Feeds:
Posts
Comments

Archive for the ‘Ecosystems & Industrial Concentration in the Medical Device Sector’ Category

 

Executive Compensation of Big Pharma in 2016 & 2017 New Teva’s CEO, Third from the Top paid among his peers

 

Reporter: Aviva Lev- Ari, PhD, RN

 

This is a QUOTE from FiercePharma

http://www.fiercepharma.com/pharma/teva-poaches-lundbeck-chief-schultz-52m-package?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTkdFelpqZGxaamxoT0dNMSIsInQiOiJLcjlnb2RqQ1hWVU9IU0F4NCt3Kzl0QlNDOFh2SldHMTlyOUMzcUxMc2xZMTNHYkJzY09TOUJsRXFnZEVVYkdWNzNiVVpVY1wveDRyRUo5dWpjUWtPVmhqTmZSbzVsUFhXUDVJOTR2TkxvRWJDcnN3bjc4N0ZDd0VOUnBuN1g2dHAifQ%3D%3D

Teva enticed Schultz with a pay and welcome package worth up to $52 million, including $20 million in cash upfront, according to an SEC filing on the Monday hire. The new helmsman will also receive a restricted stock award of $5 million and two performance unit stock awards each worth $7.5 million.

Schultz’s base salary is $2 million, with an annual bonus opportunity worth 140% to 200% of his salary. Under the agreement, he’ll also receive $6 million in annual equity incentives.

For Teva, the pay will be well worth it if Schultz is able to engineer a turnaround. The Israeli drugmaker has had its stock price and business prospects battered over the last year as the generic pricing environment worsens and other threats continue to unfold. Knowing the challenges the company faced, Teva’s board said during the search that it was looking for a world-class pharma vet.

And Schultz has fixed things at an ailing drugmaker before. After Lundbeck’s former CEO stepped down and as it was laboring to launch new meds, it hired Schultz in 2015. He had already made a name for himself during a long tenure at Novo Nordisk and during his two years at Lundbeck, he won praise for improving revenue and profits.

If ranked among last year’s top-paid pharma executives, Schultz package would place him at No. 3, behind Mylan chairman Robert Coury’s $97 million and Valeant CEO Joseph Papa’s $62.7 million. Like Schultz, Papa also joined a drugmaker suffering from a barrage of negative developments in recent years.

Aside from tough pricing on generics, Teva is also dealing with a price fixing investigation and a generic threat to key multiple sclerosis drug Copaxone. The company recently kicked off a restructuring set to affect 7,000 employees around the world after its $40.5 billion buyout of Allergan’s generic business became more of a drag than a boost for the company.

 

RELATED: The top 15 highest-paid biopharma executives

SOURCE

http://www.fiercepharma.com/special-report/top-15-highest-paid-biopharma-executives

 

Read Full Post »

Advanced Peripheral Artery Disease (PAD): Axillary Artery PCI for Insertion and Removal of Impella Device

Reporter: Aviva Lev-Ari, PhD, RN

 

 

July 15, 2016
Authors:

Rajiv Tayal, MD, MPH1,2;  Mihir Barvalia, MD, MHA1;  Zeshan Rana, MD2;  Benjamin LeSar, MD1;  Humayun Iftikhar, MD1;  Spas Kotev, MD1;  Marc Cohen, MD1;  Najam Wasty, MD1

Abstract: Traditionally, brachial and common femoral arteries have served as access sites of choice, with many operators recently converting to radial artery access for coronary angiography and percutaneous intervention due to literature suggesting reduced bleeding risk, better patient outcomes, and lower hospital-associated costs. However, radial access has limitations when percutaneous procedures requiring larger sheath sizes are performed. Six Fr sheaths are considered the limit for safe use with the radial artery given that the typical luminal diameter of the vessel is approximately 2 mm, while peripheral artery disease (PAD) may often limit use of the common femoral artery, particularly in patients with multiple co-morbid risk factors. Similarly, the brachial artery has fallen out of favor due to both thrombotic and bleeding risks, while also not safely and reliably accommodating sheaths larger than 7 Fr. Here we describe 3 cases of a new entirely percutaneous technique utilizing the axillary artery for delivery of Impella 2.5 (13.5 Fr) and CP (14 Fr) cardiac-assist devices for protected percutaneous coronary intervention in the setting of prohibitive PAD.

J INVASIVE CARDIOL 2016;28(9):374-380. 2016 July 15 (Epub ahead of print)

Key words: axillary artery, percutaneous access, high-risk PCI

 

SOURCE

http://amptheclimeeting.com/ampcentral/articles/totally-percutaneous-insertion-and-removal-impella-device-using-axillary-artery-setting

Read Full Post »

Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics: Request for Book Review Writing on Amazon.com, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

cvd-series-a-volume-iii


Series A: e-Books on Cardiovascular Diseases
 

Series A Content Consultant: Justin D Pearlman, MD, PhD, FACC

VOLUME THREE

Etiologies of Cardiovascular Diseases:

Epigenetics, Genetics and Genomics

http://www.amazon.com/dp/B018PNHJ84

 

by  

Larry H Bernstein, MD, FCAP, Senior Editor, Author and Curator

and

Aviva Lev-Ari, PhD, RN, Editor and Curator

Introduction to Volume Three 

PART 1
Genomics and Medicine

1.1  Genomics and Medicine: The Physician’s View

1.2  Ribozymes and RNA Machines – Work of Jennifer A. Doudna

1.3  Genomics and Medicine: Contributions of Genetics and Genomics to Cardiovascular Disease Diagnoses

1.4 Genomics Orientations for Individualized Medicine, Volume One

1.4.1 CVD Epidemiology, Ethnic subtypes Classification, and Medication Response Variability: Cardiology, Genomics and Individualized Heart Care: Framingham Heart Study (65 y-o study) & Jackson Heart Study (15 y-o study)

1.4.2 What comes after finishing the Euchromatic Sequence of the Human Genome?

1.5  Genomics in Medicine – Establishing a Patient-Centric View of Genomic Data

 

PART 2
Epigenetics – Modifiable Factors Causing Cardiovascular Diseases

2.1 Diseases Etiology

2.1.1 Environmental Contributors Implicated as Causing Cardiovascular Diseases

2.1.2 Diet: Solids, Fluid Intake and Nutraceuticals

2.1.3 Physical Activity and Prevention of Cardiovascular Diseases

2.1.4 Psychological Stress and Mental Health: Risk for Cardiovascular Diseases

2.1.5 Correlation between Cancer and Cardiovascular Diseases

2.1.6 Medical Etiologies for Cardiovascular Diseases: Evidence-based Medicine – Leading DIAGNOSES of Cardiovascular Diseases, Risk Biomarkers and Therapies

2.1.7 Signaling Pathways

2.1.8 Proteomics and Metabolomics

2.1.9 Sleep and Cardiovascular Diseases

2.2 Assessing Cardiovascular Disease with Biomarkers

2.2.1 Issues in Genomics of Cardiovascular Diseases

2.2.2 Endothelium, Angiogenesis, and Disordered Coagulation

2.2.3 Hypertension BioMarkers

2.2.4 Inflammatory, Atherosclerotic and Heart Failure Markers

2.2.5 Myocardial Markers

2.3  Therapeutic Implications: Focus on Ca(2+) signaling, platelets, endothelium

2.3.1 The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, Arterial Smooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets

2.3.2 EMRE in the Mitochondrial Calcium Uniporter Complex

2.3.3 Platelets in Translational Research ­ 2: Discovery of Potential Anti-platelet Targets

2.3.4 The Final Considerations of the Role of Platelets and Platelet Endothelial Reactions in Atherosclerosis and Novel Treatments

2.3.5 Nitric Oxide Synthase Inhibitors (NOS-I)

2.3.6 Resistance to Receptor of Tyrosine Kinase

2.3.7 Oxidized Calcium Calmodulin Kinase and Atrial Fibrillation

2.3.8 Advanced Topics in Sepsis and the Cardiovascular System at its End Stage

2.4 Comorbidity of Diabetes and Aging

2.4.1 Heart and Aging Research in Genomic Epidemiology: 1700 MIs and 2300 coronary heart disease events among about 29 000 eligible patients

2.4.2 Pathophysiological Effects of Diabetes on Ischemic-Cardiovascular Disease and on Chronic Obstructive Pulmonary Disease (COPD)

2.4.3 Risks of Hypoglycemia in Diabetics with Chronic Kidney Disease (CKD)

2.4.4  Mitochondrial Mechanisms of Disease in Diabetes Mellitus

2.4.5 Mitochondria: More than just the “powerhouse of the cell”

2.4.6  Pathophysiology of GLP-1 in Type 2 Diabetes

2.4.7 Developments in the Genomics and Proteomics of Type 2 Diabetes Mellitus and Treatment Targets

2.4.8 CaKMII Inhibition in Obese, Diabetic Mice leads to Lower Blood Glucose Levels

2.4.9 Protein Target for Controlling Diabetes, Fractalkine: Mediator cell-to-cell Adhesion though CX3CR1 Receptor, Released from cells Stimulate Insulin Secretion

2.4.10 Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

2.4.11 CABG or PCI: Patients with Diabetes – CABG Rein Supreme

2.4.12 Reversal of Cardiac Mitochondrial Dysfunction

2.4.13  BARI 2D Trial Outcomes

2.4.14 Overview of new strategy for treatment of T2DM: SGLT2 inhibiting oral antidiabetic agents

2.5 Drug Toxicity and Cardiovascular Diseases

2.5.1 Predicting Drug Toxicity for Acute Cardiac Events

2.5.2 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

2.5.3 Decoding myocardial Ca2+ signals across multiple spatial scales: A role for sensitivity analysis

2.5.4. Leveraging Mathematical Models to Understand Population Variability in Response to Cardiac Drugs: Eric Sobie, PhD

2.5.5 Exploiting mathematical models to illuminate electrophysiological variability between individuals.

2.5.6 Clinical Effects and Cardiac Complications of Recreational Drug Use: Blood pressure changes, Myocardial ischemia and infarction, Aortic dissection, Valvular damage, and Endocarditis, Cardiomyopathy, Pulmonary edema and Pulmonary hypertension, Arrhythmias, Pneumothorax and Pneumopericardium

 

2.6 Male and Female Hormonal Replacement Therapy: The Benefits and the Deleterious Effects on Cardiovascular Diseases

2.6.1  Testosterone Therapy for Idiopathic Hypogonadotrophic Hypogonadism has Beneficial and Deleterious Effects on Cardiovascular Risk Factors

2.6.2 Heart Risks and Hormones (HRT) in Menopause: Contradiction or Clarification?

2.6.3 Calcium Dependent NOS Induction by Sex Hormones: Estrogen

2.6.4 Role of Progesterone in Breast Cancer Progression

PART 3
Determinants of Cardiovascular Diseases Genetics, Heredity and Genomics Discoveries

Introduction

3.1 Why cancer cells contain abnormal numbers of chromosomes (Aneuploidy)

3.1.1 Aneuploidy and Carcinogenesis

3.2 Functional Characterization of Cardiovascular Genomics: Disease Case Studies @ 2013 ASHG

3.3 Leading DIAGNOSES of Cardiovascular Diseases covered in Circulation: Cardiovascular Genetics, 3/2010 – 3/2013

3.3.1: Heredity of Cardiovascular Disorders

3.3.2: Myocardial Damage

3.3.3: Hypertention and Atherosclerosis

3.3.4: Ethnic Variation in Cardiac Structure and Systolic Function

3.3.5: Aging: Heart and Genetics

3.3.6: Genetics of Heart Rhythm

3.3.7: Hyperlipidemia, Hyper Cholesterolemia, Metabolic Syndrome

3.3.8: Stroke and Ischemic Stroke

3.3.9: Genetics and Vascular Pathologies and Platelet Aggregation, Cardiac Troponin T in Serum

