased Acaca expression to ACC1’s influence on T-cell differentiation. It also remains to be seen how this plays out in obese humans, although Nakayama and colleagues did show that inhibiting ACC1 reduced pathologic Th17 generation in human immune cell cultures, and that the T cells of obese humans contain elevated levels of ACC1 and show signs of increased differentiation into Th17 cells.

 

The prevalence of obesity has been increasing worldwide, and obesity is now a major public health problem in most developed countries (Gregor and Hotamisligil, 2011, Ng et al., 2014). Obesity-induced inflammation contributes to the development of various chronic diseases, such as autoimmune diseases, metabolic diseases, and cancer (Kanneganti and Dixit, 2012, Kim et al., 2014,Osborn and Olefsky, 2012, Winer et al., 2009a). A number of studies have pointed out the importance of reciprocal interactions between metabolic systems and immune cells in the pathogenesis of obesity-associated diseases (Kaminski and Randall, 2010, Kanneganti and Dixit, 2012, Kim et al., 2014, Mauer et al., 2014, Stienstra et al., 2012, Winer et al., 2011).

Elucidating the molecular mechanisms by which naive CD4 T cells differentiate into effector T cells is crucial for understanding helper T (Th) cell-mediated immune pathogenicity. After antigen stimulation, naive CD4 T cells differentiate into at least four distinct Th cell subsets: Th1, Th2, Th17, and inducible regulatory T (iTreg) cells (O’Shea and Paul, 2010, Reiner, 2007). Several specific master transcription factors that regulate Th1/Th2/Th17/iTreg cell differentiation have been identified, including T-bet for Th1 (Szabo et al., 2000), GATA3 (Yamashita et al., 2004, Zheng and Flavell, 1997) for Th2, retinoic-acid-receptor-related orphan receptor γt (RORγt) for Th17 (Ivanov et al., 2006), and forkhead box protein 3 (Foxp3) for iTreg (Sakaguchi et al., 2008). The appropriate expression and function of these transcription factors is essential for proper immune regulation by each Th cell subset.

Among these Th cell subsets, Th17 cells contribute to the host defense against fungi and extracellular bacteria (Milner et al., 2008). However, the pathogenicity of IL-17-producing T cells has been recognized in various autoimmune diseases, including multiple sclerosis, psoriasis, inflammatory bowel diseases, and steroid-resistant asthma (Bettelli et al., 2006, Coccia et al., 2012, Ivanov et al., 2006,Leonardi et al., 2012, McGeachy and Cua, 2008, Nylander and Hafler, 2012,Stockinger et al., 2007, Sundrud et al., 2009).

An HFD Promotes Th17 Cell Differentiation and Affects the Expression of Fatty Acid Enzymes in Memory CD4 T Cells In Vivo

Inhibition of ACC1 Function Results in Decreased Th17 Cell Differentiation and Ameliorates the Development of Autoimmune Disease

ACC1 Controls the Differentiation of Th17 Cells Both In Vitro and In Vivo

ACC1 Controls the Function, but Not Expression, of RORγt in Differentiating Th17 Cells

Extrinsic Fatty Acid Supplementation Restored Acaca−/− Th17 Cell Differentiation through the Functional Improvement of RORγt

Obese Subjects Show Upregulation of ACACA and Increased Th17 Cells in CD45RO+ Memory CD4 T Cells

We herein identified a critical role that ACC1 plays in Th17 cell differentiation and the pathogenicity of Th17 cells through the control of the RORγt function under obese circumstances. High-fat-induced obesity augments Th17 cell differentiation and the expression of enzymes involved in fatty acid metabolism, including ACC1. Pharmacological inhibition or genetic deletion of ACC1 resulted in impaired Th17 cell differentiation in both mice and humans. In contrast, overexpression of Acaca induced Th17 cells in vivo, leaving the expression ofIfng and Il4 largely unchanged. ACC1 modulated the binding of RORγt to theIl17a gene and the subsequent p300 recruitment in differentiating Th17 cells. Memory CD4 T cells from peripheral blood mononuclear cells (PBMCs) of obese subjects showed increased IL-17A production and ACACA expression. Furthermore, a strong correlation was detected between the proportion of IL-17A-producing cells and the expression level of ACACA in memory CD4 T cells in obese subjects. Thus, our findings provide evidence of a mechanism wherein obesity can exacerbate IL-17-mediated pathology via the induction of ACC1.

Read Full Post »

Obesity Variant Circuitry

Larry H. Bernstein, MD, FCAP, Curator

LPBI

2.2.17

2.2.17   Obesity Variant Circuitry, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

FTO Obesity Variant Circuitry and Adipocyte Browning in Humans

Melina Claussnitzer,  Simon N. Dankel, Kyoung-Han Kim,  Gerald Quon,  Wouter Meuleman,  Christine Haugen,  Viktoria Glunk,  Isabel S. Sousa, et al.

N Engl J Med 2015; 373:895-907  Sept 3, 2015    DOI: http://dx.10.org1/056/NEJMoa1502214   http://www.nejm.org/doi/full/10.1056/NEJMoa1502214

BACKGROUND

Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive.

Full Text of Background…

METHODS

We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR–Cas9 genome editing in samples from patients.

Full Text of Methods…

RESULTS

Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR–Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7.

Effect of the FTO Locus on IRX3 and IRX5 in Human Adipocyte Progenitor Cells

To identify the cell types in which the causal variant may act, we examined chromatin state maps15,16 of the FTO obesity region across 127 cell types. An unusually long enhancer (12.8 kb) in mesenchymal adipocyte progenitors indicated a major regulatory locus (Figure 1B; and Fig. S1A, S1B, and S1C in the Supplementary Appendix). Haplotype-specific enhancer assays showed activity in association with the risk haplotype that was 2.4 times as high as that associated with the nonrisk haplotype in human SGBS adipocytes (i.e., adipocytes derived from a patient with the Simpson–Golabi–Behmel syndrome), which indicated genetic control of enhancer activity (Figure 1C). Enhancers in brain cells and other cell types were considerably shorter than those in mesenchymal adipocyte progenitors and lacked allelic activity (Fig. S1C and S1D in the Supplementary Appendix).

Figure 1. Activation of a Superenhancer in Human Adipocyte Progenitors by the FTO Obesity Risk Haplotype.

http://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2015/nejm_2015.373.issue-10/nejmoa1502214/20150828/images/small/nejmoa1502214_f1.gif

Panel A shows the genetic association with body-mass index (BMI) for all common FTO locus variants,14 including the reported single-nucleotide variant (SNV) rs1558902 (red diamond) and the predicted causal SNV rs1421085 (red square). Gray shading delineates consecutive 10-kb segments. CEU denotes a population of Utah residents with northern and western European ancestry, and LD linkage disequilibrium. Panel B shows chromatin state annotations for the locus across 127 reference epigenomes (rows) for cell and tissue types profiled by the Roadmap Epigenomics Project.15,16 For information on the colors used to denote chromatin states, see Figure S1A in the Supplementary Appendix. Vertical lines delineate the consecutive 10-kb segments shown in Panel A. ESC denotes embryonic stem cell, HSC hematopoietic stem cell, and iPSC induced pluripotent stem cell. Panel C shows human SGBS adipocyte enhancer activity, for 10-kb tiles, of the risk and nonrisk haplotypes with the use of relative luciferase expression. The boxes indicate means from seven triplicate experiments, and T bars indicate standard deviations.

To predict putative target genes, we examined large domains that had long-range three-dimensional chromatin interactions surrounding FTO and identified eight candidate genes (Figure 2A and 2B)

FIGURE 2   http://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2015/nejm_2015.373.issue-10/nejmoa1502214/20150828/images/small/nejmoa1502214_f2.gif

Figure 2. Activation of IRX3 and IRX5 Expression in Human Adipocyte Progenitors by the FTO Obesity Risk Genotype.

Panel A shows gene annotations and LD with array tag variant rs9930506 in a 2.5-Mb window; LD is expressed as r2 values in the CEU population. Arrows indicate the direction of transcription of annotated genes in the locus. Panel B shows chromosome conformation capture (Hi-C) interactions contact probabilities in human IMR90 myofibroblasts,22 revealing a 2-Mb topologically associating domain, and LD mean r2 statistics for all SNV pairs at 40-kb resolution. Panel C shows box plots for expression levels, after 2 days of differentiation, in human adipose progenitors isolated from 20 risk-allele carriers and 18 nonrisk-allele carriers, evaluated by means of a quantitative polymerase-chain-reaction analysis for all genes in the 2.5-Mb locus. The horizontal line within each box represents the median, the top and bottom of each box indicate the 75th and 25th percentile, and I bars indicate the range.

Among them, the developmental regulators IRX3 and IRX5 had genotype-associated expression, which indicated long-range (1.2-Mb) genetic control in primary preadipocytes (Figure 2C). Genotype-associated expression was not observed in whole-adipose tissue, a finding consistent with previous reports23,24; this indicated that the effect was cell type–specific and restricted to preadipocytes, which represent a minority of cells in adipose tissue (Fig. S2A in the Supplementary Appendix).

Effect of the FTO Locus on Mitochondrial Thermogenesis and Lipid Storage

To identify the biologic processes affected by altered IRX3 and IRX5expression in adipocytes, we used genomewide expression patterns in brown adipocyte–containing perirenal adipose tissue from a separate cohort of 10 nongenotyped, healthy kidney donors to identify genes with expression that was positively or negatively correlated with IRX3 and IRX5 expression. Genes that are associated with mitochondrial functions were found to have a negative correlation with IRX3 and IRX5, and genes with FXR and RXR lipid-metabolism functions were found to have a positive correlation, which suggests thatIRX3 and IRX5 may play roles in energy dissipation and storage

Figure 3A

FIGURE 3   http://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2015/nejm_2015.373.issue-10/nejmoa1502214/20150828/images/small/nejmoa1502214_f3.gif

Regulation of Obesity-Associated Cellular Phenotypes in Human Adipocytes by IRX3and IRX5., and Table S1 in the Supplementary Appendix). IRX3 and IRX5 had consistently higher mean expression in white adipose tissue from nine participants, as well as negative correlation with PGC1A and UCP1expression, as assessed with the use of interindividual expression patterns in perithyroid brown adipose tissue (Fig. S2B and S2C in the Supplementary Appendix); these findings indicated potential roles for IRX3 and IRX5 in the repression of thermogenesis.

To examine the trans-eQTL genetic control of energy balance by the FTOobesity locus, we used primary preadipocytes from risk-allele carriers and nonrisk-allele carriers to evaluate the genes with mitochondrial and FXR and RXR functions that had expression patterns most closely correlated with those of IRX3 and IRX5, as well as several known markers of energy-balance regulation (Fig. S2D and S2E in the Supplementary Appendix). As compared with nonrisk-allele carriers, risk-allele carriers had lower expression of mitochondrial, browning, and respiration genes and higher expression of lipid-storage markers, which indicated a shift from energy dissipation to energy storage.

These differences in expression were also reflected in the cellular signatures of obesity. Risk-allele carriers had increased adipocyte size, reduced mitochondrial DNA content, and a loss of UCP1 response to β-adrenergic stimulus or cold exposure (Figure 3B and 3C, and Fig. S2F in theSupplementary Appendix), as well as resistance to isoproterenol-mediated uncoupling, a decreased basal oxygen consumption rate, and a reduction in mitochondrial thermogenesis by a factor of 5 (Fig. S2G in the Supplementary Appendix); this indicated excessive accumulation of triglycerides, reduced mitochondrial oxidative capacity, reduced white adipocyte browning, and reduced thermogenesis.

Adipocyte-Autonomous Effects of IRX3 and IRX5 on Energy Balance

We next quantified the effect that manipulation of IRX3 and IRX5 expression had on thermogenesis in primary preadipocytes that were isolated from both risk-allele carriers and nonrisk-allele carriers. In preadipocytes from risk-allele carriers, IRX3 and IRX5 knockdown restored oxygen consumption and thermogenesis response to nonrisk levels, increased thermogenesis by a factor of 7 (Figure 3D), and restored UCP1 expression levels (Fig. S3A in the Supplementary Appendix). In preadipocytes from nonrisk-allele carriers, IRX3 and IRX5 overexpression reduced basal respiration and thermogenesis to risk-allele levels (with thermogenesis reduced by a factor of 8) (Figure 3D) and decreased the expression of UCP1, other regulators of mitochondrial function and thermogenesis (PGC1A, PGC1B, and PRDM16), and the β-adrenergic receptor (ADRB3), which also regulates UCP1-independent thermogenesis programs (Fig. S3B and S3C in the Supplementary Appendix). These manipulations had no significant effect on preadipocytes from participants with the reciprocal genotypes, which indicated that IRX3 and IRX5 levels recapitulate the effect that the FTO genetic variant has on thermogenesis.

http://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2015/nejm_2015.373.issue-10/nejmoa1502214/20150828/images/small/nejmoa1502214_f4.gif

To examine the organism-level effects of the repression of Irx3 in adipose tissue, we used adipose Irx3 dominant-negative (aP2-Irx3DN) mice. These mice had pronounced antiobesity characteristics, including reduced body size, body weight, fat mass, white and brown fat depots, and adipocyte size (Fig. S4A through S4G in the Supplementary Appendix). These aP2-Irx3DN mice also had resistance to weight gain on a high-fat diet, increased energy expenditure both at night and during the day, and increased oxygen consumption both at room temperature (22°C) and in thermoneutral conditions (30°C), but they did not have significant differences from control mice in food intake or locomotor activity (Fig. S4A and S4H through S4L in the Supplementary Appendix). At the molecular and cellular levels, these mice had increased mitochondrial activity and thermogenesis marker expression, reduced lipid-storage marker expression in both white and brown fat compartments, and markedly smaller adipocytes than did control mice (Fig. S4M, S4N, and S4O in the Supplementary Appendix).

Figure 4. Disruption of a Conserved ARID5B Repressor Motif by Causal SNV rs1421085 in Humans.

Panel A shows disruption of an ARID5B repressor motif in the evolutionarily conserved motif module surrounding rs1421085. The sequences shown at the top of the panel indicate the frequencies of each nucleotide, with the size scaled to indicate the information content (measured as entropy) at each position. Panel B shows adapted phylogenetic module complexity analysis (PMCA)25 scores in the FTO region for all 82 noncoding SNPs in LD (r2≥0.8) with tag SNV rs1558902, which was identified in a genomewide association study26; rs1421085 had the maximal score. Chromatin state annotation is shown for Roadmap Epigenomics reference genome E025, which corresponds to adipose-derived mesenchymal stem cells; for information on the colors used to denote chromatin states, see Figure S1A in the Supplementary Appendix. Panel C shows increased endogenous expression of IRX3 and IRX5 on single-nucleotide T-to-C editing of rs1421085 in the nonrisk haplotype of a nonrisk-allele carrier, using CRISPR–Cas9 (five clonal expansions). CRISPR–Cas9 re-editing from the engineered C risk allele back to a T nonrisk allele with the use of an alternative single guide RNA restores low endogenous IRX3 and IRX5 gene expression. Panel D shows reduced expression of IRX3 and IRX5 on C-to-T editing of the risk allele in adipocyte progenitors from a risk-allele carrier. Knockdown of ARID5B increases IRX3 and IRX5 levels, as compared….

We next evaluated the tissue-autonomous versus brain-mediated roles of Irx3 by comparing the aP2-Irx3DN mice with hypothalamus dominant-negative Ins2-Irx3DN mice.19 The aP2-Irx3DN mice had a reduction in fat-mass ratio that was 3 times as great as that in Ins2-Irx3DN mice (a reduction of 57% vs. 19%), despite the fact that transgene expression in the hypothalamus was 3 times lower than that in Ins2-Irx3DN mice (Fig. S4P and S4Q in the Supplementary Appendix), which indicated that Irx3 has a hypothalamus-independent regulatory role in whole-body energy regulation. The phenotypic effects of Irx3 repression in aP2-Irx3DN mice were also stronger than those in whole-body Irx3 knockout mice, which suggested potential dominant repressor effects in adipocytes or other tissues, and were independent of Fto gene expression, which did not change (Fig. S4P and S4R in the Supplementary Appendix).

Our findings indicate that both Irx3 and Irx5 have cell-autonomous roles: manipulation of Irx3 andIrx5 led to energy-balance differences in three mouse cellular models, including mouse embryonic fibroblast–derived adipocytes, white 3T3-L1 preadipocytes, and β-adrenergic–stimulated beige ME3 preadipocytes (Fig. S5 in the Supplementary Appendix). In each case, our results indicated that Irx3 and Irx5 induced adipocyte lipid accumulation and repressed thermogenesis in a cell-autonomous way.

Determination of the Causal Variant and Disruption of Repression by ARID5B

To predict the causal variant, the disruption of which is necessary and sufficient to cause IRX3 andIRX5 dysregulation in human preadipocytes, we used phylogenetic module complexity analysis (PMCA)25

(Figure 4A 

FIGURE 4  http://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2015/nejm_2015.373.issue-10/nejmoa1502214/20150828/images/small/nejmoa1502214_f4.gif

Disruption of a Conserved ARID5B Repressor Motif by Causal SNV rs1421085 in Humans., and Fig. S6A and S6B in the Supplementary Appendix). The highest PMCA score was found for the rs1421085 T-to-C SNV, which is in perfect linkage disequilibrium with the most significant reported SNV, rs1558902, across multiple populations (1000 Genomes Phase 1 data), a finding that is consistent with a potentially causal role.

To evaluate whether rs1421085 plays a causal role in enhancer activity, we introduced the C allele into the nonrisk haplotype in our luciferase reporter assay. The T-to-C single-nucleotide alteration increased enhancer activity levels for 10-kb and 1-kb segments centered on the variant, in both orientations and both upstream and downstream of the transcription start, which indicated a gain of enhancer activity in association with the rs1421085 risk allele (Fig. S6C and S6D in the Supplementary Appendix).

To evaluate the effect of the variant on regulator binding, we used electrophoretic mobility-shift assays (EMSAs) of adipocyte nuclear extract with probes for the risk allele and the nonrisk allele of rs1421085. We found binding for the nonrisk allele, T, which lacked enhancer activity, but no binding for the risk allele, C; this indicated that the increased enhancer activity associated with the risk allele is probably due to a loss of repressor binding rather than to a gain of activator binding (Fig. S6E in the Supplementary Appendix).

We examined disrupted motifs and regulator expression to identify potential upstream regulators. The T-to-C substitution disrupted conserved motifs for NKX6-3, LHX6, and the ARID family of regulators (Figure 4A). Among them, ARID5B had the highest expression in adipose tissue and adipocytes and was bound specifically to the nonrisk allele in EMSA competition experiments (Fig. S6E and S6F in the Supplementary Appendix). ARID5B is known to play both repressive and activating roles and was previously implicated in adipogenesis and lipid metabolism in mice.27,28. Among nonrisk-allele carriers, expression of ARID5B was negatively correlated with expression ofIRX3 and IRX5, a finding consistent with ARID5B having a repressive role. No correlation was found in risk-allele carriers, which indicates a loss of ARID5B regulation (Fig. S6G in the Supplementary Appendix).

To evaluate the causal role of ARID5B, we next examined the effects of its knockdown and overexpression on IRX3 and IRX5. ARID5B knockdown increased IRX3 and IRX5 expression in primary preadipocytes from nonrisk-allele carriers to risk-allele levels, which indicates a loss of repression, but it had no effect on preadipocytes from risk-allele carriers, which indicates epistasis with the obesity-risk haplotype (Fig. S6H in the Supplementary Appendix). Consistent with this finding, in SGBS enhancer assays, ARID5B knockdown increased the activity of preadipocytes with the nonrisk allele to risk-allele levels, which indicates a loss of repression, but had no effect on risk-allele constructs, indicating epistasis with the rs1421085 risk allele (Fig. S6I in the Supplementary Appendix). ARID5B overexpression further reduced IRX3 and IRX5 levels in nonrisk-allele carriers, which indicated that repression was strengthened, but had no significant effect on risk-allele carriers, a finding consistent with impaired ARID5B repression in association with the risk haplotype (Fig. S6J in the Supplementary Appendix).

We also evaluated the cellular effects of ARID5B-directed perturbations in primary preadipocytes from risk-allele carriers and nonrisk-allele carriers. In preadipocytes from nonrisk-allele carriers,ARID5B knockdown reduced basal oxygen consumption and lipolysis (Fig. S6K and S6L in theSupplementary Appendix) and shifted expression patterns from mitochondrial to lipid markers (Fig. S2E in the Supplementary Appendix), which indicated that ARID5B plays causal roles in energy-balance regulation. In contrast, ARID5B knockdown had no effect on preadipocytes from risk-allele carriers, a finding consistent with a loss of ARID5B control.

These results suggest that the FTO obesity variant acts through disruption of ARID5B binding in the risk haplotype, leading to a loss of repression, a gain of enhancer activity, and increases inIRX3 and IRX5 expression (Fig. S6M in the Supplementary Appendix).

C-to-T Editing of the rs1421085 Risk Variant and the Effect on Thermogenesis

Targeted genome editing technology involving CRISPR–Cas929 makes it possible to test the phenotypic effect of altering the predicted causal nucleotide rs1421085 in its endogenous genomic context, in isolation from the other obesity-associated genetic variants in the same haplotype. We used CRISPR–Cas9 in primary preadipocytes with two separate guide RNAs, one for rs1421085 C-to-T rescue of the ARID5B motif disruption in risk-allele carriers and one for rs1421085 T-to-C disruption of the ARID5B motif in nonrisk-allele carriers.

We first evaluated the effect of rs1421085 editing on IRX3 and IRX5 expression levels. Starting from preadipocytes of a nonrisk-allele carrier, T-to-C editing doubled endogenous IRX3 and IRX5expression, to levels seen in risk-allele carriers; starting from the edited preadipocytes, C-to-T re-editing back to the nonrisk allele restored low expression levels (Figure 4C). Starting from the risk haplotype, C-to-T editing reduced IRX3 and IRX5 to nonrisk-allele levels, but only in the presence of ARID5B (Figure 4D); this established that disruption of ARID5B repression by rs1421085 is the mechanistic basis of the IRX3 and IRX5 dysregulatory event that mediates the effects of the FTOlocus on obesity.

Next, we evaluated the role of rs1421085 editing during differentiation of white and beige adipocytes, by studying differences in expression between edited and unedited preadipocytes during differentiation. Unedited adipocytes from a risk-allele carrier had a peak in IRX3 and IRX5expression during days 0 and 2 of preadipocyte differentiation into adipocytes; expression during early differentiation was reduced to nonrisk-allele levels by rs1421085 editing, which indicated a causal role of rs1421085 in developmental gene expression programs.

(Figure 5A

FIGURE 5 http://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2015/nejm_2015.373.issue-10/nejmoa1502214/20150828/images/small/nejmoa1502214_f5.gif

Rescue of Metabolic Effects on Adipocyte Thermogenesis through Editing of SNV rs1421085 in a Risk-Allele Carrier. The causal role of rs1421085 was further reflected in a significant increase in the expression of thermogenesis regulators (ADRB3, DIO2, PGC1A, and UCP1) and mitochondrial markers (NDUFA10, COX7A, and CPT1) in differentiating preadipocytes (Figure 5B), which indicated that C-to-T editing of the risk allele rescued thermogenesis regulatory programs.

Last, we evaluated the role of rs1421085 editing in cellular signatures of obesity by quantifying phenotypic differences between edited and unedited adipocytes. A causal role in the regulation of energy balance was indicated by the fact that C-to-T rescue of rs1421085 in edited adipocytes resulted in a reduction in gene expression for lipid storage and lipolytic markers (Fig. S2E and S8A in the Supplementary Appendix), an increase by a factor of 4 in basal metabolic rate and β-adrenergic oxygen consumption, and an increase by a factor of 7 in thermogenesis (Figure 5C, and Fig. S7B in the Supplementary Appendix). In particular, rescue of the ARID5B motif in C-to-T edited preadipocytes restored the strong dependence of mitochondrial respiration on ARID5B that is seen in nonrisk-allele carriers (Fig. S7C in the Supplementary Appendix).

These results indicate that the rs1421085 T-to-C single-nucleotide alteration underlies the association between FTO and obesity by disrupting ARID5B-mediated repression of IRX3 andIRX5. This disruption leads to a developmental shift from browning to whitening programs and loss of mitochondrial thermogenesis (Figure 5D).

DISCUSSION

Our work elucidates a potential mechanistic basis for the genetic association between FTO and obesity and indicates that the causal variant rs1421085 can disrupt ARID5B repressor binding; this disruption results in derepression of IRX3 and IRX5 during early adipocyte differentiation. This process could lead to a cell-autonomous shift from white adipocyte browning and thermogenesis to lipid storage, increased fat stores, and body-weight gain.

To translate the results of genomewide association studies into mechanistic insights, we combined public resources (epigenomic annotations, chromosome conformation, and regulatory motif conservation), targeted experiments for risk and nonrisk haplotypes (enhancer tiling, gene expression, and cellular profiling), and directed perturbations in human primary cells and mouse models (regulator–target knockdown and overexpression and CRISPR–Cas9 genome editing). These methods are specific to the elucidation of noncoding variants, which constitute the majority of signals in genomewide association studies; 80% of the trait-associated loci identified in such studies lack protein-altering variants, and 93% of the top hits are noncoding.30

The FTO association with obesity is unusual in many ways. First, rs1421085 has both a high frequency and a strong effect size,31 which suggests positive selection or bottlenecks (e.g., 44% frequency in European populations vs. 5% in African populations). Second, rs1421085 has switchlike behavior in enhancer activity, target-gene expression, and cellular phenotypes, possibly because of selective pressures on energy-balance control for rapid adaptation. Third, rs1421085 acts specifically in the early differentiation of preadipocytes, which emphasizes the importance of profiling diverse tissues, cell types, and developmental stages. Fourth, enhancer activity is found only for the risk allele, which emphasizes the importance of profiling both alleles. Finally, rs1421085 leads to a gain of function (increased enhancer, IRX3, and IRX5 activity); this is a rare property in protein-coding variants but may be common in noncoding variants.

The apparent genetic link between obesity and cell-autonomous adipocyte browning suggests a central role of beige adipocyte thermogenesis in whole-body energy metabolism in humans, a role that is consistent with that suggested in recent reports on PRDM16 in mice.9 IRX3 and IRX5 have evolutionarily conserved roles, and the ARID5B motif lies in a module that is functionally conserved across multiple mammalian species; this indicates that adaptive thermogenesis circuits are conserved, and IRX3 and IRX5 probably play both UCP1-dependent and UCP1-independent roles. Even though IRX3 and IRX5 dysregulation by rs1421085 was restricted to early differentiation, their effects persisted in mature adipocytes, and the targeting of these genes can have broader effects.

Last, we found that direct manipulation of the ARID5B–rs1421085–IRX3/IRX5 regulatory axis in primary cell cultures of adipocytes from patients reversed the signatures of obesity. This indicates that in addition to changes in physical activity and nutrition, manipulation of mitochondrial thermogenesis26 offers a potential third pathway for shifting between energy storage and expenditure in a brain-independent and tissue-autonomous way in humans.

In summary, our work elucidates a mechanistic basis for the strongest genetic association with obesity. Our results indicate that the SNV rs1421085 underlies the genetic association between theFTO locus and obesity. The SNV disrupts an evolutionarily conserved motif for the ARID5B repressor, which leads to loss of binding, derepression of a potent preadipocyte superenhancer, and activation of downstream targets IRX3 and IRX5 during early differentiation of mesenchymal progenitors into adipocyte subtypes. This results in a cell-autonomous shift from white adipocyte browning to lipid-storage gene expression programs and to repression of basal mitochondrial respiration, a decrease in thermogenesis in response to stimulus, and an increase in adipocyte size. Manipulation of the uncovered pathway, including knockdown or overexpression of the upstream regulator ARID5B, genome editing of the predicted causal variant rs1421085, and knockdown or overexpression of target genes IRX3 and IRX5, had a significant effect on obesity phenotypes.

Read Full Post »

Older Posts »

%d bloggers like this: