Feeds:
Posts
Comments

Archive for the ‘Ecosystems & Industrial Concentration in the Medical Device Sector’ Category

Fractional Flow Reserve vs. Angiography in Non-ST-segment Elevation Myocardial Infarction

Reporter: Aviva Lev-Ari, PhD, RN

 

Jamie Layland, Keith G. Oldroyd, Nick Curzen, Arvind Sood, Kanarath Balachandran, Raj Das, Shahid Junejo, Nadeem Ahmed, Matthew M.Y. Lee, Aadil Shaukat, Anna O’Donnell, Julian Nam, Andrew Briggs, Robert Henderson, Alex McConnachie, Colin Berry

Disclosures

Eur Heart J. 2015;36(2):100-111. 

Aim

We assessed the management and outcomes of non-ST segment elevation myocardial infarction (NSTEMI) patients randomly assigned to fractional flow reserve (FFR)-guided management or angiography-guided standard care.

Methods and results

We conducted a prospective, multicentre, parallel group, 1 : 1 randomized, controlled trial in 350 NSTEMI patients with ≥1 coronary stenosis ≥30% of the lumen diameter assessed visually (threshold for FFR measurement) (NCT01764334).

Enrolment took place in six UK hospitals from October 2011 to May 2013. Fractional flow reserve was disclosed to the operator in the FFR-guided group (n 1/4 176). Fractional flowreserve was measured but not disclosed in the angiography guided group (n 1/4 174). Fractional flowreserve ≤0.80was an indication for revascularization by percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG). The median (IQR) time from the index episode of myocardial ischaemia to angiographywas 3 (2, 5) days. For the primary outcome, the proportion of patients treated initially by medical therapy was higher in the FFR-guided group than in the angiography-guided group [40 (22.7%) vs. 23 (13.2%), difference 95% (95% CI: 1.4%, 17.7%), P 1/4 0.022]. Fractional flow reserve disclosure resulted in a change in treatment between medical therapy, PCI or CABG in 38 (21.6%) patients. At 12 months, revascularization remained lower in the FFR-guided group [79.0 vs. 86.8%, difference 7.8% (20.2%, 15.8%), P 1/4 0.054]. There were no statistically significant differences in health outcomes and quality of life between the groups.

Conclusion

In NSTEMI patients, angiography-guided management was associated with higher rates of coronary revascularization compared with FFR-guided management. A larger trial is necessary to assess health outcomes and cost-effectiveness.

SOURCE

 

Read Full Post »

Surgical Options for Left Atrial Appendage (LAA) Removal for A-Fib Patients without Indication for Anticoagulant Therapy

Reporter: Aviva Lev-Ari, PhD, RN

 

Sacha Salzberg of the HeartClinic Zurich discusses surgical options for treating the left atrial appendage (LAA), including concomitant and stand-alone LAA therapies. Dr. Salzberg also offers insights into the use of the Atriclip and Tiger-Paw devices for LAA treatment.

SOURCE

VIEW VIDEO
This presentation was originally given during the SCTS Ionescu University program at the 80th Annual Meeting of the Society for Cardiothoracic Surgery in Great Britain and Ireland. This content is published with the permission of SCTS. Please click here for information on the 2015 ACTA/SCTS Annual Meeting & Forum in Manchester, United Kingdom.

 

Read Full Post »

New Era for PAD as FDA approval in the US of 1st Drug-coated Balloon (DCB) for PDA – CAD Indication for DCB will follow

 

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 11/12/2018

Medtronic delivers 5-year data for its drug-coated balloon for PAD, compared to drugless angioplasty

A pooled analysis from over 1,800 PAD patients treated with Medtronic’s drug-coated balloon patients showed that 93% were able to avoid repeat blood vessel interventions after one year, compared to 80% who underwent traditional drugless angioplasty. (Medtronic)

Presented at the Vascular Interventional Advances annual meeting in Las Vegas, the study showed the Admiral balloon outperforming drugless angioplasty, in keeping patients free from having to undergo subsequent revascularization procedures at the target lesion. In a time-to-event survival analysis, Kaplan-Meier estimates were 74.5% in the drug-coated balloon arm compared to 65.3% in the control group over the five-year follow-up period.

“This is truly remarkable considering the complexity and progressive nature of PAD,” said study co-principal investigator John Laird, medical director of the Adventist Heart and Vascular Institute. “For these patients, it means we are providing them with a long-term, durable solution that reduces the need for frequent reinterventions, leading to a potential improvement in their quality of life.”

RELATED: Medtronic touts drug-coated balloon data in toughest peripheral artery disease cases

In addition, long-term safety benefits included low rates of major limb amputation, at 0.5%, and thrombosis, at 2.2%, with no device or procedure-related deaths through five years in both study arms, according to Medtronic.

“Since the entrance of DCBs into the market several years ago, we have seen a shift towards the use of this technology as a frontline therapy to treat patients with PAD,” said Mark Pacyna, VP and general manager of Medtronic’s peripheral artery business. “We believe this new evidence will give physicians the confidence that IN.PACT Admiral DCB is the preferred first line therapy for patients who suffer with femoral-popliteal disease.”

RELATED: Medtronic scores FDA approval for drug-coated balloon for in-stent restenosis

SOURCE

https://www.fiercebiotech.com/medtech/medtronic-delivers-5-year-data-for-its-drug-coated-balloon-for-pad-compared-to-drugless?mkt_tok=eyJpIjoiWXpFMU16RmhZVEpqWm1NdyIsInQiOiJTR21YcDdlZDk4UlhMaXVxTitIWk5RU3hnbUVnRlIxTDM2QWxYa2Jwcjd4R1I1V0hiN29SN1JvOWp2S2VkTWVTcDcxNE9zVWlTTHlEcmVITk5ZcUMwRnJxMHVoZ0M5SUFEMU51Wm9wRFNiZnArdURKK0pCUWFMS3NsVFVYTmpzNCJ9&mrkid=993697

Comment in  Cardiovascular Medical Devices Group

by

Plamena Entcheva-Dimitrov, PhD, RAC

 

This drug-coated balloon is the first to obtain FDA approval in the US and begins a new era for PAD. It would be interesting to follow the DCB market: 1. who is next to get FDA approval of DCB for PAD; 2. who will get a CAD indication for their DCB.

 

As posted in +MASSDEVICE

http://www.massdevice.com/news/fda-approves-bards-lutonix-deb?page=show

FDA approves Bard’s Lutonix DEB

October 10, 2014 by Brad Perriello

The FDA grants pre-market approval for C.R. Bard’s Lutonix drug-eluting balloon for treating peripheral artery disease.

FDA approves Bard's Lutonix DEB

C.R. Bard (NYSE:BCR) said today that the FDA granted pre-market approval for its Lutonix drug-eluting balloon for treating peripheral artery disease, well ahead of the company’s expectation for approval early next year.

The Lutonix device is the 1st DEB to hit the U.S. market. It’s designed to dilate obstructions in the superficial femoral or popliteal arteries and leave behind a therapeutic dose of paclitaxel, a drug that’s also used to coat drug-eluting stents.

In June, an FDA panel recommended that the watchdog agency approve the Lutonix device, which is designed to treat peripheral artery disease, voting unanimously that it is safe, effective and its benefits outweigh its risks. A month later Bard executives said the company was on track for an early 2015 approval from the FDA.

Dr. Ken Rosenfield, who designed and led the groundbreaking Levant II trial used to back Bard’s PMA bid, told MassDevice.com this morning that the FDA nod is a big step in treating PAD.

“This is the 1st drug-eluting balloon we’ll have access to in the U.S. and that’s definitely important. It’s a whole new class of therapeutic modality that’s available to us now. We’ve been waiting for it and it represents a big step for us here in the U.S. who are treating peripheral disease,” Rosenfield told us.

The decision could also have some pull-through implications for Medtronic (NYSE:MDT) and its In.Pact Admiral DEB, which is still awaiting approval from the FDA, he added.

“Once you introduce a whole new class of therapy alternatives, then it probably opens doors for all of them that are in that same class,” Rosenfield said. “Obviously the implication is that this type of device is now seen by FDA as having a potential therapeutic advantage.”

The Levant II trial should serve as a model for other, similar trials in the future, Rosenfield told us.

“This trial represents a higher level of rigor in the conduct of clinical trials in the vascular space. I’m proud of that, because I helped design and run the trial. There was a lot of blinding built in, although we couldn’t blind the physicians because of the appearance of the balloon,” he explained. “That’s the direction we need to go, to have more rigorously conducted trials that set a very high bar. This trial actually sets the highest bar in this space.”

“In line with Bard’s commitment to delivering products that improve patient care, we are proud to offer another Bard first-of-its-kind innovation that expands therapy options for this painful, progressive and debilitating disease,” Bard CEO Timothy Ring said in prepared remarks. “The Lutonix 035 DCB gives clinicians another option as they seek to provide prolonged patency to patients confronted with femoropopliteal occlusive disease.”

SOURCE

 

Read Full Post »

Mapping the Universe of Pharmaceutical Business Intelligence: The Model developed by LPBI and the Model of Best Practices LLC

Mapping the Universe of Pharmaceutical Business Intelligence: The Model developed by LPBI and the Model of Best Practices LLC

 

Author and Curator of Model A: Aviva Lev-Ari, PhD, RN

Reporter on Model B: Aviva Lev-Ari, PhD, RN

 

This article provides the e-Reader with a MAP for navigation through two different Business Models that Co-exist in the EcoSystem of an industry called Pharmaceutical Business Intelligence.

Model A: is represented by Six Ventures of Leaders in Pharmaceutical Business Intelligence (LPBI), based in Boston, Philadelphia, CT, CA and Israel

Model B: is represented by Best Practices, LLC, headquartered in Chapel Hill, NC, with Offices in NYC and in Mumbai, India.

 

We concluded that the two models are viable, represent fast growth, the models and non-competing and are in full complementarity, thus, expanding the domain and the practice of the industrial sector, aka, Pharmaceutical Business Intelligence.

 

 

Model A:

Leaders in Pharmaceutical Business Intelligence (LPBI),

Boston, Philadelphia, CT, CA and Israel 

Team members

 

Our Growth Needs: Leaders in Pharmaceutical Business Intelligence

 

 Our Business Portfolio

VENTURE #1:

e-Publishing: Medicine, HealthCare, Life Sciences, BioMed, Pharmaceutical

  • Open Access Online Scientific Journal

http://pharmaceuticalintelligence.com Site statistics http://pharmaceuticalintelligence.com/wp-admin/index.php?page=stats

  • Scoop.it!.com

  1. http://www.scoop.it/t/cardiotoxicity
  2. http://www.scoop.it/t/cardiovascular-and-vascular-imaging
  3. http://www.scoop.it/t/cardiovascular-disease-pharmaco-therapy

VENTURE #2:

1. BioMedical e-Books e-Series: Cardiovascular, Genomics, Cancer, BioMed, Patient Centered Medicine

http://pharmaceuticalintelligence.com/biomed-e-books/

2. on Amazon’s Kindle e-Books List since 6/2013

3. Plans for Volume 1,2,3 – Hardcover

VENTURE #3:

International Scientific Delegations

http://pharmaceuticalintelligence.com/scientific-delegation/

  • Shanghai, May 2015
  • Barcelona, Spain, November 2015
  • Amsterdam, May 2016
  • Geneva, November 2016

 

VENTURE #4:

Funding, Deals & Partnerships

http://pharmaceuticalintelligence.com/joint-ventures/

 

VENTURE #5:

IP Invented HERE!

1.  Development of a NEW Nitric Oxide monitor to Alpha Szenszor Inc. sensor portfolio. A concept for a low cost POC e-nose, capable of real time ppb detection of Cancer The Cancer Team at Leaders in Pharmaceutical Business Intelligence under the leadership of Dr. Williams

2.  Development of a NEW Nitric Oxide monitor to Alpha Szenszor Inc. sensor portfolio. A concept for Inhaled Nitric Oxide for the Adult HomeCare Market – IP by Dr. Pearlman and Dr. A. Lev-Ari

a.  iknow iNO is i-kNOw – Inhaled Nitric Oxide for the HomeCare Markethttp://pharmaceuticalintelligence.com/2013/10/16/iknow-ino-is-i-know-inhaled-nitric-oxide-for-the-homecare-market/

b. electronic Book on Nitric Oxide by Nitric Oxide Team @ Leaders in Pharmaceutical Business Intelligence (LPBI)

Perspectives on Nitric Oxide in Disease Mechanisms

http://www.amazon.com/dp/B00DINFFY

c. The rationale and use of inhaled NO in Pulmonary Artery Hypertension and Right Sided Heart Failure Larry H. Bernstein 8/20/2012

d. Inhaled Nitric Oxide in Adults: Clinical Trials and Meta Analysis Studies – Recent Findings

Aviva Lev-Ari, PhD, RN, 6/2/2013

e. Clinical Indications for Use of Inhaled Nitric Oxide (iNO) in the Adult Patient Market: Clinical Outcomes after Use, Therapy Demand and Cost of Care

Aviva Lev-Ari, PhD, RN, 6/3/2013

3.  Cancer Genomics for NEW product development in diagnosis and treatment of Cancer Patients using sensory technology with applications for Radiation Therapy –The Cancer Team at Leaders in Pharmaceutical Business Intelligence under leadership of TBA

4.  Developing Mitral Valve Disease: MRI Methods and Devices for Percutaneous Mitral Valve Replacement and Mitral Valve Repair Augmentation of Patented Technology using RF – Dr. Pearlman’s IP Non-Hardware Mitral Annuloplasty – Dr. Justin D. Pearlman

http://pharmaceuticalintelligence.com/joint-ventures/valvecure-llc/non-hardware-mitral-annuloplasty-dr-justin-d-pearlman/

5.  Novel Technology using MRI for Vascular Lesions, Tumors, Hyperactive Glands and non-Surgical Cosmetic Reconstruction – Dr. Pearlman’s IP

http://pharmaceuticalintelligence.com/biomed-e-books/series-a-e-books-on-cardiovascular-diseases/httppharmaceuticalintelligence-combiomed-e-bookscardiovascular-diseases-causes-risks-and-management/cvd-business-affairs/mitral-valve-disease-mri-methods-and-devices/

 

VENTURE # 6:

PRESS Coverage of Conferences

http://pharmaceuticalintelligence.com/press-coverage/

Model B:

 
Best Practices, LLC, Chapel Hill, NC, Mumbai, India, Branch in New York

 

Best Practices, LLC
6350 Quadrangle Drive, Suite 200,
Chapel HillNC 27517

+1 919-403-0251

SOURCE

http://www.best-in-class.com/sitemap

 

Read Full Post »

Imaging-guided cancer treatment

Imaging-guided cancer treatment

Writer & reporter: Dror Nir, PhD

It is estimated that the medical imaging market will exceed $30 billion in 2014 (FierceMedicalImaging). To put this amount in perspective; the global pharmaceutical market size for the same year is expected to be ~$1 trillion (IMS) while the global health care spending as a percentage of Gross Domestic Product (GDP) will average 10.5% globally in 2014 (Deloitte); it will reach ~$3 trillion in the USA.

Recent technology-advances, mainly miniaturization and improvement in electronic-processing components is driving increased introduction of innovative medical-imaging devices into critical nodes of major-diseases’ management pathways. Consequently, in contrast to it’s very small contribution to global health costs, medical imaging bears outstanding potential to reduce the future growth in spending on major segments in this market mainly: Drugs development and regulation (e.g. companion diagnostics and imaging surrogate markers); Disease management (e.g. non-invasive diagnosis, guided treatment and non-invasive follow-ups); and Monitoring aging-population (e.g. Imaging-based domestic sensors).

In; The Role of Medical Imaging in Personalized Medicine I discussed in length the role medical imaging assumes in drugs development.  Integrating imaging into drug development processes, specifically at the early stages of drug discovery, as well as for monitoring drug delivery and the response of targeted processes to the therapy is a growing trend. A nice (and short) review highlighting the processes, opportunities, and challenges of medical imaging in new drug development is: Medical imaging in new drug clinical development.

The following is dedicated to the role of imaging in guiding treatment.

Precise treatment is a major pillar of modern medicine. An important aspect to enable accurate administration of treatment is complementing the accurate identification of the organ location that needs to be treated with a system and methods that ensure application of treatment only, or mainly to, that location. Imaging is off-course, a major component in such composite systems. Amongst the available solution, functional-imaging modalities are gaining traction. Specifically, molecular imaging (e.g. PET, MRS) allows the visual representation, characterization, and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In oncology, it can be used to depict the abnormal molecules as well as the aberrant interactions of altered molecules on which cancers depend. Being able to detect such fundamental finger-prints of cancer is key to improved matching between drugs-based treatment and disease. Moreover, imaging-based quantified monitoring of changes in tumor metabolism and its microenvironment could provide real-time non-invasive tool to predict the evolution and progression of primary tumors, as well as the development of tumor metastases.

A recent review-paper: Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles nicely illustrates the role of imaging in treatment guidance through a comprehensive discussion of; Image-guided radiotherapeutic using intravenous nanoparticles for the delivery of localized radiation to solid cancer tumors.

 Graphical abstract

 Abstract

One of the major limitations of current cancer therapy is the inability to deliver tumoricidal agents throughout the entire tumor mass using traditional intravenous administration. Nanoparticles carrying beta-emitting therapeutic radionuclides [DN: radioactive isotops that emits electrons as part of the decay process a list of β-emitting radionuclides used in radiotherapeutic nanoparticle preparation is given in table1 of this paper.) that are delivered using advanced image-guidance have significant potential to improve solid tumor therapy. The use of image-guidance in combination with nanoparticle carriers can improve the delivery of localized radiation to tumors. Nanoparticles labeled with certain beta-emitting radionuclides are intrinsically theranostic agents that can provide information regarding distribution and regional dosimetry within the tumor and the body. Image-guided thermal therapy results in increased uptake of intravenous nanoparticles within tumors, improving therapy. In addition, nanoparticles are ideal carriers for direct intratumoral infusion of beta-emitting radionuclides by convection enhanced delivery, permitting the delivery of localized therapeutic radiation without the requirement of the radionuclide exiting from the nanoparticle. With this approach, very high doses of radiation can be delivered to solid tumors while sparing normal organs. Recent technological developments in image-guidance, convection enhanced delivery and newly developed nanoparticles carrying beta-emitting radionuclides will be reviewed. Examples will be shown describing how this new approach has promise for the treatment of brain, head and neck, and other types of solid tumors.

The challenges this review discusses

  • intravenously administered drugs are inhibited in their intratumoral penetration by high interstitial pressures which prevent diffusion of drugs from the blood circulation into the tumor tissue [1–5].
  • relatively rapid clearance of intravenously administered drugs from the blood circulation by kidneys and liver.
  • drugs that do reach the solid tumor by diffusion are inhomogeneously distributed at the micro-scale – This cannot be overcome by simply administering larger systemic doses as toxicity to normal organs is generally the dose limiting factor.
  • even nanoparticulate drugs have poor penetration from the vascular compartment into the tumor and the nanoparticles that do penetrate are most often heterogeneously distributed

How imaging could mitigate the above mentioned challenges

  • The inclusion of an imaging probe during drug development can aid in determining the clearance kinetics and tissue distribution of the drug non-invasively. Such probe can also be used to determine the likelihood of the drug reaching the tumor and to what extent.

Note: Drugs that have increased accumulation within the targeted site are likely to be more effective as compared with others. In that respect, Nanoparticle-based drugs have an additional advantage over free drugs with their potential to be multifunctional carriers capable of carrying both therapeutic and diagnostic imaging probes (theranostic) in the same nanocarrier. These multifunctional nanoparticles can serve as theranostic agents and facilitate personalized treatment planning.

  • Imaging can also be used for localization of the tumor to improve the placement of a catheter or external device within tumors to cause cell death through thermal ablation or oxidative stress secondary to reactive oxygen species.

See the example of Vintfolide in The Role of Medical Imaging in Personalized Medicine

vinta

Note: Image guided thermal ablation methods include radiofrequency (RF) ablation, microwave ablation or high intensity focused ultrasound (HIFU). Photodynamic therapy methods using external light devices to activate photosensitizing agents can also be used to treat superficial tumors or deeper tumors when used with endoscopic catheters.

  • Quality control during and post treatment

For example: The use of high intensity focused ultrasound (HIFU) combined with nanoparticle therapeutics: HIFU is applied to improve drug delivery and to trigger drug release from nanoparticles. Gas-bubbles are playing the role of the drug’s nano-carrier. These are used both to increase the drug transport into the cell and as ultrasound-imaging contrast material. The ultrasound is also used for processes of drug-release and ablation.

 HIFU

Additional example; Multifunctional nanoparticles for tracking CED (convection enhanced delivery)  distribution within tumors: Nanoparticle that could serve as a carrier not only for the therapeutic radionuclides but simultaneously also for a therapeutic drug and 4 different types of imaging contrast agents including an MRI contrast agent, PET and SPECT nuclear diagnostic imaging agents and optical contrast agents as shown below. The ability to perform multiple types of imaging on the same nanoparticles will allow studies investigating the distribution and retention of nanoparticles initially in vivo using non-invasive imaging and later at the histological level using optical imaging.

 multi

Conclusions

Image-guided radiotherapeutic nanoparticles have significant potential for solid tumor cancer therapy. The current success of this therapy in animals is most likely due to the improved accumulation, retention and dispersion of nanoparticles within solid tumor following image-guided therapies as well as the micro-field of the β-particle which reduces the requirement of perfectly homogeneous tumor coverage. It is also possible that the intratumoral distribution of nanoparticles may benefit from their uptake by intratumoral macrophages although more research is required to determine the importance of this aspect of intratumoral radionuclide nanoparticle therapy. This new approach to cancer therapy is a fertile ground for many new technological developments as well as for new understandings in the basic biology of cancer therapy. The clinical success of this approach will depend on progress in many areas of interdisciplinary research including imaging technology, nanoparticle technology, computer and robot assisted image-guided application of therapies, radiation physics and oncology. Close collaboration of a wide variety of scientists and physicians including chemists, nanotechnologists, drug delivery experts, radiation physicists, robotics and software experts, toxicologists, surgeons, imaging physicians, and oncologists will best facilitate the implementation of this novel approach to the treatment of cancer in the clinical environment. Image-guided nanoparticle therapies including those with β-emission radionuclide nanoparticles have excellent promise to significantly impact clinical cancer therapy and advance the field of drug delivery.

Read Full Post »

Leaders in Pharmaceutical Business Intelligence Announced New Cardiovascular Series of e-Books at SACHS Associates 14th Annual Biotech In Europe Forum

Reporter: Aviva Lev-Ari, PhD, RN

 

 

Please see Further Titles at

http://pharmaceuticalintelligence.com/biomed-e-books/

Please see Further Information on the Sachs Associates 14th Annual Biotech in Europe Forum for Global Investing & Partnering at:

http://pharmaceuticalintelligence.com/2014/03/25/14th-annual-biotech-in-europe-forum-for-global-partnering-investment-930-1012014-%E2%80%A2-congress-center-basel-sachs-associates-london/

AND

http://www.sachsforum.com/basel14/index.html

why-is-twitter-s-logo-named-after-larry-bird--b8d70319daON TWITTER Follow at

@SachsAssociates

#Sachs14thBEF

@pharma_BI

@AVIVA1950 

Read Full Post »

Reverse Medical Corporation, a privately held medical device company focused on expanding the management of vascular disease acquired by Covidien

Reporter: Aviva Lev-Ari, PhD, RN

 

Covidien Acquires Reverse Medical Corporation

Fri, 08/22/2014 – 9:12am

Business Wire

Get today’s medical design headlines and news electronically – Sign up now!

Generates Opportunity to Leverage Existing Vascular Technologies and Customer Relationships to Drive Increased Market Penetration

Covidien plc has announced it has acquired Reverse Medical Corporation, a privately held medical device company focused on expanding the management of vascular disease. Financial terms of the transaction were not disclosed.

“Covidien is focused on technologies that deliver improved patient care through clinically relevant and economically valuable solutions,” said Brett Wall, president, Neurovascular, Covidien. “The acquisition of Reverse Medical is complementary to our existing portfolio and will allow us to leverage existing vascular technologies to compete in the worldwide vascular embolization market, which is growing at a double digit rate.”

Covidien will report the Reverse Medical business as part of its Neurovascular product line in the Medical Devices segment. Annualized dilution is not expected to be material.

Reverse Medical is currently commercializing its vascular embolization plugs, MVP Micro Vascular Plug System and UNO™ Neurovascular Embolization System. MVP and UNO are self-expanding vessel occlusion devices, which close blood vessels for vascular embolization. A number of clinical applications require occlusion of the vasculature to rapidly, effectively and safely provide blood flow cessation.

Other Reverse Medical products include ReVerse Microcatheter for device delivery and Barrel™ Vascular Reconstruction Device (VRD), a self-expandable bifurcation aneurysm bridging device. All the devices have received CE Mark approval and are commercially available in Europe. Additionally, MVP-3 and MVP-5 are 510(k) cleared in the U.S.

 SOURCE

http://www.mdtmag.com/news/2014/08/covidien-acquires-reverse-medical-corporation?et_cid=4113388&et_rid=461755519&type=cta

Read Full Post »

 

Cardiovascular Research Foundation (CRF) Events – tctmd – The Source for Interventional Cardiovascular

 

Reporter: Aviva Lev-Ari, PhD, RN

SOURCE

http://www.tctmd.com/news.aspx

JOURNAL NEWS

VIEW ALL

Monday, July 28, 2014 | Source: EuroIntervention

Proximal May Be Preferred Form of Embolic Protection in Carotid Stenting

By Kim Dalton
A proximal protection device can be successfully and safely used as the first choice for embolic protection during most carotid artery stenting…

Friday, July 25, 2014 | Source: The American Heart Journal

Meta-analysis: Patient Sex Affects Response to Routine Invasive Approach for NSTE-ACS

By Todd Neale
A routine invasive strategy—relative to a more selective approach—appears beneficial over the long term for men but not women with non-ST-segment elevation…

Thursday, July 24, 2014 | Source: American Journal of Cardiology

PCI for Stable CAD Drives Overall Decline in Use of Procedure Since 2009

By Yael L. Maxwell
National use of percutaneous coronary intervention (PCI) has decreased steadily since 2009, mostly driven by a reduction in procedures for patients…

Thursday, July 24, 2014 | Source: European Heart Journal

Pre-AMI Ischemia May Reduce Early Mortality

By Kim Dalton
Patients who report angina symptoms or are diagnosed with ischemia shortly before an acute myocardial infarction (AMI) are less likely to die within…

Wednesday, July 23, 2014 | Source: EuroIntervention

Bioresorbable Scaffold Performs Well, But Thrombosis Raises Concerns

By Todd Neale
Percutaneous coronary intervention (PCI) with an everolimus-eluting bioresorbable vascular scaffold (BVS) results in an “acceptable” rate of target…

Tuesday, July 22, 2014 | Source: Journal of the American College of Cardiology

New CMR-Identified Myocardial Injury Post-TAVR Linked With Decreased LV Function

By Yael L. Maxwell
New ischemic myocardial injury, presumably of embolic origin, is common after transcatheter aortic valve replacement (TAVR) and is associated with…

Tuesday, July 22, 2014 | Source: JAMA Internal Medicine

Catheter-Directed Thrombolysis for DVT Increases Bleeding Compared With Standard Anticoagulation

By L.A. McKeown
While catheter-directed thrombolysis and anticoagulation for deep vein thrombosis (DVT) does not appear to increase mortality over standard anticoagulation…

Monday, July 21, 2014 | Updated With New Commentary | Source: Lancet

HEAT-PPCI Published: Discrepant Finding of Heparin’s Superiority over Bivalirudin in Primary PCI Still Puzzles

By Yael L. Maxwell
The HEAT-PPCI trial, published July 5, 2014, ahead of print in the Lancet , reports better efficacy and comparable safety with bivalirudin than…

Monday, July 21, 2014 | Source: Journal of the American College of Cardiology

One-Time Platelet Testing Appears Insufficient to Guide Clopidogrel Therapy

By Kim Dalton
In many patients with stable coronary artery disease (CAD), platelet reactivity varies markedly over time despite an unchanged dose of clopidogrel,…

Friday, July 18, 2014 | Source: American Heart Journal

Hybrid Revascularization a Promising Option for Diabetic Patients

By L.A. McKeown
A hybrid procedure combining percutaneous revascularization with minimally invasive coronary artery grafting results in similar short-term and…

CONFERENCE NEWS

VIEW ALL

Wednesday, May 28, 2014 | Source: EuroPCR 2014

EuroPCR 2014: Clinical Challenges, Novel Innovations Share the Limelight

By Caitlin E. Cox
PARIS, France—Research presented at EuroPCR 2014, held May 20 23, offered both new ways to improve on current therapies and fresh approaches to treating…

Friday, May 23, 2014 | Source: EuroPCR 2014

Studies Document Initial Steps Toward Percutaneous Mitral Valve Replacement

By Caitlin E. Cox
PARIS, France—Early data on 2 different catheter-based mitral valve therapies were presented in the same Hot Line session at EuroPCR on May 21, 2014.…

Friday, May 23, 2014 | Source: EuroPCR 2014

PERFUSE Registry: Diagnostic Accuracy Achieved with CT-Derived FFR Plus CT Perfusion Imaging

By Yael L. Maxwell
PARIS, France—A strategy combining fractional flow reserve (FFR) derived from computed tomography (CT) with CT perfusion imaging has demonstrated high…

Friday, May 23, 2014 | Source: EuroPCR 2014

Benefit of LAA Closure Becomes Most Evident After 1 Year

By Caitlin E. Cox
PARIS, France—Most of the stroke protection derived from percutaneous left atrial appendage (LAA) closure does not become apparent until 1 year after…

Friday, May 23, 2014 | Source: EuroPCR 2014

Nobori BES Demonstrates Good Long-term Outcomes with No Stent Thrombosis Beyond 3 Years

By Yael L. Maxwell
PARIS, France—A novel biolimus A9-eluting, biodegradable-polymer stent (BES) shows favorable long-term clinical outcomes and very low rates of device-related…

Friday, May 23, 2014 | Source: EuroPCR 2014

New Iteration of Sapien Device Associated with Low Rates of Early Mortality, Stroke

By L.A. McKeown
A new lower-profile valve and delivery system for transcatheter aortic valve replacement (TAVR) appears promising, with low mortality and stroke rates,…

Thursday, May 22, 2014 | Source: EuroPCR 2014

SYMPLICITY HTN-3: Predictors of Response Still Relevant After Trial’s Negative Findings

By Yael L. Maxwell
PARIS, France—Even though 6 month findings of the long awaited SYMPLICITY HTN 3 randomized trial demonstrated little effect of renal denervation on…

Thursday, May 22, 2014 | Source: EuroPCR 2014

UK Registry Finds Long-Term Survival After TAVR Depends on Patient Characteristics

By Caitlin E. Cox
PARIS, France—Nearly half of high-risk patients who undergo transcatheter aortic valve replacement (TAVR) for severe aortic stenosis live at least…

Thursday, May 22, 2014 | Source: EuroPCR 2014

Global SYMPLICITY Substudy Teases out Reasons for Non-response in Real-World Patients

By Yael L. Maxwell
PARIS, France—Renal denervation has spurred much controversy in recent months, with the sham-controlled SYMPLICITY HTN-3 trial demonstrating little…

Thursday, May 22, 2014 | Source: EuroPCR 2014

Early Data Show Novel Catheter-Implanted Device Benefits Patients with Left Heart Failure

By Caitlin E. Cox
PARIS, France—A first-in-man study presented Tuesday, May 20, at EuroPCR 2014 introduced a new percutaneous treatment for heart failure. Josep Rodés-Cabau,…

 

ACC NEWS

VIEW ALL

Monday, June 24, 2013 | Source: ACC News Releases

Study Shows Heart Failure Survivors at Greater Risk for Cancer Trend toward more cancers and more deaths among heart failure patients

By ACC News Releases
WASHINGTON (June 25, 2013) – Heart failure patients are surviving more often with the heart condition but they are increasingly more likely to be diagnosed…

Tuesday, June 04, 2013 | Source: ACC News Releases

New Program to Help Heart Patients Navigate Care, Reduce Readmissions AstraZeneca sponsorship to help support patient-centered programs in 35 hospitals

By ACC News Releases
WASHINGTON (June 5, 2013) – The American College of Cardiology is developing a program with support from founding sponsor AstraZeneca to provide personalized…

Tuesday, June 04, 2013 | Source: ACC News Releases

ACC/AHA Update Guideline for Management of Heart Failure Update increases emphasis on quality of life, care coordination, palliative care

By ACC News Releases
WASHINGTON (June 5, 2013) – The American College of Cardiology and the American Heart Association today released an expanded clinical practice guideline…

Sunday, March 10, 2013 | Source: ACC News Releases

Study Shows On-Pump Bypass Comparable to Off-Pump at Year Mark

By ACC News Releases
30-day neurocognitive differences disappeared by one-year follow up Read More

Sunday, March 10, 2013 | Source: ACC News Releases

Screenings, Targeted Care Reduce Heart Failure in At-Risk Patients

By ACC News Releases
Study shows simple blood test may help patients with risks for heart disease Read More

Sunday, March 10, 2013 | Source: ACC News Releases

Digoxin Reduces Hospital Admissions in Older Patients with Chronic Heart Failure

By ACC News Releases
If replicated in heart failure patients discharged from hospital, drug may help hospitals avoid readmission penalties Read…

Monday, March 26, 2012 | Source: Clinical Trials

Rule Out Myocardial Ischemia/Infarction Using Computer Assisted Tomography

By Clinical Trials
The goal of the trial was to evaluate a strategy of cardiac computed tomography (CT) angiography compared with standard emergency department (ED)…

Monday, March 26, 2012 | Source: ACC News Releases

STUDY SUGGESTS BETTER SURVIVAL IN PATIENTS UNDERGOING BYPASS SURGERY COMPARED TO CORONARY ANGIOPLASTY

By ACC News Releases
Patients with coronary heart disease and their doctors have long been challenged by the decision of whether to pursue bypass surgery or opt for the…

Monday, March 26, 2012 | Source: ACC News Releases

CARDIAC CT IS FASTER, MORE EFFECTIVE FOR EVALUATING PATIENTS WITH SUSPECTED HEART ATTACK

By ACC News Releases
Cardiac computed tomography angiography scans (CT scans that look at the heart) can provide a virtually instant verdict on whether chest pain is…

Monday, March 26, 2012 | Source: Clinical Trials

EINSTEIN–Pulmonary Embolism (PE) Study

By Clinical Trials
The goal of the trial was to evaluate treatment of the oral direct factor Xa inhibitor, rivaroxaban, compared with standard therapy among patients…

 

 

 

Upcoming Meetings:
 CRF Podium Icon LAA Closure 
A Technique-Oriented Course
July 17-19, 2014
Chicago, IL
 CRF Podium Icon NYC Cineangiogram Case Review Dinner Series for Fellows
July 17, 2014
Opia Restaurant
(inside the Renaissance 57 Hotel)
130 East 57th St
New York, NY
 CRF Podium Icon BRS 
Bioresorbable Vascular Scaffolds: Transformational Technology for PCI
July 25-26, 2014
The Fairmont Copley Plaza
Boston, MA
 TCT Icon Transcatheter Cardiovascular Therapeutics (TCT) 2014
Sept. 13-17, 2014
Walter E. Washington Convention Center
Washington, DC
 CRF Podium Icon NYC Cineangiogram Case Review Dinner Series for Fellows
Sep 25, 2014
Opia Restaurant
(inside the Renaissance 57 Hotel)
130 East 57th St
New York, NY
 CRF Podium Icon The VEINS 
Venous Endovascular Interventional Strategies
Oct 9-11, 2014
The Swissotel Hotel
Chicago, IL
 CRF Podium Icon NYC Cineangiogram Case Review Dinner Series for Fellows
Nov 6, 2014
Opia Restaurant
(inside the Renaissance 57 Hotel)
130 East 57th St
New York, NY
 CRF Podium Icon Transradial Symposium 2014
November 8, 2014
W New York Union Square
New York, NY
 CRF Global Partner Events 
 CRF Podium Icon TCT India 
Advanced CardioVascular Solutions (ACVS) India 2014 with TCT
Aug 1-4, 2014
Hyderabad, India
 CRF Podium Icon TCT 2014 Highlights at GISE 
Oct 14-17, 2014
Genoa, Italy
 CRF Podium Icon ICI 
Innovations in Cardiovascular Interventional Cardiology
Dec 14-16, 2014
Tel-Aviv, Israel

SOURCE

http://www.tctmd.com/show.aspx?id=43158

Read Full Post »

Why did this occur? The matter of Individual Actions Undermining Trust, The Patent Dilemma and The Value of a Clinical Trials

Why did this occur? The matter of Individual Actions Undermining Trust, The Patent Dilemma and The Value of a Clinical Trials

Reporter and Curator: Larry H. Bernstein, MD, FCAP

 

he large amount of funding tied to continued research and support of postdoctoral fellows leads one to ask how following the money can lead to discredited work in th elite scientific community.

Moreover, the pressure to publish in prestigious journals with high impact factors is a road to academic promotion.  In the last twenty years, it is unusual to find submissions for review with less than 6-8 authors, with the statement that all contributed to the work.  These factors can’t be discounted outright, but it is easy for work to fall through the cracks when a key investigator has over 200 publications and holds tenure in a great research environment.  But that is where we find ourselves today.

There is another issue that comes up, which is also related to the issue of carrying out research, and then protecting the work for commercialization.  It is more complicated in the sense that it is necessary to determine whether there is prior art, and then there is the possibility that after the cost of filing patent and a 6 year delay in obtaining protection, there is as great a cost in bringing the patent to finasl production.

I.  Individual actions undermining trust.

II. The patent dilemma.

III. The value of a clinical trial.

IV. The value contributions of RAP physicians
(radiologists, anesthesiologists, and pathologists – the last for discussion)
Those who maintain and inform the integrity of medical and surgical decisions

 

I. Top heart lab comes under fire

Kelly Servick

Science 18 July 2014: Vol. 345 no. 6194 p. 254 DOI: 10.1126/science.345.6194.25

 

In the study of cardiac regeneration, Piero Anversa is among the heavy hitters. His research into the heart’s repair mechanisms helped kick-start the field of cardiac cell therapy (see main story). After more than 4 decades of research and 350 papers, he heads a lab at Harvard Medical School’s Brigham and Women’s Hospital (BWH) in Boston that has more than $6 million in active grant funding from the National Institutes of Health (NIH). He is also an outspoken voice in a field full of disagreement.

So when an ongoing BWH investigation of the lab came to light earlier this year, Anversa’s colleagues were transfixed. “Reactions in the field run the gamut from disbelief to vindication,” says Mark Sussman, a cardiovascular researcher at San Diego State University in California who has collaborated with Anversa. By Sussman’s account, Anversa’s reputation for “pushing the envelope” and “challenging existing dogma” has generated some criticism. Others, however, say that the disputes run deeper—to doubts about a cell therapy his lab has developed and about the group’s scientific integrity. Anversa told Science he was unable to comment during the investigation.

“People are talking about this all the time—at every scientific meeting I go to,” says Charles Murry, a cardiovascular pathologist at the University of Washington, Seattle. “It’s of grave concern to people in the field, but it’s been frustrating,” because no information is available about BWH’s investigation. BWH would not comment for this article, other than to say that it addresses concerns about its researchers confidentially.

In April, however, the journal Circulation agreed to Harvard’s request to retract a 2012 paper on which Anversa is a corresponding author, citing “compromised” data. The Lancet also issued an “Expression of Concern” about a 2011 paper reporting results from a clinical trial, known as SCIPIO, on which Anversa collaborated. According to a notice from the journal, two supplemental figures are at issue.

For some, Anversa’s status has earned him the benefit of the doubt. “Obviously, this is very disconcerting,” says Timothy Kamp, a cardiologist at the University of Wisconsin, Madison, but “I would be surprised if it was an implication of a whole career of research.”

Throughout that career, Anversa has argued that the heart is a prolific, lifelong factory for new muscle cells. Most now accept the view that the adult heart can regenerate muscle, but many have sparred with Anversa over his high estimates for the rate of this turnover, which he maintained in the retracted Circulation paper.

Anversa’s group also pioneered a method of separating cells with potential regenerative abilities from other cardiac tissue based on the presence of a protein called c-kit. After publishing evidence that these cardiac c-kit+cells spur new muscle growth in rodent hearts, the group collaborated in the SCIPIO trial to inject them into patients with heart failure. In The Lancet, the scientists reported that the therapy was safe and showed modest ability to strengthen the heart—evidence that many found intriguing and provocative. Roberto Bolli, the cardiologist whose group at the University of Louisville in Kentucky ran the SCIPIO trial, plans to test c-kit+ cells in further clinical trials as part of the NIH-funded Cardiovascular Cell Therapy Research Network.

But others have been unable to reproduce the dramatic effects Anversa saw in animals, and some have questioned whether these cells really have stem cell–like properties. In May, a group led by Jeffery Molkentin, a molecular biologist at Cincinnati Children’s Hospital Medical Center in Ohio, published a paper in Nature tracing the genetic lineage of c-kit+ cells that reside in the heart. He concluded that although they did make new muscle cells, the number is “astonishingly low” and likely not enough to contribute to the repair of damaged hearts. Still, Molkentin says that he “believe[s] in their therapeutic potential” and that he and Anversa have discussed collaborating.

Now, an anonymous blogger claims that problems in the Anversa lab go beyond controversial findings. In a letter published on the blog Retraction Watch on 30 May, a former research fellow in the Anversa lab described a lab culture focused on protecting the c-kit+ cell hypothesis: “[A]ll data that did not point to the ‘truth’ of the hypothesis were considered wrong,” the person wrote. But another former lab member offers a different perspective. “I had a great experience,” says Federica Limana, a cardiovascular disease researcher at IRCCS San Raffaele Pisana in Rome who spent 2 years of her Ph.D. work with the group in 1999 and 2000, as it was beginning to investigate c-kit+ cells. “In that period, there was no such pressure” to produce any particular result, she says.

Accusations about the lab’s integrity, combined with continued silence from BWH, are deeply troubling for scientists who have staked their research on theories that Anversa helped pioneer. Some have criticized BWH for requesting retractions in the midst of an investigation. “Scientific reputations and careers hang in the balance,” Sussman says, “so everyone should wait until all facts are clearly and fully disclosed.”

 

II.  Trolling Along: Recent Commotion About Patent Trolls

July 17, 2014

PriceWaterhouseCoopers recently released a study about 2014 Patent Litigation. PwC’s ultimate conclusion was that case volume increased vastly and damages continue a general decline, but what’s making headlines everywhere is that “patent trolls” now account for 67% of all new patent lawsuits (see, e.g., Washington Post and Fast Company).

Surprisingly, looking at PwC’s study, the word “troll” is not to be found. So, with regard to patent trolls, what does this study really mean for companies, patent owners and casual onlookers?

First of all, who are these trolls?

“Patent Troll” is a label applied to patent owners who do not make or manufacture a product, or offer a service. Patent trolls live (and die) by suing others for allegedly practicing an invention that is claimed by their patents.

The politically correct term is Non-practicing Entity (NPE). PwC solely uses the term NPE, which it defines as an entity that does not have the capability to design, manufacture, or distribute products with features protected by the patent.

So, what’s so bad about them?

The common impression of an NPEs is a business venture looking to collect and monetize assets (i.e., patents). In the most basic strategy, an NPE typically buys patents with broad claims that cover a wide variety of technologies and markets, and then sues a large group of alleged patent infringers in the hope to collect a licensing royalty or a settlement. NPEs typically don’t want to spend money on a trial unless they have to, and one tactic uses settlements with smaller businesses to build a “war chest” for potential suits with larger companies.

NPEs initiating a lawsuit can be viewed positively, such as a just defense of the lowly inventor who sold his patent to someone (with deeper pockets) who could fund the litigation to protect the inventor’s hard work against a mega-conglomerate who ripped off his idea.

Or NPE litigation can be seen negatively, such as an attorney’s demand letter on behalf of an anonymous shell corporation to shake down dozens of five-figure settlements from all the local small businesses that have ever used a fax machine.

NPEs can waste a company’s valuable time and resources with lawsuits, yet also bring value to their patent portfolios by energizing a patent sales and licensing market. There are unscrupulous NPEs, but it’s hardly the black and white situation that some media outlets are depicting.

What did PwC say about trolls?

Well, the PwC study looked at the success rates and awards of patent litigation decisions. One conclusion is that damages awards for NPEs averaged more than triple those for practicing entities over the last four years. We’ll come back to this statistic.

Another key observation is that NPEs have been successful 25% of the time overall, versus 35% for practicing entities. This makes sense because of the burden of proof the NPEs carry as a plaintiff at trial and the relative lack of success for NPEs at summary judgment. However, PwC’s report states that both types of entities win about two-thirds of their trials.

But what about this “67% of all patent trials are initiated by trolls” discussion?

The 67% number comes from the RPX Corporation’s litigation report (produced January 2014) that quantified the percentage of NPE cases filed in 2013 as 67%, compared to 64% in 2012, 47% in 2011, 30% in 2010 and 28% in 2009.

PwC refers to the RPX statistics to accentuate that this new study indicates that only 20% ofdecisions in 2013 involved NPE-filed cases, so the general conclusion would be that NPE cases tend to settle or be dismissed prior to a court’s decision. Admittedly, this is indicative of the prevalent “spray and pray” strategy where NPEs prefer to collect many settlement checks from several “targets” and avoid the courtroom.

In this study, who else is an NPE?

If someone were looking to dramatize the role of “trolls,” the name can be thrown around liberally (and hurtfully) to anyone who owns and asserts a patent without offering a product or a service. For instance, colleges and universities fall under the NPE umbrella as their research and development often ends with a series of published papers rather than a marketable product on an assembly line.

In fact, PwC distinguishes universities and non-profits from companies and individuals within their NPE analysis, with only about 5% of the NPE cases from 1995 to 2013 being attributed to universities and non-profits. Almost 50% of the NPE cases are attributed to an “individual,” who could be the listed inventor for the patent or a third-party assignee.

The word “troll” is obviously a derogatory term used to connote greed and hiding (under a bridge), but the term has adopted a newer, meme-like status as trolls are currently depicted as lacking any contribution to society and merely living off of others’ misfortunes and fears. [Three Billy Goats Gruff]. This is not always the truth with NPEs (e.g., universities).

No one wants to be called a troll—especially in front of a jury—so we’ve even recently seen courts bar defendants from referring to NPEs as such colorful terms as a “corporate shell,” “bounty hunter,” “privateer,” or someone “playing the lawsuit lottery.” [Judge Koh Bans Use Of Term ” Patent Troll” In Apple Jury Trial]

Regardless of the portrayal of an NPE, most people in the patent world distinguish the “trolls” by the strength of the patent, merits of the alleged infringement and their behavior upon notification. Often these are expressed as “frivolity” of the case and “gamesmanship” of the attorneys. Courts are able to punish plaintiffs who bring frivolous claims against a party and state bar associations are tasked with monitoring the ethics of attorneys. The USPTO is tasked with working to strengthen the quality of patents.

What’s the take-away from this study regarding NPEs?

The study focuses on patent litigation that produced a decision, therefore the most important and relevant conclusion is that, over the last four years, average damages awards for NPEs are more than triple the damages for practicing entities. Everything else in these articles, such as the initiation of litigation by NPEs, settlement percentages, and the general behavior of patent trolls is pure inference beyond the scope of the study.

This may sound sympathetic to trolls, but keep in mind that the study highlights that NPEs have more than triple the damages on average compared to practicing entities and it is meant to shock the reader a bit. One explanation for this is that NPEs are in the best position to choose the patents they want to assert and choose the targets they wish to sue—especially when the NPE is willing to ride that patent all the way to the end of a long, expensive trial. Sometimes settling is not an option. Chart 2b indicates that the disparity in the damages awarded to NPEs relative to practicing entities has always been big (since 2000), but perhaps going from two-fold from 2000 – 2009 to three times as much in the past 4 years indicates that NPEs are improving at finding patents and/or picking battles to take all the way to a court decision. More than anything, this seems to reflect the growth in the concept of patents as a business asset.

The PwC report is chock full of interesting patterns and trends of litigation results, so it’s a shame that the 67% number makes the headlines—far more interesting are the charts comparing success rates by 4-year periods (Chart 6b) or success rates for NPEs and practicing entities in front of a jury verusin front of a bench (Chart 6c), as well as other tables that reveal statistics for specific districts of the federal courts. Even the stats that look at the success rates of each type of NPE are telling because the reader sees that universities and non-profits have a higher success rate than non-practicing companies or individuals.

What do we do about the trolls?

The White House has recently called for Congress to do something about the trolls as horror stories of scams and shake-downs are shared. A bill was gaining momentum in the Senate, when Senator Leahy took it off the agenda in early July. That bill had miraculously passed 325-91 in the House and President Obama was willing to sign it if the Senate were to pass it. The bill was opposed by trial attorneys, universities, and bio-pharmaceutical businesses who felt as though the law would severely inhibit everyone’s access to the courts in order to hinder just the trolls. Regardless, most people think that the sitting Congressmen merely wanted a “win” prior to the mid-term elections and that patent reform is unlikely to reappear until next term.

In the meantime, the Supreme Court has recently reiterated rules concerning attorney fee-shifting on frivolous patent cases, as well as clarifying the validity of software patents. Time will tell if these changes have any effects on the damages awards that PwC’s study examined or even if they cause a chilling of the number of patent lawsuit filings.

Furthermore, new ways to challenge the validity of asserted patents have been initiated via the America Invents Act. For example, the Inter Partes Review (IPR) has yielded frightening preliminary statistics as to slowing, if not killing, patents that have been asserted in a suit. While these administrative trials are not cheap, many view these new tools at the Patent Trial and Appeals Board as anti-troll measures. It will be interesting to watch how the USPTO implements these procedures in the near future, especially while former Google counsel, Acting Director Michelle K. Lee, oversees the office.

In the private sector, Silicon Valley has recently seen a handful of tech companies come together as the License on Transfer Network, a group hoping to disarm the “Patent Assertion Entities.” Joining the LOT Network comes via an agreement that creates a license for use of a patent by anyone in the LOT network once that patent is sold. The thought is that the NPEs who consider purchasing patents from companies in the LOT Network will have fewer companies to sue since the license to the other active LOT participants will have triggered upon the transfer and, thus, the NPE will not be as inclined to “troll.” For instance, if a member-company such as Google were to sell a patent to a non-member company and an NPE bought that patent, the NPE would not be able to sue any members of the LOT Network with that patent.

Other notes

NPEs are only as evil as the people who run them—that being said, there are plenty of horror stories of small businesses receiving phantom demand letters that threaten a patent infringement suit without identifying themselves or the patent. This is an out-and-out scam and a plague on society that results in wasted time and resource, and inevitably higher prices on the consumer end.

It is a sin and a shame that patent rights can be misused in scams and shake-downs of businesses around us, but there is a reason that U.S. courts are so often used to defend patent rights. The PwC study, at minimum, reflects the high stakes of the patent market and perhaps the fragility. Nevertheless, merely monitoring the courts may not keep the trolls at bay.

I’d love to hear your thoughts.

*This is provided for informational purposes only, and does not constitute legal or financial advice. The information expressed is subject to change at any time and should be checked for completeness, accuracy and current applicability. For advice, consult a suitably licensed attorney or patent agent.

 

III. Large-scale analysis finds majority of clinical trials don’t provide meaningful evidence

Ineffective TreatmentsMedical Ethics • Tags: Center for Drug Evaluation and ResearchClinical trialCTTIDuke University HospitalFDAFood and Drug AdministrationNational Institutes of HealthUnited States National Library of Medicine

04 May 2012

DURHAM, N.C.— The largest comprehensive analysis of ClinicalTrials.gov finds that clinical trials are falling short of producing high-quality evidence needed to guide medical decision-making. The analysis, published today in JAMA, found the majority of clinical trials is small, and there are significant differences among methodical approaches, including randomizing, blinding and the use of data monitoring committees.

“Our analysis raises questions about the best methods for generating evidence, as well as the capacity of the clinical trials enterprise to supply sufficient amounts of high quality evidence to ensure confidence in guideline recommendations,” said Robert Califf, M.D., first author of the paper, vice chancellor for clinical research at Duke University Medical Center, and director of the Duke Translational Medicine Institute.

The analysis was conducted by the Clinical Trials Transformation Initiative (CTTI), a public private partnership founded by the Food and Drug Administration (FDA) and Duke. It extends the usability of the data in ClinicalTrials.gov for research by placing the data through September 27, 2010 into a database structured to facilitate aggregate analysis. This publically accessible database facilitates the assessment of the clinical trials enterprise in a more comprehensive manner than ever before and enables the identification of trends by study type.

 

The National Library of Medicine (NLM), a part of the National Institutes of Health, developed and manages ClinicalTrials.gov. This site maintains a registry of past, current, and planned clinical research studies.

“Since 2007, the Food and Drug Administration Amendment Act has required registration of clinical trials, and the expanded scope and rigor of trial registration policies internationally is producing more complete data from around the world,” stated Deborah Zarin, MD, director, ClinicalTrials.gov, and assistant director for clinical research projects, NLM. “We have amassed over 120,000 registered clinical trials. This rich repository of data has a lot to say about the national and international research portfolio.”

This CTTI project was a collaborative effort by informaticians, statisticians and project managers from NLM, FDA and Duke. CTTI comprises more than 60 member organizations with the goal of identifying practices that will improve the quality and efficiency of clinical trials.

“Since the ClinicalTrials.gov registry contains studies sponsored by multiple entities, including government, industry, foundations and universities, CTTI leaders recognized that it might be a valuable source for benchmarking the state of the clinical trials enterprise,” stated Judith Kramer, MD, executive director of CTTI.

The project goal was to produce an easily accessible database incorporating advances in informatics to permit a detailed characterization of the body of clinical research and facilitate analysis of groups of studies by therapeutic areas, by type of sponsor, by number of participants and by many other parameters.

“Analysis of the entire portfolio will enable the many entities in the clinical trials enterprise to examine their practices in comparison with others,” says Califf. “For example, 96% of clinical trials have ≤1000 participants, and 62% have ≤ 100. While there are many excellent small clinical trials, these studies will not be able to inform patients, doctors and consumers about the choices they must make to prevent and treat disease.”

The analysis showed heterogeneity in median trial size, with cardiovascular trials tending to be twice as large as those in oncology and trials in mental health falling in the middle. It also showed major differences in the use of randomization, blinding, and data monitoring committees, critical issues often used to judge the quality of evidence for medical decisions in clinical practice guidelines and systematic overviews.

“These results reinforce the importance of exploration, analysis and inspection of our clinical trials enterprise,” said Rachel Behrman Sherman, MD, associate director for the Office of Medical Policy at the FDA’s Center for Drug Evaluation and Research. “Generation of this evidence will contribute to our understanding of the number of studies in different phases of research, the therapeutic areas, and ways we can improve data collection about clinical trials, eventually improving the quality of clinical trials.”

Related articles

 

IV.  Lawmakers urge CMS to extend MU hardship exemption for pathologists

 

Eighty-nine members of Congress have asked the Centers for Medicare & Medicaid Services to give pathologists a break and extend the hardship exemption they currently enjoy for all of Stage 3 of the Meaningful Use program.In the letter–dated July 10 and addressed to CMS Administrator Marilyn Tavenner–the lawmakers point out that CMS had recognized in its 2012 final rule implementing Stage 2 of the program that it was difficult for pathologists to meet the Meaningful Use requirements and granted a one year exception for 2015, the first year that penalties will be imposed. They now are asking that the exception be expanded to include the full five-year maximum allowed under the American Recovery and Reinvestment Act.

“Pathologists have limited direct contact with patients and do not operate in EHRs,” the letter states. “Instead, pathologists use sophisticated computerized laboratory information systems (LISs) to support the work of analyzing patient specimens and generating test results. These LISs exchange laboratory and pathology data with EHRs.”

Interestingly, the lawmakers’ exemption request is only on behalf of pathologists, even though CMS had granted the one-year hardship exception to pathologists, radiologists and anesthesiologists.

Rep. Tom Price (R-Ga.), one of the members spearheading the letter, had also introduced a bill (H.R. 1309) in March 2013 that would exclude pathologists from the incentives and penalties of the Meaningful Use program. The bill, which has 31 cosponsors, is currently sitting in committee. That bill also does not include relief for radiologists or anesthesiologists.

CMS has provided some flexibility about the hardship exceptions in the past, most recently by allowing providers to apply for one due to EHR vendor delays in upgrading to Stage 2 of the program.

However, CMS also noted in the 2012 rule granting the one-year exception that it was granting the exception in large part because of the then-current lack of health information exchange and that “physicians in these three specialties should not expect that this exception will continue indefinitely, nor should they expect that we will grant the exception for the full 5-year period permitted by statute.”

To learn more:
– read the letter (.pdf)

Read Full Post »

Life-work in Engineering of Improved Heart Valve

Curator and Reporter: Larry H Bernstein, MD, FCAP

 

An authority and author of the book on cardiovascular valve devices is challenged by patient’s mother to go beyond what is available.  The results are splendid after re-engineering the design to the problem.

 

Reverse Engineering A Human Heart Valve

By Jim Pomager

aortic valve - a remarkable piece of biomechanical engineering

aortic valve – a remarkable piece of biomechanical engineering

 

 

 

The aortic valve is a remarkable piece of biomechanical engineering. On any given day, the leaflets (or cusps) of a healthy aortic valve will open and close 100,000+ times, allowing the proper amount of blood to flow from the heart to the rest of the body. Over a lifetime, a healthy valve endures more than 3.4 billion heartbeats.

Unfortunately, the aortic valve doesn’t always remain healthy. (What organ does?) According to the American Heart Association, up to 1.5 million people in the United States suffer from aortic stenosis (AS), a calcification of the aortic valve that narrows its opening and restricts blood flow. In the early stages, the disease is often asymptomatic, but as it progresses, it can cause chest pain, weakness, and difficulty breathing. And in approximately 300,000 people worldwide, the condition develops into severe AS, which has a one-year survival rate of approximately 50 percent, if left untreated.

Fortunately, there are treatment options.  The most common and successful is aortic valve replacement (AVR), wherein a mechanical or tissue-based valve is substituted for the diseased valve. For decades, replacement valves were implanted via open heart surgery, which involves an extended hospital stay and months of recovery. But in recent years, a promising new approach has emerged: transcatheter aortic valve implementation (TAVI), also known as transcatheter aortic valve replacement (TAVR). In TAVI, a tissue-based artificial valve is delivered into the diseased heart valve via a blood vessel, rather than through a large incision in the chest.

TAVI has many benefits, the most obvious (and compelling) of which is its noninvasiveness, which means shorter recovery times and faster attainment of quality-of-life outcomes for the patient. Replacement of a transcatheter aortic valve (TAV) can also be a minimally invasive exercise — a second TAV can simply be implanted within the first.

On the other hand, the use of TAVI procedures in U.S. hospitals is not yet widespread (though it is growing rapidly). The longevity of current-generation TAVs also remains unknown because it is an emerging technology, compared to evidence of 15+ years for surgically implanted heart valves. Plus, TAVI is only approved in the U.S. for use in AS patients who are either ineligible for surgical valve replacement or at high risk. (TAVI has been available in Europe since 2007, and clinical trials are underway in the U.S. for its use in intermediate-risk patients.)

What’s really needed is an improved TAV — one that outperforms current transcatheter valves, is as durable as a surgical valve, and operates more like … well, a healthy human aortic valve. Such a valve would open the door to TAVI’s use in the hundreds of thousands of lower-risk (and generally younger) AS patients whose only current option is a surgically implanted valve, and who would rather not have their chest opened.

Now, a man who has dedicated his professional career to studying the aortic valve has invented a new artificial valve design that he says will revolutionize TAVI. And if everything goes according to plan, his TAV will reach European patients in 2015 and U.S. patients soon after. How did he and his startup company design such technology? By reverse engineering the aortic valve.

The Man Behind The Valve

Mano Thubrikar

Mano Thubrikar

 

 

 

Mano Thubrikar, quite literally wrote the book on heart valves and heart disease — two of them, in fact. His The Aortic Valve (1989) and Vascular Mechanics and Pathology (2007) are leading textbooks in cardiovascular studies, and the former is widely used as a guide in the design of bioprosthetic heart valves.

After earning an undergraduate degree in metallurgy, a master’s in materials science, and a Ph.D. in biomedical engineering, Dr. Thubrikar spent the first 30 years of his career exclusively in academic research. He studied the aortic valve and bioprostheses from almost every conceivable angle while working at the University of Virginia (UVA) and at the Carolinas Medical Center and the University of North Carolina (UNC) at Charlotte.

But in 2003, Dr. Thubrikar received a phone call that would change the trajectory of his career and set him on the path to develop a novel TAV technology. A woman contacted him to discuss her son, a 35-year-old athlete with a calcified aortic valve. The condition was the result of a bicuspid valve, a congenital condition where the aortic valve has two cusps, rather than the customary three. The man needed a valve replacement, and his only choice was to have a mechanical heart valve surgically implanted. However, the surgical valve meant he would have to stay on anticoagulants for the rest of his life, effectively ending his athletic pursuits. Dr. Thubrikar informed the mother that there just weren’t any treatments available that would allow her son to continue his active lifestyle.

“Didn’t you write the book on the aortic valve?” she asked. “Why didn’t you make a valve that my son could use?”

The conversation and question deeply affected the researcher. “I went home and was so disturbed,” he told me during a recent visit to his office. “I talked to my wife and said, “You know what? Years of research, writing papers, and giving presentations — that’s done. I now need to make a heart valve.”

Soon after, Dr. Thubrikar left Carolinas Medical Center to embark on his new mission. He joined artificial heart valve pioneer Edwards Lifesciences as a Distinguished Scientist, but left after it became clear that the company’s plans for him didn’t align with his own.

So in 2007 — coincidentally, the same year Edwards launched the first commercially available TAV device — Dr. Thubrikar returned to academia, joining the staff at the South Dakota School of Mines & Technology. There he spent the next three years working on a new artificial valve design — one based on decades of research on the physics behind the human aortic valve.

Looking To The Human Body For Design Output
According to Dr. Thubrikar’s research, the natural aortic valve follows four strong design principles for maximum longevity and optimal hemodynamic performance. Those criteria are:

1. A specific coaptation height — When the valve’s three leaflets come together to close the valve, there is some surface-to-surface contact between the leaflets, rather than an edge-to-edge seal. This safety margin helps prevent against blood leakage back into the left ventricle.

2. No folds in the leaflets — Natural aortic valve cusps flex without folding. Folds would crease the tissue and cause unwanted stress on the leaflets, negatively impacting durability.

3. Minimum overall height — Extra height would produce dead space, which can lead to a variety of issues.

4. Minimum leaflet flexion — The human aortic valve manages to open completely with the leaflets moving only 70 degrees, not the 90 degrees you might expect. Again, this improves the valve’s longevity.

“You almost need to be a solid geometry design engineer to understand the math and the equations behind these principles,” he explained. “With these criteria, however, you have design parameters for the aortic valve. The mathematical equations give you the output of how an artificial valve should be designed.”

Dimensions of the natural aortic valve

Dimensions of the natural aortic valve

Dimensions of the natural aortic valve

 

 

Based on these four principles, Dr. Thubrikar reverse engineered the aortic heart valve, developing a new artificial valve design that mimics the aortic valve’s precise geometry. In October 2010, he launched a startup company called Thubrikar Aortic Valve, Inc. to commercialize his new creation, which he calls Optimum TAV and touts as “nature’s valve by design.”

“When someone asks me, ‘How does your valve compare with Edwards’?’ or ‘How does your valve compare with Medtronic’s?’, I say ‘We don’t compare our valve to them,'” Dr. Thubrikar told me. “We compare our valve with the natural aortic valve.”

On the surface, Optimum TAV looks similar to other artificial heart valves on the market, with three leaflets of bovine pericardium tissue mounted on a metal stent-frame. (In fact, the design is often mistaken for another widely used surgical valve.) But according to Dr. Thubrikar, it has a unique combination of features that will help it overcome the major design limitations of current-generation TAVs (if we’re going to compare). Those design limitations include:

  • Suture holes in the leaflet body — While all TAVs (including Optimum TAV) are constructed by sewing animal tissue to a metal frame, piercing the flexion zone of the leaflets leads to potential wear. Optimum TAV does not have a single suture hole in the working portion of the leaflet body.
  • Blood flow through frame — Some TAV frames are as tall as 5 cm in height, extending up into the aorta once implanted. As a result, blood must pass through the frame to enter the coronary arteries. Proteins in the blood will accumulate on the frame, and can eventually break loose and cause thromboembolisms (blood clots).  Optimum TAV is only 2 cm in height. (Related, the low height of the Thubrikar valve also makes it less likely to require a pacemaker.)
  • Thick outer frame — The thicker the frame, the smaller the valve opening will be, allowing less blood to pass through. This opening is referred to as the valve’s EOA, or effective orifice area. The average EOA of a surgical valve is around 1.9 cm2, and some TAVs have EOAs as small as 1.5 cm2(technically, a mild form of stenosis). In bench tests, Optimum TAV’s EOA was 2.3 to 2.4 cm2. (A healthy aortic valve has an EOA of approximately 2.7 cm2.)
  • Clipped calcified leaflets — Some current TAVs are anchored to the patient’s original valve using a paper-clip like mechanism. In this design, there is the potential that the TAVs leaflets will come into contact with the old, calcified leaflets during the operation, causing wear. Optimum TAV’s design eliminates the possibility of contact between the leaflets and native valve.
  • Paravalvular leakage — In some cases, a space forms between the outside of a TAV and the surrounding heart tissue, and blood can leak through. Optimum TAV has a high skirt to prevent this type of gap from developing. In addition, Optimum TAV’s novel frame architecture allows it to conform to and seal off either a round or elliptical annulus (the ring-shaped base of the original valve). This is particularly helpful in minimizing or eliminating leakage in bicuspid patients, who often have an irregularly shaped annulus.
  • Balloon expansion — TAV frames made of stainless steel must be forced open by a balloon. The TAV’s tissue can get caught between the balloon and the frame and potentially tear. Optimum TAV’s frame is made of nitinol, which automatically expands once deployed from the catheter.

 

optimum TAV

optimum TAV

 

 

Optimum TAV

“Other technologies have built-in issues,” Dr. Thubrikar said. “To be able to avoid those problems in a comprehensive fashion is no small feat.”

Trial By Fire
During the two and a half years following the establishment of Thubrikar Aortic Valve, Optimum TAV seemed to be moving steadily toward market. The company raised enough funding to get started, primarily from friends, family, physicians, entrepreneurs, and technology industry executives. Patent applications were filed, suppliers were selected, valves were painstakingly produced (by hand, over one-and-a-half to two days each), and preclinical testing began.

Members of the Thubrikar Aortic Valve team

Members of the Thubrikar Aortic Valve team

 

 

Members of the Thubrikar Aortic Valve team (left to right): Deodatt Wadke, member of the board of directors and cofounder; Samir Wadke, executive director of business development and cofounder; Dr. Mano Thubrikar, president and founder; Samuel Evans, research engineer II; and Nikhil Heble, counsel, secretary, and cofounder

But the fledgling company was dealt a major setback in April 2013, when a fire destroyed the Horsham, Pa. office building to which the Thubrikar Aortic Valve laboratory had recently relocated (from South Dakota). All of its equipment was destroyed and needed to be replaced. The company had to relocate to nearby Norristown, Pa. Not an ideal scenario for a startup trying to make the most of extremely limited resources.

The company was undeterred by the fire, and the last year has been a successful one for Thubrikar. The company completed most of its preclinical testing (including implants in 12 animals and two diseased human cadaver hearts), reached design freeze on Optimum TAV, filed a provisional patent application for its proprietary delivery catheter, and achieved almost $2 million in total funding. Perhaps the biggest milestone came in August 2013, when Optimum TAV met the International Organization for Standardization’s (ISO’s) durability requirements by surpassing 200 million cycles in a third-party ISO certified laboratory.

The durability testing has continued, and Optimum TAV continues to function beyond 390 million cycles, which approximates 11 years in vivo. Surgical valves typically last anywhere from 12 to 18 years, and Thubrikar expects his valve to last at least that long.

“I would not be surprised if it surpasses the longevity of even the surgical valve,” he said.

The company also received its first institutional investment, from Delaware Crossing Investor Group (DCIG), in 2014. The primary DCIG investor, Marv Woodall, led the commercialization of the world’s first stents as president of Johnson & Johnson Interventional Systems (now Cordis) and was on the board of director of the first TAV company, Percutaneous Valve Technologies (PVT, now part of Edwards Lifesciences). Thubrikar has recruited him as its business advisor.

What Lies Ahead
Like many other developers of novel medical devices, Thubrikar Aortic Valve has decided to take its product to market through Europe initially, given European regulators’ comfort level with TAV and the FDA’s steep requirement for clinical trials. “We have spoken to the FDA and will continue to do so on a regular basis,” according to Dr. Thubrikar. “But they asked for a lot more preclinical testing than the European Notified Bodies to start a clinical trial.”

The company is now working to raise an additional $2 million to $10 million, and expects the granting of its patent for Optimum TAV in 2014. The finances will enable Thubrikar to not only conduct a first-in-human (FIH) feasibility study in up to 15 patients this year, but also to expand to a full European clinical trial of about 65 additional patients in 2015. If all goes well, a 2015 CE Mark for Optimum TAV isn’t out of the question.

However, trial success is vital, since today’s investors — and large companies in search of technology acquisitions — wait for significant clinical data to accumulate before backing a medical device. “We realize that until we actually implant the valve in a patient, other companies will think, ‘You don’t know what can go wrong,'” Dr. Thubrikar explained. “We had one big company say, ‘We will pay you four times as much once the product is in a patient.’ They want you to de-risk everything, to work out all the bugs yourself on your own dime.”

Yet Dr. Thubrikar thinks its only a matter of time until his life’s work finally arrives in the hands of interventional cardiologists, who he said have been “knocking at his door” since he first presented a paper on the technology in 2012. Since then, he has spoken at several of the largest interventional cardiology conferences, and word continues to spread about Optimum TAV. Like many other researchers-turned-entreprenuers, he steadfastly believes that his invention will eventually reach the market, where it can begin helping patients — like the one whose mother contacted him a decade ago.

“If hell freezes over, if we don’t get any money, I don’t care,” he said. “I don’t care how it happens. We are going to make a heart valve. That’s the only mission in my life.”

For more information on Thubrikar Aortic Valve and Optimum TAV, visit http://tavi.us/.

 

 

 

 

Read Full Post »

« Newer Posts - Older Posts »