Feeds:
Posts
Comments

Posts Tagged ‘computational algorithm’

Machine Learning (ML) in cancer prognosis prediction helps the researcher to identify multiple known as well as candidate cancer diver genes

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

This image has an empty alt attribute; its file name is morethanthes.jpg
Seeing “through” the cancer with the power of data analysis — possible with the help of artificial intelligence. Credit: MPI f. Molecular Genetics/ Ella Maru Studio
Image Source: https://medicalxpress.com/news/2021-04-sum-mutations-cancer-genes-machine.html

Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type have become a necessity in cancer research, as it can facilitate the subsequent clinical management of patients. The importance of classifying cancer patients into high or low-risk groups has led many research teams, from the biomedical and the bioinformatics field, to study the application of machine learning (ML) and Artificial Intelligence (AI) methods. Therefore, these techniques have been utilized as an aim to model the progression and treatment of cancerous conditions by predicting new algorithms.

In the majority of human cancers, heritable loss of gene function through cell division may be mediated as often by epigenetic as by genetic abnormalities. Epigenetic modification occurs through a process of interrelated changes in CpG island methylation and histone modifications. Candidate gene approaches of cell cycle, growth regulatory and apoptotic genes have shown epigenetic modification associated with loss of cognate proteins in sporadic pituitary tumors.

On 11th November 2020, researchers from the University of California, Irvine, has established the understanding of epigenetic mechanisms in tumorigenesis and publicized a previously undetected repertoire of cancer driver genes. The study was published in “Science Advances

Researchers were able to identify novel tumor suppressor genes (TSGs) and oncogenes (OGs), particularly those with rare mutations by using a new prediction algorithm, called DORGE (Discovery of Oncogenes and tumor suppressor genes using Genetic and Epigenetic features) by integrating the most comprehensive collection of genetic and epigenetic data.

The senior author Wei Li, Ph.D., the Grace B. Bell chair and professor of bioinformatics in the Department of Biological Chemistry at the UCI School of Medicine said

Existing bioinformatics algorithms do not sufficiently leverage epigenetic features to predict cancer driver genes, even though epigenetic alterations are known to be associated with cancer driver genes.

The Study

This study demonstrated how cancer driver genes, predicted by DORGE, included both known cancer driver genes and novel driver genes not reported in current literature. In addition, researchers found that the novel dual-functional genes, which DORGE predicted as both TSGs and OGs, are highly enriched at hubs in protein-protein interaction (PPI) and drug/compound-gene networks.

Prof. Li explained that the DORGE algorithm, successfully leveraged public data to discover the genetic and epigenetic alterations that play significant roles in cancer driver gene dysregulation and could be instrumental in improving cancer prevention, diagnosis and treatment efforts in the future.

Another new algorithmic prediction for the identification of cancer genes by Machine Learning has been carried out by a team of researchers at the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin and the Institute of Computational Biology of Helmholtz Zentrum München combining a wide variety of data analyzed it with “Artificial Intelligence” and identified numerous cancer genes. They termed the algorithm as EMOGI (Explainable Multi-Omics Graph Integration). EMOGI can predict which genes cause cancer, even if their DNA sequence is not changed. This opens up new perspectives for targeted cancer therapy in personalized medicine and the development of biomarkers. The research was published in Nature Machine Intelligence on 12th April 2021.

In cancer, cells get out of control. They proliferate and push their way into tissues, destroying organs and thereby impairing essential vital functions. This unrestricted growth is usually induced by an accumulation of DNA changes in cancer genes—i.e. mutations in these genes that govern the development of the cell. But some cancers have only very few mutated genes, which means that other causes lead to the disease in these cases.

The Study

Overlap of EMOGI’s positive predictions with known cancer genes (KCGs) and candidate cancer genes
Image Source: https://static-content.springer.com/esm/art%3A10.1038%2Fs42256-021-00325-y/MediaObjects/42256_2021_325_MOESM1_ESM.pdf

The aim of the study has been represented in 4 main headings

  • Additional targets for personalized medicine
  • Better results by combination
  • In search of hints for further studies
  • Suitable for other types of diseases as well

The team was headed by Annalisa Marsico. The team used the algorithm to identify 165 previously unknown cancer genes. The sequences of these genes are not necessarily altered-apparently, already a dysregulation of these genes can lead to cancer. All of the newly identified genes interact closely with well-known cancer genes and be essential for the survival of tumor cells in cell culture experiments. The EMOGI can also explain the relationships in the cell’s machinery that make a gene a cancer gene. The software integrates tens of thousands of data sets generated from patient samples. These contain information about DNA methylations, the activity of individual genes and the interactions of proteins within cellular pathways in addition to sequence data with mutations. In these data, a deep-learning algorithm detects the patterns and molecular principles that lead to the development of cancer.

Marsico says

Ideally, we obtain a complete picture of all cancer genes at some point, which can have a different impact on cancer progression for different patients

Unlike traditional cancer treatments such as chemotherapy, personalized treatments are tailored to the exact type of tumor. “The goal is to choose the best treatment for each patient, the most effective treatment with the fewest side effects. In addition, molecular properties can be used to identify cancers that are already in the early stages.

Roman Schulte-Sasse, a doctoral student on Marsico’s team and the first author of the publication says

To date, most studies have focused on pathogenic changes in sequence, or cell blueprints, at the same time, it has recently become clear that epigenetic perturbation or dysregulation gene activity can also lead to cancer.

This is the reason, researchers merged sequence data that reflects blueprint failures with information that represents events in cells. Initially, scientists confirmed that mutations, or proliferation of genomic segments, were the leading cause of cancer. Then, in the second step, they identified gene candidates that are not very directly related to the genes that cause cancer.

Clues for future directions

The researcher’s new program adds a considerable number of new entries to the list of suspected cancer genes, which has grown to between 700 and 1,000 in recent years. It was only through a combination of bioinformatics analysis and the newest Artificial Intelligence (AI) methods that the researchers were able to track down the hidden genes.

Schulte-Sasse says “The interactions of proteins and genes can be mapped as a mathematical network, known as a graph.” He explained by giving an example of a railroad network; each station corresponds to a protein or gene, and each interaction among them is the train connection. With the help of deep learning—the very algorithms that have helped artificial intelligence make a breakthrough in recent years – the researchers were able to discover even those train connections that had previously gone unnoticed. Schulte-Sasse had the computer analyze tens of thousands of different network maps from 16 different cancer types, each containing between 12,000 and 19,000 data points.

Many more interesting details are hidden in the data. Patterns that are dependent on particular cancer and tissue were seen. The researchers were also observed this as evidence that tumors are triggered by different molecular mechanisms in different organs.

Marsico explains

The EMOGI program is not limited to cancer, the researchers emphasize. In theory, it can be used to integrate diverse sets of biological data and find patterns there. It could be useful to apply our algorithm for similarly complex diseases for which multifaceted data are collected and where genes play an important role. An example might be complex metabolic diseases such as diabetes.

Main Source

New prediction algorithm identifies previously undetected cancer driver genes

https://advances.sciencemag.org/content/6/46/eaba6784  

Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms

https://www.nature.com/articles/s42256-021-00325-y#citeas

Other Related Articles published in this Open Access Online Scientific Journal include the following:

AI System Used to Detect Lung Cancer

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/06/28/ai-system-used-to-detect-lung-cancer/

Deep Learning extracts Histopathological Patterns and accurately discriminates 28 Cancer and 14 Normal Tissue Types: Pan-cancer Computational Histopathology Analysis

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/10/28/deep-learning-extracts-histopathological-patterns-and-accurately-discriminates-28-cancer-and-14-normal-tissue-types-pan-cancer-computational-histopathology-analysis/

Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis

Curator & Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/12/08/evolution-of-the-human-cell-genome-biology-field-of-gene-expression-gene-regulation-gene-regulatory-networks-and-application-of-machine-learning-algorithms-in-large-scale-biological-data-analysis/

Cancer detection and therapeutics

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/02/cancer-detection-and-therapeutics/

Free Bio-IT World Webinar: Machine Learning to Detect Cancer Variants

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2016/05/04/free-bio-it-world-webinar-machine-learning-to-detect-cancer-variants/

Artificial Intelligence: Genomics & Cancer

https://pharmaceuticalintelligence.com/ai-in-genomics-cancer/

Premalata Pati, PhD, PostDoc in Biological Sciences, Medical Text Analysis with Machine Learning

https://pharmaceuticalintelligence.com/2021-medical-text-analysis-nlp/premalata-pati-phd-postdoc-in-pharmaceutical-sciences-medical-text-analysis-with-machine-learning/

Read Full Post »

Robotically Driven System Could Reduce Cost of Discovering Drugs

Reporter: Irina Robu, PhD

However, their approach had only been tested using synthetic or previously acquired data, the team’s current model builds on this by letting the computer choose which experiments to do. The experiments were then carried out using liquid-handling robots and an automated microscope.

A total of 9,216 experiments were done, each consisting of acquiring images for a given cell clone in the presence of a given drug. The challenge for the algorithm was to learn how proteins were affected in each of these experiments, without performing all of them.

The originality of this work was to identify new phenotypes on its own as part of the learning process. To do this, it clustered the images to form phenotypes. The phenotypes were used to form a predictive model, so the learner could estimate the outcomes of unmeasured experiments. The basis of the model was to identify different sets of proteins that responded similarly to sets of drugs, so that it could predict the trend in the unmeasured experiments. The learner repeated the process for a total of 30 rounds, completing 2,697 out of the 9,216 possible experiments. As it progressively performed the experiments, it identified more phenotypes and more patterns in how sets of proteins were affected by sets of drugs.

Using an assortment of calculations, the team determined that the algorithm was able to learn a 92% accurate model for how the 96 drugs affected the 96 proteins, from only 29% of the experiments conducted.

Read Full Post »

Swansea University Uses Artificial Intelligence to Detect Cancer. Reporter: Evelina Cohn Budu Ph.D.

Swansea University is a well known and respected University in UK, a research -led institution with an excellent reputation for the quality of its student experience.

Their new type of research involving algorithms and mathematics in evaluation and identification of cancer cells.

Prof Paul Rees in collaboration with specialists from US, Germany, London and Newcastle, from the University College of Engineering, conducted a research in which the technology of fingerprint recognition software was taught to recognize cells and pinpoint them. “The algorithm recognizes the specific cells of interest by giving examples of the cells to be identified ” he said. After learning how the cells look like, the algorithm can identify target cells in a new population.
Along with these characteristics, the group of researchers can identify the age of a cell, which is very important to determine the cycle of a certain cell in a certain moment.

The research is an international collaboration with the Broad Institute of MIT  and Harvard In Cambridge Massachusetts USA, Hemholtz Zentrum in Munich, The Francis Crick Institute in London and Newcastle Upon Tyne University . The group’s paper entitled “Label -free cell cycle analysis for high-throughput imaging flow cytometry”, was published in Nature Communications on January 7, 2016.

Prof. Dr. Fabian Theis of the Helmholz Zentrum Munich , expert in “Computational Modelling in Biology” said that this discovery can open up a completely new perspective in responding to different research questions, not only cell analysis.

The computer uses algorithms to learn what cells look like

Source: http:// http://www.bbc.co.uk

Here is an example of how the artificial intelligence can be used to find an algorithm.

sources : in http://www.bbc.com/news/uk-wales-south-west-wales-35306035

http://www.swansea.ac.uk/media-centre/latest-research/newmethodtoidentifycelltypesusingartificialintelligence.php

Read Full Post »