3.3.10: Genomics and Valvular Disease

3.4  Commentary on Biomarkers for Genetics and Genomics of Cardiovascular Disease

PART 4
Individualized Medicine Guided by Genetics and Genomics Discoveries

4.1 Preventive Medicine: Cardiovascular Diseases

4.1.1 Personal Genomics for Preventive Cardiology Randomized Trial Design and Challenges

4.2 Gene-Therapy for Cardiovascular Diseases

4.2.1 Genetic Basis of Cardiomyopathy

4.3 Congenital Heart Disease/Defects

4.4 Cardiac Repair: Regenerative Medicine

4.4.1 A Powerful Tool For Repairing Damaged Hearts

4.4.2 Modified RNA Induces Vascular Regeneration After a Heart

4.5 Pharmacogenomics for Cardiovascular Diseases

4.5.1 Blood Pressure Response to Antihypertensives: Hypertension Susceptibility Loci Study

4.5.2 Statin-Induced Low-Density Lipoprotein Cholesterol Reduction: Genetic Determinants in the Response to Rosuvastatin

4.5.3 SNPs in apoE are found to influence statin response significantly. Less frequent variants in PCSK9 and smaller effect sizes in SNPs in HMGCR

4.5.4 Voltage-Gated Calcium Channel and Pharmacogenetic Association with Adverse Cardiovascular Outcomes: Hypertension Treatment with Verapamil SR (CCB) vs Atenolol (BB) or Trandolapril (ACE)

4.5.5 Response to Rosuvastatin in Patients With Acute Myocardial Infarction: Hepatic Metabolism and Transporter Gene Variants Effect

4.5.6 Helping Physicians identify Gene-Drug Interactions for Treatment Decisions: New ‘CLIPMERGE’ program – Personalized Medicine @ The Mount Sinai Medical Center

4.5.7 Is Pharmacogenetic-based Dosing of Warfarin Superior for Anticoagulation Control?

Summary & Epilogue to Volume Three

 

 

Read Full Post »

TAVR with Sapien 3: combined all-cause death & disabling stroke rate was 8.4% and 16.6% for the surgery arm

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 6/24/2020

Sapien 3 TAVR On Par with Surgery at 5 Years

Differences observed in stroke and pacemaker rates

 

Transcatheter aortic valve replacement (TAVR) with the contemporary Sapien 3 device generally held up against surgery in intermediate-risk patients over 5 years, according to a propensity-matched analysis.

Except for differences in stroke types, longer-term clinical outcomes were comparable between 783 matched pairs of patients undergoing TAVR with Sapien 3 and peers receiving surgical aortic valve replacement (SAVR) in the PARTNER II program:

  • All-cause death: 39.1% vs 41.3% (HR 0.90, 95% CI 0.77-1.06)
  • Any stroke: 13.4% vs 11.4% (HR 1.09, 95% CI 0.80-1.49)
  • Disabling stroke: 5.8% vs 7.9% (HR 0.66, 95% CI 0.43-1.00)
  • Non-disabling stroke: 6.4% vs 3.5% (HR 1.67, 95% CI 1.01-2.76)
  • Rehospitalization: 26.7% vs 25.3% (HR 0.94, 95% CI 0.76-1.16)

Thus, the early benefit of Sapien 3 TAVR with respect to in death or disabling stroke was “somewhat attenuated” by year 5, whereas the difference in non-disabling stroke (modified Rankin Scale scores of 1 or less) appeared to widen over time, reported Susheel Kodali, MD, of New York-Presbyterian/Columbia University Medical Center in New York City, in a presentation at the Transcatheter Valve Therapy (TVT) virtual meeting.

Mean aortic valve gradients were comparable between groups over time. The incidence of moderate or worse paravalvular regurgitation (PVR) was also similar, staying below 1% for either study arm at 5 years, though the proportion of patients classified as having none or trace PVR numerically favored the surgical group.

“These results with Sapien 3 TAVR demonstrating clinical outcomes and valve durability comparable to surgery at 5 years, associated with low PVR, are encouraging and continue to support TAVR as an alternative to surgery,” Kodali concluded.

Sapien 3 is a current-generation balloon-expandable valve that now has the Sapien 3 Ultra as a successor. Recently, the Ultra was shown to lower PVR rates given a new enhanced outer skirt.

Given that patients are more likely to be anticoagulated after SAVR than after TAVR, the increased incidence of non-disabling stroke “maybe related to the treatment of these patients,” suggested TVT discussant Julinda Mehilli, MD, of Ludwig-Maximilians University and the German Heart Center in Munich.

In response, Kodali noted that his group searched and couldn’t find a clear association between anticoagulation and such strokes.

“I’d just be a little careful in this nonrandomized study of trying to make too much of a small stroke difference,” said Gregg Stone, MD, of Mount Sinai Icahn School of Medicine and the Cardiovascular Research Foundation in New York City. The difference may be related to factors such as different adjudication and definitions of disabling versus non-disabling stroke, he said during the discussion.

New permanent pacemaker rates were significantly higher in the 5 years after TAVR (16.2% vs 11.7% after SAVR, OR 0.69, 95% CI 0.52-0.92).

The two approaches otherwise performed similarly when it came to:

  • Endocarditis: 2.2% vs 2.4% (OR 1.12, 95% CI 0.58-2.17)
  • Reintervention on the aortic valve: 1.3% vs 0.8% (OR 0.60, 95% CI 0.22-1.65)
  • Valve thrombosis: 0.8% vs 0.1% (OR 0.17, 95% CI 0.02-1.38)

Kodali emphasized that none of the seven patients who experienced valve thrombosis had a stroke.

Moreover, the 1% reintervention rate “couldn’t be more reassuring” given the competing risk of mortality, commented TVT session moderator Stephan Windecker, MD, of Bern University Hospital in Switzerland.

For the present study, Kodali and colleagues matched intermediate-risk patients who received the Sapien 3 device (in the PARTNER II S3i study) with those who had surgery (in the randomized PARTNER IIA trial). Study participants were all deemed to be at intermediate surgical risk and presented with severe aortic stenosis.

The matched cohort included 1,566 people. Baseline characteristics were similar between TAVR and SAVR arms (age just over 81 on average; 58% men; STS score 5.5%).

Hemodynamic valve deterioration came out to about 0.6% for both groups. Bioprosthetic valve failure reached 0.63% of the TAVR group and 0.37% of the surgical group (P=0.22).

