Feeds:
Posts
Comments

Posts Tagged ‘Machine Learning’

New resource for finding FDA-approved medical devices that incorporate AI

Reporter: Satwik Sunnam, Research Assistant 3, One year Internship in Medical Text Analysis with Deep Learning NLP

This article reports List of FDA approved medical devices that are employing Artificial Intelligence and Machine Learning (AI/ML)

The FDA is providing this initial list of AI/ML-enabled medical devices marketed in the United States as a resource to the public about these devices and the FDA’s work in this area.

Contents of this list: This initial list contains publicly available information on AI/ML-enabled devices. The FDA assembled this list by searching FDA’s publicly-facing information, as well as by reviewing information in the publicly available resources cited below (*) and in other publicly available materials published by the specific manufacturers.

This list is not meant to be an exhaustive or comprehensive resource of AI/ML-enabled medical devices. Rather, it is a list of AI/ML-enabled devices across medical disciplines, based on publicly available information.

Updates to this list: The FDA plans to update this list on a periodic basis based on publicly available information. Send questions or feedback on this list to digitalhealth@fda.hhs.gov.

AI/ML-Enabled Medical Devices

Devices are listed in reverse chronological order by Date of Final Decision. To change the sort order, click the arrows in the column headings.

Use the Submission Number link to display the approval, authorization, or clearance information for the device in the appropriate FDA database. The database page will include a link to the FDA’s publicly available information.

Devices are listed in reverse chronological order by Date of Final Decision. To change the sort order, click the arrows in the column headings.

Use the Submission Number link to display the approval, authorization, or clearance information for the device in the appropriate FDA database. The database page will include a link to the FDA’s publicly available information.

FDA Final Decision in 2021:

List of AI/ML-enabled medical devices marketed in the United States

Date of Final Decision Submission NumberDeviceCompanyPanel (Lead)
06/17/2021K203514Precise PositionPhilips Healthcare (Suzhou) Co., Ltd.Radiology
06/16/2021K202718Qmenta Care Platform FamilyMint Labs, Inc., D/B/A. QMENTARadiology
06/11/2021K210484LINQ II Insertable Cardiac Monitor, Zelda AI ECG Classification SystemMedtronic, Inc.Cardiovascular
06/10/2021K203629IDx-DRDigital Diagnostics Inc.Ophthalmic
06/02/2021DEN200069Cognoa Asd Diagnosis AidCognoa, Inc.Neurology
05/19/2021K210237CINA CHESTAvicenna.AIRadiology
04/30/2021K210001HYPER AiRShanghai United Imaging Healthcare Co.,Ltd.Radiology
04/23/2021K203314Cartesion Prime (PCD-1000A/3) V10.8Canon Medical Systems CorporationRadiology
04/23/2021K203502MEDO-ThyroidMEDO DX Pte. Ltd.Radiology
04/21/2021K210556Preview ShoulderGenesis Software InnovationsRadiology
04/20/2021K203610Automatic Anatomy Recognition (AAR)Quantitative Radiology Solutions, LLCRadiology
04/19/2021K203469AI SegmentationVarian Medical SystemsRadiology
04/16/2021K203517Saige-QDeepHealth, Inc.Radiology
04/14/2021K202992BriefCase, RIB Fractures Triage (RibFx)Aidoc Medical, Ltd.Radiology
04/09/2021DEN200055GI GeniusCosmo Artificial Intelligence – AI, Ltd.Gastroenterology-Urology
04/02/2021K202441Eclipse II with Smart Noise CancellationCarestream Health, Inc.Radiology
04/01/2021DEN200038Gili Pro Biosensor (Also Known as Gili Biosensor System)Continuse Biometrics Ltd.Cardiovascular
03/31/2021K203258syngo.CT Lung CAD (Version VD20)Siemens Healthcare GmbHRadiology
03/31/2021K203443MAGNETOM Vida, MAGNETOM Sola, MAGNETOM Lumina, MAGNETOM Altea with syngo MR XA31ASiemens Medical Solutions USA, Inc.Radiology
03/31/2021K210071SIS System (Version 5.1.0)Surgical Information Sciences, Inc.Radiology
03/26/2021DEN200019Oxehealth Vital SignsOxehealth LimitedCardiovascular
03/24/2021K203225Aquilion ONE (TSX‐306A/3) V10.4 with Spectral Imaging SystemCanon Medical Systems CorporationRadiology
03/23/2021K210209Viz ICHViz.Ai, Inc.Radiology
03/19/2021K203235VBrainVysioneer Inc.Radiology
03/09/2021K203256Imbio RV/LV SoftwareImbio, LLCRadiology
03/05/2021K202300Optellum Virtual Nodule Clinic, Optellum Software, Optellum PlatformOptellum LtdRadiology
03/01/2021DEN200022Analytic for Hemodynamic Instability (AHI)Fifth Eye Inc.Cardiovascular
02/25/2021K202990NinesMeasureNines, Inc.Radiology
02/25/2021K203578OTIS 2.1 Optical Coherence Tomography System, THiA Optical Coherence Tomography SystemPerimeter Medical Imaging AI, Inc.General And Plastic Surgery
02/19/2021K202212TruplanCircle Cardiovascular Imaging Inc.Radiology
02/09/2021K203103Synapse 3D, Synapse 3D Base Tools v6.1Fujifilm CorporationRadiology
02/05/2021K210053LVivo Software ApplicationDiA Imaging Analysis Ltd.Radiology
01/29/2021K201411Visage Breast DensityVisage Imaging GmbHRadiology
01/15/2021K193271UAI Easytriage-RibShanghai United Imaging Intelligence Co., Ltd.Radiology
01/14/2021K202700ART-PlanTheraPanaceaRadiology
01/12/2021K201836Aquilion Lightning (TSX-036A/7) V10.2 With AiCE-ICanon Medical Systems CorporationRadiology
01/09/2021K200717CLEWICU System (ClewICUserver and ClewICUnitor)Clew Medical Ltd.Cardiovascular
01/07/2021K202414BrainInsightHyperfine Research, Inc.Radiology

SOURCE

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices?utm_medium=email

Other related articles Published in this Open Access Online Scientific Journal include the following:

Cardiac MRI Imaging Breakthrough: The First AI-assisted Cardiac MRI Scan Solution, HeartVista Receives FDA 510(k) Clearance for One Click™ Cardiac MRI Package

Reporter: Aviva Lev-Ari, PhD, RN

Al is on the way to lead critical ED decisions on CT

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Applying AI to Improve Interpretation of Medical Imaging

Author and Curator: Dror Nir, PhD

Developing Deep Learning Models (DL) for the Instant Prediction of Patients with Epilepsy

Reporter: Srinivas Sriram, Research Assistant I

Science Policy Forum: Should we trust healthcare explanations from AI predictive systems – Some in industry voice their concerns

Curator: Stephen J. Williams, PhD

Al System Used to Detect Lung Cancer

Reporter: Irina Robu, Ph.D.

The Future of Speech-Based Human-Computer Interaction
Reporter: Ethan Coomber

Deep Medicine: How Artificial Intelligence Can Make Health Care Human Again
Reporter: Aviva Lev-Ari, PhD, RN

Supporting the elderly: A caring robot with ‘emotions’ and memory
Reporter: Aviva Lev-Ari, PhD, RN

Developing Deep Learning Models (DL) for Classifying Emotions through Brainwaves
Reporter: Abhisar Anand, Research Assistant I

Read Full Post »

The Future of Speech-Based Human-Computer Interaction

Reporter: Ethan Coomber, Research Assistant III

2021 LPBI Summer Internship in Data Science and Podcast Library Development
This article reports on a research conducted by the Tokyo Institute of Technology, published on 9 June 2021.

As technology continues to advance, the human-computer relationship develops alongside with it. As researchers and developers find new ways to improve a computer’s ability to recognize the distinct pitches that compose a human’s voice, the potential of technology begins to push back what people previously thought was possible. This constant improvement in technology has allowed us to identify new potential challenges in voice-based technological interaction.

