In Cardiology, “Interventional” is reserved for procedures that directly produce physical changes. Surgical interventions for cardiovascular diseases include heart or heart and lung transplant, implantation of cardiac assist devices, shock devices and pacemakers, bypass grafts for coronary or other arteries, valve repairs or replacement, removal of plaque (endarterectomy), removal of tumors, and repair or palliation of injuries or of congenital anomalies. All of these interventions are continually studied and improved, with a major effort at minimizing the risk, reducing recovery time and reducing the size of entry scar, for example by use of video scopes instead of direct visualization, and mechanical devices and robotics instead of direct manual access. Interventional Cardiology refers to an often competing non-surgical approach in which access is limited to entry by vein or artery (catheterization). The two teams have joined forces to achieve a major success in replacing aortic valves by femoral artery access without opening the chest at all (TAVR), with on-going progress towards a similar approach to mitral valve replacement.
This book addresses disease prevalence, personalized patient and doctor experiences with Cardiac Surgery, the role of transfusion, status of the MedTech market, and a review of major accomplishments from pathology, anesthesiology, radiology, cardiology and surgery. The contributions of specific groups, such as the Texas Heart Institute, the Dalio Institute at New York Presbyterian/Weill Cornell, the Cleveland Clinic, and the Scripps Institute are reviewed. Individual contributions from Eric Topol, Arthur Moss, Paul Zoll, Tim Wu, and Earl E. Bakken (Medtronic co-founder) are included. Discoveries in relevant biology, including ATP (the metabolic paycheck) and plasma metabolomics, and novel technologies such as tethered-liquid perfluorocabon surface biocoating to prevent clotting. Additional curations present views of cardiothoracic surgeons, vascular surgeons and of Catheterization lab interventionists. Business aspects are addressed by review of costs, prevalence, payment methods, prevention impact and business models. Decision support tools are also reviewed, and changes in guidelines. Voices of three Open Heart Surgery Survivors are included. Chapters 4-6 addressed clinical trial data in coronary disease, biomarkers of cardiovascular disorders, coagulation including top roles of nitric oxide, C-reative protein, protein C, aprotinin and thrombin. Chapters 7-8 covered amyloidosis, atherosclerosis, valve disease, flow reserve, atrial fibrillation and roles for advanced imaging. Chapters 9-10 covered unstable angina, transplants, and ventricular assist devices. Chapters 11-14 span interventions on the aorta, peripheral arteries, and coronary arteries, valve surgery and percutaneous valve repair or replacement, plus the growing role of prosthetics and repair by stem cells and tissue engineering.
As catheter techniques evolved to compete with bypass surgery they progressed from balloon cracking of obstructive lesions (POBA=plain old balloon angioplasty) to placement of stents (wire fences). Surgeons sometimes use in-stent valves, and now devices analogous to in-stent valves can be placed by catheter for valve replacement in patients with too much co-morbidity to go through heart surgery. Aortic valve replacement by stent (TAVR) has had sufficient success to be considered for all patients who have sufficient impairment to merit intervention. The diameter is large, so a vascular surgeon participates in the arterial access and repair of the access site.
Minimally invasive repair of abdominal aorta aneurysm: atherosclerosis offers potentially somewhat protective stiffening of the arterial wall, it can promote clots, athero-emboli, and failure of the remodeling can lead to an outward ballooning, or aneurysm, that promotes both clot formation and wall or lining tears or rupture, cause of sudden death.
Leave a Reply