Feeds:
Posts
Comments

Archive for the ‘Ecosystems & Industrial Concentration in the Medical Device Sector’ Category


 

Executive Compensation of Big Pharma in 2016 & 2017 New Teva’s CEO, Third from the Top paid among his peers

 

Reporter: Aviva Lev- Ari, PhD, RN

 

This is a QUOTE from FiercePharma

http://www.fiercepharma.com/pharma/teva-poaches-lundbeck-chief-schultz-52m-package?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTkdFelpqZGxaamxoT0dNMSIsInQiOiJLcjlnb2RqQ1hWVU9IU0F4NCt3Kzl0QlNDOFh2SldHMTlyOUMzcUxMc2xZMTNHYkJzY09TOUJsRXFnZEVVYkdWNzNiVVpVY1wveDRyRUo5dWpjUWtPVmhqTmZSbzVsUFhXUDVJOTR2TkxvRWJDcnN3bjc4N0ZDd0VOUnBuN1g2dHAifQ%3D%3D

Teva enticed Schultz with a pay and welcome package worth up to $52 million, including $20 million in cash upfront, according to an SEC filing on the Monday hire. The new helmsman will also receive a restricted stock award of $5 million and two performance unit stock awards each worth $7.5 million.

Schultz’s base salary is $2 million, with an annual bonus opportunity worth 140% to 200% of his salary. Under the agreement, he’ll also receive $6 million in annual equity incentives.

For Teva, the pay will be well worth it if Schultz is able to engineer a turnaround. The Israeli drugmaker has had its stock price and business prospects battered over the last year as the generic pricing environment worsens and other threats continue to unfold. Knowing the challenges the company faced, Teva’s board said during the search that it was looking for a world-class pharma vet.

And Schultz has fixed things at an ailing drugmaker before. After Lundbeck’s former CEO stepped down and as it was laboring to launch new meds, it hired Schultz in 2015. He had already made a name for himself during a long tenure at Novo Nordisk and during his two years at Lundbeck, he won praise for improving revenue and profits.

If ranked among last year’s top-paid pharma executives, Schultz package would place him at No. 3, behind Mylan chairman Robert Coury’s $97 million and Valeant CEO Joseph Papa’s $62.7 million. Like Schultz, Papa also joined a drugmaker suffering from a barrage of negative developments in recent years.

Aside from tough pricing on generics, Teva is also dealing with a price fixing investigation and a generic threat to key multiple sclerosis drug Copaxone. The company recently kicked off a restructuring set to affect 7,000 employees around the world after its $40.5 billion buyout of Allergan’s generic business became more of a drag than a boost for the company.

 

RELATED: The top 15 highest-paid biopharma executives

SOURCE

http://www.fiercepharma.com/special-report/top-15-highest-paid-biopharma-executives

 

Read Full Post »


Advanced Peripheral Artery Disease (PAD): Axillary Artery PCI for Insertion and Removal of Impella Device

Reporter: Aviva Lev-Ari, PhD, RN

 

 

July 15, 2016
Authors:

Rajiv Tayal, MD, MPH1,2;  Mihir Barvalia, MD, MHA1;  Zeshan Rana, MD2;  Benjamin LeSar, MD1;  Humayun Iftikhar, MD1;  Spas Kotev, MD1;  Marc Cohen, MD1;  Najam Wasty, MD1

Abstract: Traditionally, brachial and common femoral arteries have served as access sites of choice, with many operators recently converting to radial artery access for coronary angiography and percutaneous intervention due to literature suggesting reduced bleeding risk, better patient outcomes, and lower hospital-associated costs. However, radial access has limitations when percutaneous procedures requiring larger sheath sizes are performed. Six Fr sheaths are considered the limit for safe use with the radial artery given that the typical luminal diameter of the vessel is approximately 2 mm, while peripheral artery disease (PAD) may often limit use of the common femoral artery, particularly in patients with multiple co-morbid risk factors. Similarly, the brachial artery has fallen out of favor due to both thrombotic and bleeding risks, while also not safely and reliably accommodating sheaths larger than 7 Fr. Here we describe 3 cases of a new entirely percutaneous technique utilizing the axillary artery for delivery of Impella 2.5 (13.5 Fr) and CP (14 Fr) cardiac-assist devices for protected percutaneous coronary intervention in the setting of prohibitive PAD.

J INVASIVE CARDIOL 2016;28(9):374-380. 2016 July 15 (Epub ahead of print)

Key words: axillary artery, percutaneous access, high-risk PCI

 

SOURCE

http://amptheclimeeting.com/ampcentral/articles/totally-percutaneous-insertion-and-removal-impella-device-using-axillary-artery-setting

Read Full Post »


cvd-series-a-volume-iii


Series A: e-Books on Cardiovascular Diseases
 

Series A Content Consultant: Justin D Pearlman, MD, PhD, FACC

VOLUME THREE

Etiologies of Cardiovascular Diseases:

Epigenetics, Genetics and Genomics

http://www.amazon.com/dp/B018PNHJ84

 

by  

Larry H Bernstein, MD, FCAP, Senior Editor, Author and Curator

and

Aviva Lev-Ari, PhD, RN, Editor and Curator

Introduction to Volume Three 

PART 1
Genomics and Medicine

1.1  Genomics and Medicine: The Physician’s View

1.2  Ribozymes and RNA Machines – Work of Jennifer A. Doudna

1.3  Genomics and Medicine: Contributions of Genetics and Genomics to Cardiovascular Disease Diagnoses

1.4 Genomics Orientations for Individualized Medicine, Volume One

1.4.1 CVD Epidemiology, Ethnic subtypes Classification, and Medication Response Variability: Cardiology, Genomics and Individualized Heart Care: Framingham Heart Study (65 y-o study) & Jackson Heart Study (15 y-o study)

1.4.2 What comes after finishing the Euchromatic Sequence of the Human Genome?

1.5  Genomics in Medicine – Establishing a Patient-Centric View of Genomic Data

 

PART 2
Epigenetics – Modifiable Factors Causing Cardiovascular Diseases

2.1 Diseases Etiology

2.1.1 Environmental Contributors Implicated as Causing Cardiovascular Diseases

2.1.2 Diet: Solids, Fluid Intake and Nutraceuticals

2.1.3 Physical Activity and Prevention of Cardiovascular Diseases

2.1.4 Psychological Stress and Mental Health: Risk for Cardiovascular Diseases

2.1.5 Correlation between Cancer and Cardiovascular Diseases

2.1.6 Medical Etiologies for Cardiovascular Diseases: Evidence-based Medicine – Leading DIAGNOSES of Cardiovascular Diseases, Risk Biomarkers and Therapies

2.1.7 Signaling Pathways

2.1.8 Proteomics and Metabolomics

2.1.9 Sleep and Cardiovascular Diseases

2.2 Assessing Cardiovascular Disease with Biomarkers

2.2.1 Issues in Genomics of Cardiovascular Diseases

2.2.2 Endothelium, Angiogenesis, and Disordered Coagulation

2.2.3 Hypertension BioMarkers

2.2.4 Inflammatory, Atherosclerotic and Heart Failure Markers

2.2.5 Myocardial Markers

2.3  Therapeutic Implications: Focus on Ca(2+) signaling, platelets, endothelium

2.3.1 The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, Arterial Smooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets

2.3.2 EMRE in the Mitochondrial Calcium Uniporter Complex

2.3.3 Platelets in Translational Research ­ 2: Discovery of Potential Anti-platelet Targets

2.3.4 The Final Considerations of the Role of Platelets and Platelet Endothelial Reactions in Atherosclerosis and Novel Treatments

2.3.5 Nitric Oxide Synthase Inhibitors (NOS-I)

2.3.6 Resistance to Receptor of Tyrosine Kinase

2.3.7 Oxidized Calcium Calmodulin Kinase and Atrial Fibrillation

2.3.8 Advanced Topics in Sepsis and the Cardiovascular System at its End Stage

2.4 Comorbidity of Diabetes and Aging

2.4.1 Heart and Aging Research in Genomic Epidemiology: 1700 MIs and 2300 coronary heart disease events among about 29 000 eligible patients

2.4.2 Pathophysiological Effects of Diabetes on Ischemic-Cardiovascular Disease and on Chronic Obstructive Pulmonary Disease (COPD)

2.4.3 Risks of Hypoglycemia in Diabetics with Chronic Kidney Disease (CKD)

2.4.4  Mitochondrial Mechanisms of Disease in Diabetes Mellitus

2.4.5 Mitochondria: More than just the “powerhouse of the cell”

2.4.6  Pathophysiology of GLP-1 in Type 2 Diabetes

2.4.7 Developments in the Genomics and Proteomics of Type 2 Diabetes Mellitus and Treatment Targets

2.4.8 CaKMII Inhibition in Obese, Diabetic Mice leads to Lower Blood Glucose Levels

2.4.9 Protein Target for Controlling Diabetes, Fractalkine: Mediator cell-to-cell Adhesion though CX3CR1 Receptor, Released from cells Stimulate Insulin Secretion

2.4.10 Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

2.4.11 CABG or PCI: Patients with Diabetes – CABG Rein Supreme

2.4.12 Reversal of Cardiac Mitochondrial Dysfunction

2.4.13  BARI 2D Trial Outcomes

2.4.14 Overview of new strategy for treatment of T2DM: SGLT2 inhibiting oral antidiabetic agents

2.5 Drug Toxicity and Cardiovascular Diseases

2.5.1 Predicting Drug Toxicity for Acute Cardiac Events

2.5.2 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

2.5.3 Decoding myocardial Ca2+ signals across multiple spatial scales: A role for sensitivity analysis

2.5.4. Leveraging Mathematical Models to Understand Population Variability in Response to Cardiac Drugs: Eric Sobie, PhD

2.5.5 Exploiting mathematical models to illuminate electrophysiological variability between individuals.

2.5.6 Clinical Effects and Cardiac Complications of Recreational Drug Use: Blood pressure changes, Myocardial ischemia and infarction, Aortic dissection, Valvular damage, and Endocarditis, Cardiomyopathy, Pulmonary edema and Pulmonary hypertension, Arrhythmias, Pneumothorax and Pneumopericardium

 

2.6 Male and Female Hormonal Replacement Therapy: The Benefits and the Deleterious Effects on Cardiovascular Diseases

2.6.1  Testosterone Therapy for Idiopathic Hypogonadotrophic Hypogonadism has Beneficial and Deleterious Effects on Cardiovascular Risk Factors

2.6.2 Heart Risks and Hormones (HRT) in Menopause: Contradiction or Clarification?

2.6.3 Calcium Dependent NOS Induction by Sex Hormones: Estrogen

2.6.4 Role of Progesterone in Breast Cancer Progression

PART 3
Determinants of Cardiovascular Diseases Genetics, Heredity and Genomics Discoveries

Introduction

3.1 Why cancer cells contain abnormal numbers of chromosomes (Aneuploidy)

3.1.1 Aneuploidy and Carcinogenesis

3.2 Functional Characterization of Cardiovascular Genomics: Disease Case Studies @ 2013 ASHG

3.3 Leading DIAGNOSES of Cardiovascular Diseases covered in Circulation: Cardiovascular Genetics, 3/2010 – 3/2013

3.3.1: Heredity of Cardiovascular Disorders

3.3.2: Myocardial Damage

3.3.3: Hypertention and Atherosclerosis

3.3.4: Ethnic Variation in Cardiac Structure and Systolic Function

3.3.5: Aging: Heart and Genetics

3.3.6: Genetics of Heart Rhythm

3.3.7: Hyperlipidemia, Hyper Cholesterolemia, Metabolic Syndrome

3.3.8: Stroke and Ischemic Stroke

3.3.9: Genetics and Vascular Pathologies and Platelet Aggregation, Cardiac Troponin T in Serum

3.3.10: Genomics and Valvular Disease

3.4  Commentary on Biomarkers for Genetics and Genomics of Cardiovascular Disease

PART 4
Individualized Medicine Guided by Genetics and Genomics Discoveries

4.1 Preventive Medicine: Cardiovascular Diseases

4.1.1 Personal Genomics for Preventive Cardiology Randomized Trial Design and Challenges

4.2 Gene-Therapy for Cardiovascular Diseases

4.2.1 Genetic Basis of Cardiomyopathy

4.3 Congenital Heart Disease/Defects

4.4 Cardiac Repair: Regenerative Medicine

4.4.1 A Powerful Tool For Repairing Damaged Hearts

4.4.2 Modified RNA Induces Vascular Regeneration After a Heart

4.5 Pharmacogenomics for Cardiovascular Diseases

4.5.1 Blood Pressure Response to Antihypertensives: Hypertension Susceptibility Loci Study

4.5.2 Statin-Induced Low-Density Lipoprotein Cholesterol Reduction: Genetic Determinants in the Response to Rosuvastatin

4.5.3 SNPs in apoE are found to influence statin response significantly. Less frequent variants in PCSK9 and smaller effect sizes in SNPs in HMGCR

4.5.4 Voltage-Gated Calcium Channel and Pharmacogenetic Association with Adverse Cardiovascular Outcomes: Hypertension Treatment with Verapamil SR (CCB) vs Atenolol (BB) or Trandolapril (ACE)

4.5.5 Response to Rosuvastatin in Patients With Acute Myocardial Infarction: Hepatic Metabolism and Transporter Gene Variants Effect

4.5.6 Helping Physicians identify Gene-Drug Interactions for Treatment Decisions: New ‘CLIPMERGE’ program – Personalized Medicine @ The Mount Sinai Medical Center

4.5.7 Is Pharmacogenetic-based Dosing of Warfarin Superior for Anticoagulation Control?

Summary & Epilogue to Volume Three

 

 

Read Full Post »


TAVR with Sapien 3: combined all-cause death & disabling stroke rate was 8.4% and 16.6% for the surgery arm

Reporter: Aviva Lev-Ari, PhD, RN

Edwards Lifesciences hits all-time high on Sapien 3 study

Edwards Sapien 3Shares in Edwards Lifesciences (NYSE:EW) hit an all-time high yesterday after the company reported strong 1-year data for its Sapien 3 replacement heart valve over the weekend.

Results from the Partner II trial from 1,077 intermediate-risk patients showed that the Sapien 3 beat surgical valve replacement across a variety of safety endpoints, Irvine, Calif.-based Edwards said at the American College of Cardiology’s annual meeting April 3. The combined all-cause death & disabling stroke rate was 8.4% for TAVR with Sapien 3 and 16.6% for the surgery arm, according to the study, which was also published in The Lancet. The Sapien 3 device won a nod from the FDA in June 2015 for high-risk patients.

Expanding the indication to intermediate-risk patients would more than double the eligible patient pool, chairman & CEO Mike Mussallem told Reuters. That moved investors to send EW shares yesterday to an all-time high of $107.90, before the stock closed at $105.08.

SOURCE

http://www.massdevice.com/edwards-lifesciences-hits-time-high-sapien-3-study/?utm_source=newsletter-160405&utm_medium=email&utm_campaign=newsletter-160405&spMailingID=8750804&spUserID=MTI2MTQxNTczMjM5S0&spJobID=900546483&spReportId=OTAwNTQ2NDgzS0

Read Full Post »


Ngai-Yin Chan-The Practice of Catheter Cryoablation for Cardiac Arrhythmias[PDF] 20 MB PDF… https://t.co/8EYkq36tJA

Sourced through Scoop.it from: www.medbooksvn.info

See on Scoop.itCardiovascular Disease: PHARMACO-THERAPY

Read Full Post »


https://www.youtube.com/v/BPF1a0VbzXM?fs=1&hl=fr_FR

This animation examines some of the cellular processes involved in myocardial ischemia.

Sourced through Scoop.it from: www.youtube.com

See on Scoop.itCardiovascular and vascular imaging

Read Full Post »

Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle


Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle

Reporter: Stephen S Williams, PhD

 

Leaders in Pharmaceutical Business Intelligence would like to announce the First volume of their BioMedical E-Book Series D:

Metabolic Genomics & Pharmaceutics, Vol. I

SACHS FLYER 2014 Metabolomics SeriesDindividualred-page2

which is now available on Amazon Kindle at

http://www.amazon.com/dp/B012BB0ZF0.

This e-Book is a comprehensive review of recent Original Research on  METABOLOMICS and related opportunities for Targeted Therapy written by Experts, Authors, Writers. This is the first volume of the Series D: e-Books on BioMedicine – Metabolomics, Immunology, Infectious Diseases.  It is written for comprehension at the third year medical student level, or as a reference for licensing board exams, but it is also written for the education of a first time baccalaureate degree reader in the biological sciences.  Hopefully, it can be read with great interest by the undergraduate student who is undecided in the choice of a career. The results of Original Research are gaining value added for the e-Reader by the Methodology of Curation. The e-Book’s articles have been published on the Open Access Online Scientific Journal, since April 2012.  All new articles on this subject, will continue to be incorporated, as published with periodical updates.

We invite e-Readers to write an Article Reviews on Amazon for this e-Book on Amazon.

All forthcoming BioMed e-Book Titles can be viewed at:

https://pharmaceuticalintelligence.com/biomed-e-books/

Leaders in Pharmaceutical Business Intelligence, launched in April 2012 an Open Access Online Scientific Journal is a scientific, medical and business multi expert authoring environment in several domains of  life sciences, pharmaceutical, healthcare & medicine industries. The venture operates as an online scientific intellectual exchange at their website http://pharmaceuticalintelligence.com and for curation and reporting on frontiers in biomedical, biological sciences, healthcare economics, pharmacology, pharmaceuticals & medicine. In addition the venture publishes a Medical E-book Series available on Amazon’s Kindle platform.

Analyzing and sharing the vast and rapidly expanding volume of scientific knowledge has never been so crucial to innovation in the medical field. WE are addressing need of overcoming this scientific information overload by:

  • delivering curation and summary interpretations of latest findings and innovations on an open-access, Web 2.0 platform with future goals of providing primarily concept-driven search in the near future
  • providing a social platform for scientists and clinicians to enter into discussion using social media
  • compiling recent discoveries and issues in yearly-updated Medical E-book Series on Amazon’s mobile Kindle platform

This curation offers better organization and visibility to the critical information useful for the next innovations in academic, clinical, and industrial research by providing these hybrid networks.

Table of Contents for Metabolic Genomics & Pharmaceutics, Vol. I

Chapter 1: Metabolic Pathways

Chapter 2: Lipid Metabolism

Chapter 3: Cell Signaling

Chapter 4: Protein Synthesis and Degradation

Chapter 5: Sub-cellular Structure

Chapter 6: Proteomics

Chapter 7: Metabolomics

Chapter 8:  Impairments in Pathological States: Endocrine Disorders; Stress

                   Hypermetabolism and Cancer

Chapter 9: Genomic Expression in Health and Disease 

 

Summary 

Epilogue

 

 

Read Full Post »

Older Posts »