When humans interact with one another, we do not convey our message with only our voices. There are a multitude of complexities to our emotional states and personality that cannot be obtained simply through the sound coming out of our mouths. Aspects of our communication such as rhythm, tone, and pitch are essential in our understanding of one another. This presents a challenge to artificial intelligence as technology is not able to pick up on these cues.

https://www.eurekalert.org/pub_releases/2021-06/tiot-tro060121.php

In the modern day, our interactions with voice-based devices and services continue to increase. In this light, researchers at Tokyo Institute of Technology and RIKEN, Japan, have performed a meta-synthesis to understand how we perceive and interact with the voice (and the body) of various machines. Their findings have generated insights into human preferences, and can be used by engineers and designers to develop future vocal technologies.

– Kate Seaborn

While it will always be difficult for technology to perfectly replicate a human interaction, the inclusion of filler terms such as “I mean…”, “um” and “like…” have been shown to improve human’s interaction and comfort when communicating with technology. Humans prefer communicating with agents that match their personality and overall communication style. The illusion of making the artificial intelligence appear human has a dramatic affect on the overall comfort of the person interacting with the technology. Several factors that have been proven to improve communication are when the artificial intelligence comes across as happy or empathetic with a higher pitched voice.

Using machine learning, computers are able to recognize patterns within human speech rather than requiring programming for specific patterns. This allows for the technology to adapt to human tendencies as they continue to see them. Over time, humans develop nuances in the way they speak and communicate which frequently results in a tendency to shorten certain words. One of the more common examples is the expression “I don’t know”. This expression is frequently reduced to the phrase “dunno”. Using machine learning, computers would be able to recognize this pattern and realize what the human’s intention is.

With advances in technology and the development of voice assistance in our lives, we are expanding our interactions to include computer interfaces and environments. While there are still many advances that need to be made in order to achieve the desirable level of communication, developers have identified the necessary steps to achieve the desirable human-computer interaction.

Sources:

Tokyo Institute of Technology. “The role of computer voice in the future of speech-based human-computer interaction.” ScienceDaily. ScienceDaily, 9 June 2021.

Rev. “Speech Recognition Trends to Watch in 2021 and Beyond: Responsible AI.” Rev, 2 June 2021, http://www.rev.com/blog/artificial-intelligence-machine-learning-speech-recognition.

“The Role of Computer Voice in the Future of Speech-Based Human-Computer Interaction.” EurekAlert!, 1 June 2021, http://www.eurekalert.org/pub_releases/2021-06/tiot-tro060121.php.

Other related articles published in this Open Access Online Scientific Journal include the Following:

Deep Medicine: How Artificial Intelligence Can Make Health Care Human Again
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2020/11/11/deep-medicine-how-artificial-intelligence-can-make-health-care-human-again/

Supporting the elderly: A caring robot with ‘emotions’ and memory
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2015/02/10/supporting-the-elderly-a-caring-robot-with-emotions-and-memory/

Developing Deep Learning Models (DL) for Classifying Emotions through Brainwaves
Reporter: Abhisar Anand, Research Assistant I
https://pharmaceuticalintelligence.com/2021/06/22/developing-deep-learning-models-dl-for-classifying-emotions-through-brainwaves/

Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2019/12/08/evolution-of-the-human-cell-genome-biology-field-of-gene-expression-gene-regulation-gene-regulatory-networks-and-application-of-machine-learning-algorithms-in-large-scale-biological-data-analysis/

The Human Genome Project
Reporter: Larry H Bernstein, MD, FCAP, Curator
https://pharmaceuticalintelligence.com/2015/09/09/the-human-genome-project/

Read Full Post »

Developing Machine Learning Models for Prediction of Onset of Type-2 Diabetes

Reporter: Amandeep Kaur, B.Sc., M.Sc.

A recent study reports the development of an advanced AI algorithm which predicts up to five years in advance the starting of type 2 diabetes by utilizing regularly collected medical data. Researchers described their AI model as notable and distinctive based on the specific design which perform assessments at the population level.

The first author Mathieu Ravaut, M.Sc. of the University of Toronto and other team members stated that “The main purpose of our model was to inform population health planning and management for the prevention of diabetes that incorporates health equity. It was not our goal for this model to be applied in the context of individual patient care.”

Research group collected data from 2006 to 2016 of approximately 2.1 million patients treated at the same healthcare system in Ontario, Canada. Even though the patients were belonged to the same area, the authors highlighted that Ontario encompasses a diverse and large population.

The newly developed algorithm was instructed with data of approximately 1.6 million patients, validated with data of about 243,000 patients and evaluated with more than 236,000 patient’s data. The data used to improve the algorithm included the medical history of each patient from previous two years- prescriptions, medications, lab tests and demographic information.

When predicting the onset of type 2 diabetes within five years, the algorithm model reached a test area under the ROC curve of 80.26.

The authors reported that “Our model showed consistent calibration across sex, immigration status, racial/ethnic and material deprivation, and a low to moderate number of events in the health care history of the patient. The cohort was representative of the whole population of Ontario, which is itself among the most diverse in the world. The model was well calibrated, and its discrimination, although with a slightly different end goal, was competitive with results reported in the literature for other machine learning–based studies that used more granular clinical data from electronic medical records without any modifications to the original test set distribution.”

This model could potentially improve the healthcare system of countries equipped with thorough administrative databases and aim towards specific cohorts that may encounter the faulty outcomes.

Research group stated that “Because our machine learning model included social determinants of health that are known to contribute to diabetes risk, our population-wide approach to risk assessment may represent a tool for addressing health disparities.”

Sources:

https://www.cardiovascularbusiness.com/topics/prevention-risk-reduction/new-ai-model-healthcare-data-predict-type-2-diabetes?utm_source=newsletter

Reference:

Ravaut M, Harish V, Sadeghi H, et al. Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes. JAMA Netw Open. 2021;4(5):e2111315. doi:10.1001/jamanetworkopen.2021.11315 https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2780137

Other related articles were published in this Open Access Online Scientific Journal, including the following:

AI in Drug Discovery: Data Science and Core Biology @Merck &Co, Inc., @GNS Healthcare, @QuartzBio, @Benevolent AI and Nuritas

Reporters: Aviva Lev-Ari, PhD, RN and Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/08/27/ai-in-drug-discovery-data-science-and-core-biology-merck-co-inc-gns-healthcare-quartzbio-benevolent-ai-and-nuritas/

Can Blockchain Technology and Artificial Intelligence Cure What Ails Biomedical Research and Healthcare

Curator: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2018/12/10/can-blockchain-technology-and-artificial-intelligence-cure-what-ails-biomedical-research-and-healthcare/

HealthCare focused AI Startups from the 100 Companies Leading the Way in A.I. Globally

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/01/18/healthcare-focused-ai-startups-from-the-100-companies-leading-the-way-in-a-i-globally/

AI in Psychiatric Treatment – Using Machine Learning to Increase Treatment Efficacy in Mental Health

Reporter: Aviva Lev- Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/06/04/ai-in-psychiatric-treatment-using-machine-learning-to-increase-treatment-efficacy-in-mental-health/

Vyasa Analytics Demos Deep Learning Software for Life Sciences at Bio-IT World 2018 – Vyasa’s booth (#632)

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/05/10/vyasa-analytics-demos-deep-learning-software-for-life-sciences-at-bio-it-world-2018-vyasas-booth-632/

New Diabetes Treatment Using Smart Artificial Beta Cells

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2017/11/08/new-diabetes-treatment-using-smart-artificial-beta-cells/

Read Full Post »

Machine Learning (ML) in cancer prognosis prediction helps the researcher to identify multiple known as well as candidate cancer diver genes

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

This image has an empty alt attribute; its file name is morethanthes.jpg
Seeing “through” the cancer with the power of data analysis — possible with the help of artificial intelligence. Credit: MPI f. Molecular Genetics/ Ella Maru Studio
Image Source: https://medicalxpress.com/news/2021-04-sum-mutations-cancer-genes-machine.html

Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type have become a necessity in cancer research, as it can facilitate the subsequent clinical management of patients. The importance of classifying cancer patients into high or low-risk groups has led many research teams, from the biomedical and the bioinformatics field, to study the application of machine learning (ML) and Artificial Intelligence (AI) methods. Therefore, these techniques have been utilized as an aim to model the progression and treatment of cancerous conditions by predicting new algorithms.

In the majority of human cancers, heritable loss of gene function through cell division may be mediated as often by epigenetic as by genetic abnormalities. Epigenetic modification occurs through a process of interrelated changes in CpG island methylation and histone modifications. Candidate gene approaches of cell cycle, growth regulatory and apoptotic genes have shown epigenetic modification associated with loss of cognate proteins in sporadic pituitary tumors.

On 11th November 2020, researchers from the University of California, Irvine, has established the understanding of epigenetic mechanisms in tumorigenesis and publicized a previously undetected repertoire of cancer driver genes. The study was published in “Science Advances

Researchers were able to identify novel tumor suppressor genes (TSGs) and oncogenes (OGs), particularly those with rare mutations by using a new prediction algorithm, called DORGE (Discovery of Oncogenes and tumor suppressor genes using Genetic and Epigenetic features) by integrating the most comprehensive collection of genetic and epigenetic data.

The senior author Wei Li, Ph.D., the Grace B. Bell chair and professor of bioinformatics in the Department of Biological Chemistry at the UCI School of Medicine said

Existing bioinformatics algorithms do not sufficiently leverage epigenetic features to predict cancer driver genes, even though epigenetic alterations are known to be associated with cancer driver genes.

The Study

This study demonstrated how cancer driver genes, predicted by DORGE, included both known cancer driver genes and novel driver genes not reported in current literature. In addition, researchers found that the novel dual-functional genes, which DORGE predicted as both TSGs and OGs, are highly enriched at hubs in protein-protein interaction (PPI) and drug/compound-gene networks.

Prof. Li explained that the DORGE algorithm, successfully leveraged public data to discover the genetic and epigenetic alterations that play significant roles in cancer driver gene dysregulation and could be instrumental in improving cancer prevention, diagnosis and treatment efforts in the future.

Another new algorithmic prediction for the identification of cancer genes by Machine Learning has been carried out by a team of researchers at the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin and the Institute of Computational Biology of Helmholtz Zentrum München combining a wide variety of data analyzed it with “Artificial Intelligence” and identified numerous cancer genes. They termed the algorithm as EMOGI (Explainable Multi-Omics Graph Integration). EMOGI can predict which genes cause cancer, even if their DNA sequence is not changed. This opens up new perspectives for targeted cancer therapy in personalized medicine and the development of biomarkers. The research was published in Nature Machine Intelligence on 12th April 2021.

In cancer, cells get out of control. They proliferate and push their way into tissues, destroying organs and thereby impairing essential vital functions. This unrestricted growth is usually induced by an accumulation of DNA changes in cancer genes—i.e. mutations in these genes that govern the development of the cell. But some cancers have only very few mutated genes, which means that other causes lead to the disease in these cases.

The Study

Overlap of EMOGI’s positive predictions with known cancer genes (KCGs) and candidate cancer genes
Image Source: https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-021-00325-y/MediaObjects/42256_2021_325_MOESM1_ESM.pdf

The aim of the study has been represented in 4 main headings

  • Additional targets for personalized medicine
  • Better results by combination
  • In search of hints for further studies
  • Suitable for other types of diseases as well

The team was headed by Annalisa Marsico. The team used the algorithm to identify 165 previously unknown cancer genes. The sequences of these genes are not necessarily altered-apparently, already a dysregulation of these genes can lead to cancer. All of the newly identified genes interact closely with well-known cancer genes and be essential for the survival of tumor cells in cell culture experiments. The EMOGI can also explain the relationships in the cell’s machinery that make a gene a cancer gene. The software integrates tens of thousands of data sets generated from patient samples. These contain information about DNA methylations, the activity of individual genes and the interactions of proteins within cellular pathways in addition to sequence data with mutations. In these data, a deep-learning algorithm detects the patterns and molecular principles that lead to the development of cancer.

Marsico says

Ideally, we obtain a complete picture of all cancer genes at some point, which can have a different impact on cancer progression for different patients

Unlike traditional cancer treatments such as chemotherapy, personalized treatments are tailored to the exact type of tumor. “The goal is to choose the best treatment for each patient, the most effective treatment with the fewest side effects. In addition, molecular properties can be used to identify cancers that are already in the early stages.

Roman Schulte-Sasse, a doctoral student on Marsico’s team and the first author of the publication says

To date, most studies have focused on pathogenic changes in sequence, or cell blueprints, at the same time, it has recently become clear that epigenetic perturbation or dysregulation gene activity can also lead to cancer.

This is the reason, researchers merged sequence data that reflects blueprint failures with information that represents events in cells. Initially, scientists confirmed that mutations, or proliferation of genomic segments, were the leading cause of cancer. Then, in the second step, they identified gene candidates that are not very directly related to the genes that cause cancer.

Clues for future directions

The researcher’s new program adds a considerable number of new entries to the list of suspected cancer genes, which has grown to between 700 and 1,000 in recent years. It was only through a combination of bioinformatics analysis and the newest Artificial Intelligence (AI) methods that the researchers were able to track down the hidden genes.

Schulte-Sasse says “The interactions of proteins and genes can be mapped as a mathematical network, known as a graph.” He explained by giving an example of a railroad network; each station corresponds to a protein or gene, and each interaction among them is the train connection. With the help of deep learning—the very algorithms that have helped artificial intelligence make a breakthrough in recent years – the researchers were able to discover even those train connections that had previously gone unnoticed. Schulte-Sasse had the computer analyze tens of thousands of different network maps from 16 different cancer types, each containing between 12,000 and 19,000 data points.

Many more interesting details are hidden in the data. Patterns that are dependent on particular cancer and tissue were seen. The researchers were also observed this as evidence that tumors are triggered by different molecular mechanisms in different organs.

Marsico explains

The EMOGI program is not limited to cancer, the researchers emphasize. In theory, it can be used to integrate diverse sets of biological data and find patterns there. It could be useful to apply our algorithm for similarly complex diseases for which multifaceted data are collected and where genes play an important role. An example might be complex metabolic diseases such as diabetes.

Main Source

New prediction algorithm identifies previously undetected cancer driver genes

https://advances.sciencemag.org/content/6/46/eaba6784  

Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms

https://www.nature.com/articles/s42256-021-00325-y#citeas

Other Related Articles published in this Open Access Online Scientific Journal include the following:

AI System Used to Detect Lung Cancer

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/06/28/ai-system-used-to-detect-lung-cancer/

Deep Learning extracts Histopathological Patterns and accurately discriminates 28 Cancer and 14 Normal Tissue Types: Pan-cancer Computational Histopathology Analysis

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/10/28/deep-learning-extracts-histopathological-patterns-and-accurately-discriminates-28-cancer-and-14-normal-tissue-types-pan-cancer-computational-histopathology-analysis/

Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis

Curator & Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/12/08/evolution-of-the-human-cell-genome-biology-field-of-gene-expression-gene-regulation-gene-regulatory-networks-and-application-of-machine-learning-algorithms-in-large-scale-biological-data-analysis/

Cancer detection and therapeutics

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/02/cancer-detection-and-therapeutics/

Free Bio-IT World Webinar: Machine Learning to Detect Cancer Variants

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2016/05/04/free-bio-it-world-webinar-machine-learning-to-detect-cancer-variants/

Artificial Intelligence: Genomics & Cancer

https://pharmaceuticalintelligence.com/ai-in-genomics-cancer/

Premalata Pati, PhD, PostDoc in Biological Sciences, Medical Text Analysis with Machine Learning

https://pharmaceuticalintelligence.com/2021-medical-text-analysis-nlp/premalata-pati-phd-postdoc-in-pharmaceutical-sciences-medical-text-analysis-with-machine-learning/

Read Full Post »

 

Application of Natural Language Processing (NLP) on ~1MM cases of semi-structured echocardiogram reports: Identification of aortic stenosis (AS) cases – Accuracy comparison to administrative diagnosis codes (IDC 9/10 codes)

Reporter: Aviva Lev-Ari, PhD, RN

Large-Scale Identification of Aortic Stenosis and its Severity Using Natural Language Processing on Electronic Health Records

Background Systematic case identification is critical to improving population health, but widely used diagnosis code-based approaches for conditions like valvular heart disease are inaccurate and lack specificity. Objective To develop and validate natural language processing (NLP) algorithms to identify aortic stenosis (AS) cases and associated parameters from semi-structured echocardiogram reports and compare its accuracy to administrative diagnosis codes. Methods Using 1,003 physician-adjudicated echocardiogram reports from Kaiser Permanente Northern California, a large, integrated healthcare system (>4.5 million members), NLP algorithms were developed and validated to achieve positive and negative predictive values >95% for identifying AS and associated echocardiographic parameters. Final NLP algorithms were applied to all adult echocardiography reports performed between 2008-2018, and compared to ICD-9/10 diagnosis code-based definitions for AS found from 14 days before to six months after the procedure date. Results A total of 927,884 eligible echocardiograms were identified during the study period among 519,967 patients. Application of the final NLP algorithm classified 104,090 (11.2%) echocardiograms with any AS (mean age 75.2 years, 52% women), with only 67,297 (64.6%) having a diagnosis code for AS between 14 days before and up to six months after the associated echocardiogram. Among those without associated diagnosis codes, 19% of patients had hemodynamically significant AS (i.e., greater than mild disease). Conclusion A validated NLP algorithm applied to a systemwide echocardiography database was substantially more accurate than diagnosis codes for identifying AS. Leveraging machine learning-based approaches on unstructured EHR data can facilitate more effective individual and population management than using administrative data alone.

Large-scale identification of aortic stenosis and its severity using natural language processing on electronic health records

Author links open overlay panel

Matthew D.SolomonMD, PhD∗†GraceTabadaMPH∗AmandaAllen∗Sue HeeSungMPH∗Alan S.GoMD∗‡§‖

Division of Research, Kaiser Permanente Northern California, Oakland, California

Department of Cardiology, Kaiser Oakland Medical Center, Oakland, California

Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California

§

Departments of Epidemiology, Biostatistics and Medicine, University of California, San Francisco, San Francisco, California

Department of Medicine, Stanford University, Stanford, California

Available online 18 March 2021.

https://www.sciencedirect.com/science/article/pii/S2666693621000256

Background

Systematic case identification is critical to improving population health, but widely used diagnosis code–based approaches for conditions like valvular heart disease are inaccurate and lack specificity.

Objective

To develop and validate natural language processing (NLP) algorithms to identify aortic stenosis (AS) cases and associated parameters from semi-structured echocardiogram reports and compare their accuracy to administrative diagnosis codes.

Methods

Using 1003 physician-adjudicated echocardiogram reports from Kaiser Permanente Northern California, a large, integrated healthcare system (>4.5 million members), NLP algorithms were developed and validated to achieve positive and negative predictive values > 95% for identifying AS and associated echocardiographic parameters. Final NLP algorithms were applied to all adult echocardiography reports performed between 2008 and 2018 and compared to ICD-9/10 diagnosis code–based definitions for AS found from 14 days before to 6 months after the procedure date.

Results

A total of 927,884 eligible echocardiograms were identified during the study period among 519,967 patients. Application of the final NLP algorithm classified 104,090 (11.2%) echocardiograms with any AS (mean age 75.2 years, 52% women), with only 67,297 (64.6%) having a diagnosis code for AS between 14 days before and up to 6 months after the associated echocardiogram. Among those without associated diagnosis codes, 19% of patients had hemodynamically significant AS (ie, greater than mild disease).

Conclusion

A validated NLP algorithm applied to a systemwide echocardiography database was substantially more accurate than diagnosis codes for identifying AS. Leveraging machine learning–based approaches on unstructured electronic health record data can facilitate more effective individual and population management than using administrative data alone.

Keywords

Aortic stenosis Echocardiography Machine learning Population health Quality and outcomes Valvular heart disease

SOURCE

https://www.sciencedirect.com/science/article/pii/S2666693621000256

Read Full Post »

Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 3:00 PM-5:30 PM Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

uesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Tumor Biology, Bioinformatics and Systems Biology

The Clinical Proteomic Tumor Analysis Consortium: Resources and Data Dissemination

This session will provide information regarding methodologic and computational aspects of proteogenomic analysis of tumor samples, particularly in the context of clinical trials. Availability of comprehensive proteomic and matching genomic data for tumor samples characterized by the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) program will be described, including data access procedures and informatic tools under development. Recent advances on mass spectrometry-based targeted assays for inclusion in clinical trials will also be discussed.

Amanda G Paulovich, Shankha Satpathy, Meenakshi Anurag, Bing Zhang, Steven A Carr

Methods and tools for comprehensive proteogenomic characterization of bulk tumor to needle core biopsies

Shankha Satpathy
  • TCGA has 11,000 cancers with >20,000 somatic alterations but only 128 proteins as proteomics was still young field
  • CPTAC is NCI proteomic effort
  • Chemical labeling approach now method of choice for quantitative proteomics
  • Looked at ovarian and breast cancers: to measure PTM like phosphorylated the sample preparation is critical

 

Data access and informatics tools for proteogenomics analysis

Bing Zhang
  • Raw and processed data (raw MS data) with linked clinical data can be extracted in CPTAC
  • Python scripts are available for bioinformatic programming

 

Pathways to clinical translation of mass spectrometry-based assays

Meenakshi Anurag

·         Using kinase inhibitor pulldown (KIP) assay to identify unique kinome profiles

·         Found single strand break repair defects in endometrial luminal cases, especially with immune checkpoint prognostic tumors

·         Paper: JNCI 2019 analyzed 20,000 genes correlated with ET resistant in luminal B cases (selected for a list of 30 genes)

·         Validated in METABRIC dataset

·         KIP assay uses magnetic beads to pull out kinases to determine druggable kinases

·         Looked in xenografts and was able to pull out differential kinomes

·         Matched with PDX data so good clinical correlation

·         Were able to detect ESR1 fusion correlated with ER+ tumors

Tuesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Survivorship

Artificial Intelligence and Machine Learning from Research to the Cancer Clinic

The adoption of omic technologies in the cancer clinic is giving rise to an increasing number of large-scale high-dimensional datasets recording multiple aspects of the disease. This creates the need for frameworks for translatable discovery and learning from such data. Like artificial intelligence (AI) and machine learning (ML) for the cancer lab, methods for the clinic need to (i) compare and integrate different data types; (ii) scale with data sizes; (iii) prove interpretable in terms of the known biology and batch effects underlying the data; and (iv) predict previously unknown experimentally verifiable mechanisms. Methods for the clinic, beyond the lab, also need to (v) produce accurate actionable recommendations; (vi) prove relevant to patient populations based upon small cohorts; and (vii) be validated in clinical trials. In this educational session we will present recent studies that demonstrate AI and ML translated to the cancer clinic, from prognosis and diagnosis to therapy.
NOTE: Dr. Fish’s talk is not eligible for CME credit to permit the free flow of information of the commercial interest employee participating.

Ron C. Anafi, Rick L. Stevens, Orly Alter, Guy Fish

Overview of AI approaches in cancer research and patient care

Rick L. Stevens
  • Deep learning is less likely to saturate as data increases
  • Deep learning attempts to learn multiple layers of information
  • The ultimate goal is prediction but this will be the greatest challenge for ML
  • ML models can integrate data validation and cross database validation
  • What limits the performance of cross validation is the internal noise of data (reproducibility)
  • Learning curves: not the more data but more reproducible data is important
  • Neural networks can outperform classical methods
  • Important to measure validation accuracy in training set. Class weighting can assist in development of data set for training set especially for unbalanced data sets

Discovering genome-scale predictors of survival and response to treatment with multi-tensor decompositions

Orly Alter
  • Finding patterns using SVD component analysis. Gene and SVD patterns match 1:1
  • Comparative spectral decompositions can be used for global datasets
  • Validation of CNV data using this strategy
  • Found Ras, Shh and Notch pathways with altered CNV in glioblastoma which correlated with prognosis
  • These predictors was significantly better than independent prognostic indicator like age of diagnosis

 

Identifying targets for cancer chronotherapy with unsupervised machine learning

Ron C. Anafi
  • Many clinicians have noticed that some patients do better when chemo is given at certain times of the day and felt there may be a circadian rhythm or chronotherapeutic effect with respect to side effects or with outcomes
  • ML used to determine if there is indeed this chronotherapy effect or can we use unstructured data to determine molecular rhythms?
  • Found a circadian transcription in human lung
  • Most dataset in cancer from one clinical trial so there might need to be more trials conducted to take into consideration circadian rhythms

Stratifying patients by live-cell biomarkers with random-forest decision trees

Stratifying patients by live-cell biomarkers with random-forest decision trees

Guy Fish CEO Cellanyx Diagnostics

 

Tuesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Tumor Biology, Molecular and Cellular Biology/Genetics, Bioinformatics and Systems Biology, Prevention Research

The Wound Healing that Never Heals: The Tumor Microenvironment (TME) in Cancer Progression

This educational session focuses on the chronic wound healing, fibrosis, and cancer “triad.” It emphasizes the similarities and differences seen in these conditions and attempts to clarify why sustained fibrosis commonly supports tumorigenesis. Importance will be placed on cancer-associated fibroblasts (CAFs), vascularity, extracellular matrix (ECM), and chronic conditions like aging. Dr. Dvorak will provide an historical insight into the triad field focusing on the importance of vascular permeability. Dr. Stewart will explain how chronic inflammatory conditions, such as the aging tumor microenvironment (TME), drive cancer progression. The session will close with a review by Dr. Cukierman of the roles that CAFs and self-produced ECMs play in enabling the signaling reciprocity observed between fibrosis and cancer in solid epithelial cancers, such as pancreatic ductal adenocarcinoma.

Harold F Dvorak, Sheila A Stewart, Edna Cukierman

 

The importance of vascular permeability in tumor stroma generation and wound healing

Harold F Dvorak

Aging in the driver’s seat: Tumor progression and beyond

Sheila A Stewart

Why won’t CAFs stay normal?

Edna Cukierman

 

Tuesday, June 23

3:00 PM – 5:00 PM EDT

 

 

 

 

 

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Read Full Post »

AI Acquisitions by Big Tech Firms Are Happening at a Blistering Pace: 2019 Recent Data by CBI Insights

Reporter: Stephen J. Williams, Ph.D.

3.4.16

3.4.16   AI Acquisitions by Big Tech Firms Are Happening at a Blistering Pace: 2019 Recent Data by CBI Insights, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 3: AI in Medicine

Recent report from CBI Insights shows the rapid pace at which the biggest tech firms (Google, Apple, Microsoft, Facebook, and Amazon) are acquiring artificial intelligence (AI) startups, potentially confounding the AI talent shortage that exists.

The link to the report and free download is given here at https://www.cbinsights.com/research/top-acquirers-ai-startups-ma-timeline/

Part of the report:

TECH GIANTS LEAD IN AI ACQUISITIONS

The usual suspects are leading the race for AI: tech giants like Facebook, Amazon, Microsoft, Google, & Apple (FAMGA) have all been aggressively acquiring AI startups in the last decade.

Among the FAMGA companies, Apple leads the way, making 20 total AI acquisitions since 2010. It is followed by Google (the frontrunner from 2012 to 2016) with 14 acquisitions and Microsoft with 10.

Apple’s AI acquisition spree, which has helped it overtake Google in recent years, was essential to the development of new iPhone features. For example, FaceID, the technology that allows users to unlock their iPhone X just by looking at it, stems from Apple’s M&A moves in chips and computer vision, including the acquisition of AI company RealFace.

In fact, many of FAMGA’s prominent products and services came out of acquisitions of AI companies — such as Apple’s Siri, or Google’s contributions to healthcare through DeepMind.

That said, tech giants are far from the only companies snatching up AI startups.

Since 2010, there have been 635 AI acquisitions, as companies aim to build out their AI capabilities and capture sought-after talent (as of 8/31/2019).

The pace of these acquisitions has also been increasing. AI acquisitions saw a more than 6x uptick from 2013 to 2018, including last year’s record of 166 AI acquisitions — up 38% year-over-year.

In 2019, there have already been 140+ acquisitions (as of August), putting the year on track to beat the 2018 record at the current run rate.

Part of this increase in the pace of AI acquisitions can be attributed to a growing diversity in acquirers. Where once AI was the exclusive territory of major tech companies, today, smaller AI startups are becoming acquisition targets for traditional insurance, retail, and healthcare incumbents.

For example, in February 2018, Roche Holding acquired New York-based cancer startup Flatiron Health for $1.9B — one of the largest M&A deals in artificial intelligence. This year, Nike acquired AI-powered inventory management startup Celect, Uber acquired computer vision company Mighty AI, and McDonald’s acquired personalization platform Dynamic Yield.

Despite the increased number of acquirers, however, tech giants are still leading the charge. Acquisitive tech giants have emerged as powerful global corporations with a competitive advantage in artificial intelligence, and startups have played a pivotal role in helping these companies scale their AI initiatives.

Apple, Google, Microsoft, Facebook, Intel, and Amazon are the most active acquirers of AI startups, each acquiring 7+ companies.

To read more on recent Acquisitions in the AI space please see the following articles on this Open Access Online Journal

Diversification and Acquisitions, 2001 – 2015: Trail known as “Google Acquisitions” – Understanding Alphabet’s Acquisitions: A Sector-By-Sector Analysis

Clarivate Analytics expanded IP data leadership by new acquisition of the leading provider of intellectual property case law and analytics Darts-ip

2019 Biotechnology Sector and Artificial Intelligence in Healthcare

Forbes Opinion: 13 Industries Soon To Be Revolutionized By Artificial Intelligence

Artificial Intelligence and Cardiovascular Disease

Multiple Barriers Identified Which May Hamper Use of Artificial Intelligence in the Clinical Setting

Top 12 Artificial Intelligence Innovations Disrupting Healthcare by 2020

The launch of SCAI – Interview with Gérard Biau, director of the Sorbonne Center for Artificial Intelligence (SCAI).

Read Full Post »

Multiple Barriers Identified Which May Hamper Use of Artificial Intelligence in the Clinical Setting

Reporter: Stephen J. Williams, PhD.

From the Journal Science:Science  21 Jun 2019: Vol. 364, Issue 6446, pp. 1119-1120

By Jennifer Couzin-Frankel

3.3.21

3.3.21   Multiple Barriers Identified Which May Hamper Use of Artificial Intelligence in the Clinical Setting, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

In a commentary article from Jennifer Couzin-Frankel entitled “Medicine contends with how to use artificial intelligence  the barriers to the efficient and reliable adoption of artificial intelligence and machine learning in the hospital setting are discussed.   In summary these barriers result from lack of reproducibility across hospitals. For instance, a major concern among radiologists is the AI software being developed to read images in order to magnify small changes, such as with cardiac images, is developed within one hospital and may not reflect the equipment or standard practices used in other hospital systems.  To address this issue, lust recently, US scientists and government regulators issued guidance describing how to convert research-based AI into improved medical images and published these guidance in the Journal of the American College of Radiology.  The group suggested greater collaboration among relevant parties in developing of AI practices, including software engineers, scientists, clinicians, radiologists etc. 

As thousands of images are fed into AI algorithms, according to neurosurgeon Eric Oermann at Mount Sinai Hospital, the signals they recognize can have less to do with disease than with other patient characteristics, the brand of MRI machine, or even how a scanner is angled.  For example Oermann and Mount Sinai developed an AI algorithm to detect spots on a lung scan indicative of pneumonia and when tested in a group of new patients the algorithm could detect pneumonia with 93% accuracy.  

However when the group from Sinai tested their algorithm from tens of thousands of scans from other hospitals including NIH success rate fell to 73-80%, indicative of bias within the training set: in other words there was something unique about the way Mt. Sinai does their scans relative to other hospitals.  Indeed, many of the patients Mt. Sinai sees are too sick to get out of bed and radiologists would use portable scanners, which generate different images than stand alone scanners.  

The results were published in Plos Medicine as seen below:

PLoS Med. 2018 Nov 6;15(11):e1002683. doi: 10.1371/journal.pmed.1002683. eCollection 2018 Nov.

Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study.

Zech JR1, Badgeley MA2, Liu M2, Costa AB3, Titano JJ4, Oermann EK3.

Abstract

BACKGROUND:

There is interest in using convolutional neural networks (CNNs) to analyze medical imaging to provide computer-aided diagnosis (CAD). Recent work has suggested that image classification CNNs may not generalize to new data as well as previously believed. We assessed how well CNNs generalized across three hospital systems for a simulated pneumonia screening task.

METHODS AND FINDINGS:

A cross-sectional design with multiple model training cohorts was used to evaluate model generalizability to external sites using split-sample validation. A total of 158,323 chest radiographs were drawn from three institutions: National Institutes of Health Clinical Center (NIH; 112,120 from 30,805 patients), Mount Sinai Hospital (MSH; 42,396 from 12,904 patients), and Indiana University Network for Patient Care (IU; 3,807 from 3,683 patients). These patient populations had an age mean (SD) of 46.9 years (16.6), 63.2 years (16.5), and 49.6 years (17) with a female percentage of 43.5%, 44.8%, and 57.3%, respectively. We assessed individual models using the area under the receiver operating characteristic curve (AUC) for radiographic findings consistent with pneumonia and compared performance on different test sets with DeLong’s test. The prevalence of pneumonia was high enough at MSH (34.2%) relative to NIH and IU (1.2% and 1.0%) that merely sorting by hospital system achieved an AUC of 0.861 (95% CI 0.855-0.866) on the joint MSH-NIH dataset. Models trained on data from either NIH or MSH had equivalent performance on IU (P values 0.580 and 0.273, respectively) and inferior performance on data from each other relative to an internal test set (i.e., new data from within the hospital system used for training data; P values both <0.001). The highest internal performance was achieved by combining training and test data from MSH and NIH (AUC 0.931, 95% CI 0.927-0.936), but this model demonstrated significantly lower external performance at IU (AUC 0.815, 95% CI 0.745-0.885, P = 0.001). To test the effect of pooling data from sites with disparate pneumonia prevalence, we used stratified subsampling to generate MSH-NIH cohorts that only differed in disease prevalence between training data sites. When both training data sites had the same pneumonia prevalence, the model performed consistently on external IU data (P = 0.88). When a 10-fold difference in pneumonia rate was introduced between sites, internal test performance improved compared to the balanced model (10× MSH risk P < 0.001; 10× NIH P = 0.002), but this outperformance failed to generalize to IU (MSH 10× P < 0.001; NIH 10× P = 0.027). CNNs were able to directly detect hospital system of a radiograph for 99.95% NIH (22,050/22,062) and 99.98% MSH (8,386/8,388) radiographs. The primary limitation of our approach and the available public data is that we cannot fully assess what other factors might be contributing to hospital system-specific biases.

CONCLUSION:

Pneumonia-screening CNNs achieved better internal than external performance in 3 out of 5 natural comparisons. When models were trained on pooled data from sites with different pneumonia prevalence, they performed better on new pooled data from these sites but not on external data. CNNs robustly identified hospital system and department within a hospital, which can have large differences in disease burden and may confound predictions.

PMID: 30399157 PMCID: PMC6219764 DOI: 10.1371/journal.pmed.1002683

[Indexed for MEDLINE] Free PMC Article

Images from this publication.See all images (3)Free text

 

Surprisingly, not many researchers have begun to use data obtained from different hospitals.  The FDA has issued some guidance in the matter but considers “locked” AI software or unchanging software as a medical device.  However they just announced development of a framework for regulating more cutting edge software that continues to learn over time.

Still the key point is that collaboration over multiple health systems in various countries may be necessary for development of AI software which is used in multiple clinical settings.  Otherwise each hospital will need to develop their own software only used on their own system and would provide a regulatory headache for the FDA.

Other articles on Artificial Intelligence in Clinical Medicine on this Open Access Journal include:

Top 12 Artificial Intelligence Innovations Disrupting Healthcare by 2020

The launch of SCAI – Interview with Gérard Biau, director of the Sorbonne Center for Artificial Intelligence (SCAI).

Real Time Coverage @BIOConvention #BIO2019: Machine Learning and Artificial Intelligence #AI: Realizing Precision Medicine One Patient at a Time

50 Contemporary Artificial Intelligence Leading Experts and Researchers

Read Full Post »

Reporter: Gail S. Thornton, M.A.

This article is excerpted from the Harvard Business Review, May 28, 2019

By Moni Miyashita, Michael Brady

3.4.13   The Health Care Benefits of Combining Wearables and AI, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 3: AI in Medicine

In southeast England, patients discharged from a group of hospitals serving 500,000 people are being fitted with a Wi-Fi-enabled armband that remotely monitors vital signs such as respiratory rate, oxygen levels, pulse, blood pressure, and body temperature.

Under a National Health Service pilot program that now incorporates artificial intelligence to analyze all that patient data in real time, hospital readmission rates are down, and emergency room visits have been reduced. What’s more, the need for costly home visits has dropped by 22%. Longer term, adherence to treatment plans have increased to 96%, compared to the industry average of 50%.

The AI pilot is targeting what Harvard Business School Professor and Innosight co-founder Clay Christensen calls “non-consumption.”  These are opportunity areas where consumers have a job to be done that isn’t currently addressed by an affordable or convenient solution.

Before the U.K. pilot at the Dartford and Gravesham hospitals, for instance, home monitoring had involved dispatching hospital staffers to drive up to 90 minutes round-trip to check in with patients in their homes about once per week. But with algorithms now constantly searching for warning signs in the data and alerting both patients and professionals instantly, a new capability is born: providing healthcare before you knew you even need it.

The biggest promise of artificial intelligence — accurate predictions at near-zero marginal cost — has rightly generated substantial interest in applying AI to nearly every area of healthcare. But not every application of AI in healthcare is equally well-suited to benefit. Moreover, very few applications serve as an appropriate strategic response to the largest problems facing nearly every health system: decentralization and margin pressure.

Take for example, medical imaging AI tools — an area in which hospitals are projected to spend $2 billion annually within four years. Accurately diagnosing diseases from cancers to cataracts is a complex task, with difficult-to-quantify but typically major consequences. However, the task is currently typically part of larger workflows performed by extensively trained, highly specialized physicians who are among some of the world’s best minds. These doctors might need help at the margins, but this is a job already being done. Such factors make disease diagnosis an extraordinarily difficult area for AI to create transformative change. And so the application of AI in such settings  —  even if beneficial  to patient outcomes —  is unlikely to fundamentally improve the way healthcare is delivered or to substantially lower costs in the near-term.

However, leading organizations seeking to decentralize care can deploy AI to do things that have never been done before. For example: There’s a wide array of non-acute health decisions that consumers make daily. These decisions do not warrant the attention of a skilled clinician but ultimately play a large role in determining patient’s health — and ultimately the cost of healthcare.

According to the World Health Organization, 60% of related factors to individual health and quality of life are correlated to lifestyle choices, including taking prescriptions such as blood-pressure medications correctly, getting exercise, and reducing stress. Aided by AI-driven models, it is now possible to provide patients with interventions and reminders throughout this day-to-day process based on changes to the patient’s vital signs.

Home health monitoring itself isn’t new. Active programs and pilot studies are underway through leading institutions ranging from Partners Healthcare, United Healthcare, and the Johns Hopkins School of Medicine, with positive results. But those efforts have yet to harness AI to make better judgements and recommendations in real time. Because of the massive volumes of data involved, machine learning algorithms are particularly well suited to scaling that task for large populations. After all, large sets of data are what power AI by making those algorithms smarter.

By deploying AI, for instance, the NHS program is not only able to scale up in the U.K. but also internationally. Current Health, the venture-capital backed maker of the patient monitoring devices used in the program, recently received FDA clearance to pilot the system in the U.S. and is now testing it with New York’s Mount Sinai Hospital. It’s part of an effort to reduce patient readmissions, which costs U.S. hospitals about $40 billion annually.

The early success of such efforts drives home three lessons in using AI to address non-consumption in the new world of patient-centric healthcare:

1) Focus on impacting critical metrics – for example, reducing costly hospital readmission rates.

Start small to home in on the goal of making an impact on a key metric tied to both patient outcomes and financial sustainability. As in the U.K. pilot, this can be done through a program with select hospitals or provider locations. In another case Grady Hospital, the largest public hospital in Atlanta, points to $4M in saving from reduced readmission rates by 31% over two years thanks to the adoption of an AI tool which identifies ‘at-risk’ patients. The system alerts clinical teams to initiate special patient touch points and interventions.

2) Reduce risk by relying on new kinds of partners.

Don’t try to do everything alone. Instead, form alliances with partners that are aiming to tackle similar problems. Consider the Synaptic Healthcare Alliance, a collaborative pilot program between Aetna, Ascension, Humana, Optum, and others. The alliance is using Blockchain to create a giant dataset across various health care providers, with AI trials on the data getting underway. The aim is to streamline health care provider data management with the goal of reducing the cost of processing claims while also improving access to care. Going it alone can be risky due to data incompatibility issues alone. For instance, the M.D. Anderson Cancer Center had to write off millions in costs for a failed AI project due in part to incompatibility with its electronic health records system. By joining forces, Synaptic’s dataset will be in a standard format that makes records and results transportable.

3) Use AI to collaborate, not compete, with highly-trained professionals.

Clinicians are often looking to augment their knowledge and reasoning, and AI can help. Many medical AI applications do actually compete with doctors. In radiology, for instance, some algorithms have performed image-bases diagnosis as well as or better than human experts. Yet it’s unclear if patients and medical institutions will trust AI to automate that job entirely. A University of California at San Diego pilot in which AI successfully diagnosed childhood diseases more accurately than junior-level pediatricians still required senior doctors to personally review and sign off on the diagnosis. The real aim is always going to be to use AI to collaborate with clinicians seeking higher precision — not try to replace them.

MIT and MGH have developed a deep learning model which identifies patients likely to develop breast cancer in the future. Learning from data on 60,000 prior patients, the AI system allows physicians to personalize their approach to breast cancer screening, essentially creating a detailed risk profile for each patient.

Taken together, these three lessons paired with solutions targeted at non-consumption have the potential to provide a clear path to effectively harnessing a technology that has been subject to rampant over-promising. Longer term, we believe the one of the transformative benefits of AI will be deepening relationships between health providers and patients. The U.K. pilot, for instance, is resulting in more frequent proactive check-ins that never would have happened before. That’s good for both improving health as well as customer loyalty in the emerging consumer-centric healthcare marketplace.

Source:

https://hbr.org/2019/05/the-health-care-benefits-of-combining-wearables-and-ai

 

Read Full Post »

These twelve artificial intelligence innovations are expected to start impacting clinical care by the end of the decade.

Reporter: Gail S. Thornton, M.A.

This article is excerpted from Health IT Analytics, April 11, 2019.

 By Jennifer Bresnick

3.4.14   These twelve artificial intelligence innovations are expected to start impacting clinical care by the end of the decade, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 3: AI in Medicine

April 11, 2019 – There’s no question that artificial intelligence is moving quickly in the healthcare industry.  Even just a few months ago, AI was still a dream for the next generation: something that would start to enter regular care delivery in a couple of decades – maybe ten or fifteen years for the most advanced health systems.

Even Partners HealthCare, the Boston-based giant on the very cutting edge of research and reform, set a ten-year timeframe for artificial intelligence during its 2018 World Medical Innovation Forum, identifying a dozen AI technologies that had the potential to revolutionize patient care within the decade.

But over the past twelve months, research has progressed so rapidly that Partners has blown up that timeline. 

Instead of viewing AI as something still lingering on the distant horizon, this year’s Disruptive Dozen panel was tasked with assessing which AI innovations will be ready to fundamentally alter the delivery of care by 2020 – now less than a year away.

Sixty members of the Partners faculty participated in nominating and narrowing down the tools they think will have an almost immediate benefit for patients and providers, explained Erica Shenoy, MD, PhD, an infectious disease specialist at Massachusetts General Hospital (MGH).

“These are innovations that have a strong potential to make significant advancement in the field, and they are also technologies that are pretty close to making it to market,” she said.

The results include everything from mental healthcare and clinical decision support to coding and communication, offering patients and their providers a more efficient, effective, and cost-conscious ecosystem for improving long-term outcomes.

In order from least to greatest potential impact, here are the twelve artificial intelligence innovations poised to become integral components of the next decade’s data-driven care delivery system.

NARROWING THE GAPS IN MENTAL HEALTHCARE

Nearly twenty percent of US patients struggle with a mental health disorder, yet treatment is often difficult to access and expensive to use regularly.  Reducing barriers to access for mental and behavioral healthcare, especially during the opioid abuse crisis, requires a new approach to connecting patients with services.

AI-driven applications and therapy programs will be a significant part of the answer.

“The promise and potential for digital behavioral solutions and apps is enormous to address the gaps in mental healthcare in the US and across the world,” said David Ahern, PhD, a clinical psychologist at Brigham & Women’s Hospital (BWH). 

Smartphone-based cognitive behavioral therapy and integrated group therapy are showing promise for treating conditions such as depression, eating disorders, and substance abuse.

While patients and providers need to be wary of commercially available applications that have not been rigorously validated and tested, more and more researchers are developing AI-based tools that have the backing of randomized clinical trials and are showing good results.

A panel of experts from Partners HealthCare presents the Disruptive Dozen at WMIF19.
A panel of experts from Partners HealthCare presents the Disruptive Dozen at WMIF19.

Source: Partners HealthCare

STREAMLINING WORKFLOWS WITH VOICE-FIRST TECHNOLOGY

Natural language processing is already a routine part of many behind-the-scenes clinical workflows, but voice-first tools are expected to make their way into the patient-provider encounter in a new way. 

Smart speakers in the clinic are prepping to relieve clinicians of their EHR burdens, capturing free-form conversations and translating the content into structured documentation.  Physicians and nurses will be able to collect and retrieve information more quickly while spending more time looking patients in the eye.

Patients may benefit from similar technologies at home as the consumer market for virtual assistants continues to grow.  With companies like Amazon achieving HIPAA compliance for their consumer-facing products, individuals may soon have more robust options for voice-first chronic disease management and patient engagement.

IDENTIFYING INDIVIDUALS AT HIGH RISK OF DOMESTIC VIOLENCE

Underreporting makes it difficult to know just how many people suffer from intimate partner violence (IPV), says Bharti Khurana, MD, an emergency radiologist at BWH.  But the symptoms are often hiding in plain sight for radiologists.

Using artificial intelligence to flag worrisome injury patterns or mismatches between patient-reported histories and the types of fractures present on x-rays can alert providers to when an exploratory conversation is called for.

“As a radiologist, I’m very excited because this will enable me to provide even more value to the patient instead of simply evaluating their injuries.  It’s a powerful tool for clinicians and social workers that will allow them to approach patients with confidence and with less worry about offending the patient or the spouse,” said Khurana.

REVOLUTIONIZING ACUTE STROKE CARE

Every second counts when a patient experiences a stroke.  In far-flung regions of the United States and in the developing world, access to skilled stroke care can take hours, drastically increasing the likelihood of significant long-term disability or death.

Artificial intelligence has the potential to close the gaps in access to high-quality imaging studies that can identify the type of stroke and the location of the clot or bleed.  Research teams are currently working on AI-driven tools that can automate the detection of stroke and support decision-making around the appropriate treatment for the individual’s needs.  

In rural or low-resource care settings, these algorithms can compensate for the lack of a specialist on-site and ensure that every stroke patient has the best possible chance of treatment and recovery.

AI revolutionizing stroke care

Source: Getty Images

REDUCING ADMINISTRATIVE BURDENS FOR PROVIDERS

The costs of healthcare administration are off the charts.  Recent data from the Center for American progress states that providers spend about $282 billion per year on insurance and medical billing, and the burdens are only going to keep getting bigger.

Medical coding and billing is a perfect use case for natural language processing and machine learning.  NLP is well-suited to translating free-text notes into standardized codes, which can move the task off the plates of physicians and reduce the time and effort spent on complying with convoluted regulations.

“The ultimate goal is to help reduce the complexity of the coding and billing process through automation, thereby reducing the number of mistakes – and, in turn, minimizing the need for such intense regulatory oversight,” Partners says.

NLP is already in relatively wide use for this task, and healthcare organizations are expected to continue adopting this strategy as a way to control costs and speed up their billing cycles.

UNLEASHING HEALTH DATA THROUGH INFORMATION EXCHANGE

AI will combine with another game-changing technology, known as FHIR, to unlock siloes of health data and support broader access to health information.

Patients, providers, and researchers will all benefit from a more fluid health information exchange environment, especially since artificial intelligence models are extremely data-hungry.

Stakeholders will need to pay close attention to maintaining the privacy and security of data as it moves across disparate systems, but the benefits have the potential to outweigh the risks.

“It completely depends on how everyone in the medical community advocates for, builds, and demands open interfaces and open business models,” said Samuel Aronson, Executive Director of IT at Partners Personalized Medicine.

“If we all row in the same direction, there’s a real possibility that we will see fundamental improvements to the healthcare system in 3 to 5 years.”

OFFERING NEW APPROACHES FOR EYE HEALTH AND DISEASE

Image-heavy disciplines have started to see early benefits from artificial intelligence since computers are particularly adept at analyzing patterns in pixels.  Ophthalmology is one area that could see major changes as AI algorithms become more accurate and more robust.

From glaucoma to diabetic retinopathy, millions of patients experience diseases that can lead to irreversible vision loss every year.  Employing AI for clinical decision support can extend access to eye health services in low-resource areas while giving human providers more accurate tools for catching diseases sooner.

REAL-TIME MONITORING OF BRAIN HEALTH

The brain is still the body’s most mysterious organ, but scientists and clinicians are making swift progress unlocking the secrets of cognitive function and neurological disease.  Artificial intelligence is accelerating discovery by helping providers interpret the incredibly complex data that the brain produces.

From predicting seizures by reading EEG tests to identifying the beginnings of dementia earlier than any human, artificial intelligence is allowing providers to access more detailed, continuous measurements – and helping patients improve their quality of life.

Seizures can happen in patients with other serious illnesses, such as kidney or liver failure, explained, Bandon Westover, MD, PhD, executive director of the Clinical Data Animation Center at MGH, but many providers simply don’t know about it.

“Right now, we mostly ignore the brain unless there’s a special need for suspicion,” he said.  “In a year’s time, we’ll be catching a lot more seizures and we’ll be doing it with algorithms that can monitor patients continuously and identify more ambiguous patterns of dysfunction that can damage the brain in a similar manner to seizures.”

AUTOMATING MALARIA DETECTION IN DEVELOPING REGIONS

Malaria is a daily threat for approximately half the world’s population.  Nearly half a million people died from the mosquito-borne disease in 2017, according to the World Health Organization, and the majority of the victims are children under the age of five.

Deep learning tools can automate the process of quantifying malaria parasites in blood samples, a challenging task for providers working without pathologist partners.  One such tool achieved 90 percent accuracy and specificity, putting it on par with pathology experts.

This type of software can be run on a smartphone hooked up to a camera on a microscope, dramatically expanding access to expert-level diagnosis and monitoring.

AI for diagnosing and detecting malaria

Source: Getty Images

AUGMENTING DIAGNOSTICS AND DECISION-MAKING

Artificial intelligence has made especially swift progress in diagnostic specialties, including pathology. AI will continue to speed down the road to maturity in this area, predicts Annette Kim, MD, PhD, associate professor of pathology at BWH and Harvard Medical School.

“Pathology is at the center of diagnosis, and diagnosis underpins a huge percentage of all patient care.  We’re integrating a huge amount of data that funnels through us to come to a diagnosis.  As the number of data points increases, it negatively impacts the time we have to synthesize the information,” she said.

AI can help automate routine, high-volume tasks, prioritize and triage cases to ensure patients are getting speedy access to the right care, and make sure that pathologists don’t miss key information hidden in the enormous volumes of clinical and test data they must comb through every day.

“This is where AI can have a huge impact on practice by allowing us to use our limited time in the most meaningful manner,” Kim stressed.

PREDICTING THE RISK OF SUICIDE AND SELF-HARM

Suicide is the tenth leading cause of death in the United States, claiming 45,000 lives in 2016.  Suicide rates are on the rise due to a number of complex socioeconomic and mental health factors, and identifying patients at the highest risk of self-harm is a difficult and imprecise science.

Natural language processing and other AI methodologies may help providers identify high-risk patients earlier and more reliably.  AI can comb through social media posts, electronic health record notes, and other free-text documents to flag words or concepts associated with the risk of harm.

Researchers also hope to develop AI-driven apps to provide support and therapy to individuals likely to harm themselves, especially teenagers who commit suicide at higher rates than other age groups.

Connecting patients with mental health resources before they reach a time of crisis could save thousands of lives every year.

REIMAGINING THE WORLD OF MEDICAL IMAGING

Radiology is already one of AI’s early beneficiaries, but providers are just at the beginning of what they will be able to accomplish in the next few years as machine learning explodes into the imaging realm.

AI is predicted to bring earlier detection, more accurate assessment of complex images, and less expensive testing for patients across a huge number of clinical areas.

But as leaders in the AI revolution, radiologists also have a significant responsibility to develop and deploy best practices in terms of trustworthiness, workflow, and data protection.

“We certainly feel the onus on the radiology community to make sure we do deliver and translate this into improved care,” said Alexandra Golby, MD, a neurosurgeon and radiologist at BWH and Harvard Medical School.

“Can radiology live up to the expectations?  There are certainly some challenges, including trust and understanding of what the algorithms are delivering.  But we desperately need it, and we want to equalize care across the world.”

Radiologists have been among the first to overcome their trepidation about the role of AI in a changing clinical world, and are eagerly embracing the possibilities of this transformative approach to augmenting human skills.”

“All of the imaging societies have opened their doors to the AI adventure,” Golby said.  “The community very anxious to learn, codevelop, and work with all of the industry partners to turn this technology into truly valuable tools. We’re very optimistic and very excited, and we look forward to learning more about how AI can improve care.”

Source:

https://healthitanalytics.com/news/top-12-artificial-intelligence-innovations-disrupting-healthcare-by-2020

 

Read Full Post »

Older Posts »