Seeing the “very low” event rates and “good hemodynamics” out to 5 years in an octogenarian population “makes you feel better,” commented Samir Kapadia, MD, of Cleveland Clinic. It’s “a positive feeling you get from reading the data,” he said.

Residual confounding was possible despite propensity matching, Kodali acknowledged. In addition, the PARTNER investigators had not performed systematic neurologic assessments on these patients, and the TAVR group was disproportionately lost to follow-up.

Further follow-up is planned out to 7 and 10 years, Kodali said.

REFERENCE

Kodali SK, et al “Sapien 3 transcatheter aortic valve replacement compared with surgery in intermediate-risk patients: a propensity-matched analysis of 5-year outcomes” TVT 2020.

Last Updated June 24, 2020
SOURCE

https://www.medpagetoday.com/meetingcoverage/tvt/87178?xid=nl_mpt_confroundup_2020-06-24&eun=g5099207d41r

Edwards Lifesciences hits all-time high on Sapien 3 study

Edwards Sapien 3Shares in Edwards Lifesciences (NYSE:EW) hit an all-time high yesterday after the company reported strong 1-year data for its Sapien 3 replacement heart valve over the weekend.

Results from the Partner II trial from 1,077 intermediate-risk patients showed that the Sapien 3 beat surgical valve replacement across a variety of safety endpoints, Irvine, Calif.-based Edwards said at the American College of Cardiology’s annual meeting April 3. The combined all-cause death & disabling stroke rate was 8.4% for TAVR with Sapien 3 and 16.6% for the surgery arm, according to the study, which was also published in The Lancet. The Sapien 3 device won a nod from the FDA in June 2015 for high-risk patients.

Expanding the indication to intermediate-risk patients would more than double the eligible patient pool, chairman & CEO Mike Mussallem told Reuters. That moved investors to send EW shares yesterday to an all-time high of $107.90, before the stock closed at $105.08.

SOURCE

http://www.massdevice.com/edwards-lifesciences-hits-time-high-sapien-3-study/?utm_source=newsletter-160405&utm_medium=email&utm_campaign=newsletter-160405&spMailingID=8750804&spUserID=MTI2MTQxNTczMjM5S0&spJobID=900546483&spReportId=OTAwNTQ2NDgzS0

Read Full Post »

Ngai-Yin Chan-The Practice of Catheter Cryoablation for Cardiac Arrhythmias[PDF] 20 MB PDF… https://t.co/8EYkq36tJA

Sourced through Scoop.it from: www.medbooksvn.info

See on Scoop.itCardiovascular Disease: PHARMACO-THERAPY

Read Full Post »

Myocardial Ischemia

Reporter: Aviva Lev-Ari, PhD, RN

 

Watch Video

https://www.youtube.com/v/BPF1a0VbzXM?fs=1&hl=fr_FR

This animation examines some of the cellular processes involved in myocardial ischemia.

Sourced through Scoop.it from: www.youtube.com

See on Scoop.itCardiovascular and vascular imaging

Read Full Post »

Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle

Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle

Reporter: Stephen S Williams, PhD

Article ID #180: Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle. Published on 8/15/2015

WordCloud Image Produced by Adam Tubman

Leaders in Pharmaceutical Business Intelligence would like to announce the First volume of their BioMedical E-Book Series D:

Metabolic Genomics & Pharmaceutics, Vol. I

SACHS FLYER 2014 Metabolomics SeriesDindividualred-page2

which is now available on Amazon Kindle at

http://www.amazon.com/dp/B012BB0ZF0.

This e-Book is a comprehensive review of recent Original Research on  METABOLOMICS and related opportunities for Targeted Therapy written by Experts, Authors, Writers. This is the first volume of the Series D: e-Books on BioMedicine – Metabolomics, Immunology, Infectious Diseases.  It is written for comprehension at the third year medical student level, or as a reference for licensing board exams, but it is also written for the education of a first time baccalaureate degree reader in the biological sciences.  Hopefully, it can be read with great interest by the undergraduate student who is undecided in the choice of a career. The results of Original Research are gaining value added for the e-Reader by the Methodology of Curation. The e-Book’s articles have been published on the Open Access Online Scientific Journal, since April 2012.  All new articles on this subject, will continue to be incorporated, as published with periodical updates.

We invite e-Readers to write an Article Reviews on Amazon for this e-Book on Amazon.

All forthcoming BioMed e-Book Titles can be viewed at:

http://pharmaceuticalintelligence.com/biomed-e-books/

Leaders in Pharmaceutical Business Intelligence, launched in April 2012 an Open Access Online Scientific Journal is a scientific, medical and business multi expert authoring environment in several domains of  life sciences, pharmaceutical, healthcare & medicine industries. The venture operates as an online scientific intellectual exchange at their website http://pharmaceuticalintelligence.com and for curation and reporting on frontiers in biomedical, biological sciences, healthcare economics, pharmacology, pharmaceuticals & medicine. In addition the venture publishes a Medical E-book Series available on Amazon’s Kindle platform.

Analyzing and sharing the vast and rapidly expanding volume of scientific knowledge has never been so crucial to innovation in the medical field. WE are addressing need of overcoming this scientific information overload by:

  • delivering curation and summary interpretations of latest findings and innovations on an open-access, Web 2.0 platform with future goals of providing primarily concept-driven search in the near future
  • providing a social platform for scientists and clinicians to enter into discussion using social media
  • compiling recent discoveries and issues in yearly-updated Medical E-book Series on Amazon’s mobile Kindle platform

This curation offers better organization and visibility to the critical information useful for the next innovations in academic, clinical, and industrial research by providing these hybrid networks.

Table of Contents for Metabolic Genomics & Pharmaceutics, Vol. I

Chapter 1: Metabolic Pathways

Chapter 2: Lipid Metabolism

Chapter 3: Cell Signaling

Chapter 4: Protein Synthesis and Degradation

Chapter 5: Sub-cellular Structure

Chapter 6: Proteomics

Chapter 7: Metabolomics

Chapter 8:  Impairments in Pathological States: Endocrine Disorders; Stress

                   Hypermetabolism and Cancer

Chapter 9: Genomic Expression in Health and Disease 

 

Summary 

Epilogue

 

 

Read Full Post »

Medical Headline Misinformation Strikes Again: Claims About Vitamin D

Reporter: Stephen J. Williams, Ph.D.

A recent posting by a group called the Vitamin D Council (and put on this site) had referred to, and misquoted, the Mayo Clinic site on the role of vitamin D on various diseases. At first I was curious if this was actually reported on the Mayo site on claims of prevention of various cancers (as results from retrospective studies had been conflicting) and originally had made some strong comments. From comments made from this post I do agree that there is strong evidence about vitamin D supplementation for the prevention of rickets but as Mayo reviewed claims about vitamin D supplementation and prevention of certain diseases such as cancers and heart disease may not be as strong as some suggest.  My main concern was : is the clinical evidence strong enough for the role of vitamin D supplementation in a wide array of diseases and did Mayo make the claims as suggested in some media reports?  Actually Mayo does a very thorough job of determining the clinical evidence and the focus of vitamins and cancer risk will be a point of further discussion.

After consulting the Mayo clinic website it appears that the Vitamin D Council site had indeed misquoted and misrepresented the medical information contained within the Mayo Clinic website.

Medical Misinformation Is Probably The Most Hazardous and Biggest Risk Impacting a Healthy Lifestyle

The site had made numerous claims on role of vitamin D3 (cholecalciferol) in numerous diseases; making it appear there were definitive links between low vitamin D3 and risk of hypertension, cancer, depression and diabetes.

A little background on Vitamin D

From Wikipedia

Vitamin D refers to a group of fat-soluble secosteroids responsible for enhancing intestinal absorption of calcium, iron, magnesium, phosphate and zinc. In humans, the most important compounds in this group are vitamin D3 (also known as cholecalciferol) and vitamin D2 (ergocalciferol).[1] Cholecalciferol and ergocalciferol can be ingested from the diet and from supplements.[1][2][3] Very few foods contain vitamin D; synthesis of vitamin D (specifically cholecalciferol) in the skin is the major natural sources of the vitamin. Dermal synthesis of vitamin D from cholesterol is dependent on sun exposure (specifically UVB radiation).Vitamin D has a significant role in calcium homeostasis and metabolism. Its discovery was due to effort to find the dietary substance lacking in rickets (the childhood form of osteomalacia).[4]

also from Widipedia on Vitamin D toxicity

Vitamin D toxicity

Vitamin D toxicity is rare.[20] It is caused by supplementing with high doses of vitamin D rather than sunlight. The threshold for vitamin D toxicity has not been established; however, the tolerable upper intake level (UL), according to some research, is 4,000 IU/day for ages 9–71.[7] Whereas another research concludes that in healthy adults, sustained intake of more than 1250 μg/day (50,000 IU) can produce overt toxicity after several months and can increase serum 25-hydroxyvitamin D levels to 150 ng/ml and greater;[20][56] those with certain medical conditions, such as primary hyperparathyroidism,[57] are far more sensitive to vitamin D and develop hypercalcemia in response to any increase in vitamin D nutrition, while maternal hypercalcemia during pregnancy may increase fetal sensitivity to effects of vitamin D and lead to a syndrome of mental retardation and facial deformities.[57][58]

After being commissioned by the Canadian and American governments, the Institute of Medicine (IOM) as of 30 November 2010, has increased the tolerable upper limit (UL) to 2,500 IU per day for ages 1–3 years, 3,000 IU per day for ages 4–8 years and 4,000 IU per day for ages 9–71+ years (including pregnant or lactating women).[7]

Published cases of toxicity involving hypercalcemia in which the vitamin D dose and the 25-hydroxy-vitamin D levels are known all involve an intake of ≥40,000 IU (1,000 μg) per day.[57] Recommending supplementation, when those supposedly in need of it are labeled healthy, has proved contentious, and doubt exists concerning long-term effects of attaining and maintaining high serum 25(OH)D by supplementation.[61]

From the Mayo Clinic Website on Vitamin D

The Mayo Clinic has done a wonderful job curating the uses and proposed uses of vitamin D for various diseases and rates the evidence using a grading system A-F (as shown below):

Key to grades

A STRONG scientific evidence FOR THIS USE

B GOOD scientific evidence FOR THIS USE

C UNCLEAR scientific evidence for this use

D Fair scientific evidence AGAINST THIS USE (it may not work)

F Strong scientific evidence AGAINST THIS USE (it likely does not work)

Mayo has information for other natural products as well. As described below (and on the Mayo site here) most of the supposed evidence fails their criteria for a strong clinical link between diseases such as heart disease, hypertension, cancer and vitamin D (either parental or D3) levels.

The important take-home from the Mayo site is that there is strong evidence for the use of vitamin D in diseases related to the known mechanism of vitamin D such as low serum phosphate either due to kidney disease (Fanconi syndrome) or familial hypophosphatemia or in diseases surrounding bone metabolism like osteomalacia, rickets, dental cavities and even as a treatment for psoriasis or underactive parathyroid.

However most indications like hypertension, stroke, cancer prevention or treatment (other than supportive therapy for low vitamin D levels) get a poor grade (C or D) for clinical correlation from Mayo Clinic.

A Post in the Near Future will be a Curation of Validated Clinical Studies on Effects of Vitamins on Cancer Risk.

Below is taken from the Mayo Site:

Evidence

These uses have been tested in humans or animals.  Safety and effectiveness have not always been proven.  Some of these conditions are potentially serious, and should be evaluated by a qualified healthcare provider.

Grading rationale

Evidence grade Condition to which grade level applies
A

Deficiency (phosphate)

Familial hypophosphatemia is a rare, inherited condition in which there are low blood levels of phosphate and problems with vitamin D metabolism. It is a form of rickets. Taking calcitriol or dihydrotachysterol by mouth along with phosphate supplements is effective for treating bone disorders in people with this disease. Those with this disorder should be monitored by a medical professional.

A

Kidney disease (causing low phosphate levels)

Fanconi syndrome is a kidney disease in which nutrients, including phosphate, are lost in the urine instead of being reabsorbed by the body. Taking ergocalciferol by mouth is effective for treating low phosphate levels caused by Fanconi syndrome.

A

Osteomalacia (bone softening in adults)

Adults who have severe vitamin D deficiency may experience bone pain and softness, as well as muscle weakness. Osteomalacia may be found among the following people: those who are elderly and have diets low in vitamin D; those with problems absorbing vitamin D; those without enough sun exposure; those who undergo stomach or intestine surgery; those with bone disease caused by aluminum; those with chronic liver disease; or those with bone disease associated with kidney problems. Treatment for osteomalacia depends on the cause of the disease and often includes pain control and surgery, as well as vitamin D and phosphate-binding agents.

A

Psoriasis (disorder causing skin redness and irritation)

Many different approaches are used to treat psoriasis, including light therapy, stress reduction, moisturizers, or salicylic acid. For more severe cases, calcipotriene (Dovonex®), a man-made substance similar to vitamin D3, may help control skin cell growth. This agent is a first-line treatment for mild-to-moderate psoriasis. Calcipotriene is also available with betamethasone and may be safe for up to one year. Vitamin D3 (tacalcitol) ointment or high doses of becocalcidiol applied to the skin are also thought to be safe and well-tolerated.

A

Rickets (bone weakening in children)

Rickets may develop in children who have vitamin D deficiency caused by a diet low in vitamin D, a lack of sunlight, or both. Babies fed only breast milk (without supplemental vitamin D) may also develop rickets. Ergocalciferol or cholecalciferol is effective for treating rickets caused by vitamin D deficiency. Calcitriol should be used in those with kidney failure. Treatment should be under medical supervision.

A

Thyroid conditions (causing low calcium levels)

Low levels of parathyroid hormone may occur after surgery to remove the parathyroid glands. Taking high doses of dihydrotachysterol, calcitriol, or ergocalciferol by mouth, with or without calcium, may help increase calcium levels in people with this type of thyroid problem. Increasing calcium intake, with or without vitamin D, may reduce the risk of underactive parathyroid glands.

A

Thyroid conditions (due to low vitamin D levels)

Some people may have overactive parathyroid glands due to low levels of vitamin D, and vitamin D is the first treatment for this disorder. For people who have overactive parathyroid glands due to other causes, surgery to remove the glands is often recommended. Studies suggest that vitamin D may help reduce the risk of further thyroid problems after undergoing partial or total removal of the parathyroid glands.

A

Vitamin D deficiency

Vitamin D deficiency is associated with many conditions, including bone loss, kidney disease, lung disorders, diabetes, stomach and intestine problems, and heart disease. Vitamin D supplementation has been found to help prevent or treat vitamin D deficiency.

B

Dental cavities

Much evidence has shown that vitamin D helps prevent cavities; however, more high-quality research is needed to further support this finding.

B

Renal osteodystrophy (bone problems due to chronic kidney failure)

Renal osteodystrophy refers to the bone problems that occur in people with chronic kidney failure. Calcifediol or ergocalciferol taken by mouth may help prevent this condition in people with chronic kidney failure who are undergoing treatment.

C

Autoimmune diseases

Vitamin D may reduce inflammation and help prevent autoimmune diseases, including rheumatoid arthritis, multiple sclerosis, and Crohn’s disease. However, further high-quality research is needed to confirm these results.

C

Bone density (children)

Vitamin D improves bone density in children who are vitamin D deficient. However, results are unclear and more research is needed.

C

Bone diseases (kidney disease or kidney transplant)

Vitamin D has been studied for people with chronic kidney disease. The use of substances similar to vitamin D has been found to increase bone density in people with kidney disease. The effect of vitamin D itself is unclear. Further research is needed before conclusions can be made.

C

Cancer prevention (breast, colorectal, prostate, other)

Many studies have looked at the effects of vitamin D on cancer. Positive results have been reported with the use of vitamin D alone or with calcium. Vitamin D intake with or without calcium has been studied for colorectal, cervical, breast, and prostate cancer. A reduced risk of colorectal cancer has been shown with vitamin D supplementation. However, there is a lack of consistent or strong evidence. Further study is needed.

C

Fibromyalgia (long-term, body-wide pain)

Vitamin D has been studied for the treatment of fibromyalgia, but evidence is lacking in support of its effectiveness. Further study is needed.

C

Fractures (prevention)

Conflicting results have been found on the use of vitamin D for fracture prevention. The combination of alfacalcidol and alendronate has been found to reduce the risk of falls and fractures. However, further high-quality research is needed before firm conclusions can be made.

C

Hepatic osteodystrophy (bone disease in people with liver disease)

Metabolic bone disease is common among people with chronic liver disease, and osteoporosis accounts for the majority of cases. Varying degrees of poor calcium absorption may occur in people with chronic liver disease due to malnutrition and vitamin D deficiency. Vitamin D taken by mouth or injected may play a role in the management of this condition.

C

High blood pressure

Low levels of vitamin D may be linked to high blood pressure. Blood pressure is often higher during the winter season, at a further distance from the equator, and in people with dark skin pigmentation. However, the evidence is unclear. More research is needed in this area. People who have high blood pressure should be managed by a medical professional.

C

Immune function

Early research suggests that vitamin D and similar compounds, such as alfacalcidol, may impact immune function. Vitamin D added to standard therapy may benefit people with infectious disease. More studies are needed to confirm these results.

C

Seasonal affective disorder (SAD)

SAD is a form of depression that occurs during the winter months, possibly due to reduced exposure to sunlight. In one study, vitamin D was found to be better than light therapy in the treatment of SAD. Further studies are necessary to confirm these findings.

C

Stroke

Higher levels of vitamin D may decrease the risk of stroke. However, further study is needed to confirm the use of vitamin D for this condition.

C

Type 1 diabetes

Some studies suggest that vitamin D may help prevent the development of type 1 diabetes. However, there is a lack of strong evidence to support this finding.

C

Type 2 diabetes

Vitamin D has mixed effects on blood sugar and insulin sensitivity. It is often studied in combination with calcium. Further research is needed to confirm these results.

D

Cancer treatment (prostate)

Evidence suggests a lack of effect of vitamin D as a part of cancer treatment for prostate cancer. Further study is needed using other formulations of vitamin D and other types of cancer.

D

Heart disease

Vitamin D is recognized as being important for heart health. Overall, research is not consistent, and some studies have found negative effects of vitamin D on heart health. More high-quality research is needed to make a firm conclusion.

D

High cholesterol

Many studies have looked at the effects of vitamin D alone or in combination with other agents for high cholesterol, but results are inconsistent. Some negative effects have been reported. More research is needed on the use of vitamin D alone or in combination with calcium.

Other related articles on Vitamins and Disease were published in this Open Access Online Scientific Journal, include the following:

Multivitamins – Don’t help Extend Life or ward off Heart Disease and Improve state of Memory Loss

Diet and Diabetes

What do you know about Plants and Neutraceuticals?

Malnutrition in India, high newborn death rate and stunting of children age under five years

Omega-3 fatty acids, depleting the source, and protein insufficiency in renal disease

American Diet is LOW in four important Nutrients that have a direct bearing on Aging and the Brain

Parathyroids and Bone Metabolism

Read Full Post »

Protecting Your Biotech IP and Market Strategy: Notes from Life Sciences Collaborative 2015 Meeting

 

Protecting Your Biotech IP and Market Strategy: Notes from Life Sciences Collaborative 2015 Meeting

Reporter: Stephen J. Williams, PhD

Article ID #169: Protecting Your Biotech IP and Market Strategy: Notes from Life Sciences Collaborative 2015 Meeting. Published on 3/11/2015

WordCloud Image Produced by Adam Tubman

Achievement Beyond Regulatory Approval – Design for Commercial Success

philly2nightStephen J. Williams, Ph.D.: Reporter

The Mid-Atlantic group Life Sciences Collaborative, a select group of industry veterans and executives from the pharmaceutical, biotechnology, and medical device sectors whose mission is to increase the success of emerging life sciences businesses in the Mid-Atlantic region through networking, education, training and mentorship, met Tuesday March 3, 2015 at the University of the Sciences in Philadelphia (USP) to discuss post-approval regulatory issues and concerns such as designing strong patent protection, developing strategies for insurance reimbursement, and securing financing for any stage of a business.

The meeting was divided into three panel discussions and keynote speech:

  1. Panel 1: Design for Market Protection– Intellectual Property Strategy Planning
  2. Panel 2: Design for Market Success– Commercial Strategy Planning
  3. Panel 3: Design for Investment– Financing Each Stage
  4. Keynote Speaker: Robert Radie, President & CEO Egalet Corporation

Below are Notes from each PANEL Discussion:

For more information about the Life Sciences Collaborative SEE

Website: http://www.lifesciencescollaborative.org/

Or On Facebook

Or On Twitter @LSCollaborative

Panel 1: Design for Market Protection; Intellectual Property Strategy Planning

Take-home Message: Developing a very strong Intellectual Property (IP) portfolio and strategy for a startup is CRITICALLY IMPORTANT for its long-term success. Potential investors, partners, and acquirers will focus on the strength of a startup’s IP so important to take advantage of the legal services available. Do your DUE DIGILENCE.

Panelists:

John F. Ritter, J.D.., MBA; Director Office Tech. Licensing Princeton University

Cozette McAvoy; Senior Attorney Novartis Oncology Pharma Patents

Ryan O’Donnell; Partner Volpe & Koenig

Panel Moderator: Dipanjan “DJ” Nag, PhD, MBA, CLP, RTTP; President CEO IP Shaktl, LLC

Notes:

Dr. Nag:

  • Sometimes IP can be a double edged sword; e.g. Herbert Boyer with Paul Berg and Stanley Cohen credited with developing recombinant technology but they did not keep the IP strict and opened the door for a biotech revolution (see nice review from Chemical Heritage Foundation).
  • Naked patent licenses are most profitable when try to sell IP

John Ritter: Mr. Ritter gave Princeton University’s perspective on developing and promoting a university-based IP portfolio.

  • 30-40% of Princeton’s IP portfolio is related to life sciences
  • Universities will prefer to seek provisional patent status as a quicker process and allows for publication
  • Princeton will work closely with investigators to walk them through process – Very Important to have support system in place INCLUDING helping investigators and early startups establish a STRONG startup MANAGEMENT TEAM, and making important introductions to and DEVELOPING RELATIONSHIOPS with investors, angels
  • Good to cast a wide net when looking at early development partners like pharma
  • Good example of university which takes active role in developing startups is University of Pennsylvania’s Penn UPstart program.
  • Last 2 years many universities filing patents for startups as a micro-entity

Comment from attendee: Universities are not using enough of their endowments for purpose of startups. Princeton only using $500,00 for accelerator program.

Cozette McAvoy: Mrs. McAvoy talked about monetizing your IP from an industry perspective

  • Industry now is looking at “indirect monetization” of their and others IP portfolio. Indirect monetization refers to unlocking the “indirect value” of intellectual property; for example research tools, processes, which may or may not be related to a tangible product.
  • Good to make a contractual bundle of IP – “days of the $million check is gone”
  • Big companies like big pharma looks to PR (press relation) buzz surrounding new technology, products SO IMPORTANT FOR STARTUP TO FOCUS ON YOUR PR

Ryan O’Donnell: talked about how life science IP has changed especially due to America Invests Act

  • Need to develop a GLOBAL IP strategy so whether drug or device can market in multiple countries
  • Diagnostics and genes not patentable now – Major shift in patent strategy
  • Companies like Unified Patents can protect you against the patent trolls – if patent threatened by patent troll (patent assertion entity) will file a petition with the USPTO (US Patent Office) requesting institution of inter partes review (IPR); this may cost $40,000 BUT WELL WORTH the money – BE PROACTIVE about your patents and IP

Panel 2: Design for Market Success; Commercial Strategy Planning

Take-home Message: Commercial strategy development is defined market facing data, reimbursement strategies and commercial planning that inform labeling requirements, clinical study designs, healthcare economic outcomes and pricing targets. Clarity from payers is extremely important to develop any market strategy. Develop this strategy early and seek advice from payers.

Panelists:

David Blaszczak; Founder, Precipio Health Strategies

Terri Bernacchi, PharmD, MBA; Founder & President Cambria Health Advisory Professionals

Paul Firuta; President US Commercial Operations, NPS Pharma

 

Panel Moderator: Matt Cabrey; Executive Director, Select Greater Philadelphia

 

Notes:

David Blaszczak:

  • Commercial payers are bundling payment: most important to get clarity from these payers
  • Payers are using clinical trials to alter marketing (labeling) so IMPORTANT to BUILD LABEL in early clinical trial phases (phase I or II)
  • When in early phases of small company best now to team or partner with a Medicare or PBM (pharmacy benefit manager) and payers to help develop and spot tier1 and tier 2 companies in their area

Terri Bernacchi:

  • Building relationship with the payer is very important but firms like hers will also look to patients and advocacy groups to see how they respond to a given therapy and decrease the price risk by bundling
  • Value-based contracting with manufacturers can save patient and payer $$
  • As most PBMs formularies are 80% generics goal is how to make money off of generics
  • Patent extension would have greatest impact on price, value

Paul Firuta:

  • NPS Pharma developing a pharmacy benefit program for orphan diseases
  • How you pay depends on mix of Medicare, private payers now
  • Most important change which could affect price is change in compliance regulations

Panel 3: Design for Investment; Financing Each Stage

Take-home Message: VC is a personal relationship so spend time making those relationships. Do your preparation on your value and your market. Look to non-VC avenues: they are out there.

Panelists:

Ting Pau Oei; Managing Director, Easton Capital (NYC)

Manya Deehr; CEO & Founder, Pediva Therapeutics

Sanjoy Dutta, PhD; Assistant VP, Translational Devel. & Intl. Res., Juvenile Diabetes Research Foundation

 

Panel Moderator: Shahram Hejazi, PhD; Venture Partner, BioAdvance

  • In 2000 his experience finding 1st capital was what are your assets; now has changed to value

Notes:

Ting Pau Oei:

  • Your very 1st capital is all about VALUE– so plan where you add value
  • Venture Capital is a PERSONAL RELATIONSHIP
  • 1) you need the management team, 2) be able to communicate effectively                  (Powerpoint, elevator pitch, business plan) and #1 and #2 will get you important 2nd Venture Capital meeting; VC’s don’t decide anything in 1st meeting
  • VC’s don’t normally do a good job of premarket valuation or premarket due diligence but know post market valuation well
  • Best advice: show some phase 2 milestones and VC will knock on your door

Manya Deehr:

  • Investment is more niche oriented so find your niche investors
  • Define your product first and then match the investors
  • Biggest failure she has experienced: companies that go out too early looking for capital

Dr. Dutta: funding from a non-profit patient advocacy group perspective

  • Your First Capital: find alliances which can help you get out of “valley of death
  • Develop a targeted product and patient treatment profile
  • Non-profit groups ask three questions:

1) what is the value to patients (non-profits want to partner)

2) what is your timeline (we can wait longer than VC; for example Cystic Fibrosis Foundation waited long time but got great returns for their patients with Kalydeco™)

3) when can we see return

  • Long-term market projections are the knowledge gaps that startups have (the landscape) and startups don’t have all the competitive intelligence
  • Have a plan B every step of the way

Other posts on this site related to Philadelphia Biotech, Startup Funding, Payer Issues, and Intellectual Property Issues include:

PCCI’s 7th Annual Roundtable “Crowdfunding for Life Sciences: A Bridge Over Troubled Waters?” May 12 2014 Embassy Suites Hotel, Chesterbrook PA 6:00-9:30 PM
The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy
The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC
The Vibrant Philly Biotech Scene: Focus on Vaccines and Philimmune, LLC
The Bioscience Crowdfunding Environment: The Bigger Better VC?
Foundations as a Funding Source
Venture Capital Funding in the Life Sciences: Phase4 Ventures – A Case Study
10 heart-focused apps & devices are crowdfunding for American Heart Association’s open innovation challenge
Funding, Deals & Partnerships
Medicare Panel Punts on Best Tx for Carotid Plaque
9:15AM–2:00PM, January 27, 2015 – Regulatory & Reimbursement Frameworks for Molecular Testing, LIVE @Silicon Valley 2015 Personalized Medicine World Conference, Mountain View, CA
FDA Commissioner, Dr. Margaret A. Hamburg on HealthCare for 310Million Americans and the Role of Personalized Medicine
Biosimilars: Intellectual Property Creation and Protection by Pioneer and by Biosimilar Manufacturers
Litigation on the Way: Broad Institute Gets Patent on Revolutionary Gene-Editing Method
The Patents for CRISPR, the DNA editing technology as the Biggest Biotech Discovery of the Century

 

 

Read Full Post »

Oracle In the Medical Devices Industry

Reporter: Aviva Lev-Ari, PhD, RN

Medical Devices

20 of the Top 20 Medical Device Companies Run Oracle Applications

Use Oracle’s powerful combination of technology and comprehensive, preintegrated business applications to be first-to-market and address the challenges of regulatory pressures and reimbursement caps.

 

Oracle In the Medical Devices Industry

  • Manage a single view of the product record throughout its lifecycle—from concept to design, source, build, sell, service, and disposal
  • Make large volumes of clinical data well organized, easily accessible, and thoroughly documented
  • Use powerful study layout and design features, full edit check facilities, complete tracking, analysis, and reporting capabilities, remote data collection, and site-based entry
  • Model any kind of clinical study and automatically store components for reuse
  • Employ prebuilt tools that enable electronic signatures and automate regulatory recordkeeping
  • Conduct safety and compliance monitoring by establishing flexible, global workflows enabling CAPA and product complaint resolution
  • Quickly usher a medical device from research and development to testing and product launch using tools that support segmentation, call execution and reporting, guided selling, territory and objectives management, and cross-functional business processes

SOURCE

http://www.oracle.com/us/industries/life-sciences/medical/overview/index.html

More about Oracle Life Sciences

Oracle delivers key functionality built specifically for pharmaceutical, biotechnology, and medical device enterprises, so you can maximize innovation and discovery, marketplace agility, and ROI.

Why Oracle Life Sciences solutions?

Oracle’s powerful combination of technology and comprehensive, preintegrated business applications gets you to market first while addressing the challenges of regulatory pressures and reimbursement caps.

 SOURCE

 

Read Full Post »

Older Posts »

%d