Feeds:
Posts
Comments

Posts Tagged ‘Reimbursement’

Protecting Your Biotech IP and Market Strategy: Notes from Life Sciences Collaborative 2015 Meeting


 

Protecting Your Biotech IP and Market Strategy: Notes from Life Sciences Collaborative 2015 Meeting

Achievement Beyond Regulatory Approval – Design for Commercial Success

philly2nightStephen J. Williams, Ph.D.: Reporter

The Mid-Atlantic group Life Sciences Collaborative, a select group of industry veterans and executives from the pharmaceutical, biotechnology, and medical device sectors whose mission is to increase the success of emerging life sciences businesses in the Mid-Atlantic region through networking, education, training and mentorship, met Tuesday March 3, 2015 at the University of the Sciences in Philadelphia (USP) to discuss post-approval regulatory issues and concerns such as designing strong patent protection, developing strategies for insurance reimbursement, and securing financing for any stage of a business.

The meeting was divided into three panel discussions and keynote speech:

  1. Panel 1: Design for Market Protection– Intellectual Property Strategy Planning
  2. Panel 2: Design for Market Success– Commercial Strategy Planning
  3. Panel 3: Design for Investment– Financing Each Stage
  4. Keynote Speaker: Robert Radie, President & CEO Egalet Corporation

Below are Notes from each PANEL Discussion:

For more information about the Life Sciences Collaborative SEE

Website: http://www.lifesciencescollaborative.org/

Or On Facebook

Or On Twitter @LSCollaborative

Panel 1: Design for Market Protection; Intellectual Property Strategy Planning

Take-home Message: Developing a very strong Intellectual Property (IP) portfolio and strategy for a startup is CRITICALLY IMPORTANT for its long-term success. Potential investors, partners, and acquirers will focus on the strength of a startup’s IP so important to take advantage of the legal services available. Do your DUE DIGILENCE.

Panelists:

John F. Ritter, J.D.., MBA; Director Office Tech. Licensing Princeton University

Cozette McAvoy; Senior Attorney Novartis Oncology Pharma Patents

Ryan O’Donnell; Partner Volpe & Koenig

Panel Moderator: Dipanjan “DJ” Nag, PhD, MBA, CLP, RTTP; President CEO IP Shaktl, LLC

Notes:

Dr. Nag:

  • Sometimes IP can be a double edged sword; e.g. Herbert Boyer with Paul Berg and Stanley Cohen credited with developing recombinant technology but they did not keep the IP strict and opened the door for a biotech revolution (see nice review from Chemical Heritage Foundation).
  • Naked patent licenses are most profitable when try to sell IP

John Ritter: Mr. Ritter gave Princeton University’s perspective on developing and promoting a university-based IP portfolio.

  • 30-40% of Princeton’s IP portfolio is related to life sciences
  • Universities will prefer to seek provisional patent status as a quicker process and allows for publication
  • Princeton will work closely with investigators to walk them through process – Very Important to have support system in place INCLUDING helping investigators and early startups establish a STRONG startup MANAGEMENT TEAM, and making important introductions to and DEVELOPING RELATIONSHIOPS with investors, angels
  • Good to cast a wide net when looking at early development partners like pharma
  • Good example of university which takes active role in developing startups is University of Pennsylvania’s Penn UPstart program.
  • Last 2 years many universities filing patents for startups as a micro-entity

Comment from attendee: Universities are not using enough of their endowments for purpose of startups. Princeton only using $500,00 for accelerator program.

Cozette McAvoy: Mrs. McAvoy talked about monetizing your IP from an industry perspective

  • Industry now is looking at “indirect monetization” of their and others IP portfolio. Indirect monetization refers to unlocking the “indirect value” of intellectual property; for example research tools, processes, which may or may not be related to a tangible product.
  • Good to make a contractual bundle of IP – “days of the $million check is gone”
  • Big companies like big pharma looks to PR (press relation) buzz surrounding new technology, products SO IMPORTANT FOR STARTUP TO FOCUS ON YOUR PR

Ryan O’Donnell: talked about how life science IP has changed especially due to America Invests Act

  • Need to develop a GLOBAL IP strategy so whether drug or device can market in multiple countries
  • Diagnostics and genes not patentable now – Major shift in patent strategy
  • Companies like Unified Patents can protect you against the patent trolls – if patent threatened by patent troll (patent assertion entity) will file a petition with the USPTO (US Patent Office) requesting institution of inter partes review (IPR); this may cost $40,000 BUT WELL WORTH the money – BE PROACTIVE about your patents and IP

Panel 2: Design for Market Success; Commercial Strategy Planning

Take-home Message: Commercial strategy development is defined market facing data, reimbursement strategies and commercial planning that inform labeling requirements, clinical study designs, healthcare economic outcomes and pricing targets. Clarity from payers is extremely important to develop any market strategy. Develop this strategy early and seek advice from payers.

Panelists:

David Blaszczak; Founder, Precipio Health Strategies

Terri Bernacchi, PharmD, MBA; Founder & President Cambria Health Advisory Professionals

Paul Firuta; President US Commercial Operations, NPS Pharma

 

Panel Moderator: Matt Cabrey; Executive Director, Select Greater Philadelphia

 

Notes:

David Blaszczak:

  • Commercial payers are bundling payment: most important to get clarity from these payers
  • Payers are using clinical trials to alter marketing (labeling) so IMPORTANT to BUILD LABEL in early clinical trial phases (phase I or II)
  • When in early phases of small company best now to team or partner with a Medicare or PBM (pharmacy benefit manager) and payers to help develop and spot tier1 and tier 2 companies in their area

Terri Bernacchi:

  • Building relationship with the payer is very important but firms like hers will also look to patients and advocacy groups to see how they respond to a given therapy and decrease the price risk by bundling
  • Value-based contracting with manufacturers can save patient and payer $$
  • As most PBMs formularies are 80% generics goal is how to make money off of generics
  • Patent extension would have greatest impact on price, value

Paul Firuta:

  • NPS Pharma developing a pharmacy benefit program for orphan diseases
  • How you pay depends on mix of Medicare, private payers now
  • Most important change which could affect price is change in compliance regulations

Panel 3: Design for Investment; Financing Each Stage

Take-home Message: VC is a personal relationship so spend time making those relationships. Do your preparation on your value and your market. Look to non-VC avenues: they are out there.

Panelists:

Ting Pau Oei; Managing Director, Easton Capital (NYC)

Manya Deehr; CEO & Founder, Pediva Therapeutics

Sanjoy Dutta, PhD; Assistant VP, Translational Devel. & Intl. Res., Juvenile Diabetes Research Foundation

 

Panel Moderator: Shahram Hejazi, PhD; Venture Partner, BioAdvance

  • In 2000 his experience finding 1st capital was what are your assets; now has changed to value

Notes:

Ting Pau Oei:

  • Your very 1st capital is all about VALUE– so plan where you add value
  • Venture Capital is a PERSONAL RELATIONSHIP
  • 1) you need the management team, 2) be able to communicate effectively                  (Powerpoint, elevator pitch, business plan) and #1 and #2 will get you important 2nd Venture Capital meeting; VC’s don’t decide anything in 1st meeting
  • VC’s don’t normally do a good job of premarket valuation or premarket due diligence but know post market valuation well
  • Best advice: show some phase 2 milestones and VC will knock on your door

Manya Deehr:

  • Investment is more niche oriented so find your niche investors
  • Define your product first and then match the investors
  • Biggest failure she has experienced: companies that go out too early looking for capital

Dr. Dutta: funding from a non-profit patient advocacy group perspective

  • Your First Capital: find alliances which can help you get out of “valley of death
  • Develop a targeted product and patient treatment profile
  • Non-profit groups ask three questions:

1) what is the value to patients (non-profits want to partner)

2) what is your timeline (we can wait longer than VC; for example Cystic Fibrosis Foundation waited long time but got great returns for their patients with Kalydeco™)

3) when can we see return

  • Long-term market projections are the knowledge gaps that startups have (the landscape) and startups don’t have all the competitive intelligence
  • Have a plan B every step of the way

Other posts on this site related to Philadelphia Biotech, Startup Funding, Payer Issues, and Intellectual Property Issues include:

PCCI’s 7th Annual Roundtable “Crowdfunding for Life Sciences: A Bridge Over Troubled Waters?” May 12 2014 Embassy Suites Hotel, Chesterbrook PA 6:00-9:30 PM
The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy
The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC
The Vibrant Philly Biotech Scene: Focus on Vaccines and Philimmune, LLC
The Bioscience Crowdfunding Environment: The Bigger Better VC?
Foundations as a Funding Source
Venture Capital Funding in the Life Sciences: Phase4 Ventures – A Case Study
10 heart-focused apps & devices are crowdfunding for American Heart Association’s open innovation challenge
Funding, Deals & Partnerships
Medicare Panel Punts on Best Tx for Carotid Plaque
9:15AM–2:00PM, January 27, 2015 – Regulatory & Reimbursement Frameworks for Molecular Testing, LIVE @Silicon Valley 2015 Personalized Medicine World Conference, Mountain View, CA
FDA Commissioner, Dr. Margaret A. Hamburg on HealthCare for 310Million Americans and the Role of Personalized Medicine
Biosimilars: Intellectual Property Creation and Protection by Pioneer and by Biosimilar Manufacturers
Litigation on the Way: Broad Institute Gets Patent on Revolutionary Gene-Editing Method
The Patents for CRISPR, the DNA editing technology as the Biggest Biotech Discovery of the Century

 

 

Read Full Post »

Why should Quality Assurance be difficult and awkward? Take a strategic view on achieving compliance (focus on ISO 13485)


Why should Quality Assurance be difficult and awkward? Take a strategic view on achieving compliance (focus on ISO 13485)

 Reporter: Dror Nir, PhD

Converting life-science innovations into useful products involves allocation of significant resources to handling of regulatory processes. A typical approach that makes the management of these processes difficult and awkward is starting your project and later patching it with a QA system. It then becomes a source of sever headaches to many people who need to live and operate according to such patch.
I hope that the following post by Rina will inspire you all.
It is all too easy to dive into the list of requirements contained within the ISO 13485 and achieve compliance by just ticking the boxes: looking at one requirement or one area at a time and making sure you have put in place something to address that requirement. This may easily result in a quality system that feels like a patchwork. Compliant, perhaps, but most certainly awkward and difficult to sustain.
The second most common mistake is to not ask yourself how software tools can help in setting up the quality system. “We already have MS Word, MS Excel, email, and we can always print a document and have it signed.” This is only a solution if you think that the quality system is a one-off activity. In the longer run, the system turns out to be a constant struggle with non-integrated elements that have no cohesion.
A better way to address compliance is to:
  1. Accept the fact that the quality system is a long term commitment and that it is very demanding.
  2. Assume that the right software tools do help.
  3. Think strategically, reviewing the whole standard, and try to identify the different areas, in respect to what type of software would help address those.

Real life example: A company maintains an Excel list of all corrective actions. The date of effectiveness check is filled in manually. A QA engineer needs to review the Excel spreadsheet once a week to identify which effectiveness checks are due. Last audit revealed that in most cases, effectiveness checks were not followed up.
Real life question: Meetings and other events are registered in a calendar and you are reminded when they are due. Wouldn’t it be easier if effectiveness checks due dates were also linked to a calendar? Putting those dates in Excel does not make more sense than putting your meetings in Excel…..

What follows is how we can divide the ISO-13485:2003 in regard to the type of software features which can help us. You do not need to be an IT expert to follow the logic or the explanation – if you know the standard and see my examples hopefully you will get the idea.
In any case, I put here the complete mapping of the ISO into the different categories I describe. I also mention the main Atlassian tools we use to address each area. In future posts we will dive deeper into each of those categories and provide more details on exactly how we achieve easy and sustainable, compliance.
So, as promised, these are the various categories that appear in the ISO 13485:2003:
  1. Document management: These are the various requirements relating to the procedures, manuals, and device related documents you need to have, and how they should be handled within the organization. The ISO elaborates in quite a detailed manner about how the controlled documents needs to be approved, who should access them, etc. Confluence is the key tool we use to handle all these requirements.
  2. Procedures and records are the evidence that the organization lives up to its quality system: The various procedures and work instructions should be followed consistently on a daily basis, forms or other records should be collected as evidence. Some examples (with reference to the standard section):
    • Training( 6.2.2).
    • Customer complaints: (8.5.1).
    • Corrective and preventive actions: (8.5.2, 8.5.3)
    • Subcontractor approvals( 7.4.1)
    • Purchasing forms( 7.4.1).

Those records may be created as electronic or physical paper forms which need to be completed by the authorized person. However, a much better way is to implement an automatic workflow that makes it easier for the team to create, follow, and document all the various tasks they need to do. Such a workflow can automatically schedule tasks, remind and alert, thus triggering better compliance to the quality system and at the same time automatically creating the required records. This is a double win. JIRA® is our tool of choice and it provides a state-of-the-art solution to everything related to forms and workflows.

  1. Design control: Some of the issues covered by section 7 of the ISO 13485 require quite advanced control along several phases of design and development. The risk mitigation measures and the product requirements should be, for example, verified in the product verification stage. This verification, or the test file, could be written as a simple Word or Excel document, but a far better implementation is to create it within JIRA. The advantage of JIRA here is the various reporting that it allows once the data is in and the fact that it can connect directly into the work scheduling of the various team members. JIRA is the principal tool we use for design control. Confluence can be used in some advanced implementations. If the medical device involves software, then the development suite from Atlassian can be implemented to provide a complete software life cycle management suite.
  2. Manufacturing and product traceability: Some requirements relate to your manufacturing setup. Depending on the scale and type of manufacturing, specialized ERP may be the best option. When manufacturing is more basic and does not call for a full blown manufacturing facility, JIRA can handle the requirements of the standard.
  3. Monitoring and improving: A key theme of the standard is the need of the organization to measure and improve (for example, section 8.2.3). The nice thing is that the framework we have put in place to support the other categories, if done correctly, should provide us with the reports, alerts, and statistics we need. Indeed, all the processes we have implemented in JIRA, as well as the various elements we have implemented in Confluence, may easily be collected and displayed in practically endless variations of reports and dashboards.
Requirement (Article) Requirement type
4.Quality management system – 1.General requirements Non specific
4.Quality management system – 2.Documentation requirements – 1.General Document management
4.Quality management system – 2.Documentation requirements – 2.Quality manual Document management
4.Quality management system – 2.Documentation requirements – 3.Control of documents Document management
4.Quality management system – 2.Documentation requirements – 4.Control of records Procedures and records
5.Management responsibility – 1.Management commitment Document management
5.Management responsibility – 2.Customer focus Non specific
5.Management responsibility – 3.Quality policy Monitoring and ongoing improvement
5.Management responsibility – 4.Planning – 1.Quality objectives Monitoring and ongoing improvement
5.Management responsibility – 4.Planning – 2.Quality management system planning Monitoring and ongoing improvement
5.Management responsibility – 5.Responsibility, authority and communication – 1.Responsibility and authority Document management
5.Management responsibility – 5.Responsibility, authority and communication – 2.Management representative Monitoring and ongoing improvement
5.Management responsibility – 5.Responsibility, authority and communication – 3.Internal communication Monitoring and ongoing improvement
5.Management responsibility – 6.Management review – 1.General Monitoring and ongoing improvement
5.Management responsibility – 6.Management review – 2.Review input Monitoring and ongoing improvement
5.Management responsibility – 6.Management review – 3.Review output Monitoring and ongoing improvement
6.Resource management – 1.Provision of resources Non specific
6.Resource management – 2.Human resources – 1.General Procedures and records
6.Resource management – 2.Human resources – 2.Competence, awareness and training Procedures and records
6.Resource management – 3.Infrastructure Manufacturing and product traceability
6.Resource management – 4.Work environment Non specific
7.Product realization – 1.Planning of product realization Design control
7.Product realization – 2.Customer-related processes – 1.Determination of requirements related to the product Design control
7.Product realization – 2.Customer-related processes – 2.Review of requirements related to the product Design control
7.Product realization – 2.Customer-related processes – 3.Customer communication Design control
7.Product realization – 3.Design and development – 1.Design and development planning Design control
7.Product realization – 3.Design and development – 1.Design and development input Design control
7.Product realization – 3.Design and development – 3.Design and development outputs Design control
7.Product realization – 3.Design and development – 4.Design and development review Design control
7.Product realization – 3.Design and development – 5.Design and development verification Design control
7.Product realization – 3.Design and development – 6.Design and development validation Design control
7.Product realization – 3.Design and development – 7.Control of design and development changes Design control
7.Product realization – 4.Purchasing – 1.Purchasing process Procedures and records
7.Product realization – 4.Purchasing – 2.Purchasing information Procedures and records
7.Product realization – 4.Purchasing – 3.Verification of purchased product Procedures and records
7.Product realization – 5.Production and service provision – 1.Control of production and service provision – 1.General requirements Procedures and records
7.Product realization – 5.Production and service provision – 1.Control of production and service provision – 2.Control of production and service provision: Specific requirements – 1.Cleanliness of product and contamination control Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 1.Control of production and service provision – 2.Control of production and service provision: Specific requirements – 2.Installation ativities Procedures and records
7.Product realization – 5.Production and service provision – 1.Control of production and service provision – 2. – 3.Servicing activities Procedures and records
7.Product realization – 5.Production and service provision – 1.Control of production and service provision – 3.Particular requirements for sterile medical devices Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 2.Validation of processes for production and service provision – 1.General requirements Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 2.Validation of processes for production and service provision – 2.Particular requirements for sterile medical devices Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 3. Identification and traceability – 1.Identification Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 3. Identification and traceability – 2.Traceability – 1.General Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 3. Identification and traceability – 2.Particular requirements for active implantable medical devices and implantable medical devices Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 3. Identification and traceability – 3.Status identification Manufacturing and product traceability
7.Product realization – 5.Production and service provision – 4.Customer property Non specific
7.Product realization – 5.Production and service provision – 5.Preservation of product Procedures and records
7.Product realization – 6.Control of monitoring and measuring devices Manufacturing and product traceability
8.Measurement, analysis and improvement – 1.General Monitoring and ongoing improvement
8.Measurement, analysis and improvement – 2.Monitoring and measurement – 1.Feedback Monitoring and ongoing improvement
8.Measurement, analysis and improvement – 2.Monitoring and measurement – 2.Internal audit Procedures and records
8.Measurement, analysis and improvement – 2.Monitoring and measurement – 3.Monitoring and measurement of processes Monitoring and ongoing improvement
8.Measurement, analysis and improvement – 2.Monitoring and measurement – 4.Monitoring and measurement of product – 1. General requirements Design control
8.Measurement, analysis and improvement – 2.Monitoring and measurement – 4.Monitoring and measurement of product – 2.Particular requirement for active implantable medical devices and implantable medical devices Procedures and records
8.Measurement, analysis and improvement – 3.Control of nonconforming product Procedures and records
8.Measurement, analysis and improvement – 4.Aalysis of data Monitoring and ongoing improvement
8.Measurement, analysis and improvement – 5.Improvement – 1.General Monitoring and ongoing improvement
8.Measurement, analysis and improvement – 5.Improvement – 2.Corrective action Procedures and records
8.Measurement, analysis and improvement – 5.Improvement – 3.Preventive action Procedures and records

Read Full Post »