Feeds:
Posts
Comments

Posts Tagged ‘KRAS’

New Mutant KRAS Inhibitors Are Showing Promise in Cancer Clinical Trials: Hope For the Once ‘Undruggable’ Target, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

New Mutant KRAS Inhibitors Are Showing Promise in Cancer Clinical Trials: Hope For the Once ‘Undruggable’ Target

Curator: Stephen J. Williams, Ph.D.

UPDATED 10/2/2021

A Newly Identified Mutant RAS G12C  GTPase Activating Protein (GAP) may lead to discovery of new class of RAS inhibitors 

From the journal Science in Filling in the GAPs in understanding RAS: A newly identified regulator increases the efficacy of a new class of targeted anti-RAS drugs.

Source:

SCIENCE•8 Oct 2021•Vol 374Issue 6564•pp. 152-153•DOI: 10.1126/science.abl3639

    According to canonical thinking, mutationally activated RAS (constitutive activation) is insensitive to GTPase-activating proteins (GAPs).  GAPs accelerated the conversion of GTP bound to RAS to GDP, a critical step in the inactivation of RAS signaling cycle.  However a small molecule has just been FDA approved, sotorasib, in cancer cells by binding only the GDP bound KRAS G12C mutant. A few non small cell lung cancers (NSCLC) are resistant to another such inhibitor, adagrasib.  In the same Science issue, another paper by Li et. al. explains the potential that a GAP, RGS3, may play in this conundrum and demonstrates that certain other inhibitors of the RAS cycle, mainly the GEF (guanine exchange factor) SOS1, in combination with MEK inhibitors may circumvent this resistance.

Inhibitors of mutant KRAS
The KRASG12C (Gly12→Cys) mutant is refractory to canonical GAPs, p120 RASGAP and neurofibromin, but not RGS3, which promotes GTP hydrolysis. The resulting GDP-bound KRASG12C is an anticancer drug target. Combination with inhibitors of SOS1 or with inhibitors of downstream signaling may further improve efficacy.
GRAPHIC: C. BICKEL/SCIENCE
 
First a discussion of the RAS signalling cycle is shown below in a good review of RAS activation and signal termination.
 
PMCID: PMC3124093
NIHMSID: NIHMS294865
PMID: 21102635
Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?

Abstract

There is now considerable and increasing evidence for a causal role of aberrant activity of the Ras superfamily of small GTPases in human cancers. These GTPases act as GDP-GTP-regulated binary switches that control many fundamental cellular processes. A common mechanism of GTPase deregulation in cancer is the deregulated expression and/or activity of their regulatory proteins, guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound state and GTPase activating proteins (GAPs) that return the GTPase to its GDP-bound inactive state. We assess the association of GEFs and GAPs with cancer and their druggability for cancer therapeutics.

Box 1

Ras superfamily of small GTPases

The human Ras superfamily comprised of over 150 members which is divided into five major branches on the basis of sequence and functional similarities. In addition to the three Ras isoforms, other members of the Ras family with important roles in cancer include Rheb and Ral proteins. The ~20 kDa core G domain (corresponding to Ras residues 4–166) is conserved among all Ras superfamily proteins and is involved in GTP binding and hydrolysis. This domain is comprised of five conserved guanine nucleotide consensus sequence elements (Ras residue numbering) involved in binding phosphate/Mg2+ (PM) or the guanine base (G). The switch I (Ras residues 30–38) and II (59–76) regions change in conformation during GDP-GTP cycling and contribute to preferential effector binding to the GTP-bound state and the core effector domain (E; Ras residues 32–40). Ras and Rho family proteins have additional C-terminal hypervariable (HV) sequences that commonly terminate with a CAAX motif that signals for farnesyl or geranylgeranyl isoprenoid addition to the cysteine residue, proteolytic removal of the AAX residues and carboxylmethylation of the prenylated cysteine. Some are modified additionally by a palmitate fatty acid to cysteine residues in the HV sequence that contributes to membrane association. Rab proteins also contain a C-terminal HV region that terminates with cysteine-containing motifs that are modified by addition of geranylgeranyl lipids, with some undergoing carboxylmethylation. Arf family proteins are characterized by an N-terminal extension involved in membrane interaction, with some cotranslationally modified by addition of a myristate fatty acid. Ran is not lipid modified but contains a C-terminal extension that is essential for function. Rho proteins are characterized by an up to 13 amino acid “Rho insert” sequence positioned between Ras residues 122 and 123 involved in effector regulation.

 

An external file that holds a picture, illustration, etc.
Object name is nihms294865u1a.jpg

 

The GDP-GTP cycle

Ras superfamily proteins possess intrinsic guanine nucleotide exchange and GTP hydrolysis activities. However, these activities are too low to allow efficient and rapid cycling between their active GTP-bound and inactive GDP-bound states. GEFs and GAPs accelerate and regulate these intrinsic activities. Members of the different branches of the superfamily are regulated by GEFs and GAPs with structurally distinct catalytic domains. Here we have utilized the Rho family as an example to illustrate the complexity of this process, where multiple GEFs and GAPs may regulate one specific GTPase. For the 20 human Rho GTPases there are 83 GEFs and 67 GAPs and a subset of Rho GTPases are not likely regulated by GEFs and GAPs (e.g., Rnd3/RhoE). Rho GTPases are activated by distinct RhoGEF families. Dbl family RhoGEFs (68) possesses a tandem Dbl homology (DH) catalytic and pleckstrin homology (PH) regulatory domain topology. DOCK family RhoGEFs (11) are characterized by two regions of high sequence conservation that are designated Dock-homology region regulatory DHR-1 and catalytic DHR-2 domains. Two other RhoGEFs have been described (SWAP70 and SLAT) contain a PH but no DH domain (2) and smgGDS (1) is an unusual GEF in that it functions as a GEF for some Rho as well as non-Rho family GTPases. At least 24 Dbl RhoGEFs have been reported to activate RhoA. Rho (and Rab) GTPases are also controlled by a third class of regulatory proteins, Rho dissociation inhibitors (RhoGDI) (of which there are 3) whose main function involves regulation of Rho GTPase membrane association by masking the isoprenoid group.

 

An external file that holds a picture, illustration, etc.
Object name is nihms294865u2.jpg

So GEFs like SOS 1,2,3 are responsible for activation of the G Protien RAS upon Receptor Tyrosine Kinase (RTK) activation by a multitude of growth factors.  The GAPs are responsible for termination of the activated RAS cycle and now RAS, in its normal unmuted version, can now be activated again.  The G12C mutant keeps RAS in its activated state as GAPs cannot fascilitate the hydroylsis of GTP.  

Li et al. (in this issue) theorized that there must be cellular factors that stimulate formation of GDP-bound KRAS G12C, enabling its vulnerability to KRAS G12C inhibitors, and discovered a regulator of G protein signaling 3 (RGS3), which had GAP activity previously for heterotrimeric G proteins GαI and Gαq with unexpected GAP activity for the KRAS G12C mutant.   They also found the fully activated GTP bound KRAS G12C is dependent on RTK-mediated activation of SOS1.  This suggested that SOS1 inhibitors with MEK inhibitors could be effective against mutant KRAS.

The paper by Li is summarized below:

The G protein signaling regulator RGS3 enhances the GTPase activity of KRAS

SCIENCE•8 Oct 2021•Vol 374Issue 6564•pp. 197-201•DOI: 10.1126/science.abf1730

Abstract

Recently reported to be effective in patients with lung cancer, KRASG12C inhibitors bind to the inactive, or guanosine diphosphate (GDP)–bound, state of the oncoprotein and require guanosine triphosphate (GTP) hydrolysis for inhibition. However, KRAS mutations prevent the catalytic arginine of GTPase-activating proteins (GAPs) from enhancing an otherwise slow hydrolysis rate. If KRAS mutants are indeed insensitive to GAPs, it is unclear how KRASG12C hydrolyzes sufficient GTP to allow inactive state–selective inhibition. Here, we show that RGS3, a GAP previously known for regulating G protein–coupled receptors, can also enhance the GTPase activity of mutant and wild-type KRAS proteins. Our study reveals an unexpected mechanism that inactivates KRAS and explains the vulnerability to emerging clinically effective therapeutics.

UPDATED 09/26/2021

The KRAS G12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients

Source: Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, Sudhakar N, Bowcut V, Baer BR, Ballard JA, Burkard MR, Fell JB, Fischer JP, Vigers GP, Xue Y, Gatto S, Fernandez-Banet J, Pavlicek A, Velastagui K, Chao RC, Barton J, Pierobon M, Baldelli E, Patricoin EF 3rd, Cassidy DP, Marx MA, Rybkin II, Johnson ML, Ou SI, Lito P, Papadopoulos KP, Jänne PA, Olson P, Christensen JG. The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov. 2020 Jan;10(1):54-71. doi: 10.1158/2159-8290.CD-19-1167. Epub 2019 Oct 28. PMID: 31658955; PMCID: PMC6954325.

Abstract

Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRASG12C inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRASG12C, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRASG12C-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRASG12C-positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profiling in sensitive and partially resistant nonclinical models identified mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models. SIGNIFICANCE: The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRASG12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identification of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.

Introduction

KRAS is one of the most frequently mutated oncogenes in cancer; however, efforts to directly target KRAS have been largely unsuccessful due to its high affinity for GTP/GDP and the lack of a clear binding pocket (1–4). More recently, compounds were identified that covalently bind to KRASG12C at the cysteine 12 residue, lock the protein in its inactive GDP-bound conformation, inhibit KRAS-dependent signaling, and elicit antitumor responses in tumor models (5–7). Advances on early findings demonstrated that the binding pocket under the switch II region was exploitable for drug discovery, culminating in the identification of more potent KRASG12C inhibitors with improved physiochemical properties that are now entering clinical trials. The identification of KRASG12C inhibitors provides a renewed opportunity to develop a more comprehensive understanding of the role of KRAS as a driver oncogene and to explore the clinical utility of direct KRAS inhibition.

KRASG12C mutations are present in lung and colon adenocarcinomas as well as smaller fractions of other cancers. The genetic context of KRASG12C alteration can vary significantly among tumors and is predicted to affect response to KRAS inhibition. KRAS mutations are often enriched in tumors due to amplification of mutant or loss of wild-type allele (8, 9). In addition, KRAS mutations often co-occur with other key genetic alterations including TP53 and CDKN2A in multiple cancers, KEAP1 and/or STK11 in lung adenocarcinoma, or APC and PIK3CA in colon cancer (3, 8–12). Whether differences in KRAS-mutant allele fraction or co-occurrence with other mutations influence response to KRAS blockade is not yet well understood. In addition, due to the critical importance of the RAS pathway in normal cellular function, there is extensive pathway isoform redundancy and a comprehensive regulatory network in normal cells to ensure tight control of temporal pathway signaling. RAS pathway negative feedback signaling is mediated by ERK1/2 and receptor tyrosine kinases (RTK) as well as by ERK pathway target genes including dual-specificity phosphatases (DUSP) and Sprouty (SPRY) proteins (13–17). One important clinically relevant example is provided by the reactivation of ERK signaling observed following treatment of BRAFV600E-mutant cancers with selective BRAF inhibitors (18–20). The observed intertumoral heterogeneity and extensive feedback signaling network in KRAS-mutant cancers may necessitate strategies to more comprehensively block oncogenic signal transduction and deepen the antitumor response in concert with KRAS blockade (15, 21, 22).

Potential strategies to augment the response to KRASG12C inhibitor treatment are evident at multiple nodes of the signaling pathway regulatory machinery. RAS proteins are small GTPases that normally cycle between an active, GTP-bound state and an inactive, GDP-bound state. RAS proteins are loaded with GTP through guanine nucleotide exchange factors (e.g., SOS1) which are activated by upstream RTKs, triggering subsequent interaction with effector proteins that activate RAS-dependent signaling. RAS proteins hydrolyze GTP to GDP through their intrinsic GTPase activity, which is dramatically enhanced by GTPase-activating proteins (GAP). Mutations at codons 12 and 13 in RAS proteins impair GAP-stimulated GTP hydrolysis, leaving RAS predominantly in the GTP-bound, active state.

Potent covalent KRASG12C inhibitors described to date bind only GDP-bound KRAS (5–7). Although codon 12 and 13 mutations decrease the fraction of GDP-bound KRAS, recent biochemical analyses revealed that KRASG12C exhibits the highest intrinsic GTP hydrolysis rate and highest nucleotide exchange rate among KRAS mutants (23). Furthermore, the nucleotide-bound state of KRASG12C can be shifted toward the GDP-bound state by pharmacologically modulating upstream signaling with RTK inhibitors that increase the activity of KRASG12C inhibitors (7, 22, 24). Likewise, SHP2 is a phosphatase that positively transduces RTK signaling to KRAS. Accordingly, SHP2 inhibitors are active in cancers driven by KRAS mutations that are dependent on nucleotide cycling, including KRASG12C (25–27).

MRTX849 is among the first KRASG12C inhibitors to advance to clinical trials. The comprehensive and durable inhibition of KRASG12C by MRTX849 provides a unique opportunity to understand the extent to which KRAS functions as an oncogenic driver. In addition, the observation that the response to blockade of KRAS is markedly different in vitro and in vivo indicates that evaluation of the consequences of KRAS blockade in in vivo model systems is critical to understand the role of KRAS-driven tumor progression. The demonstration of partial responses in patients with lung and colon adenocarcinomas treated with MRTX849 in clinical trials indicates that results observed in tumor models extend to KRASG12C-positive human cancers. Our comprehensive molecular characterization of multiple tumor models at baseline and during response to KRAS inhibition has provided further insight toward the contextual role of KRAS mutation in the setting of genetic and tumoral heterogeneity. Finally, further interrogation of these genetic alterations and signaling pathways utilizing functional genomics strategies including CRISPR and combination approaches uncovered regulatory nodes that sensitize tumors to KRAS inhibition when cotargeted.

Introduction

KRAS is one of the most frequently mutated oncogenes in cancer; however, efforts to directly target KRAS have been largely unsuccessful due to its high affinity for GTP/GDP and the lack of a clear binding pocket (1–4). More recently, compounds were identified that covalently bind to KRASG12C at the cysteine 12 residue, lock the protein in its inactive GDP-bound conformation, inhibit KRAS-dependent signaling, and elicit antitumor responses in tumor models (5–7). Advances on early findings demonstrated that the binding pocket under the switch II region was exploitable for drug discovery, culminating in the identification of more potent KRASG12C inhibitors with improved physiochemical properties that are now entering clinical trials. The identification of KRASG12C inhibitors provides a renewed opportunity to develop a more comprehensive understanding of the role of KRAS as a driver oncogene and to explore the clinical utility of direct KRAS inhibition.

KRASG12C mutations are present in lung and colon adenocarcinomas as well as smaller fractions of other cancers. The genetic context of KRASG12C alteration can vary significantly among tumors and is predicted to affect response to KRAS inhibition. KRAS mutations are often enriched in tumors due to amplification of mutant or loss of wild-type allele (8, 9). In addition, KRAS mutations often co-occur with other key genetic alterations including TP53 and CDKN2A in multiple cancers, KEAP1 and/or STK11 in lung adenocarcinoma, or APC and PIK3CA in colon cancer (3, 8–12). Whether differences in KRAS-mutant allele fraction or co-occurrence with other mutations influence response to KRAS blockade is not yet well understood. In addition, due to the critical importance of the RAS pathway in normal cellular function, there is extensive pathway isoform redundancy and a comprehensive regulatory network in normal cells to ensure tight control of temporal pathway signaling. RAS pathway negative feedback signaling is mediated by ERK1/2 and receptor tyrosine kinases (RTK) as well as by ERK pathway target genes including dual-specificity phosphatases (DUSP) and Sprouty (SPRY) proteins (13–17). One important clinically relevant example is provided by the reactivation of ERK signaling observed following treatment of BRAFV600E-mutant cancers with selective BRAF inhibitors (18–20). The observed intertumoral heterogeneity and extensive feedback signaling network in KRAS-mutant cancers may necessitate strategies to more comprehensively block oncogenic signal transduction and deepen the antitumor response in concert with KRAS blockade (15, 21, 22).

Potential strategies to augment the response to KRASG12C inhibitor treatment are evident at multiple nodes of the signaling pathway regulatory machinery. RAS proteins are small GTPases that normally cycle between an active, GTP-bound state and an inactive, GDP-bound state. RAS proteins are loaded with GTP through guanine nucleotide exchange factors (e.g., SOS1) which are activated by upstream RTKs, triggering subsequent interaction with effector proteins that activate RAS-dependent signaling. RAS proteins hydrolyze GTP to GDP through their intrinsic GTPase activity, which is dramatically enhanced by GTPase-activating proteins (GAP). Mutations at codons 12 and 13 in RAS proteins impair GAP-stimulated GTP hydrolysis, leaving RAS predominantly in the GTP-bound, active state.

Potent covalent KRASG12C inhibitors described to date bind only GDP-bound KRAS (5–7). Although codon 12 and 13 mutations decrease the fraction of GDP-bound KRAS, recent biochemical analyses revealed that KRASG12C exhibits the highest intrinsic GTP hydrolysis rate and highest nucleotide exchange rate among KRAS mutants (23). Furthermore, the nucleotide-bound state of KRASG12C can be shifted toward the GDP-bound state by pharmacologically modulating upstream signaling with RTK inhibitors that increase the activity of KRASG12C inhibitors (7, 22, 24). Likewise, SHP2 is a phosphatase that positively transduces RTK signaling to KRAS. Accordingly, SHP2 inhibitors are active in cancers driven by KRAS mutations that are dependent on nucleotide cycling, including KRASG12C (25–27).

MRTX849 is among the first KRASG12C inhibitors to advance to clinical trials. The comprehensive and durable inhibition of KRASG12C by MRTX849 provides a unique opportunity to understand the extent to which KRAS functions as an oncogenic driver. In addition, the observation that the response to blockade of KRAS is markedly different in vitro and in vivo indicates that evaluation of the consequences of KRAS blockade in in vivo model systems is critical to understand the role of KRAS-driven tumor progression. The demonstration of partial responses in patients with lung and colon adenocarcinomas treated with MRTX849 in clinical trials indicates that results observed in tumor models extend to KRASG12C-positive human cancers. Our comprehensive molecular characterization of multiple tumor models at baseline and during response to KRAS inhibition has provided further insight toward the contextual role of KRAS mutation in the setting of genetic and tumoral heterogeneity. Finally, further interrogation of these genetic alterations and signaling pathways utilizing functional genomics strategies including CRISPR and combination approaches uncovered regulatory nodes that sensitize tumors to KRAS inhibition when cotargeted.

Results

MRTX849 Is a Potent and Selective Inhibitor of KRASG12C, KRAS-Dependent Signal Transduction, and Cell Viability In Vitro

A structure-based drug design approach, including optimization for favorable drug-like properties, led to the discovery of MRTX849 as a potent, covalent KRASG12C inhibitor (Fig. 1A; Supplementary Table S1). An LC/MS-based KRASG12C protein modification assay revealed that MRTX849 demonstrated much greater modification of KRASG12C when preloaded with GDP compared with GTP (Supplementary Table S2), supporting that MRTX849 binds to and stabilizes the inactive GDP-bound form of KRASG12C. Indeed, introducing a comutation that impairs the GTPase activity of KRASG12C (24) attenuated the inhibitory activity of MRTX1257, a close analogue of MRTX849 (Supplementary Fig. S1A). Secondary mutations that modulate the nucleotide exchange function of KRASG12C also affected inhibition by MRTX1257, supporting that the MRTX compound series is dependent on KRASG12C nucleotide cycling.

Figure 1.

 

MRTX849 is a potent, covalent KRASG12C inhibitor in vitroA, Structure of MRTX849. B, Immunoblot protein Western blot analyses of KRAS pathway targets in MIA PaCa-2 cells treated from 1 hours to 72 hours with MRTX849 at 100 nmol/L. C, Immunoblot protein Western blot analyses of KRAS pathway targets in MIA PaCa-2 cells treated for 24 hours with MRTX849 over a 13-point dose response. D, Left y-axis shows active RAS ELISA assay to determine the reduction in RAS-GTP abundance following MRTX849 treatment in MIA PaCa-2 cells for 24 hours. The vehicle value was normalized to 1 by dividing all average values by the vehicle value. Right y-axis shows quantitation of KRAS band shift by MRTX849 treatment in MIA PaCa-2 cells for 24 hours as assessed by Western blot and densitometry. E, In-cell Western blot assay to evaluate modulation of pERK in MIA PaCa-2 cells grown in standard tissue-culture conditions treated with MRTX849 over a time course. F, CellTiter-Glo assay to evaluate cell viability performed on seven KRASG12C-mutant cell lines and three non–KRASG12C-mutant cell lines grown in 2-D tissue-culture conditions in a 3-day assay (left plot) or 3-D conditions using 96-well, ULA plates in a 12-day assay (right plot).

 

We next determined the cellular activity of MRTX849 utilizing the KRASG12C-mutant H358 lung and MIA PaCa-2 pancreatic cancer cell lines. In both models, MRTX849 demonstrated an upward electrophoretic mobility shift of KRASG12C protein band migration by immunoblot, indicative of covalent modification of KRASG12C. A maximal mobility shift was observed by 1 hour, was maintained through 72 hours (Fig 1B; Supplementary Fig. S1B), and was evident at concentrations as low as 2 nmol/L with near-maximal modification observed at 15.6 nmol/L (Fig. 1C; Supplementary Fig. S1C). Comparable inhibition of active RAS was observed as determined by a RAF RAS-binding domain capture ELISA assay (Fig. 1D; 1D). MRTX849 also inhibited KRAS-dependent signaling targets including ERK1/2 phosphorylation (pERK; Thr202/Tyr204 ERK1), S6 phosphorylation (pS6; RSK-dependent Ser235/236), and expression of the ERK-regulated DUSP6, each with IC50 values in the single-digit nanomolar range in both cell lines (Fig. 1B and C; Supplementary Fig. S1B and S1C). The evaluation of pERK over a time course of 48 hours indicated maximal inhibition was observed at 24 hours (Fig. 1E; Supplementary Fig. S1E). Treatment with the des-acrylamide version of MRTX849, which is unable to covalently bind to KRASG12C, did not demonstrate significant inhibition of ERK phosphorylation (Supplementary Fig. S1F). The H358 cell line was selected for determination of MRTX849 cysteine selectivity utilizing an LC/MS-based proteomics approach able to detect approximately 6,000 cysteine-containing peptides. After treatment for 3 hours, decreased KRASG12C Cys12-free peptide was detected with treated-to-control ratios of 0.029 and 0.008 determined at 1 and 10 μmol/L, respectively, indicating near-complete engagement of the intended target (Supplementary Table S3). In contrast, the only other peptides identified were from lysine-tRNA ligase (KARS) at Cys209 near the detection limit, indicating a high degree of selectivity toward KRASCYS12.

To evaluate the breadth of MRTX849 activity, its effect on cell viability was determined across a panel of 17 KRASG12C-mutant and 3 non–KRASG12C-mutant cancer cell lines using 2-D (3-day, adherent cells) and 3-D (12-day, spheroids) cell-growth conditions. MRTX849 potently inhibited cell growth in the vast majority of KRASG12C-mutant cell lines with IC50 values ranging between 10 and 973 nmol/L in the 2-D format and between 0.2 and 1,042 nmol/L in the 3-D format (Supplementary Table S4; Fig. 1F). In agreement with prior KRASG12C inhibitor studies (5), MRTX849 demonstrated improved potency in the 3-D assay format, as all but one KRASG12C-mutant cell line exhibited an IC50 value below 100 nmol/L. Although MRTX849 was broadly effective in inhibiting viability of KRASG12C-mutant cell lines, IC50 values varied across the cell panel by 100-fold, suggesting a differential degree of sensitivity to treatment. All three non–KRASG12C-mutant cell lines tested demonstrated IC50 values greater than 1 μmol/L in 2-D conditions and greater than 3 μmol/L in 3-D conditions, suggesting the effect of MRTX849 on cell viability was dependent on the presence of KRASG12C.

To determine whether the difference in sensitivity across the cell panel correlated with the ability of MRTX849 to bind to KRAS or inhibit KRAS-dependent signal transduction, seven KRASG12C-mutant cancer cell lines were selected from the panel for further evaluation. In each cell line, MRTX849 demonstrated a very similar concentration-dependent electrophoretic mobility shift (IC50) for KRASG12C protein migration, suggesting that the ability to bind to and modify KRASG12C does not readily account for differences in response in viability studies (Fig. 1B and C; Supplementary Figs. S1B and S1C and S2A and S2B). The effect of MRTX849 on selected phosphoproteins implicated in mediating KRAS-dependent signaling was also evaluated across the cell panel by immunoblot and/or reverse-phase protein array (RPPA) following treatment for 6 or 24 hours. Notably, the concentration–response relationship and maximal effect of MRTX849 on inhibition of ERK and S6S235/236 phosphorylation varied across the cell panel (Supplementary Fig. S2A and S2C; Supplementary Table S7). MRTX849 demonstrated only partial inhibition of pERK in KYSE-410 and SW1573 cells and a minimal effect on pS6S235/236 in SW1573, H2030, and KYSE-410 cells (Supplementary Fig. S2A and S2C). Each of these cell lines were among those that exhibited a submaximal response to MRTX849 in both 2-D and 3-D viability assays (Fig. 1F). Although KRAS is implicated in mediating signal transduction through the PI3K and mTOR pathways, there was minimal evidence of a significant and/or durable effect of MRTX849 on AKT (S473, T308) or 4E-BP1 (T37/T46, S65, T70) phosphorylation at any time point in any cell lines evaluated (Supplementary Fig. S2D). However, MRTX849 demonstrated concentration-dependent partial inhibition of the mTOR-dependent signaling targets p70 S6 kinase (T412) and/or pS6 (S240/44) in the H358, MIA PaCa-2,H2122, and H1373 cell lines, each of which exhibited a maximal response to treatment. Together, these data suggest that maximizing inhibition of KRAS-dependent ERK and S6 signaling may be required to elicit a robust response in tumor-cell viability assays.

MRTX849 Treatment In Vivo Leads to Dose-Dependent KRASG12C Modification, KRAS Pathway Inhibition, and Antitumor Efficacy

Studies were conducted to evaluate MRTX849 antitumor activity along with its pharmacokinetic and pharmacodynamic properties in vivo, both to understand the clinical utility of this agent and to provide insight toward response to treatment. MRTX849 demonstrated moderate plasma clearance and prolonged half-life following oral administration (Supplementary Table S1; Supplementary Fig. S3). To evaluate the pharmacodynamic response to MRTX849 and to correlate drug exposure with target inhibition, MRTX849 was administered via oral gavage over a range of dose levels to H358 xenograft–bearing mice, and plasma and tumors were collected at defined time points. The fraction of covalently modified KRASG12C protein was proportional to the plasma concentration of MRTX849 (Fig. 2A). When evaluated over time after a single oral dose at 30 mg/kg, the modified fraction of KRASG12C was 74% at 6 hours after dose and gradually decreased to 47% by 72 hours (Fig. 2B). This extended pharmacodynamic effect, despite declining levels of MRTX849 in plasma, was consistent with the irreversible inhibition of KRASG12C by MRTX849 and the relatively long half-life for the KRASG12C protein (∼24–48 hours; Supplementary Table S5). The modification of KRASG12C was maximized after repeated daily dosing for 3 days at 30 mg/kg (Fig. 2B), and higher dose levels did not demonstrate additional KRASG12C modification in multiple tumor models (data not shown). The maximum level of modification of approximately 80%, despite increasing dose and plasma levels of MRTX849, suggests that accurate measurement of complete inhibition of KRASG12C utilizing LC/MS may not be attainable, potentially due to a pool of active, noncycling, or unfolded KRASG12C protein in tumors. Together, these studies demonstrated a dose-dependent increase in covalent modification of KRASG12C by MRTX849 and that the majority of targetable KRAS was covalently modified by MRTX849 over a repeated administration schedule at dose levels at or exceeding 30 mg/kg.

Figure 2.

 

MRTX849 modifies KRASG12C and inhibits KRAS signaling and tumor growth in vivoA, MRTX849 was administered orally as a single dose to mice bearing established H358 xenografts (average tumor volume ∼350 mm3) at 10, 30, and 100 mg/kg. KRAS modification and MRTX849 plasma concentration data from n = 3 mice are shown as mean ± SD. KRASG12C modification was statistically significant versus vehicle control using the two-tailed Student t test. **, P < 0.01. B, MRTX849 was administered orally as a single dose or daily (QD) for 3 days to mice bearing established H358 xenografts (average tumor volume ∼350 mm3) at 30 mg/kg. Plasma was collected at 0.5, 2, 6, 24, 48, and 72 hours after administration of the last dose, and tumors were collected at 6, 24, 48, and 72 hours after dose. KRASG12C modification and MRTX849 plasma concentration data are shown from n = 3 mice as mean ± SD. Induction of modified KRASG12C protein at all time points was determined to be statistically significant versus vehicle control using two-way ANOVA. In addition, induction of modified KRASG12C protein at 72 hours in day 1 samples and 48 and 72 hours in day 3 samples was statistically significant versus the 6-hour time point. Brackets indicate P < 0.05 as compared with left-most sample. C, MRTX849 was administered as in A. Tumors were collected 6 hours after dose, and total and phosphorylated ERK1/2 and total and phosphorylated S6 were analyzed by immunoblot and quantified by densitometric analysis. Relative fluorescence intensity of pERK1/2 and pS6 was normalized by dividing pERK1/2 and pS6 by total ERK1/2 and total S6, respectively. Vehicle-treated tumors were normalized to 1 by dividing all average values by the vehicle value. Average pERK1/2 and pS6 values were divided by the average value in vehicle-treated tumors. Data shown represent the average of 2 to 3 tumors per treatment group plus SD. Reduction of pS6 relative fluorescence intensity was determined to be statistically significant versus vehicle control using the two-tailed Student t test. Brackets indicate P < 0.05 compared with left-most sample. D, MRTX849 was administered as in B. Tumors were collected at 6, 24, 48, or 72 hours after administration of the last dose, and total and phosphorylated ERK1/2 and total and phosphorylated S6 were analyzed as in C. Data shown represent the average of 3 to 4 tumors per treatment group plus SD. Reduction of pS6 relative fluorescence intensity on day 3 was determined to be statistically significant versus vehicle control using two-way ANOVA. Brackets indicate P < 0.05 compared with left-most sample. E, MRTX849 was administered via daily oral gavage at the doses indicated to mice bearing established MIA PaCa-2 xenografts. Dosing was initiated when tumors were approximately 350 to 400 mm3.MRTX849 was administered to mice daily until day 16. Data are shown as mean tumor volume ± SEM. Tumor volumes at day 16 were determined to be statistically significant versus vehicle control via two-tailed Student t test. **, P < 0.01; *, P < 0.05.

 

To evaluate the effect of MRTX849 on KRAS-dependent signal transduction in vivo, a single dose of MRTX849 at 10, 30, or 100 mg/kg was administered to H358 tumor–bearing mice. Dose-dependent inhibition of ERK1/2 and pS6S235/36 phosphorylation was observed at 6 hours after dose based on immunoblot and densitometric analysis (Fig. 2C). MRTX849 also demonstrated marked inhibition of ERK1/2 and S6S235/36 phosphorylation after one or three daily doses at 6 or 24 hours, and levels gradually recovered by 72 hours after the final dose (Fig. 2D). pERK1/2 and pS6S235/36 were further evaluated in formalin-fixed, paraffin-embedded sections from vehicle-treated and MRTX849-treated xenografts in four tumor models utilizing IHC methods coupled with image analysis algorithms. These studies demonstrated increased pERK1/2 and pS6 in nontumor/stromal cells following MRTX849 administration, indicating that immunoblotting studies with bulk tumor lysate likely underrepresent the degree of pathway inhibition in tumor cells, whereas IHC-based evaluation may more accurately reflect both the degree and spatial impact of pathway inhibition. Maximal inhibition was observed for both ERK and S6S235/36 phosphorylation after a single dose at the 6-hour time point, with a rebound in signaling evident 24 hours after single dose in each model (Supplementary Fig. S4). Marked inhibition of ERK phosphorylation was observed at 6 hours after administration, with 89%, 94%, and 94% inhibition observed compared with vehicle controls in MIA PaCa-2, H1373, and H2122 tumors, respectively (H358 pERK not quantifiable). This indicates that dose levels at or exceeding 30 mg/kg dose maximized inhibition of ERK phosphorylation in multiple models (Supplementary Fig. S4A and S4B). Inhibition of S6 phosphorylation at 6 hours was more variable, with percent inhibition values of 76%, 50%, 86%, and 56% observed in MIA PaCa-2, H1373, H358, and H2122 tumors, respectively (Supplementary Fig. S4B). Together, these data indicate that consistent acute (6 hours) inhibition of KRAS-dependent ERK phosphorylation was maximized in all evaluated models, whereas inhibition of S6S235/36 was more variable, presumably due to varying degrees of KRAS-independent activation of this pathway in different tumor models.

MIA PaCa-2 and H358 were selected as MRTX849-responsive tumor models, thereby enabling a high-resolution understanding of dose–response relationships. Significant, dose-dependent, antitumor activity was observed at the 3, 10, 30, and 100 mg/kg dose levels in the MIA PaCa-2 model (Fig. 2E). Evidence of rapid tumor regression was observed at the earliest post-treatment tumor measurement, and animals in the 30 and 100 mg/kg cohorts exhibited evidence of a complete response at study day 15. Dosing was stopped at study day 16, and all 4 mice in the 100 mg/kg cohort and 2 of 7 mice in the 30 mg/kg cohort remained tumor-free through study day 70 (Supplementary Fig. S5A). In a second MIA PaCa-2 study, dose-dependent antitumor efficacy was observed at the 5, 10, and 20 mg/kg dose levels, and 2 of 5 mice at the 20 mg/kg dose level exhibited complete tumor regression (Supplementary Fig. S5B). Significant dose-dependent antitumor efficacy was also observed in the H358 model, including 61% and 79% tumor regression at the 30 and 100 mg/kg dose levels, respectively, at day 22 (Supplementary Fig. S5C). MRTX849 was well tolerated, and no effect on body weight was observed at all dose levels evaluated (Supplementary Fig. S5D). These studies indicated that MRTX849 demonstrated dose-dependent antitumor efficacy over a well-tolerated dose range and that the maximally efficacious dose of MRTX849 is between 30 and 100 mg/kg/day.

MRTX849 Demonstrates Broad-Spectrum Tumor Regression in KRASG12C Cell Line and Patient-Derived Xenograft Models

To evaluate the breadth of antitumor activity across genetically and histologically heterogeneous KRASG12C-mutant cancer models, MRTX849 was evaluated at a fixed dose of 100 mg/kg/day (a dose projected to demonstrate near-maximal target inhibition in most models) in a panel of human KRASG12C-mutant cell line–derived xenograft (CDX) and patient-derived xenograft (PDX) models. MRTX849 demonstrated tumor regression exceeding 30% volume reduction from baseline in 17 of 26 models (65%) at approximately 3 weeks of treatment (Fig. 3A; Supplementary Table S6). By comparison, MRTX849 did not exhibit significant antitumor activity at 100 mg/kg in three non–KRASG12C-mutant models (Fig. 3A; Supplementary Table S6). Together, these results indicate that KRASG12C-mutant tumors are broadly dependent upon mutant KRAS for tumor-cell growth and survival and that MRTX849 elicits antitumor activity through a KRASG12C-dependent mechanism.

Figure 3.

 

Antitumor activity of MRTX849 in KRASG12C-mutant and non–KRASG12C-mutant human tumor xenograft models. A, MRTX849 was administered via oral gavage at 100 mg/kg every day to mice bearing the CDX or PDX model indicated. Dosing was initiated when tumors were, on average, approximately 250 to 400 mm3. MRTX849 was formulated as a free base and resuspended as a solution in 10% Captisol and 50 mmol/L citrate buffer, pH 5.0. The percent change from baseline control was calculated at days 19 to 22 for most models. Statistical significance was determined for each model and is shown in Supplementary Table S6. Status of mutations and alterations in key genes is shown below each model. MAF (%), percent KRASG12C-mutant allele fraction by RNA-seq; CNV, copy-number variation; * denotes very high CDK4 expression by RNA-seq and possible amplification. HER family status was determined by averaging EGFRERBB2, and ERBB3 RNA-seq expression for CDX (CCLE) or PDX (Crown huBase) models. Positive HER family calls denote greater than the median expression of the models tested. CDX and PDX model HER family calls were determined independently. B, Tumor-growth inhibition plots from representative xenograft models that were categorized as sensitive, partially sensitive, or treatment refractory.

 

Although MRTX849 exhibited marked antitumor responses in the majority of models tested, a response pattern ranging from delayed tumor growth to complete regression was observed across the xenograft panel. The response to treatment was categorized as sensitive, partially sensitive, or treatment refractory (Fig. 3B). Rank order and Pearson statistical analyses were performed to evaluate the correlation between in vitro potency (IC50 in 2-D or 3-D viability assays) and antitumor response in vivo (% regression or progression on day 22), and a significant correlation between response in cell lines compared with tumor models was not observed (Supplementary Fig. S6A and S6B). Thus, we focused on a comprehensive analysis of correlates with MRTX849 tumor response in vivo, including tumor histology, co-occurring genetic alterations, as well as baseline or drug-induced changes in expression of KRAS-related genes [RNA sequencing (RNA-seq)] and/or protein signaling networks (RPPA in 18 models, ref. 28; Supplementary Fig. S7). No individual genetic alteration, including but not limited to KRAS-mutant allele frequency, TP53, STK11, or CDKN2A, predicted the antitumor activity of MRTX849. Interestingly, baseline gene and/or protein expression of selected members of the HER family of RTKs and of regulators of early cell-cycle transition did exhibit a trend with the degree of antitumor response, suggesting these pathways may influence the response to KRAS inhibitors (Supplementary Fig. S7A). Together, these data indicate that there are no individual binary biomarkers that clearly predict therapeutic response and that the molecular complexity and heterogeneity present in distinct KRAS-mutated tumors may contribute to the response to target blockade.

MRTX849 Antitumor Activity Translates to RECIST Responses in Patients with Cancer

A 45-year-old female former smoker diagnosed with stage IV lung adenocarcinoma and refractory to multiple lines of therapy including carboplatin/pemetrexed/pembrolizumab, docetaxel, and investigational treatment with binimetinib and palbociclib was enrolled onto the MRTX849-001 phase Ib clinical trial with two bilateral lung lesions and mediastinal lymph node as target lesions. Targeted next-generation sequencing (NGS) demonstrated a KRASG12C mutation (c.34G>T). In addition, loss-of-function KEAP1 (K97M) and STK11 (E223*) mutations were detected and are predicted to be deleterious to their respective proteins. The patient was administered MRTX849 (600 mg twice a day) and had marked clinical improvement within 2 weeks, including complete resolution of baseline cough and oxygen dependency. A RECIST-defined partial response of 33% reduction of target lesions was observed at cycle 3 day 1 (45 days), and the patient continues on study (Fig. 4A).

Figure 4.

 

Activity of MRTX849 in patients with lung and colon cancers. A, Pretreatment and 6-week scans of a heavily pretreated patient with a KRASG12C mutation–positive lung adenocarcinoma indicating 33% reduction of target lesions. Patient continues on study. The top plots show a coronal view, and bottom plots an axial view of CT chest images prior to MRTX849 treatment (left) and after two cycles of MRTX849 treatment (right). B, Baseline, 6-week (Cycle 2), and 12-week (Cycle 4) scans of a patient with a KRASG12C mutation–positive colon adenocarcinoma. Partial response (PR) was confirmed at Cycle 4, and patient continues on study. Four lesions (TL1–4) are shown with axial views of CT images prior to MRTX849 treatment (top), after two cycles of MRTX849 treatment (center), and after four cycles of MRTX849 treatment (bottom).

 

A 47-year-old female never-smoker with metastatic adenocarcinoma of the left colon who exhibited progressive disease after receiving multiple lines of systemic therapy, including FOLFOX plus bevacizumab, single-agent capecitabine, FOLFIRI plus bevacizumab, and an investigational antibody–drug conjugate, was enrolled into the MRTX849-001 phase Ib clinical trial. This patient had extensive metastases involving the liver, peritoneum, ovaries, and lymph nodes. Targeted NGS identified a KRASG12C mutation. The patient was administered MRTX849 (600 mg twice a day) and demonstrated marked clinical improvement within 3 weeks and a visible decrease in size of her umbilical Sister Mary Joseph nodule. Her carcinoembryonic antigen levels decreased from 77 ng/mLat baseline to 11 ng/mL at cycle 2 day 1 and 3 ng/mL by cycle 3 day 1 (normal range, 0–5 ng/mL). A RECIST-defined partial response with a 37% reduction of target lesions and complete response of a nontarget lesion was observed at cycle 3 day 1(day 42). Confirmatory CT scans were conducted at cycle 5, day 1 (day 84) and indicated a confirmed RECIST partial response with further reduction of target lesions at −47% from baseline (Fig. 4B). The patient remains on treatment through Cycle 6.

Temporal Effects of MRTX849 on KRAS-Dependent Signaling and Feedback Pathways and Relationship to Antitumor Activity Following Repeat Dosing in Xenograft Models

A comprehensive analysis was conducted to evaluate MRTX849-induced temporal molecular changes to further interrogate mechanisms of drug response across sensitive and partially sensitive models. To evaluate temporal changes in global gene expression, xenograft-bearing mice were administered vehicle or 100 mg/kg MRTX849, and RNA-seq was performed on tumors at 6 and 24 hours after treatment. Gene expression was evaluated at day 1 and day 5 for the sensitive models MIA PaCa-2 and H1373 to ensure sufficient tissue availability from regressing tumors, or at day 7 in the partially sensitive models H358, H2122, and H2030 to coordinate with tumor stasis plateau. The top differentially expressed gene set enrichment analysis (GSEA) hallmark gene sets, regardless of tumor response, in all five models were several KRAS-annotated gene sets confirming MRTX849 selectively inhibits multiple genes directly related to KRAS signaling. MYC, mTOR, cell cycle, and apoptosis/BCL2 pathway gene sets were also strongly differentially expressed, confirming MRTX849 broadly affected multiple well-established, KRAS-regulated pathways, several of which have proved difficult to directly inhibit with previous targeted therapies (Fig. 5A and B; Supplementary Fig. S8A—S8D). The marked impact of MRTX849 on a large number of genes that regulate cell cycle and apoptosis provides further insight into molecular mechanisms which mediate its antitumor activity.

Figure 5.

 

MRTX849 treatment in vivo regulates KRAS-dependent oncogenic signaling and feedback-inhibitory pathways. A, Volcano plots displaying differentially expressed genes in xenograft tumors 24 hours after oral administration of vehicle or 100 mg/kg MRTX849 in a representative MRTX849-sensitive (H1373) and MRTX849-partially sensitive (H358) model. Significance denoted in the legend (Padj < 0.01). B, GSEA heat maps depicting hallmark signature pathways differentially regulated in at least one model 24 hours following oral administration of a single 100 mg/kg MRTX849 dose compared with vehicle. Normalized enrichment score shown in all models 6 or 24 hours after a single dose (QD × 1) or 5 (QD × 5) or 7 (QD × 7) days dosing. C, Genes that feedback-inhibit MAP kinase signaling are downregulated following MRTX849 treatment in all five cell line xenografts assessed by RNA-seq. TPM, Transcripts Per Kilobase Million.

 

Targeted RNA-seq analysis was performed on genes implicated in the temporal regulation of external signaling inputs and feedback pathways which collectively temper signaling flux through the RAS–RAF–MEK–ERK MAP kinase (MAPK) pathway including DUSPSPRY, and PHLDA family genes (13, 18). These MAPK pathway–negative regulators were each ranked among the most strongly decreased genes following MRTX849 treatment, providing evidence that ERK-dependent transcriptional output is blocked and that pathways involved in reactivation of RTK- and ERK-dependent signaling were activated (Fig. 5C; Supplementary Fig. S4A).

On the basis of the observation of dynamic changes in transcriptional programs linked to KRAS pathway reactivation, IHC plus quantitative imaging of tumor cell–specific pERK and pS6 was evaluated over a range of time points. In the sensitive MIA PaCa-2 and H1373 tumor models, treatment with MRTX849 (100 mg/kg) demonstrated ≥90% inhibition of ERK phosphorylation at 6 and 24 hours on both days 1 and 5 (Supplementary Fig. S4). In contrast, in the partially sensitive H358 and H2122 models, robust inhibition of ERK phosphorylation was observed at 6 hours after a single dose; however, marked recovery of ERK phosphorylation was observed at 24 hours after single dose and at both 6 and 24 hours following 7 days of repeat-dose administration. Because DUSPSPRY, and ETV family transcripts remain downregulated through 5 to 7 days in all models, it is evident that other independent factors contribute to temporal reactivation of ERK (Fig. 5C). Similar to what was observed with single-dose administration, the effect of MRTX849 on pS6 was variable over time and did not track with the antitumor activity of MRTX849. Together, these results suggest that the extent and duration of inhibition of pERK may track with the magnitude of antitumor efficacy of KRASG12C inhibitors and that further evaluation of the role of S6 is required to understand if it plays a role in drug sensitivity.

The effect of MRTX849 on cell proliferation and apoptosis was characterized by IHC analysis of Ki-67 or cleaved caspase-3 after a single dose or repeat administration. The fraction of Ki-67–positive cells was significantly reduced in tumors after repeat administration in all four models tested, further supporting a broadly operative antiproliferative mechanism, independent of the magnitude of MRTX849 antitumor response (Supplementary Fig. S4). Induction of apoptosis as determined by cleaved caspase-3 immunostaining was also evident on day 1 of treatment (6 and/or 24 hours after treatment) in the sensitive H358, MIA PaCa-2, and H1373 models (79%–100% maximal regression) but not in the partially sensitive H2122 model (Supplementary Fig. S4). An expanded RPPA-based pathway analysis of several models also indicated a correlation between antitumor activity of MRTX849 and decreased survivin (statistically significant at days 5/7 in 7 models evaluated; Supplementary Fig. S7B) and a trend toward increased cleaved caspase-3 induction (day 1, P = 0.08, 16 models), supporting the induction of apoptosis as a key mediator of a cytoreductive antitumor response (Supplementary Fig. S7C). Interestingly, the magnitude of reduction of MYC and cyclin B1 protein levels at days 5/7 also closely correlated with MRTX849 antitumor activity, consistent with their roles as critical regulators of KRAS-mediated cell growth and survival pathways (Supplementary Fig. S7B). Collectively, these data support that durable inhibition of ERK activity and maximal inhibition of ERK-regulated outputs including MYC and E2F-mediated transcription are associated with induction of apoptosis and maximal response to MRTX849 treatment.

CRISPR/Cas9 Screen Identifies Vulnerabilities and Modifiers of Response to MRTX849 in KRASG12C-Mutant Cancer Cell Lines In Vitro and In Vivo

The correlative analysis of genomic or proteomic markers with response to MRTX849 in the defined panel of models provided only limited insight toward mechanism of therapeutic response or resistance. Therefore, we directly interrogated the role of selected genes in mediating therapeutic response utilizing a focused CRISPR/Cas9 knockout screen targeting approximately 400 genes including many genes involved in KRAS signaling. This was conducted in H358 and H2122 cells in vitro and in H2122 xenografts in vivo in the presence and absence of MRTX849 treatment (Supplementary Fig. S9A–S9F). In MRTX849-anchored screens in vitro, single guide RNAs (sgRNA) that target RAS signaling pathway genes including MYC, SHP2 (H2122), mTOR pathway (MTOR and RPS6), and cell-cycle genes (CDK1, CDK2, CDK4/6, and RB1) were identified to affect cell fitness. sgRNAs that target KEAP1 and CBL were enriched in the H2122 model, demonstrating cell-specific genetic routes toward improved fitness through loss of classic tumor-suppressor genes, including in the context of MRTX849 treatment. KRAS sgRNA dropout was less pronounced in the MRTX849-treated cells compared with DMSO control–treated cells, as would be expected with redundant depletion of the drug target (Supplementary Fig. S9C and S9D). To evaluate whether a distinct KRAS dependence or modulation of MRTX849 therapeutic response was observed in vitro versus in vivo, xenograft-bearing mice bearing H2122 cells (∼250 mm3) transduced with the sgRNA library were orally administered vehicle or MRTX849 for 2 weeks (Supplementary Fig. S9A, S9E, and S9F). In MRTX849-treated xenografts, sgRNAs targeting cell cycle, SHP2, MYC, and mTOR pathway genes remained among the top depleted sgRNAs, demonstrating that inhibition of these targets in vivo, in the context of KRAS inhibition, leads to further tumor-growth inhibition over and above the effects of KRAS inhibition alone (Supplementary Fig. S9E and S9F). sgRNAs targeting the tumor suppressor KEAP1 were enriched in MRTX849-treated xenografts, suggesting loss of KEAP1 may represent a mechanism of intrinsic or acquired resistance. Interestingly, NRAS was one of the top enriched genes in the vehicle-treated xenografts, suggesting NRAS functions as a tumor suppressor in this context; however, enrichment was not as pronounced in the MRTX849-treated xenografts, suggesting NRAS may compensate for KRAS in the context of KRAS inhibition (Supplementary Fig. S9F). Collectively, these data demonstrate the importance of selected proteins that regulate RTK- and RAS-dependent signaling and cell-cycle transition in mediating the oncogenic effects of mutant KRAS, and also provide a catalog of potentially druggable vulnerabilities that complement KRAS blockade.

Cancer Therapeutic Combination Screen to Identify Rational and Clinically Tractable Strategies to Address Feedback and Resistance Pathways

To further interrogate pathways that mediate the antitumor response to MRTX849 and to identify combinations capable of enhancing response to MRTX849, a combination screen was conducted in vitro using a focused library of small-molecule inhibitors across a panel of cell lines (Supplementary Fig. S10A and S10B; Supplementary Table S8). Approximately 70 compounds targeting relevant pathways (RTKs, MAPK/ERK, PI3K, mTOR, cell cycle) were tested in a 3- or 7-day viability assay, and synergistic combinations were identified and ranked. Multiple hits from this screen were then identified for additional evaluation in combination studies with MRTX849, including the HER family inhibitor afatinib, the CDK4/6 inhibitor palbociclib, the SHP2 inhibitor RMC-4550, and mTOR pathway inhibitors.

Combination Strategies That Target Upstream Signaling Pathways Implicated in Extrinsic Regulation of KRAS Nucleotide Cycling and Feedback/Bypass Pathways

MRTX849 in combination with HER family inhibitors synergistically inhibited tumor-cell viability in the majority of cell lines evaluated and were the top hit in the combination screen in vitro (Supplementary Fig. S10). Cell lines with the highest (top 50th percentile) average composite baseline RNA expression values of selected HER family members exhibited the highest synergy scores to these combinations (Supplementary Fig. S11A). Afatinib was selected as a prototype HER family inhibitor based on its broad in vitro combination activity. Combination studies were conducted with MRTX849 and afatinib in five tumor models that were partially sensitive or treatment refractory to single-agent MRTX849. The MRTX849 and afatinib combination demonstrated significantly greater antitumor efficacy compared with either single agent in all five models evaluated, including multiple models exhibiting complete or near-complete responses to the combination (Fig. 6A; Supplementary Fig. S11B).

Figure 6.

 

HER family and SHP2 inhibitor combinations further inhibit KRAS signaling and exhibit increased antitumor responses. A, MRTX849 at 100 mg/kg, afatinib at 12.5 mg/kg, or the combination was administered daily via oral gavage to mice bearing the H2122 or KYSE-410 cell line xenografts (n = 5). Combination treatment led to a statistically significant decrease in tumor growth compared with either single-agent treatment. *, Padj < 0.01. B, Quantification of KRAS mobility shift and pERK in H2122 cells treated for 24 hours with MRTX849 (0.1–73 nmol/L), afatinib (200 nmol/L), or the combination assessed by Western blot densitometry. C, MRTX849 at 100 mg/kg, afatinib at 12.5 mg/kg, or the combination was administered once or daily for 7 days via oral gavage to mice bearing H2122 cell line xenografts (n = 3/group). Tumors were harvested at 6 and 24 hours following the final dose. Tumor sections were stained for pERK and pS6 via IHC methods. Quantitation of images shown by H-score in tumor tissue. Reduction of pERK or pS6 staining intensity was determined to be statistically significant relative to vehicle or either single agent using one-way ANOVA. Brackets indicate P < 0.05 compared with left-most sample. D, Quantitation of KRAS band shift and pERK after 24-hour treatment with MRTX849 (0.1–73 nmol/L), RMC-4550 (1 μmol/L), or the combination in H358 cells assessed by Western blot densitometry. E, MRTX849 at 100 mg/kg, RMC-4550 at 30 mg/kg, or the combination was administered daily via oral gavage to mice bearing the KYSE-410 or H358 cell line xenografts (n = 5/group). Combination treatment led to a statistically significant reduction in tumor growth compared with either single agent on the last day of dosing. *, Padj < 0.05. F, MRTX849 at 100 mg/kg, RMC-4550 at 30 mg/kg, or the combination was administered via oral gavage to mice bearing KYSE-410 cell line xenografts (n = 3/group), and tumors were harvested at 6 and 24 hours post-dose. Tumor sections were stained with pERK or pS6 via IHC methods. Quantitation of images shown by H-score in tumor tissue. Reduction of pERK staining intensity was determined to be statistically significant relative to RMC-4550 alone using one-way ANOVA. Brackets indicate P < 0.05 compared with left-most sample.

 

To evaluate whether afatinib affected covalent modification of KRASG12C by MRTX849, partially sensitive H2122 cells were treated with increasing concentrations of MRTX849 alone or in the presence of afatinib (200 nmol/L, IC90), and the mobility shift in KRAS protein was densitometrically determined from immunoblots. A clear shift in the concentration response to MRTX849 was apparent in the presence of afatinib, indicating that the combination increased the fraction of modified KRASG12C consistent with the putative role of HER family receptors in extrinsic regulation of KRASG12C GTP loading (Fig. 6B). The concentration–response relationship for inhibition of ERK phosphorylation was also clearly shifted in the presence of afatinib. To further evaluate the effect of the combination on KRAS-dependent signaling, four cell lines (H2030, H2122, H358, and KYSE-410) were treated with a range of MRTX849 concentrations in the presence or absence of afatinib for 6 or 24 hours, and key signaling molecules were evaluated by RPPA. Afatinib demonstrated clear inhibition of EGFR (pY1068) and HER2 (pY1248) activity and partial inhibition of ERK, AKT (S473), and p70S6K phosphorylation at both time points (Supplementary Fig. S11C). The effect of afatinib on S6 (S235/236, S240/244) and p90 RSK (S380) phosphorylation was variable and exhibited only minimal inhibition in most of the cell lines evaluated. The combination of afatinib and MRTX849 demonstrated markedly enhanced concentration-dependent inhibition and/or a greater magnitude of effect on ERK, RSK, p70 S6K, and S6 (S235/236) phosphorylation compared with MRTX849 alone at both 6 and 24 hours. Of note, neither afatinib nor MRTX849 alone inhibited S6 phosphorylation at the S240/244 site regulated by mTOR/S6K, whereas the combination demonstrated marked inhibition at 24 hours.

In vivo, the combination also exhibited a trend toward increased pERK and pS6 (S235/236) inhibition in the partially sensitive H2122 model in combination groups as determined by quantitation of immunostaining after 1- or 7-day administration (Fig. 6C). Similar results were observed in the MRTX849-refractory KYSE-410 model, and the combination also increased the number of apoptotic cells in this model (Supplementary Fig. S12A–S12C). Collectively, these data indicate that upstream baseline HER family activation may limit the ability of MRTX849 to achieve robust inhibition of the ERK and mTOR–S6 signaling pathways. Accordingly, the combination of afatinib and MRTX849 can limit feedback reactivation of ERK and demonstrate complementary inhibition of AKT–mTOR–S6 signaling, resulting in significantly improved antitumor activity.

SHP2 inhibition has been shown to inhibit the growth of cells that harbor KRASG12C mutations, and this effect is likely mediated, in part, by decreasing KRAS GTP loading (25–27). To evaluate whether SHP2 inhibition enhanced covalent modification of KRASG12C by MRTX849, H358 and H2122 cells were incubated with increasing MRTX849 concentrations with or without the SHP2 inhibitor RMC-4550. In both cell lines, cotreatment with RMC-4550 (1 μmol/L, IC90) demonstrated a MRTX849 concentration-dependent increase in KRASG12C protein modification and a concomitant decrease in ERK phosphorylation compared with MRTX849 alone (Fig. 6D; Supplementary Fig. S13A). RPPA analysis of KRAS-dependent signaling was conducted at 6 or 24 hours after treatment in three cell lines (H358, H2030, H2122) over a range of MRTX849 concentrations in the presence or absence of RMC-4550. RMC-4550 demonstrated robust inhibition of ERK phosphorylation and partial inhibition of p90 RSK (S380) and p70 S6K (T412) at both time points (Supplementary Fig. S13B). The combination of RMC-4550 and MRTX849 demonstrated incrementally increased concentration-dependent inhibition of ERK and RSK phosphorylation in all cell lines at both 6 and 24 hours and markedly improved inhibition of S6 (S235/236) phosphorylation compared with MRTX849 alone in H2122 and H358 cells at 24 hours. In addition, the combination demonstrated near-complete inactivation of KRAS in MRTX849-refractory KYSE-410 xenografts as determined using an active RAS ELISA assay, and this was significant compared with single agents (Supplementary Fig. S13C). On the basis of these findings, combination studies were conducted with MRTX849 and RMC-4550 in six KRASG12C-mutated tumor models in vivo, and the combination demonstrated significantly greater antitumor efficacy compared with either single agent in 4 of 6 models evaluated (Fig. 6E; Supplementary Fig. S13D). Consistent with the in vitro data, the combination also demonstrated a significant decrease in ERK phosphorylation compared with either single agent in the KYSE-410 model as determined by quantitation of tumor-cell immunostaining on day 1 at 6 and 24 hours and day 7 at 6 hours after dose (Fig. 6F). Together, these data indicate that EGFR family and SHP2 blockade can augment the antitumor activity of KRASG12C inhibitors through enhancing covalent target modification and establishing a more comprehensive blockade of KRAS-dependent signaling.

Combinations That Inhibit Bypass Pathways Downstream of KRAS and Exhibit Increased Antitumor Activity in Xenograft Models

KRAS is implicated in regulation of the oncogenic S6 protein translation pathway through both ERK-dependent activation of RSK, which phosphorylates S6 at Ser235/236, and cross-talk with the PI3K and mTOR pathway that additionally phosphorylates S6 at Ser240/244 (29). However, the S6 pathway can also be activated independently of mutated KRAS in tumor cells through hyperactivated RTK signaling, PI3K activation, or STK11 mutations, each of which converge on mTOR-mediated activation of S6. In the in vitro combination screen, mTOR inhibitors demonstrated synergy in a subset of evaluated cell lines (Supplementary Fig. S14A). To further evaluate the effect of the combination on KRAS and mTOR pathway–dependent signaling, four cell lines were treated with MRTX849 in the presence or absence of the selective ATP-competitive mTOR inhibitor vistusertib (1 μmol/L), for 6 or 24 hours, and several signaling molecules were evaluated by RPPA. Vistusertib demonstrated clear and robust inhibition of several components of the PI3K–mTOR signaling pathway including AKT (S473), p70 S6K (T412), S6 (pS235/236, S240/244), and 4E-BP1 (S65, T70) phosphorylation in each cell line at both time points consistent with its mechanism of action (Supplementary Fig. S14B). MRTX849 alone did not affect 4E-BP1 or S6 (S240/244) activity, and it exhibited a variable and cell line–dependent effect on p70 S6K and S6 (pS235/236) phosphorylation in these cell lines. Vistusertib also demonstrated marked induction of ERK phosphorylation, often several-fold over vehicle control, at both time points in all four cell lines, consistent with prior reports (30). The combination of vistusertib and MRTX849 demonstrated a comparable level of inhibition of ERK phosphorylation compared with single-agent MRTX849, indicating that the activation of ERK signaling by vistusertib was impeded by the combination of the two agents. In addition, MRTX849 combined with vistusertib further inhibited p70 S6K and AKT S473 phosphorylation compared with either single agent. Near-complete inhibition of S6 (S235/236, S240/244) phosphorylation at limit of detection was observed for the combination in each cell line at evaluated time points.

Consequently, a cohort of tumor models was identified, and the combination of MRTX849 with the selective mTOR inhibitor vistusertib demonstrated marked tumor regression and significantly improved antitumor activity compared with either single agent in all six models evaluated (Fig. 7A; Supplementary Fig. S14C). MRTX849 in combination with a second, differentiated mTOR inhibitor, everolimus, which inhibits TORC1 but not TORC2, in the H2030 xenograft model also demonstrated a striking combination effect (Supplementary Fig. S14D). In the KRASG12C, STK11-mutant H2030 model, MRTX849 demonstrated marked inhibition of ERK phosphorylation through 24 hours, but exhibited only partial inhibition of pS6235/36 at 6 hours after dose, on days 1 and 7 (Fig. 7B and C). Vistusertib demonstrated marked inhibition of pS6235/36 at 6 hours after treatment with evidence of recovery by 24 hours. The combination of vistusertib and MRTX849 did not have a further effect on ERK phosphorylation but demonstrated a significant reduction in pS6235/36 on day 1 at 24 hours compared with vistusertib alone and a trend toward reduced pS6235/36 on both day 1 and day 7 at 6 hours compared with either single agent (Fig. 7B; Supplementary Fig. S14E). Together, these data indicate that MRTX849 and mTOR inhibitor combination demonstrates complementary inhibition of the ERK and mTOR–S6 signaling pathways, resulting in broad antitumor activity in KRASG12C-mutant tumor models.

Figure 7.

 

CDK4/6 and mTOR combinations suppress independently hyperactivated downstream pathways and exhibit increased antitumor responses. A, MRTX849 at 100 mg/kg, vistusertib at 15 mg/kg, or the combination was administered daily via oral gavage to mice bearing the H2122 or H2030 cell line xenografts (n = 5/group). Combination treatment led to a statistically significant decrease in tumor growth compared with either single-agent treatment. *, Padj < 0.05. B, MRTX849 at 100 mg/kg, vistusertib at 15 mg/kg, or the combination was administered once or daily for 7 days via oral gavage to mice bearing H2030 cell line xenografts (n = 3/group). Tumors were harvested at 6 and 24 hours following the final dose. Tumor sections were stained with pERK and pS6 via IHC methods. Quantitation of images shown by H-score in tumor tissue. Reduction of pERK or pS6 staining intensity was determined to be statistically significant relative to vehicle or either single agent using one-way ANOVA. Brackets indicate P < 0.05 compared with left-most sample. C, Protein Western blot analysis of KRAS pathway targets in H2030 xenografts treated with MRTX849 (100 mg/kg), vistusertib (15 mg/kg), or the combination, 6 or 24 hours after a single dose. D, Protein Western blot analysis of KRAS pathway and cell-cycle targets in H2122 cells treated for 24 hours with MRTX849, palbociclib, or the combination. E, Normalized RNA-seq gene-expression data on E2F targets in H2122 xenografts treated with MRTX849, palbociclib, or the combination, 6 and 24 hours after a single daily dose or seven daily doses. F, MRTX849 at 100 mg/kg, palbociclib at 130 mg/kg, or the combination was administered daily via oral gavage to mice bearing the H2122 or SW1573 cell line xenografts (n = 5). Combination treatment led to a statistically significant decrease in tumor growth compared with either single-agent treatment. *, Padj < 0.05.

 

Signaling through KRAS is known to mediate cell proliferation, at least in part, through the regulation of the cyclin D family and triggering RB/E2F-dependent entry of cells into cell cycle. Loss-of-function mutations and homozygous deletions in the cell-cycle tumor suppressor CDKN2A (p16) are coincident in a subset of KRAS-mutant non–small cell lung cancer (NSCLC) and hyperactivate CDK4/6-dependent RB phosphorylation and cell-cycle transition. In the CDKN2A-null H2122 and SW1573 cell lines in vitro, MRTX849 demonstrated concentration-dependent partial inhibition of RB phosphorylation (pRB pS807/811) and concurrent increase in p27 in H2122 cells, but not SW1573 cells, at 24 hours (Fig. 7D; Supplementary Fig. S15A). MRTX849 in combination with the CDK4/6 inhibitor palbociclib (1 μmol/L) demonstrated near-complete inhibition of pRB in both H2122 and SW1573 cells and further induced p27 in H2122 cells. Interestingly, pS6 (S235/236) was also much more effectively suppressed by the combination in both H2122 and SW1573 cells, which is consistent with a recent report (31). RNA expression of target genes and RPPA analysis of target protein signaling events were also used as a readout of cell-cycle inhibition in the H2122 tumor model in vivo, and the combination of MRTX849 and palbociclib significantly inhibited E2F1 and selected E2F family target genes, induced p27 protein expression to a greater degree compared with either single agent, and further reduced the number of Ki-67–positive cells after 7 days of administration (Fig. 7E; Supplementary Fig. S15B and S15C). In addition, the combination demonstrated a significant decrease in pRB (S780) compared with either single agent after 7 days of administration in SW1573 tumors in vivo (Supplementary Fig. S15D). This combination also induced tumor regression in five tumor xenograft models that was significant compared with either single-agent control (Fig. 7F; Supplementary Fig. S15E). Although not significant, a trend was noted in which models with CDKN2A homozygous deletion exhibited an increased antitumor response to the combination of MRTX849 and CDK4/6 inhibition compared with models lacking evidence of genetic dysregulation of key cell-cycle genes (Supplementary Fig. S15F and S15G).

Discussion

The identification of MRTX849 as a highly selective KRASG12C inhibitor capable of near-complete inhibition of KRAS in vivo provides a renewed opportunity to better understand the role of this mutation as an oncogenic driver in various cancers and to guide rational clinical trial design. The lack of a significant correlation between sensitivity to MRTX849 antitumor activity in in vitro versus in vivo model systems made it necessary to further study KRAS oncogene dependence in tumor models in vivo, a more clinically relevant setting. The demonstration that MRTX849 exhibited significant antitumor efficacy in all evaluated KRASG12C-mutated cancer models and demonstrated marked regression in the majority (65%) confirms that this mutation is a broadly operative oncogenic driver and that MRTX849 represents a compelling therapeutic opportunity. This evidence of activity extended to patients, as demonstrated by RECIST partial responses in 2 patients enrolled in a phase I clinical trial of MRTX849. Collectively however, these data also illustrate that the degree of dependence of cancer cells on the presence of a KRASG12C mutation for growth and survival can vary across tumors and that co-occurring genetic alterations observed in KRAS-mutated cancers may influence response to direct targeted therapy. The further observation that KRAS mutations occur across different cancers and that no single co-occurring genetic alteration predicted response to treatment illustrates the genetic heterogeneity of KRAS-driven cancers. Findings in the present studies are consistent with other functional genomics or therapeutic strategies to block KRAS function across panels of cell lines or models which demonstrated a highly significant response of KRAS-mutant cells to target knockdown, a heterogeneous magnitude of response, and no clear co-occurring aberrations that predict resistance to target blockade (5, 32, 33). Interestingly, despite the implication that certain mutations that co-occur with KRAS including TP53, STK11, and KEAP1 may limit therapeutic response in KRASG12C-positive lung cancers, none of these mutations correlated with response or resistance in the cell-line panel. In addition, the partial response we reported in the patient with lung adenocarcinoma was observed in a patient harboring deleterious comutations in both STK11 and KEAP1. Together, these data further illustrate the heterogeneity and complexity of KRAS-mutated cancers and suggest that no binary co-occurring genetic event may be predictive of therapeutic response.

Temporal and dose–response analysis indicated maximal modification of KRASG12C and durable inhibition of KRAS-dependent signaling was important in maximizing therapeutic response. The recovery of ERK signaling and the inability to inhibit mTOR–S6 signaling despite continued treatment were each associated with transient or submaximal response to MRTX849. ERK1/2 is implicated in direct phosphorylation and negative feedback regulation of EGFR (T669), FGFR1 (S777), and SOS1, and each of these targets may facilitate KRASG12C-independent resetting of ERK signaling flux (34–36). The rapid and remarkable suppression of ERK pathway–regulated transcripts such as DUSP and SPRY/SPRED family members by MRTX849 in all models evaluated is consistent with that observed for RAF inhibitors and is implicated in reactivation of ERK and RTK signaling (18, 19). The dual-specificity phosphatases DUSP4 and 6 were strongly suppressed by MRTX849 and are implicated in dephosphorylating and inactivating ERK1/2 (14, 18, 37), whereas SPRY family members are implicated in the negative regulation of RTKs and adaptor proteins (e.g., GRB2), and may participate in modifying RAS family nucleotide exchange and effector binding (e.g., RAF1; ref. 38). Although suppression of DUSP and SPRY/SPRED was broadly observed in all models, the magnitude of signaling reactivation and response to MRTX849 varied across models. This suggests some tumor models harbor additional factors that bypass KRAS dependence or affect RAS pathway signaling flux, such as expression or activation of selected RTKs (e.g., ERBB2 amplification in the KYSE-410 model) or STK11 loss-of-function mutations, and may be primed for feedback reactivation of RAS-dependent signaling and/or limit the degree of signaling inhibition by MRTX849. This phenomenon was observed for BRAFV600E-mutant colon cancer (but not melanoma) which exhibits high baseline EGFR expression, is primed for rapid feedback activation of this RTK, and is resistant to single-agent inhibition but highly responsive to cotargeting BRAF (and/or MEK) and EGFR (20). In addition, blockade of BRAF or MEK1/2 resulted in feedback-mediated activation of the PI3K–mTOR signaling pathway in concert with the coactivation of upstream RTKs (e.g., EGFR), resulting in bypass of ERK pathway dependence and therapeutic resistance (17, 20, 39). The observations that baseline expression of HER family RTKs trended with MRTX849 antitumor activity and that CRISPR-based drug-anchored screens implicated EGFR, SHP2, and mTOR–S6 pathways as cotargetable vulnerabilities both support the hypothesis that these targets act as conditional response modifiers.

Activation of RTK signaling in the context of KRASG12C-mutant cancer was predicted to limit MRTX849 therapeutic response both by enhancing extrinsic regulation of GTPase activity and initiating KRAS-independent ERK and mTOR–S6 pathway activation. Therefore, HER family and SHP2 inhibition were employed as strategies to either block the critical RTK family in KRAS-mutant cells or block collective RTK signaling downstream, respectively. As MRTX849 binds only GDP-KRASG12C, both HER family and SHP2 inhibition each enhanced KRASG12C modification by MRTX849 and significantly improved antitumor activity. This observation is consistent with the putative role of activated RTKs in the engagement of SHP2 to mediate SOS1-dependent RAS GTP loading and to diminish RAS GAP activity, each of which converge on enhanced RAS activation state (40). The afatinib combination demonstrated a clear and marked inhibition of both the ERK–RSK and AKT–mTOR–S6 signaling pathways, whereas the SHP2 inhibitor combination demonstrated a clear impact on ERK–RSK signaling and a relatively less prominent impact on mTOR–S6 signaling. Although afatinib may more effectively address mTOR–S6 bypass signaling, SHP2 inhibition should be an effective combinatorial strategy to combat other RTKs outside of the HER family, such as FGFRs or MET, that could affect KRAS dependence. To further address bypass signaling mediated by RTK activation or STK11 mutations, each of which activate the mTOR–S6 signaling pathway independently of KRAS, mTOR inhibition in combination with MRTX849 was also evaluated. MRTX849 in combination with vistusertib, in fact, demonstrated significantly improved antitumor activity in vivo compared with either single agent in all six tumor models evaluated, regardless of STK11 mutational status. Consistent with the mechanism of action of vistusertib, comprehensive inhibition of AKT–mTOR–S6 signaling was observed for vistusertib alone and near-complete inhibition of pS6S235–36 and pS6240–44 was observed in combination. In addition, the marked feedback reactivation of ERK by vistusertib was relieved by the combination. The induction of ERK activity has been observed in tumor cells following mTORC1 inhibition by rapalogs or ATP-competitive inhibitors and has been implicated in limiting antitumor activity of this class of agents (30, 41, 42), supporting the suppression of ERK signaling by MRTX849 as a key mechanism of response to the combination. Notably, all three combination strategies converge on more comprehensive inhibition of KRAS-dependent signaling, converging on ERK and S6 activity. In addition, although the inhibition of the AKT–mTOR–S6 pathway did not correlate with model response to MRTX849 (potentially due to tumor heterogeneity), the observations that both MTOR and RPS6 drop out in drug-anchored CRISPR screens and that effective combination strategies more comprehensively block this pathway illustrate its likely importance in maximizing therapeutic response in KRAS-mutated cancers.

Cell-cycle dysregulation due to genetic alterations in cell-cycle regulators identified additional factors that could modify the therapeutic response to MRTX849. In addition, CDKN2A, RB1, CDK4, and CDK6 were all identified as gene targets that affected cell fitness in CRISPR screens. Genetic alterations including homozygous deletion of CDKN2A or amplification of CDK4 or CCND1 comprise up to 20% of KRAS-mutated NSCLC (43). Combination studies with MRTX849 and palbociclib in vivo demonstrated more comprehensive inhibition of RB and E2F family target genes and increased antitumor activity compared with either single agent in NSCLC models. In addition, these studies indicated that the combination resulted in more effective inhibition of S6 (S235/236) phosphorylation, establishing a previously unappreciated connection between cell-cycle blockade and protein translation pathways. Notably, this combination was especially effective in CDKN2A-deleted models, suggesting that this combination strategy may be primarily beneficial in a molecularly defined subset of patients characterized by decoupling of cell-cycle regulation from KRAS.

Collectively, models exhibiting a cytoreductive response to single-agent MRTX849 demonstrated a more comprehensive and durable inhibition of KRAS-dependent signaling and induction of an apoptotic response. These data suggest that maintaining durable inhibition of KRAS-dependent signaling below a defined threshold is required to elicit tumor regression. The elucidation of mechanisms that limit the therapeutic response to single-agent KRAS inhibition has provided insight toward strategies to enhance therapeutic activity in KRAS-mutant tumors. Of the 35% of models (9/26) that did not exhibit durable regression with single-agent MRTX849 treatment, five models (KYSE410, SW1573, H2122, H2030, and LU6405) were selected for rational combination studies, and at least one combination demonstrated significant improvement in antitumor efficacy and elicited a >50% tumor regression in all five models evaluated. These results suggest that essentially all KRASG12C-mutated cancers can derive clinical benefit from direct KRAS inhibitor–directed therapy either alone or in combination. Furthermore, rational pathway-centric combination regimens directed at hallmark signaling nodes may be directed to genetically defined patient subsets. For example, KRAS-mutated NSCLC exhibits mutually exclusive, co-occurring genetic alterations in STK11 and CDKN2A (43). The present data suggest that KRASG12C/STK11-mutated NSCLC could be readily addressed by combining a KRASG12C inhibitor with an RTK or mTOR inhibitor, whereas KRASG12C/CDKN2A-mutated NSCLC could be more effectively addressed by combination with a CDK4/6 inhibitor. Collectively, the present studies support the broad utility of covalent KRASG12C inhibitors in treating KRASG12C-mutated cancers and provide defining strategies to identify patients likely to benefit from single-agent therapy or rationally directed combinations.

  

UPDATED 02/07/2021

The November 1st issue of Science highlights a series of findings which give cancer researchers some hope in finally winning a thirty year war with the discovery of drugs that target KRAS, one of the most commonly mutated oncogenes  (25% of cancers), and thought to be a major driver of tumorigenesis. Once considered an undruggable target, mainly because of the smooth surface with no obvious pockets to fit a drug in, as well as the plethora of failed attempts to develop such an inhibitor, new findings with recently developed candidates, highlighted in this article and other curated within, are finally giving hope to researchers and oncologists who have been hoping for a clinically successful inhibitor of this once considered elusive target.

For a great review on development of G12C KRas inhibitors please see Dr. Hobb’s and Channing Der’s review in Cell Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It’s Down

Figure 1Mechanism of Action of ARS853 showing that the inhibitors may not need bind to the active conformation of KRAS for efficacy

Abstract: Two recent studies evaluated a small molecule that specifically binds to and inactivates the KRAS G12C mutant. The new findings argue that the perception that mutant KRAS is persistently frozen in its active GTP-bound form may not be accurate.

Although the development of the KRASG12C-specific inhibitor, compound 12 (Ostrem et al., 2013), was groundbreaking, subsequent studies found that the potency of compound 12 in cellular assays was limited (Lito et al., 2016, Patricelli et al., 2016). A search for more-effective analogs led to the development of ARS853 (Patricelli et al., 2016), which exhibited a 600-fold increase of its reaction rate in vitro over compound 12 and cellular activities in the low micromolar range.

A Summary and more in-depth curation of the Science article is given below:

After decades, progress against an ‘undruggable’ cancer target

Summary

Cancer researchers are making progress toward a goal that has eluded them for more than 30 years: shrinking tumors by shutting off a protein called KRAS that drives growth in many cancer types. A new type of drug aimed at KRAS made tumors disappear in mice and shrank tumors in lung cancer patients, two companies report in papers published this week. It’s not yet clear whether the drugs will extend patients’ lives, but the results are generating a wave of excitement. And one company, Amgen, reports an unexpected bonus: Its drug also appears to stimulate the immune system to attack tumors, suggesting it could be even more powerful if paired with widely available immunotherapy treatments.

Jocelyn Kaiser. After decades, progress against an ‘undruggable’ cancer target. Science  01 Nov 2019: Vol. 366, Issue 6465, pp. 561 DOI: 10.1126/science.366.6465.561

The article highlights the development of three inhibitors: by Wellspring Biosciences, Amgen, and Mirati Therapeutics.

Wellspring BioSciences

In 2013, Dr. Kevan Shokat’s lab at UCSF discovered a small molecule that could fit in the groove of the KRAS mutant G12C.  The G12C as well as the G12D is a common mutation found in KRAS in cancers. KRAS p.G12C mutations predominate in NSCLC comprising 11%–16% of lung adenocarcinomas (45%–50% of mutant KRAS is p.G12C) (Campbell et al., 2016; Jordan et al., 2017), as well as 1%–4% of pancreatic and colorectal adenocarcinomas, respectively (Bailey et al., 2016; Giannakis et al., 2016).  This inhibitor was effective in shrinking, in mouse studies conducted by Wellspring Biosciences,  implanted tumors containing this mutant KRAS.

See Wellspring’s news releases below:

March, 2016 – Publication – Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State

 

February, 2016 – Publication – Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism

 

Amgen

Amgen press release on AMG510 Clinical Trial at ASCO 2019

THOUSAND OAKS, Calif., June 3, 2019 /PRNewswire/ — Amgen (NASDAQ: AMGN) today announced the first clinical results from a Phase 1 study evaluating investigational AMG 510, the first KRASG12C inhibitor to reach the clinical stage. In the trial, there were no dose-limiting toxicities at tested dose levels. AMG 510 showed anti-tumor activity when administered as a monotherapy in patients with locally-advanced or metastatic KRASG12C mutant solid tumors. These data are being presented during an oral session at the 55th Annual Meeting of the American Society of Clinical Oncology (ASCO) in Chicago.

“KRAS has been a target of active exploration in cancer research since it was identified as one of the first oncogenes more than 30 years ago, but it remained undruggable due to a lack of traditional small molecule binding pockets on the protein. AMG 510 seeks to crack the KRAS code by exploiting a previously hidden groove on the protein surface,” said David M. Reese, M.D., executive vice president of Research and Development at Amgen. “By irreversibly binding to cysteine 12 on the mutated KRAS protein, AMG 510 is designed to lock it into an inactive state. With high selectivity for KRASG12C, we believe investigational AMG 510 has high potential as both a monotherapy and in combination with other targeted and immune therapies.”

The Phase 1, first-in-human, open-label multicenter study enrolled 35 patients with various tumor types (14 non-small cell lung cancer [NSCLC], 19 colorectal cancer [CRC] and two other). Eligible patients were heavily pretreated with at least two or more prior lines of treatment, consistent with their tumor type and stage of disease. 

Canon, J., Rex, K., Saiki, A.Y. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019) doi:10.1038/s41586-019-1694-1

Besides blocking tumor growth, AMG510 appears to stimulate T cells to attack the tumor, thus potentially supplying a two pronged attack to the tumor, inhibiting oncogenic RAS and stimulating anti-tumor immunity.

Mirati Therapeutics

Mirati’s G12C KRAS inhibitor (MRTX849) is being investigated in a variety of solid malignancies containing the KRAS mutation.

For recent publication on results in lung cancer see Patricelli M.P., et al. Cancer Discov. 2016; (Published online January 6, 2016)

For more information on Mirati’s KRAS G12C inhibitor see https://www.mirati.com/pipeline/kras-g12c/

KRAS G12C Inhibitor (MRTX849)

Study 849-001 – Phase 1b/2 of single agent MRTX849 for solid tumors with KRAS G12C mutation

Phase 1b/2 clinical trial of single agent MRTX849 in patients with advanced solid tumors that have a KRAS G12C mutation.

See details for this study at clinicaltrials.gov

UPDATED 02/07/2021

Amgen scientists’ rapid work to challenge the undruggable KRAS G12C mutation in cancer

Inside a 40-year quest to challenge the KRAS G12C mutation in cancer
By Amgen Oncology
Amgen’s sotorasib, an investigational lung cancer treatment, has been submitted to the FDA for review

 

 

Nearly four decades have passed since researchers first identified the RAS gene family, which includes HRASNRAS and KRASRAS is the most frequently mutated family of oncogenes – or potentially cancerous genes – in human cancers.1,2 While research  efforts have been able to identify and develop treatments for other driver gene mutations that contribute to cancer growth, success with treating KRAS, the most frequently mutated variant of the RAS family, has remained elusive.2 But now there is hope.

Amgen, a leading biotechnology company, has taken on one of the toughest challenges of the last 40 years in cancer research.3 Chemical biologist Kevan Shokat’s lab at the University of California, San Francisco, identified a small molecule that could slip into a groove on a KRAS mutation called G12C in 2013.4 Building on their own research strategies and this new insight, scientists at Amgen used structural biology and medicinal chemistry to identify an adjacent groove, and by November 2017, made the initial decision to advance the molecule that would become investigational sotorasib.5

KRAS G12C is the most common KRAS mutation in NSCLC.6,7 In the U.S., about 13% of patients with NSCLC harbor the KRAS G12C mutation.8 There is a high unmet need and poor outcomes in the second-line treatment of KRAS G12C-driven non-small cell lung cancer (NSCLC) and, currently, there are no KRASG12C targeted therapies approved.

According to Amgen’s head of research and development David Reese, “the company’s scientists had an idea some time ago that the future of oncology would be led by the marriage of immuno-oncology and precision therapy. We wanted to go after high value targets, and RAS proteins are one of them.”

Because of this effort to rapidly accelerate the speed of innovation, investigational sotorasib entered clinical trials in humans less than 12 months.

 

 

At the same time that scientists discovered investigational sotorasib, the team was undertaking a project to map out every step it takes to progress a potential new treatment from an idea in a lab to being made available for patients. The goal was to shrink timelines and eliminate gaps to develop drugs more rapidly in order to reach patients with serious illnesses like NSCLC as quickly as possible.

Because of this effort to rapidly accelerate the speed of innovation, sotorasib entered clinical trials in humans less than 12 months.5 Sotorasib was the first investigational KRASG12C inhibitor to enter the clinic, and is now being studied in the broadest clinical program exploring 10 combinations with global investigational sites spanning five continents.9 In a little more than two years, the sotorasib clinical program has established a clinical data set of more than 700 patients studied across 13 tumor types.9

The investigational treatment was recently submitted to the FDA for review and was granted Breakthrough Therapy designation, a distinction designed to expedite the development and review of drugs.5 It was also accepted into the FDA’s Real-Time Oncology Review pilot program, which aims to explore a more efficient review process.5

To learn more about Amgen and how the speed of innovation is bringing new oncology treatments to patients with high unmet needs, visit Amgen.com/KnowKRAS.  

______________________

1 Ryan MB, et al. Nat Rev Clin Oncol. 2018;15:709-720.

2 Cox AD, et al. Nat Rev Drug Discov. 2014;13:828-851.

3 Kim D, et al. Cell. 2020. doi:10.1016/j.cell.2020.09.044.

4 Ostrem JM, et al. Nature. 2013 ; 503 :548-551.

5 AMGEN, 2020. Retrieved January 8, 2021, from https://www.amgen.com/stories/2020/12/rapidly-advancing-development-of-amgens-investigational-kras-g12c-inhibitor

6 Pakkala S, et al. JCI Insight. 2018;3:e120858.

7 Arbour KC, et al. Clin Cancer Res. 2018;24:334-340.

8 Amgen, Data on File. 2020.

9 ClinicalTrials.gov. NCT04185883, NCT04380753, NCT03600883, NCT04303780. https://clinicaltrials.gov/ct2/. Accessed January 20, 2020.

 
 
Members of the editorial and news staff of the USA TODAY Network were not involved in the creation of this content.
 
 
 

Additional References:

Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.

Lito P et al. Science. (2016)

Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor.

Janes MR et al. Cell. (2018)

Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.

Zeng M et al. Cell Chem Biol. (2017)

Campbell, J.D., Alexandrov, A., Kim, J., Wala, J., Berger, A.H., Pedamallu, C.S., Shukla, S.A., Guo, G., Brooks, A.N., Murray, B.A., et al.; Cancer Genome Atlas Research Network (2016). Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet.48, 607–616

Jordan, E.J., Kim, H.R., Arcila, M.E., Barron, D., Chakravarty, D., Gao, J., Chang, M.T., Ni, A., Kundra, R., Jonsson, P., et al. (2017). Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 7, 596–609.

Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., Miller, D.K., Christ, A.N., Bruxner, T.J., Quinn, M.C., et al.; Australian Pancreatic Cancer Genome Initiative (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52.

Giannakis, M., Mu, X.J., Shukla, S.A., Qian, Z.R., Cohen, O., Nishihara, R., Bahl, S., Cao, Y., Amin-Mansour, A., Yamauchi, M., et al. (2016). Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865.

Read Full Post »

miRNA Therapeutic Promise

Curator: Larry H. Bernstein, MD, FCAP

 

MicroRNA Expression Could Be Key to Leukemia Treatment

http://www.genengnews.com/gen-news-highlights/microrna-expression-could-be-key-to-leukemia-treatment/81252662/

MicroRNA Expression Could Be Key to Leukemia Treatment

Generalized gene regulation mechanisms of miRNAs. [NIH]

 

Increasingly, cancer researchers are discovering novel biological pathways that regulate the expression of various genes that are often strongly associated with tumorigenesis. These new molecular mechanisms represent important potential therapeutic targets for aggressive and difficult-to-treat cancers. In particular, microRNAs (miRNAs)—small, noncoding genetic material that regulates gene expression—have steadily become implicated in the progression of some cancers.

Now, researchers at the University of Cincinnati (UC) have found a particular signaling route for a microRNA, miR-22, that they believe leads to targets for acute myeloid leukemia (AML), the most common type of fast-growing cancer of the blood and bone marrow.

The findings from this study were published recently in Nature Communications in an article entitled “miR-22 Has a Potent Anti-Tumour Role with Therapeutic Potential in Acute Myeloid Leukaemia.”

Structure of mi-22 miccroRNA. [Ppgardne at el., via Wikimedia Commons]

Increasingly, cancer researchers are discovering novel biological pathways that regulate the expression of various genes that are often strongly associated with tumorigenesis. These new molecular mechanisms represent important potential therapeutic targets for aggressive and difficult-to-treat cancers. In particular, microRNAs (miRNAs)—small, noncoding genetic material that regulates gene expression—have steadily become implicated in the progression of some cancers.

Now, researchers at the University of Cincinnati (UC) have found a particular signaling route for a microRNA, miR-22, that they believe leads to targets for acute myeloid leukemia (AML), the most common type of fast-growing cancer of the blood and bone marrow.

The findings from this study were published recently in Nature Communications in an article entitled “miR-22 Has a Potent Anti-Tumour Role with Therapeutic Potential in Acute Myeloid Leukaemia.”

“MicroRNAs make up a class of small, noncoding internal RNAs that control a gene’s job, or expression, by directing their target messaging RNAs, or mRNAs, to inhibit or stop. Cellular organisms use mRNA to convey genetic information,” explained senior study author Jianjun Chen, Ph.D., associate professor in the department of cancer biology at the UC College of Medicine. “Previous research has shown that microRNA miR-22 is linked to breast cancer and other blood disorders which sometimes turn into AML, but we found in this study that it could be an essential anti-tumor gatekeeper in AML when it is down-regulated, meaning its function is minimized.”

AML—most common type of acute leukemia—arises when the bone marrow begins to make blasts, cells that have not yet completely matured. These blast cells typically develop into white blood cells; however, in AML the cells do not develop and are unable to aid in warding off infections. In the current study, the UC team describes how altering the expression of miR-22 affected AML pathogenesis.

“When we forced miR-22 expression, we saw difficulty in leukemia cells developing, growing, and thriving. miR-22 targets multiple cancer-causing genes (CRTC1, FLT3, and MYCBP) and blocks certain pathways (CREB and MYC),” Dr. Chen noted. “The downregulation, or decreased output, of miR-22 in AML, is caused by the loss of the number of DNA being copied and/or stopping their expression through a pathway called TET1/GFI1/EZH2/SIN3A. Also, nanoparticles carrying miR-22 DNA oligonucleotides (short nucleic acid molecules) prevented leukemia advancement.”

The investigators conducted the study using bone marrow transplant samples and animal models. The researchers showed that the ten-eleven translocation proteins (TET1/2/3) in mammals helped to control genetic expression in normal developmental processes. This was in sharp contrast to mutations that cause function loss and tumor-slowing with TET2, which has been observed previously in blood and stem cell cancers.

“We recently reported that TET1 plays an essential cancer generating role in certain AML where it activates expression of homeobox genes, which are a large family of similar genes that direct the formation of many body structures during early embryonic development,” remarked Dr. Chen. “However, it is unknown whether TET1 can also function as a repressor for cellular function in cancer, and its role in microRNA expression has rarely been studied.”

Dr. Chen added that these findings are important in targeting a cancer that is both common and fatal, stating that “the majority of patients with ALM usually don’t survive longer than 5 years, even with chemotherapy, which is why the development of new effective therapies based on the underlying mechanisms of the disease is so important.”

“Our study uncovers a previously unappreciated signaling pathway (TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC) and provides new insights into genetic mechanisms causing and progressing AML and also highlights the clinical potential of miR-22-based AML therapy. More research on this pathway and ways to target it are necessary,” Dr. Chen concluded.

 

miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia

Xi JiangChao HuStephen ArnovitzJason BugnoMiao YuZhixiang ZuoPing Chen, et al.
Nature Communications 26 Apr 2016; 7(11452).    http://dx.doi.org:/doi:10.1038/ncomms11452

MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.

 

As one of the most common and fatal forms of hematopoietic malignancies, acute myeloid leukaemia (AML) is frequently associated with diverse chromosome translocations (for example t(11q23)/MLL-rearrangements, t(15;17)/PML-RARA and t(8;21)/AML1-ETO) and molecular abnormalities (for example, internal tandem duplications of FLT3 (FLT3-ITD) and mutations in nucleophosmin (NPM1c+))1. Despite intensive chemotherapies, the majority of patients with AML fail to survive longer than 5 years2, 3. Thus, development of effective therapeutic strategies based on a better understanding of the molecular mechanisms underlying the pathogenesis of AML is urgently needed.

MicroRNAs (miRNAs) are a class of small, non-coding RNAs that post-transcriptionally regulate gene expression4. Individual miRNAs may play distinct roles in cancers originating from different tissues or even from different lineages of hematopoietic cells4. It is unclear whether a single miRNA can play distinct roles between malignancies originating from the same hematopoietic lineage, such as de novo AML and myelodysplastic syndrome (MDS). Although around 30% of MDS cases transform to AML, the genetic and epigenetic landscapes of MDS or MDS-derived AML are largely different from those of de novo AML5, 6. MDS and MDS-derived AML are more responsive to hypomethylating agents than de novo AML7. The molecular mechanisms underlying the distinct pathogenesis and drug response between MDS (or MDS-derived AML) and de novo AML remain unclear.

The ten-eleven translocation (Tet1/2/3) proteins play critical transcriptional regulatory roles in normal developmental processes as activators or repressors8, 9, 10. In contrast to the frequent loss-of-function mutations and tumour-suppressor role of TET2 observed in hematopoietic malignancies11, 12, 13, we recently reported that TET1 plays an essential oncogenic role in MLL-rearranged AML where it activates expression of homeobox genes14. However, it is unknown whether TET1 can also function as a transcriptional repressor in cancer. Moreover, Tet1-mediated regulation of miRNA expression has rarely been studied10.

In the present study, we demonstrate that miR-22, an oncogenic miRNA reported in breast cancer and MDS15, 16, is significantly downregulated in most cases of de novo AML due to TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. miR-22 functions as an essential anti-tumour gatekeeper in various AML and holds great therapeutic potential to treat AML.

 

The downregulation of miR-22 in de novo AML

Through Exiqon miRNA array profiling, we previously identified a set of miRNAs, such as miR-150, miR-148a, miR-29a, miR-29b, miR-184, miR-342, miR-423 and miR-22, which are significantly downregulated in AML compared with normal controls17. Here we showed that among all the above miRNAs, miR-150 and especially miR-22 exhibited the most significant and consistent inhibitory effect on MLL-AF9-induced cell immortalization in colony-forming/replating assays (CFA) (Supplementary Fig. 1a). In contrast to the reported upregulation of miR-22 in MDS16, our original microarray data17 (Fig. 1a,b) and new quantitative PCR-independent validation data (Supplementary Fig. 1b) demonstrated a significant and global downregulation of miR-22 in de novo AML relative to normal controls. Notably, miR-22 is significantly downregulated in AML samples (P<0.05) compared with all three sub-populations of normal control cells, that is, normal CD34+ hematopoietic stem/progenitor cells (HSPCs), CD33+ myeloid progenitor cells, or mononuclear cells (MNCs) (Fig. 1a). Expression of miR-22 is significantly downregulated in all or the majority of individual subsets of AML samples than in the normal CD33+ or CD34+ cell samples (Fig. 1b).

Figure 1: miR-22 inhibits AML cell transformation and leukemogenesis.

miR-22 inhibits AML cell transformation and leukemogenesis.

(a,b) Exiqon microRNA profiling assay showed that miR-22 is significantly (P<0.05) downregulated in the entire set of AML set (n=85) (a) or each individual subset (b), relative to normal controls. The expression data were log(2) transformed and mean-centred. Mean±s.e.m. values were shown. (c) Comparison of effects of in-house miR-22, miR-22_Song16 and miR-22 mutant (miR-22mut; see the mutation sequence at the top) on MLL-AF9-induced colony forming. CFAs were performed using mouse BM progenitor (Lin) cells transduced with MSCV-neo+MSCV-PIG (Ctrl), MSCV-neo-MLL-AF9+MSCV-PIG (MLL-AF9), or MSCV-neo-MLL-AF9+MSCV-PIG-miR-22/miR-22_Song/miR-22mut. (d) Effects of miR-22 on the colony forming induced by multiple fusion genes. CFA was performed using wild-type BM progenitor cells co-transduced with MSCV-neo-MLL-AF9 (MA9), -MLL-AF10 (MA10), -PML-RARA (PR) or –AML1-ETO9a(AE9a)19, together with MSCV-PIG (Ctrl) or MSCV-PIG-miR-22 (+miR-22), as well as miR-22−/− BM progenitors co-transduced with individual fusion genes and MSCV-PIG. Colony counts (mean±s.d.) of the second round of plating are shown. *P<0.05; **P<0.01. (e,f) Effect of miR-22 on MLL-AF9-induced primary leukemogenesis. Kaplan–Meier curves are shown for six cohorts of transplanted mice including MSCVneo+MSCV-PIG (Ctrl; n=5), MSCVneo+MSCV-PIG-miR-22 (miR-22; n=5), MSCVneo-MLL-AF9+MSCV-PIG (MA9; n=8), MSCVneo-MLL-AF9+MSCV-PIG-miR-150 (MA9+miR-150, n=6), MSCVneo-MLL-AF9+MSCV-PIG-miR-22 (MA9+miR-22; n=10) and MSCVneo-MLL-AF9+MSCV-PIG-miR-22mutant (MA9+miR-22mut; n=5) (e); Wright–Giemsa stained PB and bone marrow (BM), and hematoxylin and eosin (H&E) stained spleen and liver of the primary BMT recipient mice at the end point are shown (f). (g) Effect of miR-22 on MLL-AF10-induced primary leukemogenesis. Kaplan–Meier curves are shown for two cohorts of transplanted mice including MSCVneo-MLL-AF10+MSCV-PIG (MA10; n=5) and MSCVneo-MLL-AF10+MSCV-PIG-miR-22 (MA10+miR-22; n=5). (h) miR-22 knockout promotes AE9a-induced leukemogenesis. Kaplan–Meier curves are shown for mice transplanted with wild-type or miR-22−/− BM progenitor cells transduced MSCV-PIG-AE9a (n=5 for each group). The P values were generated by t-test (ad) or log-rank test (e,g,h).

To rule out the possibility that the inhibitory effect of miR-22 shown in Supplementary Fig. 1a was due to a non-specific effect of our miR-22 construct, we included the MSCV-PIG-miR-22 construct from Song et al.16 in a repeated CFA. Both miR-22 constructs dramatically inhibited MLL-AF9-induced colony formation (Fig. 1c). As the ‘seed’ sequences at the 5′ end of individual miRNAs are essential for the miRNA-target binding18, we also mutated the 6-bases ‘seed’ sequence of miR-22 and found that the miR-22 mutant did not inhibit colony formation anymore (Fig. 1c). In human AML cells, forced expression of miR-22, but not miR-22 mutant, significantly inhibited cell viability and growth/proliferation, while promoting apoptosis (Supplementary Fig. 1c,d).

Furthermore, as miR-22 is globally downregulated in all major types of AML (Fig. 1b), we also investigated the role of miR-22 in colony formation induced by other oncogenic fusion genes, including MLL-AF10/t(10;11), PML-RARA/t(15;17) and AML1-ETO9a/t(8;21) (ref. 19). As expected, forced expression of miR-22 significantly inhibited colony formation induced by all individual oncogenic fusions; conversely, miR-22 knockout20 significantly enhanced colony forming (Fig. 1d). These results suggest that miR-22 likely plays a broad anti-tumour role in AML.

In accordance with the potential anti-tumour function of miR-22 in AML, miR-22 was expressed at a significantly higher level (P<0.05) in human normal CD33+ myeloid progenitor cells than in more immature CD34+ HSPCs or MNC cells (a mixed population containing both primitive progenitors and committed cells) (Fig. 1a,b), implying that miR-22 is upregulated during normal myelopoiesis. Similarly, we showed that miR-22 was also expressed at a significantly higher level in mouse normal bone marrow (BM) myeloid (Gr-1+/Mac-1+) cells, relative to lineage negative (Lin) progenitor cells, long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), and committed progenitors (CPs) (Supplementary Fig. 1e), further suggesting that miR-22 is upregulated in normal myelopoiesis.

The anti-tumour effect of miR-22 in the pathogenesis of AML

Through bone marrow transplantation (BMT) assays, we showed that forced expression of miR-22 (but not miR-22 mutant) dramatically blocked MLL-AF9 (MA9)-mediated leukemogenesis in primary BMT recipient mice, with a more potent inhibitory effect than miR-150 (Fig. 1e;Supplementary Fig. 2a). All MA9+miR-22 mice exhibited normal morphologies in peripheral blood (PB), BM, spleen and liver tissues (Fig. 1f), with a substantially reduced c-Kit+ blast cell population in BM (Supplementary Fig. 2b). Forced expression of miR-22 also almost completely inhibited leukemogenesis induced by MLL-AF10 (Fig. 1g; Supplementary Fig. 2a). Conversely, miR-22 knockout significantly promoted AML1-ETO9a (AE9a)-induced AML (Fig. 1h). Thus, the repression of miR-22 is critical for the development of primary AML. Notably, forced expression of miR-22 inMLL-AF9 and MLL-AF10 leukaemia mouse models caused only a 2–3-fold increase in miR-22 expression level (Supplementary Fig. 2a), in a degree comparable to the difference in miR-22 expression levels between human AML samples and normal controls (Fig. 1a), suggesting that a 2–3-fold change in miR-22 expression level appears to be able to exert significant physiological or pathological effects.

To examine whether the maintenance of AML is also dependent on the repression of miR-22, we performed secondary BMT assays. Forced expression of miR-22 remarkably inhibited progression of MLL-AF9-, AE9a– or FLT3-ITD/NPM1c+-induced AML in secondary recipient mice (Fig. 2a–d), resulting in largely normal morphologies in PB, BM, spleen and liver tissues (Fig. 2b;Supplementary Fig. 2c). Collectively, our findings demonstrate that miR-22 is a pivotal anti-tumour gatekeeper in both development and maintenance of various AML.

Figure 2: Effect of miR-22 on the maintenance of AML in vivo.

Effect of miR-22 on the maintenance of AML in vivo.

(a,b) Effect of miR-22 on the maintenance of MLL-AF9-induced AML in secondary BMT recipient mice. The secondary BMT recipients were transplanted with BM blast cells from the primary MLL-AF9 AML mice retrovirally transduced with MSCV-PIG+MSCVneo (MA9-AML+Ctrl; n=7) or MSCV-PIG+MSCVneo-miR-22 (MA9-AML+miR-22; n=10). Kaplan–Meier curves (a) and Wright–Giemsa or H&E-stained PB, BM, spleen and liver (b) of the secondary leukaemic mice are shown. (c,d) Effect of miR-22 on the maintenance/progression of AML1-ETO9a (AE9a)-induced AML (c) or FLT3-ITD/NPM1c+-induced AML (d) in secondary BMT recipient mice (n=5 for each group). Kaplan–Meier curves and P values (log-rank test) are shown.

 

Identification of critical target genes of miR-22 in AML

To identify potential targets of miR-22 in AML, we performed a series of data analysis. Analysis of In-house_81S (ref. 21) and TCGA_177S (ref. 22) data sets revealed a total of 999 genes exhibiting significant inverse correlations with miR-22 in expression. Of them, 137 genes, including 21 potential targets of miR-22 as predicted by TargetScan18 (Supplementary Table 1), were significantly upregulated in both human and mouse AML compared with normal controls as detected in two additional in-house data sets14, 23. Among the 21 potential targets, CRTC1, ETV6and FLT3 are known oncogenes24, 25, 26, 27, 28, 29. We then focused on these three genes, along with MYCBP that encodes the MYC-binding protein and is an experimentally validated target of miR-22 (ref. 30) although due to a technical issue it was not shown in the 21-gene list (Supplementary Table 1), for further studies.

As expected, all four genes were significantly downregulated in expression by ectopic expression of miR-22 in human MONOMAC-6/t(9;11) cells (Fig. 3a). The coincidence of downregulation of those genes and upregulation of miR-22 was also observed in mouse MLL-ENL-ERtm cells, a leukaemic cell line with an inducible MLL-ENL derivative31, when MLL-ENL was depleted by 4-hydroxy-tamoxifen (4-OHT) withdrawal (Fig. 3b; Supplementary Fig. 3a). While MLL-AF9 remarkably promoted expression of those four genes in mouse BM progenitor cells, co-expressed miR-22 reversed the upregulation (Fig. 3c). In leukaemia BM blast cells of mice with MLL-AF9-induced AML, the expression of Crtc1, Flt3 and Mycbp, but not Etv6, was significantly downregulated by co-expressed miR-22 (but not by miR-22 mutant) (Fig. 3d). Because miR-22-mediated downregulation of Etv6 could be observed only in the in vitro models (Fig. 3a–c), but not in the in vivo model (Fig. 3d), which was probably due to the difference between in vitro and in vivo microenvironments, we decided to focus on the three target genes (that is, Crtc1, Flt3 and Mycbp) that showed consistent patterns between in vitro and in vivo for further studies. The repression of Crtc1, Flt3 and Mycbpwas also found in leukaemia BM cells of mice with AE9a or FLT3-ITD/NPM1c+-induced AML (Fig. 3e,f). As Mycbp is already a known target of miR-22 (ref. 30), here we further confirmed that FLT3and CRTC1 are also direct targets of miR-22 (Fig. 3g,h). The downregulation of CRTC1, FLT3 and MYCBP by miR-22 at the protein level was confirmed in both human and mouse leukaemic cells (Supplementary Fig. 3b,c). Overexpression of miR-22 had no significant influence on the level of leukaemia fusion genes (Supplementary Fig. 3d).

Figure 3: miR-22 targets multiple oncogenes.

miR-22 targets multiple oncogenes.

(a) Downregulation of CRTC1, FLT3, MYCBP and ETV6 by forced expression of miR-22 in MONOMAC-6 cells. Expression of these genes was detected 48h post transfection of MSCV-PIG (Ctrl) or MSCV-PIG-miR-22 (miR-22). (b) Crtc1, Flt3, Mycbp and Etv6 levels in MLL-ENL-ERtm cells after withdrawal of 4-OHT for 0, 7 or 10 days. (c) Expression levels of Crtc1, Flt3, Mycbp and Etv6 in mouse BM progenitor cells retrovirally transduced with MSCV-PIG+MSCV-neo (Ctrl), MSCV-PIG-miR-22+MSCV-neo (miR-22), MSCV-PIG+MSCV-neo-MLL-AF9 (MLL-AF9) or MSCV-PIG-miR-22+MSCV-neo-MLL-AF9 (MLL-AF9+miR-22). (d) Expression levels of Crtc1, Flt3, Mycbp and Etv6 in BM blast cells of leukaemic mice transplanted with MLL-AF9, MLL-AF9+miR-22 or MLL-AF9+miR-22mut primary leukaemic cells. (e,f) Expression levels of Crtc1, Flt3 and Mycbp in BM blast cells of leukaemic mice transplanted with MSCV-PIG or MSCV-PIG-miR-22-retrovirally transduced AE9a (e) or FLT3-ITD/NPM1c+ (f) primary leukaemic cells. (g) Putative miR-22 target sites and mutants in the 3′UTRs of CRTC1 (upper panel) and FLT3(lower panel). (h) Effects of miR-22 on luciferase activity of the reporter gene bearing wild type or mutant 3′UTRs of CRTC1 or FLT3 in HEK293T cells. The mean±s.d. values from three replicates are shown.*P<0.05, t-test.

Co-expression of the coding region (CDS) of each of the three target genes (that is, CRTC1, FLT3and MYCBP) largely reversed the effects of miR-22 on cell viability, apoptosis and proliferation (Fig. 4a–e). More importantly, in vivo BMT assays showed that co-expressing CRTC1, FLT3 orMYCBP largely rescued the inhibitory effect of miR-22 on leukemogenesis (Fig. 4f,g;Supplementary Fig. 3e). Our data thus suggest that CRTC1, FLT3 and MYCBP are functionally important targets of miR-22 in AML.

Figure 4: Multiple onocgenes are functionally important targets of miR-22 in AML.

Multiple onocgenes are functionally important targets of miR-22 in AML.

(a,b) Relative viability (a) and apoptosis (b) levels of MONOMAC-6 cells transfected with MSCV-PIG-CRTC1, -FLT3 or –MYCBP alone, or together with MSCVneo-miR-22. Values were detected 48h post transfection. (c–e) Rescue effects of CRTC1 (c), FLT3 (d) and MYCBP (e) on the inhibition of MONOMAC-6 growth mediated by miR-22. Cell counts at the indicated time points are shown. Mean±s.d. values are shown. *P<0.05, t-test. (f) In vivo rescue effects of CRTC1, FLT3 and MYCBP on the inhibition of MLL-AF9-induced leukemogenesis mediated by miR-22. The secondary recipients were transplanted with BM blast cells of the primary MLL-AF9 leukaemic mice retrovirally transduced with MSCVneo+MSCV-PIG (MA9-AML+Ctrl; n=7), MSCVneo-miR-22+MSCV-PIG (MA9-AML+miR-22; n=10), MSCVneo-miR-22+MSCV-PIG-CRTC1 (MA9-AML+miR-22+CRTC1; n=5), MSCVneo-miR-22+MSCV-PIG-FLT3 (MA9-AML+miR-22+FLT3; n=6) or MSCVneo-miR-22+MSCV-PIG-MYCBP (MA9-AML+miR-22+MYCBP; n=6). Kaplan–Meier curves for all the five groups of transplanted mice are shown. MA9-AML+Ctrl versus MA9-AML+miR-22, P<0.001 (log-rank test); MA9-AML+Ctrl versus any other groups,P>0.05 (log-rank test). (g) Wright–Giemsa stained PB and BM, and H&E stained spleen and liver of the secondary leukaemic mice.

miR-22 represses both CREB and MYC signalling pathways

DNA copy-number loss of miR-22 gene locus in AML

Expression of miR-22 is epigenetically repressed in AML

 

Figure 5: Transcriptional correlation between miR-22 and TET1.

http://www.nature.com/ncomms/2016/160426/ncomms11452/images_article/ncomms11452-f5.jpg

(a) Correlation between the expression levels of miR-22 and TET1 in three independent AML patient databases. All expression data were log(2) transformed; the data in In-house_81S were also mean-centred. The correlation coefficient (r) and P values were detected by ‘Pearson Correlation’, and the correlation regression lines were drawn with the ‘linear regression’ algorithm. (b) Expression of pri-, pre- and mature miR-22, and Tet1/2/3 in colony-forming cells of wild-type mouse BM progenitors retrovirally transduced with MSCVneo (Ctrl), MSCVneo-MLL-AF9 (MLL-AF9), MSCVneo-MLL-AF10 (MLL-AF10) or MSCVneo-AE9a (AE9a), or of FLT3-ITD/NPM1c+ mouse BM progenitors transduced with MSCVneo (FLT3-ITD+/NPM1c+). (c) Expression of miR-22 and Tet1/2/3 in MLL-ENL-ERtm cells. Expression levels were detected at the indicated time points post 4-OHT withdrawal. (d) Effect of miR-22 overexpression onTet1 expression in colony-forming cells with MLL-AF9, AE9a or FLT3-ITD/NPM1c+. (e) Expression ofTet1 in BM progenitor cells of 6-weeks old miR-22−/− or wild-type mice. (f) Effect of miR-22 overexpression on TET1 expression in THP-1 and KOCL-48 AML cells 48h post transfection. (g) Expression of pri-, pre- and mature miR-22 in BM progenitor cells of 6-weeks old Tet1−/− or wild-type mice. Mean±s.d. values are shown. *P<0.05, t-test.

http://www.nature.com/ncomms/2016/160426/ncomms11452/images_article/ncomms11452-f6.jpg

(a) Tet1 targets miR-22 promoter region (−1,100/+55bp), as detected by luciferase reporter assay 48h post transfection in HEK293T cells. (b) Expression of TET1/2/3, EZH2, SIN3A, GFI1 and miR-22 in THP-1 cells 72h post treatment with 1μM ATRA or DMSO control. (c) Co-immunoprecipitation assay showing the binding of endogenous GFI1 and TET1 in THP1 cells. (d) ChIP-qPCR analyses of the promoter region of miR-22 in THP-1 cells 72h post treatment with 1μM ATRA or DMSO. Upper panel: PCR site on the CpG-enriched region of miR-22 gene locus. Note: miR-22 is coded within the second exon of a long non-coding RNA (MIR22HG), which represents the primary transcript of miR-22. Lower panels: enrichment of MLL-N terminal (for both wild-type MLL and MLL-fusion proteins), MLL-C terminal (for wild-type MLL), TET1, EZH2, SIN3A, GFI1, H3K27me3, H3K4me3 or RNA pol II at miR-22 promoter region. (e) Expression levels of TET1, EZH2, SIN3A and miR-22 in GFI1 knockdown cells. (f) ChIP-qPCR analyses of the promoter region of miR-22 in THP-1 cells transduced with GFI1 shRNA or control shRNA. Enrichment of GFI1, TET1, EZH2 and SIN3A are shown. (g) Effects of knockdown of TET1, EZH2 and/orSIN3A on miR-22 expression. The expression level of miR-22 was detected in THP-1 cells 72h post transfection with siRNAs targeting TET1, EZH2 and/or SIN3A. Mean±s.d. values are shown. *P<0.05;**P<0.01 (t-test). (h) Schematic model of the regulatory pathway involving miR-22 in AML and ATRA treatment.

 

The miR-22-associated regulatory circuit in AML

         Restoration of miR-22 expression and function to treat AML

 

Figure 7: Therapeutic effect of miR-22-nanoparticles in treating AML.

http://www.nature.com/ncomms/2016/160426/ncomms11452/images_article/ncomms11452-f7.jpg

(a,b) Primary leukaemia BM cells bearing MLL-AF9 (a) or AE9a (b) were transplanted into sublethally irradiated secondary recipient mice. After the onset of secondary AML (usually 10 days post transplantation), the recipient mice were treated with PBS control, or 0.5mgkg−1 miR-22 or miR-22 mutant RNA oligos formulated with G7 PAMAM dendrimer nanoparticles, i.v., every other day, until the PBS-treated control group all died of leukaemia. (c) NSGS mice49 were transplanted with MV4;11/t(4;11) AML cells. Five days post transplantation, these mice started to be treated with PBS control, miR-22 or miR-22 mutant nanoparticles at the same dose as described above. Kaplan–Meier curves are shown; the drug administration period and frequency were indicated with yellow arrows. The P values were detected by log-rank test. (d) Wright–Giemsa stained PB and BM, and H&E stained spleen and liver of the MLL-AF9-secondary leukaemic mice treated with PBS control, miR-22 or miR-22 mutant nanoparticles.

We then tested the miR-22 nanoparticles in a xeno-transplantation model49. Similarly, the nanoparticles carrying miR-22 oligos, but not miR-22 mutant, significantly delayed AML progression induced by human MV4;11/t(4;11) cells (Fig. 7c). The miR-22-nanoparticle administration also resulted in less aggressive leukaemic pathological phenotypes in the recipient mice (Supplementary Fig. 6e). Thus, our studies demonstrated the therapeutic potential of using miR-22-based nanoparticles to treat AML.

 

It remains poorly understood how TET proteins mediate gene regulation in cancer. Here we show that in de novo AML, it is TET1, but not TET2 (a reported direct target of miR-22 in MDS and breast cancer15, 16), that inversely correlates with miR-22 in expression and negatively regulates miR-22 at the transcriptional level. Likely together with GFI1, TET1 recruits polycomb cofactors (for example, EZH2/SIN3A) to the miR-22 promoter, leading to a significant increase in H3K27me3 occupancy and decrease in RNA pol II occupancy at that region, and thereby resulting in miR-22 repression in AML cells; such a repression can be abrogated by ATRA treatment. Thus, our study uncovers a novel epigenetic regulation mechanism in leukaemia involving the cooperation between TET1/GFI1 and polycomb factors.

Besides GFI1, it was reported that LSD1 is also a binding partner of TET1 (ref. 50). Interestingly, LSD1 is known as a common binding partner shared by TET1 and GFI1, and mediates the effect of GFI1 on hematopoietic differentiation51, 52. Thus, it is possible that LSD1 might also participate in the transcriptional repression of miR-22 as a component of the GFI1/TET1 repression complex.

We previously reported that TET1 cooperates with MLL fusions in positively regulating their oncogenic co-targets in MLL-rearranged AML14. Here we show that TET1 can also function as a transcriptional repressor (of a miRNA) in cancer. The requirement of TET1-mediated regulation on expression of its positive (for example, HOXA/MEIS1/PBX3)14 or negative (for example, miR-22) downstream effectors in leukemogenesis likely explains the rareness of TET1 mutations in AML53, and highlights its potent oncogenic role in leukaemia.

The aberrant activation of both CREB and MYC signalling pathways has been shown in AML24, 25,26, 54, 55, but the underlying molecular mechanisms remain elusive. Our data suggest that the activation of these two signalling pathways in AML can be attributed, at least in part, to the repression of miR-22, which in turn, results in the de-repression of CRTC1 (CREB pathway), FLT3and MYCBP (MYC pathway), and leads to the upregulation of oncogenic downstream targets (for example, CDK6, HOXA7, BMI1, FASN and HMGA1) and downregulation of tumour-suppressor downstream targets (for example, RGS2).

In summary, we uncover a TET1/GFI1/EZH2/SIN3A⊣miR-22⊣CREB-MYC signalling circuit in de novo AML, in which miR-22 functions as a pivotal anti-tumour gate-keeper, distinct from its oncogenic role reported in MDS or MDS-derived AML16. Thus, our study together with the study of Song et al.16 highlight the complexity and functional importance of miR-22-associated gene regulation and signalling pathways in hematopoietic malignancies, and may provide novel insights into the genetic/epigenetic differences between de novo AML and MDS.

Our findings also highlight the possibility of using miR-22-based therapy to treat AML patients. Our proof-of-concept studies demonstrate that the nanoparticles carrying miR-22 oligos significantly inhibit AML progression and prolong survival of leukaemic mice in both BMT and xeno-transplantation models. Notably, miRNA-based nanoparticles have already entered clinical trials56. It would be important, in the future, to further test the combination of miR-22-carrying nanoparticles (or small-molecule compounds that can induce endogenous expression of miR-22) with standard chemotherapy agents (cytosine arabinoside and anthracycline), or with the emerging small molecule inhibitors against MYC and/or CREB pathway effectors, to achieve optimal anti-leukaemia effect with minimal side effects. Overall, our results suggest that restoration of miR-22 expression/function (for example, using miR-22-carrying nanoparticles or small-molecule compounds) holds great therapeutic potential to treat AML, especially those resistant to current therapies.

 

MicroRNAs: A Gene Silencing Mechanism with Therapeutic Implications  

Wed, July 13, 2016   The New York Academy of Sciences    Presented by the Biochemical Pharmacology Discussion Group
http://www.nyas.org/Events/Detail.aspx?cid=787a5d77-8354-4df7-92d5-91db18b2ce49

MicroRNAs (miRNAs) are single-stranded RNAs about 22 nucleotides in length that repress the expression of specific proteins by annealing to complementary sequences in the 3′ untranslated regions (UTRs) of target mRNAs. Apart from their posttranscriptional expression, or silencing, miRNAs may also direct mRNA destabilization and cleavage. Moreover, rather than targeting a single disease-associated protein target as many small molecule drugs and antibodies do, each miRNA may serve to repress the expression of numerous proteins involved in the pathogenesis and progression of various diseases and could therefore potentially interfere with multiple disease-promoting signal transduction pathways. Because aberrant expression of miRNAs has been implicated in numerous disease states, miRNA-based therapies have sparked much interest for the treatment of a variety of diseases. The objective of this symposium is to bring together investigators who have led the field in describing what miRNAs do and their potential in treating diseases, as well as those who are translating these findings into promising drug candidates, some of which have already advanced into early stage clinical trials.

Call for Poster Abstracts

Abstract submissions are invited for a poster session. For complete submission instructions, please send an email to miRNA@nyas.org with the words “Abstract Information” in the subject line. The deadline for abstract submission is May 13, 2016.

Read Full Post »

What`s new in pancreatic cancer research and treatment?

Reporter: Aviva Lev-Ari, PhD, RN

What`s new in pancreatic cancer research and treatment?

Research into the causes, diagnosis, and treatment of pancreatic cancer is under way in many medical centers throughout the world.

Genetics and early detection

Scientists are learning more about some of the changes in DNA that cause cells in the pancreas to become cancerous. Inherited changes in genes such as BRCA2p16, and the genes responsible for hereditary non-polyposis colorectal cancer (HNPCC) can increase a person’s risk of developing pancreatic cancer. Researchers are now looking at how these and other genes may be altered in cases of pancreatic cancer that do not seem to be inherited. They have discovered that pancreatic cancer does not form suddenly. It develops over many years in a series of steps known as pancreatic intraepithelial neoplasia or PanIN. In the early steps, such as PanIN 1, there are changes in a small number of genes, and the duct cells of the pancreas do not look very abnormal. In later steps such as PanIN 2 and PanIN 3, there are abnormalities in several genes and the duct cells look more abnormal.

Researchers are using this information to develop tests for detecting acquired (not inherited) genetic changes in pancreatic cancer pre-cancerous conditions. One of the most common DNA changes in these conditions affects theKRAS oncogene and alters regulation of cell growth. New diagnostic tests are often able to recognize this change in samples of pancreatic juice collected during an ERCP (endoscopic retrograde cholangiopancreatography).

For now, imaging tests like endoscopic ultrasound (EUS), ERCP, and genetic tests for changes in certain genes (such as KRAS) are options for people with a strong family history of pancreatic cancer. But these tests are not recommended for widespread testing of people at average risk who do not have any symptoms.

Treatment

The major focus of much research is on finding better treatments for pancreatic cancer. Improving surgery and radiation therapy are major goals, as is determining the best combination of treatments for people with certain stages of cancer.

Chemotherapy

Many clinical trials are testing new combinations of chemotherapy drugs for exocrine pancreatic cancer. Studies have looked to see if combining gemcitabine with other drugs would help patients live longer. Adding cisplatin, docetaxel, or irinotecan doesn’t seem to be helpful, but adding capecitabine (Xeloda) does seem to help some patients. Also, the combination of gemcitabine, irinotecan, and celecoxib (an arthritis drug) shows promise. Other studies are testing the best ways to combine chemotherapy with radiation therapy or newer targeted therapies.

Targeted therapies

As researchers have learned more about what makes pancreatic cancer cells different from normal cells, they have started to develop newer drugs that should be able exploit these differences by attacking only specific targets. These “targeted therapies” may provide another option for treating pancreatic cancer. They may prove to be useful along with, or instead of, current treatment regimens. In general, they seem to have fewer side effects than traditional chemotherapy drugs. Looking for new targets to attack on cancers is an active area of research.

Growth factor inhibitors: Many types of cancer cells, including pancreatic cancer cells, have certain molecules on their surface that help them to grow. These molecules are called growth factor receptors. One example is epidermal growth factor receptor (EGFR). Several drugs that target EGFR are now being studied. One, known as erlotinib (Tarceva), is already approved for use along with gemcitabine.

Anti-angiogenesis factors: All cancers depend on new blood vessels to nourish their growth. To block the growth of these vessels and thereby starve the tumor, scientists have developed anti-angiogenesis drugs. These are being studied in clinical trials and may be used in patients with pancreatic cancer.

Other targeted therapies: Many drugs targeting other aspects of cancer cells are now being studied for use in pancreatic cancer. For example, drugs that target the action of farnesyl transferase, an enzyme that is thought to stimulate the growth of many cancers, are now being tested. Other drugs, such as sunitinib, have several different targets.

Immune therapy

Immune therapies attempt to boost a person’s immune system or give them ready-made components of an immune system to attack cancer cells. Some studies of these treatments have shown promising results.

One form of immune therapy injects man-made monoclonal antibodies into patients. These immune system proteins are made to home in on a specific molecule, such as carcinoembryonic antigen (CEA), which is sometimes found on the surface of pancreatic cancer cells. Toxins or radioactive atoms can be attached to these antibodies, which bring them directly to the tumor cells. The hope is that they will affect cancer cells while leaving normal cells alone. For use in pancreatic cancer, these types of treatments are available only in clinical trials at this time.

Radiation therapy

Some current studies are looking at different ways to give radiation to treat exocrine pancreas cancer. One study is looking at the effect of intraoperative radiation therapy, in which a single large dose of radiation is given to the pancreas at the time of surgery (in the operating room). Another study is looking at using a special type of radiation called proton beam radiation with chemo.

Individualization of therapy

Some drugs seem to work better if certain types of mutations can be found in the patient’s tumor. For example, erlotinib may work better in patients if their tumors have a particular change in the gene for EGFR. This concept is an area of intense study. There might also be some genetic alterations that affect how well gemcitabine will work in a particular patient. Identifying markers that may predict how well a drug will work before it is given is an important area of research in many types of cancer.

New treatments for pancreatic neuroendocrine cancers

Many pancreatic neuroendocrine tumors have receptors for somatastatin on their cells. These tumors can be treated with octreotide and other drugs like it. A new drug has been developed in which the octreotide has been labeled with radiation. This drug shrunk some tumors and kept others from growing in an early trial. It also helped patients live longer.

Last Medical Review: 01/28/2013
Last Revised: 09/06/2013

SOURCE

http://www.cancer.org/cancer/pancreaticcancer/detailedguide/pancreatic-cancer-new-research

 

Read Full Post »

Personalized Medicine and Colon Cancer

Author: Tilda Barliya, PhD

According to Dr. Neil Risch a leading expert in statistical genetics and the director of the UCSF Institute for Human Genetics,  “Personalized medicine, in which a suite of molecules measured in a patient’s lab tests can inform decisions about preventing or treating diseases, is becoming a reality” (7).

Colorectal cancer (CRC) is the third most common cancer and the fourth-leading cause of cancer death worldwide despite advances in screening, diagnosis, and treatment. Staging is the only prognostic classification used in clinical practice to select patients for adjuvant chemotherapy. However, pathological staging fails to predict recurrence accurately in many patients undergoing curative surgery for localized CRC (1,2). Most of the patients who are not eligible for surgery need adjuvant chemotherapy in order to avoid relapse or to increase survival. Unfortunately, only a small portion of them shows an objective response to chemotherapy, becoming problematic to correctly predict patients’ clinical outcome (3).

CRC patients are normally being tested for several known biomarkers which falls into 4 main categories (5):

  1. Chromosomal Instability (CIN)
  2. Microsatellite Instability (MSI)
  3. CpG Island methylator phynotype (CIMP)
  4. Global DNA hypomethylation

In the past few years many studies have exploited microarray technology to investigate gene expression profiles (GEPs) in CRC, but no established signature has been found that is useful for clinical practice, especially for predicting prognosis.  Only a subset of CRC patients with MSI tumors have been shown to have better prognosis and probably respond differently to adjuvant chemotherapy compared to microsatellite stable (MSS) cancer patients (6).

Pritchard & Grady have summarized the selected biomarkers that have been evaluated in colon cancer patients (10).

Table 1

Selected Biomarkers That Have Been Evaluated in Colorectal Cancer

Biomarker Molecular Lesion Frequency
in CRC
Prediction Prognosis Diagnosis
KRAS Codon 12/13 activating
mutations; rarely codon
61, 117,146
40% Yes Possible
BRAF V600E activating
mutation
10% Probable Probable Lynch
Syndrome
PIK3CA Helical and kinase
domain mutations
20% Possible Possible
PTEN Loss of protein by IHC 30% Possible
Microsatellite Instability (MSI) Defined as >30%
unstable loci in the NCI
consensus panel or
>40% unstable loci in a
panel of mononucleotide
microsatellite repeats9
15% Probable Yes Lynch
Syndrome
Chromosome Instability (CIN) Aneuploidy 70% Probable Yes
18qLOH Deletion of the long arm
of chromosome 18
50% Probable Probable
CpG Island Methylator
Phenotype (CIMP)
Methylation of at least
three loci from a selected
panel of five markers
15% +/− +/−
Vimentin (VIM) Methylation 75% Early
Detection
TGFBR2 Inactivating Mutations 30%
TP53 Mutations Inactivating Mutations 50%
APC Mutations Inactivating Mutations 70% FAP
CTNNB1 (β-Catenin) Activating Mutations 2%
Mismatch Repair Genes Loss of protein by IHC;
methylation; inactivating
mutations
1–15% Lynch
Syndrome

CRC- colorectal cancer; IHC- immunohistochemistry; FAP- Familial Adenomatous Polyposis

Examples for the great need of personalized medicine tailored according to the patients’ genetics is clearly seen with two specific drugs for CRC:  Cetuximab and panitumumab are two antibodies that were developed to treat colon cancer. However, at first it seemed as if they were a failure because they did not work in many patients. Then, it was discovered that if a cancer cell has a specific genetic mutation, known as K-ras, these drugs do not work.  This is an excellent example of using individual tumor genetics to predict whether or not treatment will work (8).

According to Marisa L et al, however, the molecular classification of CC currently used, which is based on a few common DNA markers as mentioned above (MSI, CpG island methylator phenotype [CIMP], chromosomal instability [CIN], and BRAF and KRAS mutations), needs to be refined.

Genetic Expression Profiles (GEP)

CRC is composed of distinct molecular entities that may develop through multiple pathways on the basis of different molecular features, as a consequence, there may be several prognostic signatures for CRC, each corresponding to a different entity. GEP studies have recently identified at least three distinct molecular subtypes of CC (4). Dr. Marisa Laetitia and her colleagues from the Boige’s lab however, have conducted a very thorough study and identifies 6 distinct clusters for CC patients. Herein, we’ll describe the majority of this study and their results.

Study  Design:

Marisa L et al (1) performed a consensus unsupervised analysis (using an Affymertix chip) of the GEP on tumor tissue sample from 750 patients with stage I to IV CC. Patients were staged according to the American Joint Committee on Cancer tumor node metastasis (TNM) staging system. Of the 750 tumor samples of the CIT cohort, 566 fulfilled RNA quality requirements for GEP analysis. The 566 samples were split into a discovery set (n = 443) and a validation set (n = 123).

Several known mutations were used as internal controls, including:

  • The seven most frequent mutations in codons 12 and 13 of KRAS .
  • The BRAF c.1799T>A (p.V600E)
  • TP53mutations (exons 4–9)
  • MSI was analyzed using a panel of five different microsatellite loci from the Bethesda reference panel
  • CIMP status was determined using a panel of five markers (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1)

Results:

The results revealed six clusters of samples based on the most variant probe sets. The consensus matrix showed that C2, C3, C4, and C6 appeared as well-individualized clusters, whereas there was more classification overlap between C1 and C5. In other words:

  • Tumors classified as C1, C5, and C6 were more frequently CIN+, CIMP−TP53 mutant, and distal (p<0.001), without any other molecular or clinicopathological features able to discriminate these three clusters clearly.
  • Tumors classified as C2, C4, and C3 were more frequently CIMP+ (59%, 34%, and 18%, respectively, versus <5% in other clusters) and proximal.
  • C2 was enriched for dMMR (68%) and BRAF- mutant tumors (40%).
  • C3 was enriched for KRAS- mutant tumors (87%).

Note: No association between clusters and TNM stage (histopathology) was found, except enrichment for metastatic (31%) tumors in C4.

Figure: These signaling pathways associated with the molecular subtype (by cluster)

Figure 2 Signaling pathways associated with each molecular subtype.

Marisa L et al. Signaling pathways associated with each molecular subtype

These clusters fall into several signaling pathways:

  • up-regulated immune system and cell growth pathways were found in C2, the subtype enriched for dMMR tumors
  • C4 and C6 both showed down-regulation of cell growth and death pathways and up-regulation of the epithelial–mesenchymal transition/motility pathways. displaying “stem cell phenotype–like” GEPs (91%)
  • Most signaling pathways were down-regulated in C1 and C3.
  • In C1, cell communication and immune pathways were down-regulated.
  • In C5, cell communication, Wnt, and metabolism pathways were up-regulated.

These results are further summarized in table 2:

Figure 3 Summary of the main characteristics of the six subtypes.

Marisa L et al. Gene Expression Classification of Colon Cancer into Molecular Subtypes

The authors have identified six robust molecular subtypes of CC individualized by distinct clinicobiological characteristics (as summarized in table 2).

This classification successfully identified the dMMR tumor subtype, and also individualized five other distinct subtypes among pMMR tumors, including three CIN+ CIMP− subtypes representing slightly more than half of the tumors. As expected, mutation of BRAF was associated with the dMMR subtype, but was also frequent in the C4 CIMP+ poor prognosis subtype. TP53– andKRAS-mutant tumors were found in all the subtypes; nevertheless, the C3 subtype, highly enriched in KRAS-mutant CC, was individualized and validated, suggesting a specific role of this mutation in this particular subgroup of CC.

Current Treatments for colon cancer- Table 3 (11) .

Constant S et al. Colon Cancer: Current Treatments and Preclinical Models for the Discovery and Development of New Therapies

Exploratory analysis of each subtype GEP with previously published supervised signatures and relevant deregulated signaling pathways improved the biological relevance of the classification.

The biological relevance of our subtypes was highlighted by significant differences in prognosis. In our unsupervised hierarchical clustering, patients whose tumors were classified as C4 or C6 had poorer RFS than the other patients.

Prognostic analyses based solely on common DNA alterations can distinguish between risk groups, but are still inadequate, as most CCs are pMMR CIMP− BRAFwt.

The markers BRAF-mutant, CIMP+, and dMMR may be useful for classifying a small proportion of cases, but are uninformative for a large number of patients.

Unfortunately, 5 of the 9 anti-CRC drugs approved by the FDA today are basic cytotoxic chemotherapeutics that attack cancer cells at a very fundamental level (i.e. the cell division machinery) without specific targets, resulting in poor effectiveness and strong side-effects (Table 3) (11).

An example for side effects induction mechanisms have also been reported in CRC for the BRAF(V600E) inhibitor Vemurafenib that triggers paradoxical EGFR activation (12).

Summary:

The authors of this study “report a new classification of CC into six robust molecular subtypes that arise through distinct biological pathways and represent novel prognostic subgroups. Our study clearly demonstrates that these gene signatures reflect the molecular heterogeneity of CC. This classification therefore provides a basis for the rational design of robust prognostic signatures for stage II–III CC and for identifying specific, potentially targetable markers for the different subtypes”.

These results further underline the urgent need to expand the standard therapy options by turning to more focused therapeutic strategies: a targeted therapy-for specific subtype profile.. Accordingly, the expansion and the development of new path of therapy, like drugs specifically targeting the self-renewal of intestinal cancer stem cells – a tumor cell population from which CRC is supposed to relapse, remains relevant.

Therefore, the complexity of these results supports the arrival of a personalized medicine, where a careful profiling of tumors will be useful to stratify patient population in order to test drugs sensitivity and combination with the ultimate goal to make treatments safer and more effective.

References:

1. Marisa L,  de Reyniès A, Alex Duval A,  Selves J, Pierre Gaub M, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M, Kirzin S, Chazal M, Fléjou JF…Boige V. Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value. PLoS Med May 2013 10(5): e1001453. doi:10.1371. http://www.plosmedicine.org/article/info%3Adoi/10.1371/journal.pmed.1001453

2. Villamil BP, Lopez AR, Prieto SH, Campos GL, Calles A, Lopez- Asenjo JA, Sanz Ortega J, Perez CF, Sastre J, Alfonso R, Caldes T, Sanchez FM and Rubio ED. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 2012, 12:260.  http://www.biomedcentral.com/1471-2407/12/260/

3. Diaz-Rubio E, Tabernero J, Gomez-Espana A, Massuti B, Sastre J, Chaves M, Abad A, Carrato A, Queralt B, Reina JJ, et al.: Phase III study of capecitabine plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 2007, 25(27):4224-4230. http://jco.ascopubs.org/content/25/27/4224.long

4. Salazar R, Roepman P, Capella G, Moreno V, Simon I, et al. (2011) Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol 29: 17–24. http://www.ncbi.nlm.nih.gov/pubmed?cmd=Search&doptcmdl=Citation&defaultField=Title%20Word&term=Salazar%5Bauthor%5D%20AND%20Gene%20expression%20signature%20to%20improve%20prognosis%20prediction%20of%20stage%20II%20and%20III%20colorectal%20cancer

5.  By: Global Genome Knowledge. Colorectal Cancer- Personalized Medicine, Now a Clinical Reality.  http://www.srlworld.com/innersense/Voice-135-Colorectal-Cancer-Sept-2012-IS.pdf

6. Popat S, Hubner R and Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005 Jan 20;23(3):609-618. http://www.ncbi.nlm.nih.gov/pubmed/15659508

7. By: Jeffrey Norris. Value of Genomics and Personalized Medicine Is Wrongly Downplayed.http://www.ucsf.edu/news/2012/04/11864/value-genomics-and-personalized-medicine-wrongly-downplayed

8. By: James C Salwitz. The Future is now: Personalized Medicine. http://www.cancer.org/cancer/news/expertvoices/post/2012/04/18/the-future-is-now-personalized-medicine.aspx

9. Jeffrey A. Meyerhardt., and Robert J. Mayer. Systemic Therapy for Colorectal Cancer. N Engl J Med 2005;352:476-487. http://www.med.upenn.edu/gastro/documents/NEJMchemotherapycolorectalcancer.pdf

10. Pritchard CC and Grady WM. Colorectal Cancer Molecular Biology Moves Into Clinical Practice. Gut. Jan 2011 60(1): 116-129.  Gut. 2011 January; 60(1): 116–129http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006043/

11. Constant S, Huang S, Wiszniewski L andMas C. Colon Cancer: Current Treatments and Preclinical Models for the Discovery and Development of New Therapies.  Pharmacology, Toxicology and Pharmaceutical Science » “Drug Discovery”, book edited by Hany A. El-Shemy, ISBN 978-953-51-0906-8.  http://www.intechopen.com/books/drug-discovery/colon-cancer-current-treatments-and-preclinical-models-for-the-discovery-and-development-of-new-ther

12. Prahallad, C. Sun, S. Huang, F. Di Nicolantonio, R. Salazar, D. Zecchin, R. L. Beijersbergen, A. Bardelli, R. Bernards, 2012 Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature Jan 2012 483 (7387): 100-103. http://www.nature.com/nature/journal/v483/n7387/full/nature10868.html

Other related articles on this Open Access Online Scientific Journal include the following:

*. By Tilda Barliya PhD. Colon Cancer. http://pharmaceuticalintelligence.com/2013/04/30/colon-cancer/

**. By: Tilda Barliya PhD. CD47: Target Therapy for Cancer. http://pharmaceuticalintelligence.com/2013/05/07/cd47-target-therapy-for-cancer/

I. By: Aviva Lev-Ari, PhD, RNCancer Genomic Precision Therapy: Digitized Tumor’s Genome (WGSA) Compared with Genome-native Germ Line: Flash-frozen specimen and Formalin-fixed paraffin-embedded Specimen Needed. http://pharmaceuticalintelligence.com/2013/04/21/cancer-genomic-precision-therapy-digitized-tumors-genome-wgsa-compared-with-genome-native-germ-line-flash-frozen-specimen-and-formalin-fixed-paraffin-embedded-specimen-needed/

II. By: Aviva Lev-Ari, PhD, RN. Critical Gene in Calcium Reabsorption: Variants in the KCNJ and SLC12A1 genes – Calcium Intake and Cancer Protection. http://pharmaceuticalintelligence.com/2013/04/12/critical-gene-in-calcium-reabsorption-variants-in-the-kcnj-and-slc12a1-genes-calcium-intake-and-cancer-protection/

III.  By: Stephen J. Williams, Ph.DIssues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. http://pharmaceuticalintelligence.com/2013/04/10/issues-in-personalized-medicine-in-cancer-intratumor-heterogeneity-and-branched-evolution-revealed-by-multiregion-sequencing/

IV. By: Ritu Saxena, Ph.DIn Focus: Targeting of Cancer Stem Cells. http://pharmaceuticalintelligence.com/2013/03/27/in-focus-targeting-of-cancer-stem-cells/

V.  By: Ziv Raviv PhD. Cancer Screening at Sourasky Medical Center Cancer Prevention Center in Tel-Aviv. http://pharmaceuticalintelligence.com/2013/03/25/tel-aviv-sourasky-medical-center-cancer-prevention-center-excellent-example-for-adopting-prevention-of-cancer-as-a-mean-of-fighting-it/

VI. By: Ritu Saxena, PhD. In Focus: Identity of Cancer Stem Cells. http://pharmaceuticalintelligence.com/2013/03/22/in-focus-identity-of-cancer-stem-cells/

VII. By: Dror Nir, PhD. State of the art in oncologic imaging of Colorectal cancers. http://pharmaceuticalintelligence.com/2013/02/02/state-of-the-art-in-oncologic-imaging-of-colorectal-cancers/

Read Full Post »

Colon Cancer

Author/Editor: Tilda Barliya PhD

Screen Shot 2021-07-19 at 7.29.03 PM

Word Cloud By Danielle Smolyar

Colorectal cancer is the third most common type of cancer diagnosed in the United States and is the third most common cause of cancer-related death. The majority of cases are sporadic, with hereditary colon cancer contributing up to 15% of all colon cancer diagnoses. Treatment consists of surgery for early-stage disease and the combination of surgery and adjuvant chemotherapy for advanced-stage disease. Management of metastatic disease has evolved from primary chemotherapeutic treatment to include resection of single liver and lung metastases in addition to resection of the primary disease and chemotherapy (1-4).

Courtesy WebMD site

In the United States, colorectal cancer (CRC) is the third most common type of cancer diagnosed and the third most common cause of cancer-related death in men and women. In 2010, an estimated 102,900 new cases of colon cancer were diagnosed (49,470 male, 53,430 female) and 51,370 patients (26,580 male, 24,790 female) died from CRC. The death rate from colon cancer decreased over the preceding decade, from 30.77 per 100,000 people to 20.5 per 100,000 people. The lifetime risk of developing colon cancer in industrialized nations is 5% and is stable or decreasing. In contrast, the incidence in developing countries continues to rise, hypothesized to be due to increased exposure to risk factors. It has been estimated that 1.5 million people in the United States will be living with CRC by 2020.The financial burden of caring for this population is significant: $4.5 to $9.6 billion per year.

Colon Cancer is divided into 5 types:

  1. Sporadic: 60-85%
  2. Familial: 10-30%
  3. Hereditary non-Polyposis Colon Cancer (HNPCC): 5%
  4. Familial Adenomatous Polyposis (FAP): 1%
  5. Autosomal Dominant Inheritance

The molecular defects are of two types:

  • alterations that lead to novel or increased function of oncogenes
  • alterations that lead to loss of function of tumor-suppressor genes (TSGs)

Multiple genes are associated with the initiation and progression of the different syndromes of colon cancer and are summarized by Fearon ER in Table 1 (6):

Table 1  Genetics of inherited colorectal tumor syndromesa
Syndrome Common features Gene defect(s)
FAP Multiple adenomatous polyps (>100) and carcinomas of the colon and rectum; duodenal polyps and carcinomas; fundic gland polyps in the stomach; congenital hypertrophy of retinal pigment epithelium APC (>90%)
Gardner syndrome Same as FAP; also, desmoid tumors and mandibular osteomas APC
Turcot’s syndrome Polyposis and colorectal cancer with brain tumors (medulloblastomas); colorectal cancer and brain tumors (glioblastoma) APC
MLH1PMS2
Attenuated adenomatous polyposis coli Fewer than 100 polyps, although marked variation in polyp number (from 5 to >1,000 polyps) observed in mutation carriers within a single family APC(predominantly 5′ mutations)
Hereditary nonpolyposis colorectal cancer Colorectal cancer without extensive polyposis; other cancers include endometrial, ovarian and stomach cancer, and occasionally urothelial, hepatobiliary, and brain tumors MSH2
MLH1
PMS2
GTBPMSH6
Peutz-Jeghers syndrome Hamartomatous polyps throughout the GI tract; mucocutaneous pigmentation; increased risk of GI and non-GI cancers LKB1STK11(30–70%)
Cowden disease Multiple hamartomas involving breast, thyroid, skin, central nervous system, and GI tract; increased risk of breast, uterus, and thyroid cancers; risk of GI cancer unclear PTEN (85%)
Juvenile polyposis syndrome Multiple hamartomatous/juvenile polyps with predominance in colon and stomach; variable increase in colorectal and stomach cancer risk; facial changes DPC4 (15%)
BMPR1a(25%)
PTEN (5%)
MYH-associated polyposis Multiple adenomatous GI polyps, autosomal recessive basis; colon polyps often have somatic KRAS mutations MYH

aAbbreviations: FAP, familial adenomatous polyposis; GI, gastrointestinal.

Essentially all of the genes discussed above are conclusively implicated in subsets of CRC due to specific somatic defects that either activate or inactivate gene and protein function. It is hypothesized that essentially any gene with dysregulated expression in CRC—either increased or decreased expression—may have a functionally significant role as an oncogene or a TSG, respectively. The aggregate data on the mutations and function of any given gene must be carefully evaluated to establish whether the gene truly contributes to CRC pathogenesis and whether it should be designated as an oncogene or a TSG (5,6).

The first proposed genetic model of CRC assumed that most CRCs arise from preexisting adenomatous lesions and that the accumulation of multiple gene defects is required for CRCs.

Benign GI tumors are a varied group, but localized lesions that project above the surrounding mucosa are commonly termed polyps. In humans, most colorectal polyps, particularly small polyps less than 5 mm in size, are hyperplastic (6). Most data indicate that hyperplastic polyps are not a major precursor to CRC; rather, the adenomatous polyp, or adenoma, is probably the important precursor lesion (7).

” Adenomas arise from glandular epithelium and are characterized by dysplastic morphology and altered differentiation of the epithelial cells in the lesion. The prevalence of adenomas in the United States is approximately 25% by age 50 and approximately 50% by age 70 (8)”. Only a fraction of adenomas progress to cancer, and progression probably occurs over years to decades. Individuals affected by syndromes that strongly predispose to adenomas, such as FAP, invariably develop CRCs by the third to fifth decade of life if their colons are not removed”.

A more recent and modified version of the genetic model postulate that each gene defect described in the model occurs at high frequency only at particular stages of tumor development. This observation is the basis for assigning a relative order to the defects in a multistep pathway.

Colon Cancer and clinical Trails:

Mutations in the KRAS proto-oncogene are found in 40-45% of patients with CRC and occur mainly in exon 2 (codon 12 and 13) and to a lesser extent in exon 3 (codon 61) and exon 4 (codon 146). A number of studies have evaluated a potential prognostic role of KRAS  in clinical practice for the treatment of colorectal cancer. However, clinical study design, reproducibility, interpretation and reporting of the clinical data remain important challenges.

Laurent-Puig’s group was the first to show the negative predictive value of KRAS mutations for response to the EGFR monoclonal antibody (mAb) cetuximab (11, 12, 13). Ever since then, a number of large phase II-III randomized studies have confirmed the negative predictive value of KRAS mutations for response to cetuximab and panitumumab treatment.

The role of KRAS mutations in predicting response to other therapies remains unclear. A subset analysis of patients treated in the phase III study of bevacizumab plus IFL (irinotecan, bolus 5-FU, and folinic acid) versus IFL showed that the clinical benefit of bevacizumab is independent of KRAS mutational status (11, 14).

The KRAS biomarker story is unique in several ways. It represents the first biomarker integrated into clinical practice in CRC“.

The high prevalence of KRAS mutations in CRC and its strong negative predictive value for EGFR mAb therapies, has led to its rapid acceptance as a valuable biomarker. The EMEA, FDA and ASCO47 now recommend that all patients with metastatic CRC who are candidates for anti-EGFR mAb therapy should be tested for KRAS mutations and, if a KRAS mutation in codon 12 or 13 is detected, then patients should not receive anti-EGFR antibody therapy.

More so, Data from the PETACC-3 trial, presented at ASCO 2010, have shown that KRAS and BRAF mutant CRC tumors induce different gene-expression profiles, further reiterating that these tumors have a distinct underlying biology. Despite intensive progress in the field of genomic research, none of these genomic markers are used routinely in clinical trials.  Only, nowadays, trials are starting to use specific gene-pathway” target in CRC clinical trials.

Samuel Constant et al. Colon Cancer: Current Treatments and Preclinical Models for the Discovery and Development of New Therapies

Summary:

Early studies are underway to understand the role of DNA methylation, chromatin modification, changes in the patterns of mRNA and noncoding RNA expression, and changes in protein expression and posttranslational modification. However,  we do not yet have an indepth and comprehensive understanding of the pathogenesis of the biologically and clinically distinct subsets of CRC. Careful design of clinical trials end points and validation of the genes as potential prognostic markers will allow a better outcome for these patients.

Ref:

1. Sarah Popek, MD, and Vassiliki Liana Tsikitis, MD. Colorectal Cancer: A Review. OncLive  November 10, 2011. http://www.onclive.com/publications/contemporary-oncology/2011/fall-2011/Colorectal-Cancer-A-Review

x. Martin Hefti.,  H.Maximilian Mehdorn., Ina Albert and Lutz Dörner. Fluorescence-Guided Surgery for Malignant Glioma: A Review on Aminolevulinic Acid Induced Protoporphyrin IX Photodynamic Diagnostic in Brain Tumors.  Current Medical Imaging Reviews, 2010, 6, 1-5. http://www.hirslanden.ch/content/global/en/startseite/gesundheit_medizin/mediathek_bibliothek/fachartikel/verschiedenes/fluorescence_guidedsurgeryformalignantglioma/_jcr_content/download/file.res/FluorescenceGuidedSurgeryforMalignantGlioma.pdf

2. Oguz Akin, Sandra B. Brennan., D. David Dershaw., Michelle S. Ginsberg., Marc J. Gollub., Heiko Sch€oder., David M. Panicek, and Hedvig Hricak. Advances in Oncologic Imaging: Update on 5 Common Cancers. CA CANCER J CLIN 2012;62:364–393. http://onlinelibrary.wiley.com/doi/10.3322/caac.21156/pdf

3. O’Donnell, Kevin et al. Nanoparticulate systems for oral drug delivery to the colon. International Journal of Nanotechnology, 2010, 8, 1/2, 4-20. “Colonic Navigation: Nanotechnology Helps Deliver Drugs to Intestinal Target”. http://www.sciencedaily.com/releases/2010/11/101104154553.htm

4. Perumal V. Molecular Therapy and Nanocarrier Based Drug Delivery to Colon Cancer: Targeted Molecular Therapy (AEE788 and Celecoxib) and Drug Delivery (Celecoxib) To Colon Cancer. http://www.amazon.com/Molecular-Therapy-Nanocarrier-Delivery-Cancer/dp/3659162558

5. Xiaoyun Liao, Paul Lochhead, Reiko Nishihara, Teppei Morikawa, Aya Kuchiba, Mai Yamauchi, Yu Imamura, Zhi Rong Qian, Yoshifumi Baba, Kaori Shima, Ruifang Sun, Katsuhiko Nosho, Jeffrey A. Meyerhardt, Edward Giovannucci, Charles S. Fuchs, Andrew T. Chan, Shuji Ogino. Aspirin Use, TumorPIK3CAMutation, and Colorectal-Cancer Survival. New England Journal of Medicine, 2012; 367 (17): 1596 DOI:10.1056/NEJMoa1207756http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532946/

Gene Mutation Identifies Colorectal Cancer Patients Who Live Longer With Aspirin Therapy. http://www.sciencedaily.com/releases/2012/10/121024175357.htm

6. Fearon ER. Molecular Genetics of Colorectal Cancer. Annual Review of Pathology: Mechanisms of Disease 2011; 6: 479-507.http://www.annualreviews.org/doi/pdf/10.1146/annurev-pathol-011110-130235

7.  Jass JR. 2007. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Hisopathology 50:113–130. http://www.amedeoprize.com/ap/pdf/histopathology.pdf

8.  Rex DK, Lehman GA, Ulbright TM, Smith JJ, Pound DC, et al.  Colonic neoplasia in asymptomatic persons with negative fecal occult blood tests: influence of age, gender, and family history. Am. J. Gastroenterol 1993. 88:825–831.http://www.ncbi.nlm.nih.gov/pubmed/8503374

9. Kerber RA, Neklason DW, Samowitz WS, Burt RW. Frequency of familial colon cancer and hereditary nonpolyposis colorectal cancer (Lynch syndrome) in a large population database. Fam. Cancer 2005; 4:239–44. http://www.ncbi.nlm.nih.gov/pubmed/16136384

10. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996: 87:159–170. http://users.ugent.be/~fspelema/les%204-5%20HMG/kinzler%20clon.pdf

11. Sandra Van Schaeybroeck, Wendy L. Allen, Richard C. Turkington & Patrick G. Johnston. Implementing prognostic and predictive biomarkers in CRC clinical trials.(colorectal cancer)(Clinical report). Nature Reviews Clinical Oncology 2011: 8; 222-232. http://www.nature.com/nrclinonc/journal/v8/n4/abs/nrclinonc.2011.15.html

12. Lievre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66 2006: 3992-3995. http://hwmaint.cancerres.aacrjournals.org/cgi/content/full/66/8/3992

13. Lievre, A. et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 2008: 26, 374-379. http://jco.ascopubs.org/content/26/3/374.full.pdf

14. Hurwitz, H. I., Yi, J., Ince, W., Novotny, W. F. & Rosen, O. The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist  2009: 14, 22-28. http://theoncologist.alphamedpress.org/content/14/1/22.full

Other related articles on this Open Access Online Scientific Journal include the following:

I. By: Aviva Lev-Ari, PhD, RNCancer Genomic Precision Therapy: Digitized Tumor’s Genome (WGSA) Compared with Genome-native Germ Line: Flash-frozen specimen and Formalin-fixed paraffin-embedded Specimen Needed. http://pharmaceuticalintelligence.com/2013/04/21/cancer-genomic-precision-therapy-digitized-tumors-genome-wgsa-compared-with-genome-native-germ-line-flash-frozen-specimen-and-formalin-fixed-paraffin-embedded-specimen-needed/

II. By: Aviva Lev-Ari, PhD, RN. Critical Gene in Calcium Reabsorption: Variants in the KCNJ and SLC12A1 genes – Calcium Intake and Cancer Protection. http://pharmaceuticalintelligence.com/2013/04/12/critical-gene-in-calcium-reabsorption-variants-in-the-kcnj-and-slc12a1-genes-calcium-intake-and-cancer-protection/

III.  By: Stephen J. Williams, Ph.DIssues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. http://pharmaceuticalintelligence.com/2013/04/10/issues-in-personalized-medicine-in-cancer-intratumor-heterogeneity-and-branched-evolution-revealed-by-multiregion-sequencing/

IV. By: Ritu Saxena, Ph.DIn Focus: Targeting of Cancer Stem Cells. http://pharmaceuticalintelligence.com/2013/03/27/in-focus-targeting-of-cancer-stem-cells/

V.  By: Ziv Raviv PhD. Cancer Screening at Sourasky Medical Center Cancer Prevention Center in Tel-Aviv. http://pharmaceuticalintelligence.com/2013/03/25/tel-aviv-sourasky-medical-center-cancer-prevention-center-excellent-example-for-adopting-prevention-of-cancer-as-a-mean-of-fighting-it/

VI. By: Ritu Saxena, PhD. In Focus: Identity of Cancer Stem Cells. http://pharmaceuticalintelligence.com/2013/03/22/in-focus-identity-of-cancer-stem-cells/

VII. By: Dror Nir, PhD. State of the art in oncologic imaging of Colorectal cancers. http://pharmaceuticalintelligence.com/2013/02/02/state-of-the-art-in-oncologic-imaging-of-colorectal-cancers/

Other posts by the group: Please see http://pharmaceuticalintelligence.com/?s=colon+cancer

Read Full Post »

Personalized Medicine in NSCLC

Reviewer: Larry H Bernstein, MD, FCAP

Introduction

Early in the 21st century, gefitinib, an epi­dermal growth factor receptor (EGFRtyrosine kinase inhibitor became available  for the treatment of non-small cell lung can­cer (NSCLC). Over 80% of selected patients

  • EGFR mutation-positive patients, respond to gefitinib treatment;
  • most patients develop acquired resistance to gefitinib within a few years.
Recently, many studies have been performed to determine precisely how to select patients who will respond to gefitinib, the best timing for its administration, and how to avoid the development of acquired resistance as well as adverse drug effects.
Lung cancers are classified according to their his­tological type. Because each variant has different bio­logical and clinical properties, including response to treatment, a precise classification is essential to pro­vide appropriate therapy for individual patients. Lung cancer consists of two broad categories—non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).

NSCLC  – 20%–40% RR to chemotherapy

  • ade­nocarcinoma (AC),  40%–50% ( most common form)
    • higher sensitivity to chemotherapy than SCC or LC
  • squamous cell carcinoma (SCC),  ∼30%
  •  large cell carcinoma (LCC). 10%
The majority of patients with SCLC are diagnosed with
  • advanced cancer with distant metastasis
  • high sensitivity to chemotherapy.
  • response rate (RR) for SCLC is reportedly 60%–80%
  • complete remission is observed in only 15%–20% of patients
The Potential of Personalized Medicine in Advanced NSCLC
Personalized medicine—
  • matching a patient’s unique molecular profile with an appropriate targeted therapy—
  • is transforming the diagnosis and treatment of non–small-cell lung cancer (NSCLC).

Through molecular diagnostics, tumor cells may be differentiated based on the presence or absence of

  • receptor proteins,
  • driver mutations, or
  • oncogenic fusion/rearrangements.

The convergence of advancing research in drug development and genetic sequencing has permitted the development of therapies specifically targeted to certain biomarkers, which may offer a differential clinical benefit.

Putting personalized medicine in NSCLC into practice
With the data on the prognostic and predictive biomarkers EGFR and ALK, biomarker testing is increasingly important in therapy decisions in NSCLC.1,2
Biomarker Testing in Advanced NSCLC: Evolution in Pathology Clinical Practice
http://www.medscape.com/infosite/letstest/article-3
Multidisciplinary Approaches in the Changing Landscape of Advanced NSCLC
http://www.medscape.com/infosite/letstest/article-4
Oncology Perspectives on Biomarker Testing
http://www.medscape.com/infosite/letstest/article-1

References
1. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology™: Non-Small Cell Lung Cancer. Version 2.2012.
http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf.                   August 6, 2012.
2. Gazdar AF. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy. Cancer Metastasis Rev. 2010;29(1):37-48.

Over the last decade, a growing number of biomarkers have been identified in NSCLC.3,4 To date, 2 of these molecular markers have been shown to have both prognostic and predictive value in patients with advanced NSCLC: epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements.5-8 Testing for these biomarkers may provide physicians with more information on which to base treatment decisions, and reflex testing may permit consideration of appropriate therapy from the outset of treatment.2,9,10

References:
Lovly CM, Carbone DP. Lung cancer in 2010: one size does not fit all. Nat Rev Clin Oncol. 2011;8(2):68-70.
Dacic S. Molecular diagnostics of lung carcinomas. Arch Pathol Lab Med. 2011;135(5):622-629.
Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367-1380.
Quest Diagnostics. Lung Cancer Mutation Panel (EGFR, KRAS, ALK).                       Sept 17, 2012
http://questdiagnostics.com/hcp/intguide/jsp/showintguidepage.jsp?fn=Lung/TS_LungCancerMutation_Panel.htm.

Rosell R, Gervais R, Vergnenegre A, et al. Erlotinib versus chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC) patients (p) with epidermal growth factor receptor (EGFR) mutations: interim results of the European Erlotinib Versus Chemotherapy (EURTAC) phase III randomized trial. Presented at: 2011 American Society of Clinical Oncology (ASCO) Annual Meeting, J Clin Oncol. 2011;29(suppl). Abstract 7503.                        Aug 6, 2012.                    http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=102&abstractID=78285.
Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947-957.
Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N Engl J Med. 2010;363(18):1693-1703.
National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology™: Non-Small Cell Lung Cancer. Version 2.2012.
http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf.                        Aug 6, 2012
College of American Pathologists (CAP)/International Association for the Study of Lung Cancer (IASLC)/Association for Molecular Pathology (AMP) expert panel. Lung cancer biomarkers guideline draft recommendations. http://capstaging.cap.org/apps/docs/membership/transformation/new/lung_public_comment_supporting_materials.pdf.      Aug 6, 2012.
Gazdar AF. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy. Cancer Metastasis Rev. 2010;29(1):37-48.

 Background Studies
In 2002, gefitinib (ZD1839; AstraZeneca) , the first epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, became available as an innovative molecular-targeted drug for the treatment of unresectable NSCLC. Initially, many NSCLC patients were expected to respond to gefitinib because many solid tumors, including NSCLC, are known to overexpress EGFR, which has a role in tumor pro­liferation and is used as a biomarker to predict poor prognosis. Gefitinib was shown to have a dra­matic effect on a limited number of patients; but  it was ineffective in 70%–80% of patients with NSCLC. There have been reports of death caused by interstitial pneumonia (IP), one of the critical adverse drug reactions (ADRs) associated with gefitinib use. Therefore, there is a need for  predicting the effects of gefitinib, and criteria for select­ing patients who could be treated with gefitinib.
 In 2004, Lynch et al. and Paez et al. each pub­lished, on the same day, sensational reports in the New England Journal of Medicine and Science, identifying somatic mutations in the tyrosine kinase domain of the EGFR gene in patients with gefitinib-sensitive lung cancer, as compared with none of the patients who had no response. Therefore, screening for EGFR mutations in lung cancer showed potential for identifying patients who would respond to gefi­tinib therapy. It then was found that patients with EGFR mutations in the area of the gene cod­ing for the ATP-binding pocket of the tyrosine kinase domain responded to gefitinib. Consequently, the EGFR genotyping has been used to select patients who will respond to gefitinib. Other genetic mutations have also been reported as indicators of the response or resistance to gefitinib; for example, mutations of the KRAS gene are associated with primary resistance to gefitinib. Thus, screening of EGFR and KRAS is used to
  • predict the effects of gefi­tinib and
  • to select patients who will respond to gefitinib in the clinical setting.
Until now, the effects of gefitinib have been predicted only by genotyping factors, such as EGFR and KRAS mutations. However, Nakamura et al showed a relationship between the blood concentration of gefitinib and its clinical effects. In their study of 23 NSCLC patients with EGFR mutations, the ratio of the gefitinib concentration on day 8 to that on day 3 after the first administration of gefitinib (C8/C3) correlated with the progression-free survival (PFS) period. Patients with a higher C8/C3 ratio had a significantly lon­ger PFS (P = 0.0158, 95% confidence interval [CI]: 0.237–0.862), which  suggests the importance of the PK of gefitinib on its clinical outcome.   Chmielecki et al. concurrently reported that maintain­ing a high concentration of erlotinib, another EGFR tyrosine kinase inhibitor (EGFR-TKIs) with the same mechanism of action as gefitinib, could
  1. delay the establishment of drug-resistant tumor cells and
  2. decrease the proliferation rate of drug-resistant cells compared to
    • treatment using a lower concentration of erlotinib.
Pharmacogenetic profile
Initially, gefitinib was expected to induce a response in patients with tumors that overexpressed EGFR because it exerts its antineoplastic effects by com­petitively inhibiting the binding of ATP to the ATP-binding site of EGFR.  A number of studies contradict this hypothesis:
(1) while approxi­mately 40%–80% of NSCLC overexpress EGFR, only 10%–20% of NSCLC patients respond to gefi­tinib;5,6 and
(2) while EGFR overexpression is known to be more common in SCC than AC, gefitinib shows a higher antineoplastic effect on AC than on SCC, while other reports indicated no correlation between the expression levels of EGFR and clinical outcomes.
In 2004, somatic mutations were identified in the EGFR tyrosine kinase domain of patients with gefitinib-responsive lung cancer, as compared with no mutations in patients exhibiting no response, and the presence of an EGFR mutation was highly correlated with a good response to gefitinib.The conformational change of the EGFR ATP-binding site caused by genetic mutations constitutively acti­vates the EGFR downstream signaling pathway and increases the malignancy of cancer. Conversely, the conformational change of the ATP-binding site can also increase its affinity for gefitinib; therefore, gefi­tinib can inhibit the downstream signaling pathway more easily, strongly induces apoptosis, and reduces the proliferation of cancer cells.
Mutations in exons 18–21 of EGFR are predictive factors for the clinical efficacy of gefitinib;
  • deletions in exon 19 and missense mutations in exon 21 account for ∼90% of these mutations.

The detection of EGFR muta­tions in exons 19 and 21 is considered to be essential to predict the clinical efficacy of gefitinib.
Acquired resistance
All responders eventually develop resistance to gefitinib but in 2005, an EGFR mutation in exon 20, which substitutes methionine for threonine at amino acid position 790 (T790M), was reported to be one of the main causes of acquired resistance to gefitinib. The EGFR T790M vari­ant

  1. changes the structural conformation of the ATP-binding site, thereby
  2. increasing the affinity of ATP to EGFR, while
  3. the affinity of gefitinib to ATP is unchanged.

Screening methods for EGFR and KRAS mutations
The detection of EGFR and KRAS mutations has been usually achieved by sequencing DNA amplified from tumor tissues; however, sequencing techniques are too complex, time-consuming, and expensive.  The selection of an appropri­ate method to detect EGFR and KRAS mutations is essential to make an exact prediction of the efficacy of gefitinib in individual patients. Advances in diagnostics and treatments for NSCLC have led to better outcomes and higher standards of what outcomes are expected. These new understandings and treatments have raised multiple new questions and issues with regard to the decisions on the appropriate treatment of NSCLC patients.

  • Biomarkers are increasingly recognized and applied for guidance in diagnosis, prognosis and treatment decisions and evaluation.
  • Biologics and newer cancer treatments are enabling the possibility for new combined treatment modalities in earlier stage disease
  • Maintenance therapy has been shown to be useful, but optimal therapy choices before and after maintenance therapy need clarification
  • The importance of performance status on treatment decisions
  • Comparative effectiveness is becoming an expectation across all treatments and diseases, and will prove difficult to accomplish within the complexity of cancer diseases
NCCN Molecular Testing White Paper: Effectiveness, Efficiency, and Reimbursement
PF Engstrom, MG Bloom,GD Demetri, PG Febbo, et al.
Personalized medicine in oncology is maturing and evolving rapidly, and the use of molecular biomarkers in clinical decisionmaking is growing. This raises important issues regarding the safe, effective, and efficient deployment of molecular tests to guide appropriate care, specifically regarding laboratory-developed tests and companion diagnostics. In May 2011, NCCN assembled a work group composed of thought leaders from NCCN Member Institutions and other organizations to identify challenges and provide guidance regarding molecular testing in oncology and its corresponding utility. The NCCN Molecular Testing Work Group identified
challenges surrounding molecular testing, including health care provider knowledge, determining clinical utility, coding and billing for molecular tests, maintaining clinical and analytic validity of molecular tests, efficient use of specimens, and building clinical evidence. (JNCCN 2011;9[Suppl 6]:S1–S16)
Executive Summary
The FDA recently announced plans for oversight of laboratory-developed tests (LDTs) and released draft guidance regarding the development of companion diagnostics concurrently with therapeutics, both areas over which the FDA has regulatory authority. As recognized by the FDA, these types of diagnostic tests are used increasingly to directly inform treatment decisions, and this especially impacts patients with cancer and their oncologists. However, because of the increasing complexity of some LDTs and increasing commercial interest in oncology-related LDTs in general, the FDA is considering whether its policy of exercising “enforcement discretion”

for LDTs is still appropriate. To provide guidance regarding challenges of molecular testing to health care providers and other stakeholders, NCCN assembled a work group composed of thought leaders from NCCN Member Institutions and other organizations external to NCCN.  The NCCN Molecular Testing Work Group agreed to define molecular testing in oncology as

  • procedures designed to detect somatic or germline mutations in DNA and
  • changes in gene or protein expression that could impact the
    • diagnosis,
    • prognosis,
    • prediction, and
    • evaluation of therapy of patients with cancer.
Therefore, the discussion focused on molecular tests that predict outcomes for therapy.
Realizing the importance of personalized medicine in advanced NSCLC
E Topol, B Buehler, GS Ginsburg.       Medscape Molec Medicine
With the data on the prognostic and predictive biomarkers EGFR and ALK, biomarker testing is increasingly important in therapy decisions in NSCLC
http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf/
Lung Cancer in the Never Smoker Population: An Expert Interview With Dr. Nasser Hanna

Lung cancer in the never smoker population is a distinct disease entity with specific molecular changes, offering the potential for targeted therapy.
Experts And Viewpoint, Medscape Hematology-Oncology, December 2007

An Update on New and Emerging Therapies for NSCLC
Simon L. Ekman, MD, PhD; Fred R. Hirsch, MD, PhD
On completion of these readings participants will be thoroughly familiar with these issues:
  1. The influence of histologic types and genetic and molecular markers on choosing and personalizing therapy in patients with advanced NSCLC
  2. The role of the pathologist in properly classifying subtypes of NSCLC and reporting the presence of molecular markers in tumor samples
  3. Familiarize themselves with effective methods of obtaining adequate tissue samples from patients and recognize the importance of accurate pathologic assessment of NSCLC
The rapid developments in molecular biology have opened up new possibilities for individualized treatment of non-small cell lung cancer (NSCLC), and, in recent years, has mainly focused on the epidermal growth factor receptor (EGFR). A greater understanding of the molecular mechanisms behind
  • tumorigenesis and
  • the identification of new therapeutic targets
    • have sparked the development of novel agents
    • intended to improve the standard chemotherapy regimens for NSCLC.
Along with the advent of targeted therapy, identifying biomarkers to predict the subset of patients more likely to benefit from a specific targeted intervention has become increasingly important.
EGFR TYROSINE KINASE INHIBITORS 
tumor-associated mutations in the tyrosine kinase domain of EGFR have been associated with response to EGFR TKIs
The most common EGFR-sensitizing mutations encompass deletions in exon 19 and a point mutation at L858R in exon 21; together,
  • they account for approximately 85% of EGFR mutations in NSCLC.
  • Other EGFR mutations have been detected, particularly in exon 20.
    •  mutations identified in exon 20 have been linked to resistance to EGFR TKIsNon-Small Cell Lung Cancer: Biologic and Therapeutic Considerations for Personalized Management
      Taofeek K. Owonikoko, MD, PhD
What is the role and application of molecular profiling in the management of NSCLC?
It is essential to:
  1. Identify advances in the understanding of molecular biology and histologic profiling in the treatment of NSCLC
  2. Summarize clinical data supporting the use of tumor biomarkers as predictors of therapeutic efficacy of targeted agents in NSCLC
  3. Devise an individualized treatment plan for patients with advanced NSCLC based on a tumor’s molecular profile
  4. Identify methods for overcoming barriers to effective incorporation of molecular profiling for the management of NSCLC into clinical practice
Non-small cell lung cancer (NSCLC),the most common type of lung cancer, usually grows and spreads more slowly than small cell lung cancer.
The three common forms of NSCLC are:
  1. Adenocarcinomas are often found in an outer area of the lung.
  2. Squamous cell carcinomas are usually found in the center of the lung next to an air tube (bronchus).
  3. Large cell carcinomas occur in any part of the lung and tend to grow and spread faster than the other two types
Smoking causes most cases of lung cancer. The risk depends on the number of cigarettes you smoke every day and for how long you have smoked. Some people who do not smoke and have never smoked develop lung cancer.
Working with or near the following cancer-causing chemicals or materials can also increase your risk:
  • Asbestos
  • Chemicals such as uranium, beryllium, vinyl chloride, nickel chromates, coal products, mustard gas, chloromethyl ethers, gasoline, and diesel exhaust
  • Certain alloys, paints, pigments, and preservatives
  • Products using chloride and formaldehyde
Non-small cell lung c

ancer
(NSCLC) accounts for
  • approximately 85% of all lung cancers.
Lung cancer  may produce no symptoms until the disease is well advanced, so early recognition of symptoms may be beneficial to outcome.
At initial diagnosis,
  • 20% of patients have localized disease,
  • 25% of patients have regional metastasis, and
  • 55% of patients have distant spread of disease.
Revisiting Doublet Maintenance Chemo in Advanced NSCLC 
H. Jack West, MD
  • Pemetrexed Versus Pemetrexed and Carboplatin as Second-Line Chemotherapy In Advanced Non-Small-Cell Lung Cancer
Ardizzoni A, Tiseo M, Boni L, et al
J Clin Oncol. 2102;30:4501-4507
Historically, our second-line therapy has evolved into a strategy of pursuing single-agent therapies for patients with advanced non-small cell lung cancer (NSCLC) who have received prior chemotherapy. This approach was developed on the basis of benefits conferred by such established treatments as docetaxel, pemetrexed, and erlotinib — each well-tested as single agents — and evidence indicating a survival benefit in previously treated patients.
A study out of Italy by Ardizzoni and colleagues published in the Journal of Clinical Oncology directly compares carboplatin/pemetrexed with pemetrexed alone, and
  • it provides more evidence that our current approach of sequential singlet therapy remains appropriate.
This randomized phase 2 trial enrolled 239 patients with advanced NSCLC, initially of any histology, then later amended (September 2008) to enroll
  • only patients with non-squamous NSCLC because of mounting evidence that pemetrexed is not active in patients with the squamous subtype of advanced NSCLC.
Patients must have received prior chemotherapy (without restriction on regimen except that it could not include pemetrexed). Participants were randomly assigned 1:1 to receive pemetrexed at the standard dose of 500 mg/m2 IV every 21 days or the same chemotherapy with carboplatin at an area under the curve of 5, also IV every 21 days.
The primary endpoint for the trial was progression-free survival (PFS), and the trial was intended to have results pooled with a nearly identically designed trial that was done in The Netherlands. The Dutch trial compared pemetrexed with carboplatin/pemetrexed at the same dose and schedule. The vast majority of patients (97.5%) had a performance status of 0 or 1, and the median age was 64 years.
The Italian study found no evidence to support a benefit in efficacy from the more aggressive doublet regimen. Specifically,
  • median PFS was 3.6 months with pemetrexed alone vs 3.5 months with carboplatin/pemetrexed.
  • Response rate (RR) and median overall survival (OS) were also no better with the doublet regimen
      • RR 12.6% vs 12.5%, median OS 9.2 vs 8.8 months, for pemetrexed and carboplatin/pemetrexed.

Moreover, pooling the data from the Italian trial with the Dutch trial demonstrated no significant differences between the 2 strategies. Subgroup analysis showed that

  • the patients with squamous NSCLC had a superior median PFS of 3.2 months with the carboplatin doublet vs 2.0 months with pemetrexed alone.

Unfortunately, this only confirms that adding a second agent is beneficial for patients receiving an agent previously shown to be ineffective in that population.

Viewpoint
Putting it in the context of previous data, these results only provide further confirmation that more is not better.
  • combinations are associated with more toxicity than single-agent therapy, and
  • this is likely to be especially relevant in previously treated patients whose ability to tolerate ongoing therapy over time may be reduced.

It is critical to balance efficacy with tolerability to enable us to deliver the treatment over a prolonged period. We need to recognize the importance of pacing ourselves if our goal is to administer treatments in a palliative setting for an increasingly longer duration.

Epidermal growth factor receptor (EGFR) signal...

Epidermal growth factor receptor (EGFR) signaling pathway. (Photo credit: Wikipedia)

EGFR structure

EGFR structure (Photo credit: Wikipedia)

ATP synthase

ATP synthase (Photo credit: Ethan Hein)

Non-small cell carcinoma - FNA

Non-small cell carcinoma – FNA (Photo credit: Pulmonary Pathology)

Articles on NSCLC in Pharmaceutical Intelligence:
Key Sources:
  1. Realizing the importance of personalized medicine in advanced NSCLC
    E Topol, B Buehler, GS Ginsburg. 

    Medscape Molec Medicine The Potential of Personalized Medicine in Advanced NSCLC

    With the data on the prognostic and predictive biomarkers EGFR and ALK, biomarker testing is increasingly important in therapy decisions in NSCLC
  2. Revisiting Doublet Maintenance Chemo in Advanced NSCLC
    H. Jack West, MD     http://www.medscape.com/viewarticle/777367
    Pemetrexed Versus Pemetrexed and Carboplatin as Second-Line Chemotherapy In Advanced Non-Small-Cell Lung Cancer
    Ardizzoni A, Tiseo M, Boni L, et al
    J Clin Oncol. 2102;30:4501-4507
  3. Lung Cancer in the Never Smoker Population: An Expert Interview With Dr. Nasser Hanna
    Experts And Viewpoint, Medscape Hematology-Oncology, December 2007
  4. Non-Small Cell Lung Cancer: Biologic and Therapeutic Considerations for Personalized Management
    Taofeek K. Owonikoko, MD, PhD   August 24, 2011.   Medscape
  5. An Update on New and Emerging Therapies for NSCLC
    Simon L. Ekman, MD, PhD; Fred R. Hirsch, MD, PhD     Medscape
  6. Lovly CM, Carbone DP. Lung cancer in 2010: one size does not fit all. Nat Rev Clin Oncol. 2011;8(2):68-70.
  7. Dacic S. Molecular diagnostics of lung carcinomas. Arch Pathol Lab Med. 2011;135(5):622-629.

  8. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367-1380.
  9. Gazdar AF. Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy.

    Cancer Metastasis Rev. 2010;29:37-48.

  10. NCCN Oncology Insights Report on Non-Small Cell Lung Cancer 1.2010
  11.   Review of the Treatment of Non-Small Cell Lung Cancer with Gefitinib
    T Araki, H Yashima, K Shimizu, T Aomori
    Clinical Medicine Insights: Oncology 2012:6 407–421  http://dx.doi.org/10.4137/CMO.S7340

 

Read Full Post »

Non-small Cell Lung Cancer drugs – where does the Future lie?

In focus: Tarceva, Avastin and Dacomitinib

 

UPDATED on July 5, 2013

(from reports published in New England Journal of Medicine on drug, crizotinib)

 

Curator: Ritu Saxena, Ph.D.

 

Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and usually grows and spreads more slowly than small cell lung cancer.

There are three common forms of NSCLC:

  • Adenocarcinomas are often found in an outer area of the lung.
  • Squamous cell carcinomas are usually found in the center of the lung next to an air tube (bronchus).
  • Large cell carcinomas can occur in any part of the lung. They tend to grow and spread faster than the other two types.

Lung cancer is by far the leading cause of cancer death among both men and women. Each year, more people die of lung cancer than of colon, breast, and prostate cancers combined. The American Cancer Society’s most recent estimates for lung cancer in the United States for 2012 reveal that about 226,160 new cases of lung cancer will be diagnosed (116,470 in men and 109,690 in women), and there will be an estimated 160,340 deaths from lung cancer (87,750 in men and 72,590 among women), accounting for about 28% of all cancer deaths.

Treatment

Different types of treatments are available for non-small cell lung cancer. Treatment depends on the stage of the cancer. For patients in whom the cancer has not spread to nearby lymph nodes are recommended surgery. Surgeon may remove- one of the lobes (lobectomy), only a small portion of the lung (wedge removal), or the entire lung (pneumonectomy). Some patients require chemotherapy that uses drugs to kill cancer cells and stop new cells from growing.

FDA approved drugs for NSCLC

Abitrexate (Methotrexate)
Abraxane (Paclitaxel Albumin-stabilized Nanoparticle Formulation) 
Alimta (Pemetrexed Disodium)
Avastin (Bevacizumab)
Bevacizumab
Carboplatin
Cisplatin
Crizotinib
Erlotinib Hydrochloride
Folex (Methotrexate)
Folex PFS (Methotrexate)
Gefitinib
Gemcitabine Hydrochloride
Gemzar (Gemcitabine Hydrochloride)
Iressa (Gefitinib)
Methotrexate
Methotrexate LPF (Methotrexate)
Mexate (Methotrexate)
Mexate-AQ (Methotrexate)
Paclitaxel
Paclitaxel Albumin-stabilized Nanoparticle Formulation
Paraplat (Carboplatin)
Paraplatin (Carboplatin)
Pemetrexed Disodium
Platinol (Cisplatin)
Platinol-AQ (Cisplatin)
Tarceva (Erlotinib Hydrochloride)
Taxol (Paclitaxel)
Xalkori (Crizotinib)

On the basis of target, the drugs have been classified as follows:

Image

NSCLC Drug Market Analysis

NSCLC drug market expected to grow from $4.2 billion in 2010 to $5.4 billion in 2020

Although, a whole list of agents is available for the treatment of NSCLC, the market for NSCLC drugs is expected to expand from $4.2 billion in 2010 to $5.4 billion in 2020 in the United States, France, Germany, Italy, Spain, the United Kingdom and Japan.   

However, drug sales for metastatic/advanced squamous cell non-small-cell lung cancer, which comprises only a small fraction of the market, will decrease from nearly 17 percent in 2010 to approximately 13 percent in 2020. According to surveyed U.S. oncologists and MCO pharmacy directors, increasing overall survival is one of the greatest unmet needs in first-line advanced squamous non-small-cell lung cancer.

In 2009, antimetabolites dominated the NSCLC market, with Eli Lilly’s Alimta (Pemetrexed) accounting for nearly three-quarters of sales within this drug class. Since then, Alimta has faced tough competition from a number of similar drugs and from emerging therapies. It was speculated that the antimetabolites market share would reduce significantly making it the second-largest drug class in NSCLC, while the epidermal growth factor receptor (EGFR) inhibitor class will garner the top market share by 2019.

Genentech/OSI Pharmaceuticals/Roche/Chugai Pharmaceutical’s Tarceva belongs to the EGFR inhibitor class, and has been prescribed principally along with Eli Lilly’s Alimta, to NSCLC patients.Both these drugs have dominated the NSCLC market till 2010, however, their market hold is expected to weaken from 2015-2020, as claimed by Decision Resources Analyst Karen Pomeranz, Ph.D. Decision Resources is a research and advisory firms for pharmaceutical and healthcare issues.

Tarceva (Erlotinib)

Generic Name: Erlotinib, Brand Name: Tarceva

Other Designation: CP 358774, OSI-774, R1415, RG1415, NSC 718781

Mechanism of Action: Tarceva, a small molecule quinazoline, directly and reversibly inhibits the epidermal growth factor receptor (EGFr) tyrosine kinase. Detailed information on how it works could be found at the Macmillian Cancer support website.

Tarceva has been approved for different cancers and several indications have been filed-

  • non-small cell lung cancer (nsclc), locally advanced or metastatic, second line, after failure of at least one prior chemotherapy regimen (2004)
  • pancreatic cancer, locally advanced or metastatic, in combination with gemcitabine, first line (2005)
  • non-small cell lung cancer (nsclc), advanced, maintenance therapy in responders following first line treatment with platinum-based chemotherapy (2010)
  • non-small cell lung cancer (nsclc) harboring epidermal growth factor (EGFr)-activating mutations, first line treatment in advanced disease

Sales of Tarceva 

May, 2012 sales of Tarceva in the US have been reported to be around $564.2 million.

In a recent article published by Vergnenègre et al in the Clinicoeconomic Outcomes Research journal (2012), cross-market cost-effectiveness of Erlotinib was analyzed. The study aimed at estimating the incremental cost-effectiveness of Erlotinib (150 mg/day) versus best supportive care when used as first-line maintenance therapy for patients with locally advanced or metastatic NSCLC and stable disease.

It was determined that treatment with erlotinib in first-line maintenance resulted in a mean life expectancy of 1.39 years in all countries, compared with a mean 1.11 years with best supportive care, which represents 0.28 life-years (3.4 life-months) gained with erlotinib versus best supportive care.

According to the authors analysis, there was a gain in the costs per-life year as $50,882, $60,025, and $35,669 in France, Germany, and Italy, respectively. Hence, on the basis of the study it was concluded that Erlotinib is a cost-effective treatment option when used as first-line maintenance therapy for locally advanced or metastatic NSCLC.

Avastin (Bevacizumab)

Generic Name: Avastin, Brand Name: Bevacizumab

Other Designation: rhuMAb-VEGF, NSC-704865, R435, RG435

Mechanism of Action

Bevacizumab is a recombinant humanized Mab antagonist of vascular endothelial growth factor A (VEGFA) acting as an angiogenesis inhibitor.

Targets

Vascular endothelial growth factor (VEGF, VEGF-A, VEGFA)

Avastin is the only currently approved VEGF inhibitor that selectively targets VEGF-A.

Three other approved oral drugs, pazopanib (Votrient; GlaxoSmithKline), sunitinib (Sutent; Pfizer) and sorafenib (Nexavar; Onyx Pharmaceuticals) are orally available multi-targeted receptor tyrosine kinase inhibitors that include VEGF receptors among their tar­gets.

Avastin has been approved for different cancers and several indications have been filed:

  • colorectal cancer, advanced, metastatic, first line, in combination with a 5-FU based chemotherapy regimen
  • colorectal cancer, relapsed, metastatic, second line, in combintion with 5-FU-based chemotherapy (2004)
  • non-small cell lung cancer (nsclc), non-squamous, inoperable, locally advanced, recurrent or metastatic, in combination with carboplatin and paclitaxel chemotherapy, first line (2006)
  • breast cancer, chemotherapy naive, first line, locally recurrent or metastatic, in combination with taxane chemotherapy (2008, revoked in 2011)
  • non-small cell lung cancer (nsclc), non-squamous, inoperable, locally advanced, recurrent or metastatic, in combination with platinum-based chemotherapy, first line
  • renal cell carcinoma (RCC), metastatic, in combination with interferon (IFN) alpha, first line (2009)
  • glioblastoma multiforme (GBM), relapsed after first line chemoradiotherapy
  • breast cancer, chemotherapy naive, first line, locally recurrent or metastatic, HEr2 negative, in combination with capecitabine (2009)
  • ovarian cancer, in combination with standard chemotherapy (carboplatin and paclitaxel) as a first line treatment following surgery for women with advanced (Stage IIIb/c or Stage IV) epithelial ovarian, primary peritoneal or fallopian tube cancer
  • ovarian cancer, in combination with carboplatin and gemcitabine as a treatment for women with recurrent, platinum-sensitive ovarian cancer

SOURCE:

New medicine Oncology Knowledge Base

Sales of Avastin 

As of May, 2012, sales of Avastin in the US have been reported to be around $2.66 billion.

It attracted a lot of attention over the past few years after its use as a breast cancer treatment. Avastin was approved by the FDA under its fast-track program. However, the data released by the FDA from follow-up studies led to questioning the use of Avastin as a breast cancer drug. Infact, Genentech pulled the indication from Avastin’s label. Henceforth, the FDA did cancel that approval in late 2011. Doctors, however, can still prescribe it off-label. Potential adverse effects of Avastin that came under scrutiny along with unfavorable cost benefit analyses might pose challenges to its growth potential and continued widespread use. However, the sales of Avastin have continued to increase and it has been reported by Fierce Pharma as one of the 15 best-selling cancer drugs list. (Fierce Pharma)

Dacomitinib: New promising drug for NSCLC

Generic Name: Dacomitinib

Other Designation: PF-299804, PF-00299804, PF-299,804, PF00299804

PF-299804 is an orally available irreversible pan-HEr tyrosine kinase inhibitor.

Dacomitinib is a promising new drug on the market. Phase III trials are ongoing for advanced and refractory NSCLC, locally advanced or metastatic NSCLC and the EGFr mutation containing locally advanced or metastatic NSCLC in several countries including those in Europe, Asia, and America.

SOURCE:

New medicine Oncology Knowledge base

Dacomitinib bests Erlotinib in advanced NSCLC:  Comparison of its Progression-Free Survival (PFS) with the NSCLC marketed drug, Erlotinib.

In September of 2012, a study was published by Ramalingam et al in the Journal of Clinical Oncology, which was a randomized open-label trial comparing dacomitinib with erlotinib in patients with advanced NSCLC. On the basis of the study it was concluded that dacomitinib demonstrated significantly improved progression-free survival (PFS*) as compared to erlotinib, with a certain degree of toxicity.

SOURCE:

Randomized Phase II Study of Dacomitinib Versus Erlotinib in Patients With Advanced Non-Small-Cell Lung Cancer

The results indicated indicated the following:

  • Median PFS was significantly greater with Dacomitinib than Erlotinib, at 2.86 versus 1.91.
  • Mean duration of response was 16.56 months for dacomitinib and 9.23 months for erlotinib.

Patients were divided into groups by tumor type and following results were obtained:

  • Median PFS was 3.71 months with dacomitinib and 1.91 with erlotinib in patients with KRAS wild-type tumors
  • Median PFS was 2.21 months and 1.68 months, in patients with KRAS wild-type/EGFR wild-type tumors.
  • PFS was significantly better in the molecular subgroups harboring a mutant EGFR genotype.

The study also highlighted the side effects which might be more of concern and probably limiting for Dacomitinib.

Although adverse side effects were uncommon in both the groups, certain side effects such as:

  • mouth sores,
  • nailbed infections, and
  • diarrhea

were more common and tended to be more severe with Dacomitinib as compared to Tarceva.

Therefore, for patients for whom side effects of Tarceva seem challenging might face more difficulty with Dacomitinib treatment. Nonetheless, the results of PFS were promising enough and provide a greater efficacy in several clinical and molecular subgroups targeting a larger population than Tarceva. Authors, thus, suggested a larger, randomized phase III trial with the same design.

Current status of Dacomitinib

Based on positive performance of Dacomitinib published in research studies, Pfizer has entered into a collaborative development agreement with the SFJ Pharmaceuticals Group to conduct a phase III clinical trial across multiple sites in Asia and Europe, to evaluate dacomitinib (PF-00299804) as a first line treatment in patients with locally advanced or metastatic non-small cell lung cancer (nsclc) with activating mutations in the epidermal growth factor receptor (EGFr). Under the terms of the agreement, SFJ will provide the funding and clinical development supervision to generate the clinical data necessary to support a registration dossier on Dacomitinib for marketing authorization by regulatory authorities for this indication. If approved for this indication, SFJ will be eligible to receive milestone and earn-out payments.

SOURCE:

New medicine Oncology Knowledge base

*PFS or Progression-free survival is defined as the length of time during and after the treatment of as disease, such as cancer, that a patient lives with the disease but it does not get worse. In a clinical trial, measuring the progression-free survival is one way to see how well a new treatment works.

REFERENCES

Recently, another drug PF-02341066 (crizotinib), was tested on patients with non-small cell lung cancer and the results were published in New England Journal of Medicine (2013). Crizotinib is an orally available aminopyridine-based inhibitor of the) and the c-Met/hepatocyte growth factor receptor (HGFR). Crizotinib, in an ATP-competitive manner, binds to and inhibits ALK kinase and ALK fusion proteins. In addition, crizotinib inhibits c-Met kinase, and disrupts the c-Met signaling pathway. Altogether, this agent inhibits tumor cell growth.

  • Shaw and colleagues (2013) investigated whether crizotinib is superior to standard chemotherapy with respect to efficacy. To answer the question, Pfizer launched a phase III clinical trial (NCT00932893; http://clinicaltrials.gov/show/NCT00932893) comparing the safety and anti-tumor activity of PF-02341066 (crizotinib) versus pemetrexed or docetaxel in patients with advanced non-small cell lung cancer harboring a translocation or inversion event involving the ALK gene. Shaw and colleagues (2013) published the results of the clinical trial in a recent issue of New England Journal of Medicine.  A total of 347 patients with locally advanced or metastatic ALK-positive lung cancer who had received one prior platinum-based regimen were recruited for the trial and patients were randomly assigned to receive oral treatment with crizotinib (250 mg) twice daily or intravenous chemotherapy with either pemetrexed (500 mg per square meter of body-surface area) or docetaxel (75 mg per square meter) every 3 weeks. Patients in the chemotherapy group who had disease progression were permitted to cross over to crizotinib as part of a separate study. The primary end point was progression-free survival. According to the results, the median progression-free survival was 7.7 months in the crizotinib group and 3.0 months in the chemotherapy group. Hazard ratio (HR) for progression or death with crizotinib was 0.49 (95% CI, P<0.001). The response rates were 65% with crizotinib, as compared with 20% with chemotherapy (P<0.001). An interim analysis of overall survival showed no significant improvement with crizotinib as compared with chemotherapy (hazard ratio for death in the crizotinib group, 1.02; 95% CI, P=0.54). Common adverse events associated with crizotinib were visual disorder, gastrointestinal side effects, and elevated liver aminotransferase levels, whereas common adverse events with chemotherapy were fatigue, alopecia, and dyspnea. Patients reported greater reductions in symptoms of lung cancer and greater improvement in global quality of life with crizotinib than with chemotherapy.In conclusion, the results from the trial indicate that crizotinib is superior to standard chemotherapy in patients with previously treated, advanced non–small-cell lung cancer with ALK rearrangement. (Shaw AT, et al, Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer. N Engl J Med 2013; 20 June, 368:2385-2394; http://www.ncbi.nlm.nih.gov/pubmed/23724913).

However, in the same issue of New England Journal of Medicine, Awad and colleagues (2013) reported from a phase I clinical trial (NCT00585195; http://clinicaltrials.gov/show/NCT00585195), that a patient with metastatic lung adenocarcioma harboring a CD74-ROS1 rearrangement who had initially shown a dramatic response to treatment, showed resistance to crizotinib. Biopsy of the resistant tumor identified an acquired mutation leading to a glycine-to-arginine substitution at codon 2032 in the ROS1 kinase domain. Although this mutation does not lie at the gatekeeper residue, it confers resistance to ROS1 kinase inhibition through steric interference with drug binding. The same resistance mutation was observed at all the metastatic sites that were examined at autopsy, suggesting that this mutation was an early event in the clonal evolution of resistance. The study was funded by Pfizer (Awad MM, et al, Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 2013 Jun 20;368(25):2395-401; http://www.ncbi.nlm.nih.gov/pubmed/23724914)

Reference: 

Read Full Post »

Screen Shot 2021-07-19 at 6.16.16 PM

Word Cloud By Danielle Smolyar

Pancreatic stellate cell activation in chronic...

Pancreatic stellate cell activation in chronic pancreatitis and pancreatic cancer. Pancreatic stellate cells are activated by profibrogenic mediators, such as ethanol metabolites and cytokines/growth factors. Perpetuation of stellate cell activation under persisting pathological conditions results in pancreatic fibrosis. Jaster Molecular Cancer 2004 3:26 doi:10.1186/1476-4598-3-2 (Photo credit: Wikipedia)

Larry H. Bernstein, MD,  Reporter

Cancer-Causing Gene Alone Doesn’t Trigger Pancreatic Cancer, Mayo-led Study Finds
More than a cancer-causing gene is needed to trigger pancreatic cancer, a study led by Mayo Clinic, Jacksonville, Fla, has found.

A second factor creates a “perfect storm” that allows tumors to form, the researchers say. The study, published in a recent issue of Cancer Cell, overturns the current belief that a mutation in the KRAS oncogene is enough to initiate pancreatic cancer and unrestrained cell growth.

The findings uncover critical clues on how pancreatic cancer develops and why few patients benefit from current therapies. The findings also provide ideas about how to improve treatment and prevention of pancreatic cancer.

The research team, led by Howard C. Crawford, PhD, a cancer biologist at Mayo Clinic’s campus in Florida, and Jens Siveke, MD, at Technical University in Munich, Germany, found that for pancreatic cancer to form, mutated KRAS must recruit a second player: the epidermal growth factor receptor, or EGFR.A third genetic participant known as Trp53 makes pancreatic tumors very difficult to treat, the study showed.

The scientists also found that EGFR was required in pancreatic cancer initiated by pancreatic inflammation known as pancreatitis.

Imatinib May Help Treat Aggressive Lymphoma

Based on the results of a new study, researchers are developing a clinical trial to test imatinib (Gleevec) in patients with anaplastic large cell lymphoma (ALCL), an aggressive type of non-Hodgkin lymphoma that primarily affects children and young adults.

The researchers found that a protein called PDGFRB is important to the development of a common form of ALCL. PDGFRB, a growth factor receptor protein, is a target of imatinib. Imatinib had anticancer effects in both a mouse model of ALCL and a patient with the disease, Dr. Lukas Kenner of the Medical University of Vienna in Austria and his colleagues reported October 14 in Nature Medicine.

The authors decided to investigate the effect of imatinib after finding a link between PDGFRB and a genetic abnormality that is found in many patients with ALCL. Previous work had shown that this genetic change—a translocation that leads to the production of an abnormal fusion protein called NPM-ALK—stimulates the production of two proteins, transcription factors called JUN and JUNB.

In the new study, experiments in mice revealed that these proteins promote lymphoma development by increasing the levels of PDGFRB.

Because imatinib inhibits PDGFRB, the authors tested the effect of the drug in mice with the NPM-ALK change and found that it improved their survival. They also found that imatinib given together with the ALK inhibitor crizotinib (Xalkori) greatly reduced the growth of NPM-ALK-positive lymphoma cells in mice.

To test the treatment strategy in people, they identified a terminally ill patient with NPM-ALK-positive ALCL who had no other treatment options and agreed to try imatinib. The patient began to improve within 10 days of starting the therapy and has been free of the disease for 22 months, the authors reported.

The observation that inhibiting both ALK and PDGFRB “reduces lymphoma growth and alleviates relapse rates” led the authors to suggest that the findings might be relevant to lymphomas with PDGFRB but without the NPM-ALK protein. “Our findings suggest that imatinib is a potential therapeutic option for patients with crizotinib-resistant lymphomas.”

A planned clinical trial will be based on the expression of PDGFRB in tumors.

Researchers Identify Possible Biomarker for Early-Stage Lung Cancer

A protein that can be detected in blood samples may one day serve as a biomarker for early-stage lung cancer, according to new study results. The findings, published October 16 in the Proceedings of the National Academy of Sciences, suggest that measuring the levels of a variant form of the protein Ciz1 may help detect lung cancer early and noninvasively in high-risk individuals.

“We have struggled to find cancer biomarkers that are disease-specific, and this may be a step in the right direction,” said Dr. Sudhir Srivastava, chief of NCI’s Cancer Biomarkers Research Group. He called the study “promising” but noted that the results will need further validation.

Researchers led by Dr. Dawn Coverley of the University of York in the United Kingdom found that the “b-variant” form of Ciz1 was present in 34 of 35 lung tumors but not in adjacent tissue. Additional experiments showed that an antibody specific for this Ciz1 variant could detect the protein in small samples of blood from individuals with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).

In two independent sets of blood samples—from 170 and 160 patients, respectively—the researchers showed that variant Ciz1 levels above a certain threshold correctly identified 95 to 98 percent of lung cancer patients, with an overall specificity of 71 to 75 percent. Using the second set of samples, they showed that the level of variant Ciz1 could discriminate between patients with stage I NSCLC and age-matched heavy smokers without diagnosed cancer, individuals with benign lung nodules, and patients with inflammatory lung disease.

Although the high rate of false-positive test results seen with variant Ciz1 is a concern, the authors noted that a blood test for the Ciz1 variant might ultimately be shown to be useful when combined with low-dose helical computed tomography, also called spiral CT, for lung cancer screening. In that context, the test could confirm the presence of lung cancer in patients who have suspicious spiral CT results, reducing the need for invasive procedures to confirm a lung cancer diagnosis. And, if used before spiral CT, “the test could reduce the number of people who undergo imaging…[because] the false-negative rate is very low,” Dr. Coverley wrote in an e-mail message.

To assess variant Ciz1 levels, the researchers used a laboratory method known as Western blot analysis. However, this approach could not be routinely applied in a clinical context, the researchers acknowledged, so “a more streamlined method” for testing would need to be developed.

Supported in part by NCI Early Detection Research Network Grant U01CA086137.

NCI Reports

Study Looks at Terminal Cancer Patients’ Expectations of Chemotherapy

A majority of patients who opt to receive chemotherapy to treat newly diagnosed metastatic lung or colorectal cancer believe chemotherapy might cure their cancer, according to a recent survey. The survey results suggest that optimistic assumptions about the benefits of chemotherapy may hamper patients’ abilities to make informed treatment decisions that align with their preferences, said the researchers who led the study. The findings were published October 25 in the New England Journal of Medicine.

Dr. Jane Weeks of the Dana-Farber Cancer Institute and her colleagues interviewed 1,193 patients tracked by the prospective, observational Cancer Care Outcomes Research and Surveillance Consortium (CanCORS) study, 4 to 7 months after diagnosis. All of the patients had been diagnosed with stage IV lung or colorectal cancer and had chosen to receive chemotherapy. A surrogate was interviewed when a patient was too ill to participate. The survey asked patients how likely it was that chemotherapy would cure their disease, extend life, or relieve symptoms. The researchers also collected data on patients’ physical functioning, communication with their physicians, and social and demographic factors.

The majority of patients did not appear to understand that chemotherapy was very unlikely to cure their cancer (81 percent of those with colorectal cancer and 69 percent of those with lung cancer). Black, Hispanic, and Asian/Pacific Islander patients were more likely than white patients to believe that chemotherapy would cure them. Nevertheless, most patients believed that chemotherapy was more likely to extend their life than cure them.

Educational level, functional status, and the patient’s role in treatment decision making were not associated with inaccurate expectations about chemotherapy.

In an accompanying editorial, Drs. Thomas J. Smith of the Johns Hopkins Sidney Kimmel Cancer Center and Dan L. Longo of the National Institute on Aging wrote, “if patients actually have unrealistic expectations of a cure from a therapy that is administered with palliative intent, we have a serious problem of miscommunication that we need to address.”

This research was supported by grants from the National Institutes of Health (U01 CA093344, U01 CA093332, U01CA093324, U01 CA093348, U01 CA093329, U01 CA093339, and U01 CA093326).

 

Researchers Identify Possible Biomarker for Early-Stage Lung Cancer

A protein that can be detected in blood samples may one day serve as a biomarker for early-stage lung cancer, according to new study results. The findings, published October 16 in the Proceedings of the National Academy of Sciences, suggest that measuring the levels of a variant form of the protein Ciz1 may help detect lung cancer early and noninvasively in high-risk individuals.

“We have struggled to find cancer biomarkers that are disease-specific, and this may be a step in the right direction,” said Dr. Sudhir Srivastava, chief of NCI’s Cancer Biomarkers Research Group. He called the study “promising” but noted that the results will need further validation.

Researchers led by Dr. Dawn Coverley of the University of York in the United Kingdom found that the “b-variant” form of Ciz1 was present in 34 of 35 lung tumors but not in adjacent tissue. Additional experiments showed that an antibody specific for this Ciz1 variant could detect the protein in small samples of blood from individuals with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).

In two independent sets of blood samples—from 170 and 160 patients, respectively—the researchers showed that variant Ciz1 levels above a certain threshold correctly identified 95 to 98 percent of lung cancer patients, with an overall specificity of 71 to 75 percent. Using the second set of samples, they showed that the level of variant Ciz1 could discriminate between patients with stage I NSCLC and age-matched heavy smokers without diagnosed cancer, individuals with benign lung nodules, and patients with inflammatory lung disease.

Although the high rate of false-positive test results seen with variant Ciz1 is a concern, the authors noted that a blood test for the Ciz1 variant might ultimately be shown to be useful when combined with low-dose helical computed tomography, also called spiral CT, for lung cancer screening. In that context, the test could confirm the presence of lung cancer in patients who have suspicious spiral CT results, reducing the need for invasive procedures to confirm a lung cancer diagnosis. And, if used before spiral CT, “the test could reduce the number of people who undergo imaging…[because] the false-negative rate is very low,” Dr. Coverley wrote in an e-mail message.

To assess variant Ciz1 levels, the researchers used a laboratory method known as Western blot analysis. However, this approach could not be routinely applied in a clinical context, the researchers acknowledged, so “a more streamlined method” for testing would need to be developed.

Supported in part by NCI Early Detection Research Network Grant U01CA086137.

Read Full Post »

mRNA Interference with Cancer Expression

Reporter: Larry H Bernstein, MD, FCAP

Genetic switch shuts down lung cancer tumors

Genetic switch shuts down lung cancer tumors in mice October 25, 2012 in Cancer Yale researchers manipulated a tiny genetic switch and halted growth of aggressive lung cancer tumors in mice and even prevented tumors from forming. Ads by Google Stage 4 Cancer Treatments – Chat w/a Cancer Info Expert About Stage 4 Cancer Treatment Options. – http://www.CancerCenter.com The activation of a single microRNA managed to neutralize the effects of two of the most notorious genes in cancer’s arsenal, suggesting it may have a role treating several forms of cancer, the researchers report in the Nov. 1 issue of the journal Cancer Research. “This is pretty much the best pre-clinical data that show microRNAs can be effective in lung cancer treatment,” said Frank Slack, professor of molecular, cellular & developmental biology, researcher for the Yale Cancer Center, and senior author of the paper. “These cancer genes are identical to ones found in many forms of human cancers and we are hopeful the microRNA will be of therapeutic benefit in human cancer.” Unlike drugs that act upon existing proteins, microRNAs are small pieces of genetic material that can shut down and turn off genes that produce the proteins. Slack and co-author Andrea Kasinski wanted to see if one of these microRNAs, miR-34, could block the actions of K-Ras and p53 genes, which promote proliferation and survival of cancer cells, respectively. Mice with these two mutant genes invariably develop tumors but were cancer-free when researchers activated miR-34. Also, tumor growth was halted in mice that were treated with miR-34 after they had developed cancer. Journal reference: Cancer Research Provided by Yale University

Read more at: http://medicalxpress.com/news/2012-10-genetic-lung-cancer-tumors-mice.html#jCp

Read Full Post »

Reporter: Aviva Lev-Ari, PhD, RN

Screen Shot 2021-07-19 at 7.33.50 PM

Word Cloud By Danielle Smolyar

Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes

Nature (2012) 

doi:10.1038/nature11547 Received 09 January 2012  Accepted 04 September 2012 

Published online 24 October 2012

Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRASTP53CDKN2A, SMAD4MLL3TGFBR2, ARID1A andSF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2,MAP2K4NALCNSLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

Figures at a glance

Contributions

The research network comprising the Australian Pancreatic Cancer Genome Initiative, the Baylor College of Medicine Cancer Genome Project and the Ontario Institute for Cancer Research Pancreatic Cancer Genome Study (ABO collaboration) contributed collectively to this study as part of the International Cancer Genome Consortium. Biospecimens were collected at affiliated hospitals and processed at each biospecimen core resource centre. Data generation and analyses were performed by the genome sequencing centres, cancer genome characterization centres and genome data analysis centres. Investigator contributions are as follows: S.M.G., A.V.B., J.V.P., R.L.S., R.A.G., D.A.W., M.-C.G., J.D.M., L.D.S and T.J.H. (project leaders); A.V.B., S.M.G. and R.L.S. (writing team); A.L.J., J.V.P., P.J.W., J.L.F., C.L., M.A., O.H., J.G.R., D.T., C.X., S.Wo., F.N., S.So., G.K. and W.K. (bioinformatics/databases); D.K.M., I.H., S.I., C.N., S.M., A.Chr., T.Br., S.Wa., E.N., B.B.G., D.M.M., Y.Q.W., Y.H., L.R.L., H.D., R. E. D., R.S.M. and M.W. (sequencing); N.W., K.S.K., J.V.P., A.-M.P., K.N., N.C., M.G., P.J.W., M.J.C., M.P., J.W., N.K., F.Z., J.D., K.C., C.J.B., L.B.M., D.P., R.E.D., R.D.B., T.Be. and C.K.Y. (mutation, copy number and gene expression analysis); A.L.J., D.K.C., M.D.J., M.P., C.J.S., E.K.C., C.T., A.M.N., E.S.H., V.T.C., L.A.C., E.N., J.S.S., J.L.H., C.T., N.B. and M.Sc. (sample processing and quality control); A.J.G., J.G.K., R.H.H., C.A.I.-D., A.Cho., A.Mai., J.R.E., P.C. and A.S. (pathology assessment); J.W., M.J.C., M.P., C.K.Y. and mutation analysis team (network/pathway analysis and functional data integration); K.M.M., N.A.J., N.G.C., P.A.P.-M., D.J.A., D.A.L., L.F.A.W., A.G.R., D.A.T., R.J.D., I.R., A.V.P., E.A.M., R.L.S., R.H.H. and A.Maw. (functional screens); E.N., A.L.J., J.S.S., A.J.G., J.G.K., N.D.M., A.B., K.E., N.Q.N., N.Z., W.E.F., F.C.B., S.E.H., G.E.A., L.M., L.T., M.Sam., K.B., A.B., D.P., A.P., N.B., R.D.B., R.E.D., C.Y., S.Se., N.O., D.M., M-S.T., P.A.S., G.M.P., S.G., L.D.S., C.A.I.-D., R.D.S., C.L.W., R.A.M., R.T.L., S.B., V.C., M.Sca., C.B., M.A.T., G.T., A.S. and J.R.E. (sample collection and clinical annotation); D.K.C., M.P., C.J.S., E.S.H., J.A.L., R.J.D., A.V.P. and I.R. (preclinical models).

Competing financial interests

The authors declare no competing financial interests.

International Team Reports on Large-Scale Pancreatic Cancer Analysis

October 24, 2012

NEW YORK (GenomeWeb News) – A whole-exome sequencing and copy number variation study of pancreatic cancer published online today in Nature suggests that the disease sometimes involves alterations to genes and pathways best known for their role in axon guidance during embryonic development.

The work was conducted as part of the International Cancer Genome Consortium effort by researchers with the BCM Cancer Genome Project, the Australian Pancreatic Cancer Genome Initiative, and the Ontario Institute for Cancer Research Pancreatic Cancer Genome Study.

As they reported today, the investigators identified thousands of somatic mutations and copy number alterations in pancreatic ductal adenocarcinoma cancer, the most common form of pancreatic cancer. Some of the mutations affected known cancer genes and/or pathways implicated in pancreatic cancer in the past. Other genetic glitches pointed to processes not previously linked to the disease including mutations to axon guidance genes such as SLIT2, ROBO1, and ROBO2.

“This is a category of genes not previously linked to pancreatic cancer,” Baylor College of Medicine researcher William Fisher, a co-author on the new paper, said in a statement. “We are poised to jump on this gene list and do some exciting things.”

Pancreatic cancer is among the deadliest types of cancer, he and his colleagues explained, with a grim five-year survival rate of less than 5 percent. But despite its clinical importance, direct genomic studies of primary tumors had been stymied in the past due to difficulties obtaining large enough samples for such analyses.

“Genomic characterization of pancreatic ductal adenocarcinoma, which accounts for over 90 [percent] of pancreatic cancer, has so far focused on targeted polymerase chain reaction-based exome sequencing of primary and metastatic lesions propagated as xenografts or cell lines,” the study authors noted.

“A deeper understanding of the underlying molecular pathophysiology of the clinical disease is needed to advance the development of effective therapeutic and early detection strategies,” they added.

For the current study, researchers started with a set of tumor-normal samples from 142 individuals with stage I or stage II sporadic pancreatic ductal adenocarcinoma. Following a series of experiments to assess tumor cellularity and other features that can impact tumor analyses, they selected 99 patients whose samples were assessed in detail.

For whole-exome sequencing experiments, the investigators nabbed coding sequences from matched tumor and normal samples using either Agilent SureSelectII or Nimblegen capture kits before sequencing the exomes on SOLiD 4 or Illumina sequencing platforms. They also used Ion Torrent and Roche 454 platforms to validate apparent somatic mutations in the samples.

For its copy number analyses, meanwhile, the team tested the pancreatic cancer and normal tissue samples using Illumina HumanOmni1 Quad genotyping arrays.

When they sifted through data for the 99 most completely characterized pancreatic tumors, researchers uncovered 1,628 CNVs and roughly 2,000 non-silent, somatic coding mutations. More than 1,500 of the non-silent mutations were subsequently verified through additional sequencing experiments.

On average, each of the tumors contained 26 coding mutations. And despite the variability in mutations present from one tumor to the next, researchers identified 16 genes that were mutated in multiple tumor samples.

Some were well-known cancer players such as KRAS, which was mutated in more than 90 percent of the 142 pancreatic tumors considered initially. Several other genes belonged to cell cycle checkpoint, apoptosis, blood vessel formation, and cell signaling pathways, researchers reported, or to pathways involved in chromatin remodeling or DNA damage repair.

For example, some 8 percent of tumors contained mutations to ATM, a gene participating in a DNA damage repair pathway that includes the ovarian/breast cancer risk gene BRCA1.

Genes falling within axon guidance pathways turned up as well. That pattern was supported by the researchers analyses of data from published pancreatic cancer studies — including two studies based on mutagenesis screens in mouse models of the disease — and by their own gene expression experiments in mice.

The team also tracked down a few more pancreatic ductal adenocarcinoma cases involving mutations to axon guidance genes such as ROBO1, ROBO2, and SLIT2 through targeted testing on 30 more pancreatic cancer patients.

The findings are consistent with those found in some other cancer types, according to the study’s authors, who noted that there is evidence indicating that some axon guidance components feed into signaling pathways related to cancer development, such as the WNT signaling pathway. If so, they explained, it’s possible that mutations to axon guidance genes might influence the effectiveness of therapies targeting such downstream pathways or serve as potential treatment targets themselves.

Still, those involved in the study cautioned that more research is needed not only to explore such possibilities but also to distinguish between driver and passenger mutations in pancreatic cancer.

“The potential therapeutic strategies identified will … require testing in appropriate clinical trials that are specifically designed to target subsets of patients stratified according to well-defined molecular markers,” the study’s authors concluded.

Read Full Post »

Older Posts »

%d bloggers like this: