Feeds:
Posts
Comments

Archive for the ‘CAR-T’ Category

CAR T-CELL THERAPY MARKET: 2020 – 2027

G L O B A L  M A R K E T  A N A L Y S I S  A N D

I N D U S T R Y  F O R E C A S T

 

DISCLAIMER

LPBI Group’s decision to publish the Table of Contents of this Report does not imply endorsement of the Report

Aviva Lev-Ari, PhD, RN, Founder 1.0 & 2.0 LPBI Group

Guest Reporter: MIKE WOOD

Marketing Executive
BIOTECH FORECASTS

 

ABOUT BIOTECH FORECASTS

BIOTECH FORECASTS is a full-service market research and business- consulting firm primarily focusing on healthcare, pharmaceutical, and biotechnology industries. BIOTECH FORECASTS provides global as well as medium and small Pharmaceutical and Biotechnology businesses with unmatched quality of “Market Research Reports” and “Business Intelligence Solutions”. BIOTECH FORECASTS has a targeted view to provide business insights and consulting to assist its clients to make strategic business decisions, and achieve sustainable growth in their respective market domain.

UPDATED on 10/13/2020

CAR T-CELL THERAPY MARKET

Mike Wood

Mike Wood

Marketing Executive at Biotech Forecasts

CAR T-cell therapy as a part of adoptive cell therapy (ACT), has become one of the most rapidly growing and promising fields in the Immuno-oncology. As compared to the conventional cancer therapies, CAR T-cell therapy is the single-dose solution for the treatment of various cancers, significantly for some lethal forms of hematological malignancies.

CAR T-cell therapy mainly involves the use of engineered T-cells, the process starts with the extraction of T-cells through leukapheresis, either from the patient (autologous) or a healthy donor (allogeneic). After the expression of a synthetic receptor (Chimeric Antigen Receptor) in the lab, the altered T-cells are expanded to the right dose and administered into the patient’s body. where they target and attach to a specific antigen on the tumor surface, to kill the cancerous cells by igniting the apoptosis.

The global CAR T-cell therapy market was valued at $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027.

Factors that drive the market growth involve, (1) Increased in funding for R&D activities pertaining to cell and gene therapy. By H1 2020 cell and gene therapy companies set new records in the fundraising despite the pandemic crisis. For Instance, by June 2020 totaled $1,452 Million raised in Five IPOs including, Legend Biotech ($487M), Passage Bio ($284M), Akouos ($244M), Generation Bio ($230M), and Beam Therapeutics ($207M), which is 2.5 times the total IPO of 2019.

Moreover, in 2019 cell therapy companies specifically have raised $560 million of venture capital, including Century Therapeutics ($250M), Achilles Therapeutics Ltd. ($121M in series B), NKarta Therapeutics Inc. ($114M), and Tmunity Therapeutics ($75M in Series B).

(2) Increased in No. of Approved Products, By July 2020, there are a total of 03 approved CAR T-cell therapy products, including KYMRIAH®, YESCARTA®, and the most recently approved TECARTUS™ (formerly KTE-X19). Furthermore, two CAR T-cell therapies BB2121, and JCAR017 are expected to get the market approval by the end of 2020 or in early 2021.

Other factors that boost the market growth involves; (3) increase in government support, (4) ethical acceptance of Cell and Gene therapy for cancer treatment, (5) rise in the prevalence of cancer, and (6) an increase in awareness regarding the CAR T-cell therapy.

However, high costs associated with the treatment (KYMRIAH® cost around $475,000, and YESCARTA® costs $373,000 per infusion), long production hours, obstacles in treating solid tumors, and unwanted immune responses & potential side effects might hamper the market growth.

The report also presents a detailed quantitative analysis of the current market trends and future estimations from 2020 to 2027.

The forecasts cover 2 Approach Types, 5 Antigen Types, 5 Application Types, Regions, and 14 Countries.

The report comes with an associated file covering quantitative data from all numeric forecasts presented in the report, as well as with a Clinical Trials Data File.

KEY FINDINGS

The report has the following key findings:

  • The global CAR T-cell therapy market accounted for $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027.
  • By approach type the autologous segment was valued at $655.26 million in 2019 and is estimated to reach $ 3,324.52 million by 2027, registering a CAGR of 22.51% from 2020 to 2027.
  • By approach type, the allogeneic segment exhibits the highest CAGR of 32.63%.
  • Based on the Antigen segment CD19 was the largest contributor among the other segments in 2019.
  • The Acute lymphocytic leukemia (ALL) segment generated the highest revenue and is expected to continue its dominance in the future, followed by the Diffuse large B-cell lymphoma (DLBCL) segment.
  • North America dominated the global CAR T-cell therapy market in 2019 and is projected to continue its dominance in the future.
  • China is expected to grow the highest in the Asia-Pacific region during the forecast period.

TOPICS COVERED

The report covers the following topics:

  • Market Drivers, Restraints, and Opportunities
  • Porters Five Forces Analysis
  • CAR T-Cell Structure, Generations, Manufacturing, and Pricing Models
  • Top Winning Strategies, Top Investment Pockets
  • Analysis of by Approach Type, Antigen Type, Application, and Region
  • 51 Company Profiles, Product Portfolio, and Key Strategies
  • Approved Products Profiles, and list of Expected Approvals
  • COVID-19 Impact on the Cell and Gene Therapy Industry
  • CAR T-cell therapy clinical trials analysis from 1997 to 2019
  • Market analysis and forecasts from 2020 to 2027

FORECAST SEGMENTATION

By Approach Type

  • Autologous
  • Allogeneic

By Antigen Type

  • CD19
  • CD20
  • BCMA
  • MSLN
  • Others

By Application

  • Acute lymphoblastic leukemia (ALL)
  • Diffuse large B-Cell lymphoma (DLBCL)
  • Multiple Myeloma (MM)
  • Acute Myeloid Leukemia (AML)
  • Other Cancer Indications

By Region

  • North America: USA, Canada, Mexico
  • Europe: UK, Germany, France, Spain, Italy, Rest of Europe
  • Asia-Pacific: China, Japan, India, South Korea, Rest of Asia-Pacific
  • LAMEA: Brazil, South Africa, Rest of LAMEA

Contact at info@biotechforecasts.com for any Queries or Free Report Sample

Report this

Published by

Mike Wood
Marketing Executive at Biotech Forecasts
1 article
The global CAR T-cell therapy market was valued at $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027. hashtagcelltherapy hashtaggenetherapy hashtagimmunotherapy hashtagcancertreatment hashtagcartcell hashtagregenerativemedicine hashtagbiotech hashtagcancer

 

Table of Contents

 

CHAPTER 1: INTRODUCTION

1.1 REPORT DESCRIPTION 17
1.2 TOPICS COVERED 19
1.3 KEY MARKET SEGMENTS 20
1.4 KEY BENEFITS 21
1.5 RESEARCH METHODOLOGY 21
1.6 TARGET AUDIENCE 22
1.7 COMPANIES MENTIONED 23

CHAPTER 2: EXECUTIVE SUMMARY

2.1 EXECUTIVE SUMMARY 26
2.2 CXO PROSPECTIVE 29

CHAPTER 3: MARKET OVERVIEW

3.1 MARKET DEFINITION AND SCOPE 30
3.2 KEY FINDINGS 31
3.3 TOP INVESTMENT POCKETS 32
3.4 TOP WINNING STRATEGIES 33
3.4.1.Top winning strategies, by year, 2017-2019* 34
3.4.2.Top winning strategies, by development, 2017-2019*(%) 34
3.4.3.Top winning strategies, by company, 2017-2019* 35
3.5 TOP PLAYER POSITIONING, BY PIPELINE VOLUME, 2019 38
3.6 PORTERS FIVE FORCES ANALYSIS 39
3.7 COVID19 IMPACT ON CELL AND GENE THERAPY (CGT) INDUSTRY 41
3.8 MARKET DYNAMICS 46
3.8.1    Drivers 46
3.8.1.1   Increase in funding for R&D activities of CAR T-cell therapy 46
3.8.1.2   The rise in the prevalence of cancer 47
3.8.1.3   Increase in awareness regarding CAR T-cell therapy 47

 

3.8.2    Restrains 48
3.8.2.1   The high cost of CAR T-cell therapy treatment 48
3.8.2.2   Unwanted immune responses and side effects 48
3.8.2.3   Long production time 48
3.8.2.4   Obstacles in treating solid tumors 49
3.8.3    Opportunities 49
3.8.3.1   Untapped potential for emerging markets 49

CHAPTER 4: CAR T-CELL THERAPY, A BRIEF INTRODUCTION

4.1 OVERVIEW 50
4.2 SIXTY YEARS HISTORY OF CAR T-CELL THERAPY 51
4.3 CAR T-CELL STRUCTURE AND GENERATIONS 53
4.4 CAR T-CELL MANUFACTURING PROCESSES 56
4.5 PRICING AND PAYMENT MODELS FOR CAR T-CELL THERAPIES 59

CHAPTER 5: CAR T-CELL THERAPY MARKET, BY APPROACH TYPE

5.1 OVERVIEW 61
5.1.1    Market size and forecast 62
5.2 AUTOLOGOUS 63
5.2.1    Key market trends 63
5.2.2    Key growth factors and opportunities 64
5.2.3    Market size and forecast 64
5.2.4    Market size and forecast by country 65
5.3 ALLOGENEIC 66
5.3.1    Key market trends 67
5.3.2    Key growth factors and opportunities 68
5.3.3    Market size and forecast 68
5.3.4    Market size and forecast by country 69

CHAPTER 6: CAR T-CELL THERAPY MARKET, BY ANTIGEN TYPE

6.1 OVERVIEW 70
6.1.1         Market size and forecast 71
6.2 CD19 72
6.2.1         Market size and forecast 73
6.2.2         Market size and forecast by country 74

 

6.3 CD20 75
6.3.1 Market size and forecast 76
6.3.2 Market size and forecast by country 77
6.4 BCMA 78
6.4.1 Market size and forecast 79
6.4.2 Market size and forecast by country 80
6.5 MSLN 81
6.5.1 Market size and forecast 82
6.5.2 Market size and forecast by country 83
6.6 OTHERS 84
6.6.1 Market size and forecast 85
6.6.2 Market size and forecast by country 86

CHAPTER 7: CAR T-CELL THERAPY MARKET, BY APPLICATION

7.1 OVERVIEW 87
7.1.1       Market size and forecast 88
7.2 ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) 89
7.2.1       Market size and forecast 90
7.2.2       Market size and forecast by country 91
7.3 DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) 92
7.3.1       Market size and forecast 93
7.3.2       Market size and forecast by country 94
7.4 MULTIPLE MYELOMA (MM) 95
7.4.1       Market size and forecast 96
7.4.2       Market size and forecast by country 97
7.5 ACUTE MYELOID LEUKEMIA (AML) 98
7.5.1       Market size and forecast 99
7.5.2       Market size and forecast by country 100
7.6 OTHERS 101
7.6.1       Market size and forecast 102
7.6.2       Market size and forecast by country 103

CHAPTER 8: CAR T-CELL THERAPY MARKET, BY REGION

8.1 OVERVIEW 104
8.1.1       Market size and forecast 104
8.2 NORTH AMERICA 105
8.2.1       Key market trends 105
8.2.2       Key growth factors and opportunities 105

 

8.2.3       Market size and forecast, by country 106
8.2.4       Market size and forecast, by approach type 106
8.2.5       Market size and forecast, by antigen type 107
8.2.6 Market size and forecast, by application 107
8.2.6.1 U.S. market size and forecast, by approach type 108
8.2.6.2 U.S. market size and forecast, by antigen type 108
8.2.6.3 U.S. market size and forecast, by application 109
8.2.6.4 Canada market size and forecast, by approach type 110
8.2.6.5 Canada market size and forecast, by antigen type 110
8.2.6.6 Canada market size and forecast, by application 111
8.2.6.7 Mexico market size and forecast, by approach type 112
8.2.6.8 Mexico market size and forecast, by antigen type 112
8.2.6.9 Mexico market size and forecast, by application 113
8.3 EUROPE 114
8.4.1 Key market trends 114
8.4.2 Key growth factors and opportunities 114
8.4.3 Market size and forecast, by country 115
8.4.4 Market size and forecast, by approach type 115
8.4.5 Market size and forecast, by antigen type 116
8.4.6 Market size and forecast, by application 116
8.3.6.1 UK market size and forecast, by approach type 117
8.3.6.2 UK market size and forecast, by antigen type 117
8.3.6.3 UK market size and forecast, by application 118
8.3.6.4 Germany market size and forecast, by approach type 119
8.3.6.5 Germany market size and forecast, by antigen type 119
8.3.6.6 Germany market size and forecast, by application 120
8.3.6.7 France market size and forecast, by approach type 121
8.3.6.8 France market size and forecast, by antigen type 121
8.3.6.9 France market size and forecast, by application 122
8.3.6.10 Spain market size and forecast, by approach type 123
8.3.6.11 Spain market size and forecast, by antigen type 123
8.3.6.12 Spain market size and forecast, by application 124
8.3.6.13 Italy market size and forecast, by approach type 125
8.3.6.14 Italy market size and forecast, by antigen type 125
8.3.6.15 Italy market size and forecast, by application 126
8.3.6.16 Rest of Europe market size and forecast, by approach type 127
8.3.6.17 Rest of Europe market size and forecast, by antigen type 127
8.3.6.18 Rest of Europe market size and forecast, by application 128
8.4 ASIA-PACIFIC 129
8.4.1 Key market trends 129
8.4.2 Key growth factors and opportunities 129
8.4.3 Market size and forecast, by country 130
8.4.4 Market size and forecast, by approach type 130

 

8.4.5       Market size and forecast, by antigen type 131
8.4.6 Market size and forecast, by application 131
8.4.6.1 China market size and forecast, by approach type 132
8.4.6.2 China market size and forecast, by antigen type 132
8.4.6.3 China market size and forecast, by application 133
8.4.6.4 Japan market size and forecast, by approach type 134
8.4.6.5 Japan market size and forecast by antigen type 134
8.4.6.6 Japan market size and forecast, by application 135
8.4.6.7 India market size and forecast, by approach type 136
8.4.6.8 India market size and forecast, by antigen type 136
8.4.6.9 India market size and forecast, by application 137
8.4.6.10 South Korea market size and forecast, by approach type 138
8.4.6.11 South Korea market size and forecast, by antigen type 138
8.4.6.12 South Korea market size and forecast, by application 139
8.4.6.13 Rest of Asia-Pacific market size and forecast, by approach type 140
8.4.6.14 Rest of Asia-Pacific market size and forecast, by antigen type 140
8.4.6.15 Rest of Asia-Pacific market size and forecast, by application 141
8.5 LAMEA 142
8.5.1 Key market trends 142
8.5.2 Key growth factors and opportunities 142
8.5.3 Market size and forecast, by country 143
8.5.4 Market size and forecast, by approach type 143
8.5.5 Market size and forecast, by antigen type 144
8.5.6 Market size and forecast, by application 144
8.5.6.1 Brazil market size and forecast by approach type 145
8.5.6.2 Brazil market size and forecast, by antigen type 145
8.5.6.3 Brazil market size and forecast, by application 146
8.5.6.4 South Africa market size and forecast, by approach type 147
8.5.6.5 South Africa market size and forecast, by antigen type 147
8.5.6.6 South Africa market size and forecast, by application 148
8.5.6.7 Rest of LAMEA market size and forecast by approach type 149
8.5.6.8 Rest of LAMEA market size and forecast, by antigen type 149
8.5.6.9 Rest of LAMEA market size and forecast, by application 150

CHAPTER 9: CLINICAL TRIALS ANALYSIS & PRODUCT PROFILES

9.1 OVERVIEW 151
9.1.1      No. of Clinical Trials from 1997 to 2019 151
9.1.2      Clinical Trials from 1997 to 2019: Based on Approach Type 152
9.1.3      Clinical Trials from 1997 to 2019: Based on Antigen Type 153
9.1.4      Clinical Trials from 1997 to 2019: Based on Application 154
9.1.5      Clinical Trials from 1997 to 2019: Based on Region 155

 

9.2 EXPECTED APPROVALS 156
9.3 APPROVED PRODUCTS PROFILES 157
9.3.1      KYMRIAH® 157
9.3.2      YESCARTA® 159
9.3.3      TECARTUS™ 161

CHAPTER 10: COMPANY PROFILES

10.1       Abbvie Inc. 162
10.2       Adaptimmune Therapeutics Plc 164
10.3 Allogene Therapeutics, Inc. 166
10.4 Amgen, Inc 168
10.5 Anixa Biosciences, Inc. 170
10.6 Arcellx, Inc. 172
10.7 Atara Biotherapeutics, Inc. 173
10.8 Autolus Therapeutics Plc. 175
10.9 Beam Therapeutics, Inc. 177
10.10 Bellicum Pharmaceuticals, Inc. 179
10.11 BioNtech SE 181
10.12 Bluebird Bio, Inc. 183
10.13 Carsgen Therapeutics, Ltd 185
10.14 Cartesian Therapeutics, Inc. 187
10.15 Cartherics Pty Ltd. 188
10.16 Celgene Corporation 189
10.17 Cellectis SA 191
10.18 Cellular Biomedicine Group, Inc. 193
10.19 Celularity, Inc. 195
10.20 Celyad SA 196
10.21 CRISPR Therapeutics AG 198
10.22 Eureka Therapeutics, Inc. 200
10.23 Fate Therapeutics, Inc. 201
10.24 Fortress Biotech, Inc 203
10.25 Gilead Sciences, Inc. 205
10.26 Gracell Biotechnology Ltd 207
10.27 icell Gene Therapeutics 208
10.28 Johnson & Johnson 209
10.29 Juventas Cell Therapy Ltd. 211
10.30 Kuur Therapeutics 212
10.31 Legend Biotech Corp. 213
10.32 Leucid Bio Ltd. 214
10.33 Minerva Biotechnologies Corp. 215

 

10.34     Molecular Medicine SPA (Molmed) 216
10.35     Nanjing Bioheng Biotech Co., Ltd. 218
10.36     Noile-Immune Biotech Inc. 219
10.37     Novartis AG 220
10.38     Oxford Biomedica PLC 222
10.39     Persongen Biotherapeutics (Suzhou) Co., Ltd. 224
10.40     Poseida Therapeutics, Inc. 226
10.41     Precigen, Inc. 227
10.42     Precision Biosciences, Inc. 229
10.43     Sorrento Therapeutics, Inc. 231
10.44     Takara Bio Inc. 233
10.45     Takeda Pharmaceutical Company Ltd. 235
10.46     TC Biopharm Ltd. 237
10.47     Tessa Therapeutics Pte Ltd. 238
10.48     Tmunity Therapeutics, Inc. 239
10.49     Unum Therapeutics Inc. 240
10.50     Xyphos Inc. 242
10.51     Ziopharm Oncology, Inc. 243

CHAPTER 11: CONCLUSION & STRATEGIC RECOMMENTATIONS

11.1     STRATEGIC RECOMMENDATIONS 245
11.2     CONCLUSION 247

 

CONTACT

info@biotechforecasts.com

MIKE WOOD

Marketing Executive

BIOTECH FORECASTS

Read Full Post »

Prime Editing as a New CRISPR Tool to Enhance Precision and Versatility

 

Reporter: Stephen J. Williams, PhD

 

CRISPR has become a powerful molecular for the editing of genomes tool in research, drug discovery, and the clinic

(see posts and ebook on this site below)

 

however, as discussed on this site

(see posts below)

there have been many instances of off-target effects where genes, other than the selected target, are edited out.  This ‘off-target’ issue has hampered much of the utility of CRISPR in gene-therapy and CART therapy

see posts

 

However, an article in Science by Jon Cohen explains a Nature paper’s finding of a new tool in the CRISPR arsenal called prime editing, meant to increase CRISPR specificity and precision editing capabilities.

PRIME EDITING PROMISES TO BE A CUT ABOVE CRISPR

By Jon Cohen | Oct 25th, 2019

Prime editing promises to be a cut above CRISPR Jon Cohen CRISPR, an extraordinarily powerful genome-editing tool invented in 2012, can still be clumsy. … Prime editing steers around shortcomings of both techniques by heavily modifying the Cas9 protein and the guide RNA. … ” Prime editing “well may become the way that disease-causing mutations are repaired,” he says.

Science Vol. 366, No. 6464; DOI: 10.1126/science.366.6464.406

The effort, led by Drs. David Liu and Andrew Anzalone at the Broad Institute (Cambridge, MA), relies on the modification of the Cas9 protein and guide RNA, so that there is only a nick in a single strand of the double helix.  The canonical Cas9 cuts both strands of DNA, and so relies on an efficient gap repair activity of the cell.  The second part, a new type of guide RNA called a pegRNA, contains an RNA template for a new DNA sequence to be added at the target location.  This pegRNA-directed synthesis of the new template requires the attachment of a reverse transcriptase enzymes to the Cas9.  So far Liu and his colleagues have tested the technology on over 175 human and rodent cell lines with great success.  In addition, they had also corrected mutations which cause Tay Sachs disease, which previous CRISPR systems could not do.  Liu claims that this technology could correct over 89% of pathogenic variants in human diseases.

A company Prime Medicine has been formed out of this effort.

Source: https://science.sciencemag.org/content/366/6464/406.abstract

 

Read an article on Dr. Liu, prime editing, and the companies that Dr. Liu has initiated including Editas Medicine, Beam Therapeutics, and Prime Medicine at https://www.statnews.com/2019/11/06/questions-david-liu-crispr-prime-editing-answers/

(interview by StatNews  SHARON BEGLEY @sxbegle)

As was announced, prime editing for human therapeutics will be jointly developed by both Prime Medicine and Beam Therapeutics, each focusing on different types of edits and distinct disease targets, which will help avoid redundancy and allow us to cover more disease territory overall. The companies will also share knowledge in prime editing as well as in accompanying technologies, such as delivery and manufacturing.

Reader of StatNews.: Can you please compare the pros and cons of prime editing versus base editing?

The first difference between base editing and prime editing is that base editing has been widely used for the past 3 1/2 years in organisms ranging from bacteria to plants to mice to primates. Addgene tells me that the DNA blueprints for base editors from our laboratory have been distributed more than 7,500 times to more than 1,000 researchers around the world, and more than 100 research papers from many different laboratories have been published using base editors to achieve desired gene edits for a wide variety of applications. While we are very excited about prime editing, it’s brand-new and there has only been one paper published thus far. So there’s much to do before we can know if prime editing will prove to be as general and robust as base editing has proven to be.

We directly compared prime editors and base editors in our study, and found that current base editors can offer higher editing efficiency and fewer indel byproducts than prime editors, while prime editors offer more targeting flexibility and greater editing precision. So when the desired edit is a transition point mutation (C to T, T to C, A to G, or G to A), and the target base is well-positioned for base editing (that is, a PAM sequence exists approximately 15 bases from the target site), then base editing can result in higher editing efficiencies and fewer byproducts. When the target base is not well-positioned for base editing, or when other “bystander” C or A bases are nearby that must not be edited, then prime editing offers major advantages since it does not require a precisely positioned PAM sequence and is a true “search-and-replace” editing capability, with no possibility of unwanted bystander editing at neighboring bases.

Of course, for classes of mutations other than the four types of point mutations that base editors can make, such as insertions, deletions, and the eight other kinds of point mutations, to our knowledge prime editing is currently the only approach that can make these mutations in human cells without requiring double-stranded DNA cuts or separate DNA templates.

Nucleases (such as the zinc-finger nucleases, TALE nucleases, and the original CRISPR-Cas9), base editors, and prime editors each have complementary strengths and weaknesses, just as scissors, pencils, and word processors each have unique and useful roles. All three classes of editing agents already have or will have roles in basic research and in applications such as human therapeutics and agriculture.

Nature Paper on Prime Editing CRISPR

Search-and-replace genome editing without double-strand breaks or donor DNA (6)

 

Andrew V. Anzalone,  Peyton B. Randolph, Jessie R. Davis, Alexander A. Sousa,

Luke W. Koblan, Jonathan M. Levy, Peter J. Chen, Christopher Wilson,

Gregory A. Newby, Aditya Raguram & David R. Liu

 

Nature volume 576, pages149–157(2019)

 

Abstract

Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2,3,4,5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay–Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.

 

 

From Anzolone et al. Nature 2019 Figure 1.

Prime editing strategy

Cas9 targets DNA using a guide RNA containing a spacer sequence that hybridizes to the target DNA site. We envisioned the generation of guide RNAs that both specify the DNA target and contain new genetic information that replaces target DNA nucleotides. To transfer information from these engineered guide RNAs to target DNA, we proposed that genomic DNA, nicked at the target site to expose a 3′-hydroxyl group, could be used to prime the reverse transcription of an edit-encoding extension on the engineered guide RNA (the pegRNA) directly into the target site (Fig. 1b, cSupplementary Discussion).

These initial steps result in a branched intermediate with two redundant single-stranded DNA flaps: a 5′ flap that contains the unedited DNA sequence and a 3′ flap that contains the edited sequence copied from the pegRNA (Fig. 1c). Although hybridization of the perfectly complementary 5′ flap to the unedited strand is likely to be thermodynamically favoured, 5′ flaps are the preferred substrate for structure-specific endonucleases such as FEN122, which excises 5′ flaps generated during lagging-strand DNA synthesis and long-patch base excision repair. The redundant unedited DNA may also be removed by 5′ exonucleases such as EXO123.

  • The authors reasoned that preferential 5′ flap excision and 3′ flap ligation could drive the incorporation of the edited DNA strand, creating heteroduplex DNA containing one edited strand and one unedited strand (Fig. 1c).
  • DNA repair to resolve the heteroduplex by copying the information in the edited strand to the complementary strand would permanently install the edit (Fig. 1c).
  • They had hypothesized that nicking the non-edited DNA strand might bias DNA repair to preferentially replace the non-edited strand.

Results

  • The authors evaluated the eukaryotic cell DNA repair outcomes of 3′ flaps produced by pegRNA-programmed reverse transcription in vitro, and performed in vitro prime editing on reporter plasmids, then transformed the reaction products into yeast cells (Extended Data Fig. 2).
  • Reporter plasmids encoding EGFP and mCherry separated by a linker containing an in-frame stop codon, +1 frameshift, or −1 frameshift were constructed and when plasmids were edited in vitro with Cas9 nickase, RT, and 3′-extended pegRNAs encoding a transversion that corrects the premature stop codon, 37% of yeast transformants expressed both GFP and mCherry (Fig. 1f, Extended Data Fig. 2).
  • They fused a variant of M—MLV-RT (reverse transcriptase) to Cas9 with an extended linker and this M-MLV RT fused to the C terminus of Cas9(H840A) nickase was designated as PE1. This strategy allowed the authors to generate a cell line containing all the required components of the primer editing system. They constructed 19 variants of PE1 containing a variety of RT mutations to evaluate their editing efficiency in human cells
  • Generated a pentamutant RT incorporated into PE1 (Cas9(H840A)–M-MLV RT(D200N/L603W/T330P/T306K/W313F)) is hereafter referred to as prime editor 2 (PE2).  These were more thermostable versions of RT with higher efficiency.
  • Optimized the guide (pegRNA) using a series of permutations and  recommend starting with about 10–16 nt and testing shorter and longer RT templates during pegRNA optimization.
  • In the previous attempts (PE1 and PE2 systems), mismatch repair resolves the heteroduplex to give either edited or non-edited products. So they next developed an optimal editing system (PE3) to produce optimal nickase activity and found nicks positioned 3′ of the edit about 40–90 bp from the pegRNA-induced nick generally increased editing efficiency (averaging 41%) without excess indel formation (6.8% average indels for the sgRNA with the highest editing efficiency) (Fig. 3b).
  • The cell line used to finalize and validate the system was predominantly HEK293T immortalized cell line
  • Together, their findings establish that PE3 systems improve editing efficiencies about threefold compared with PE2, albeit with a higher range of indels than PE2. When it is possible to nick the non-edited strand with an sgRNA that requires editing before nicking, the PE3b system offers PE3-like editing levels while greatly reducing indel formation.
  • Off Target Effects: Strikingly, PE3 or PE2 with the same 16 pegRNAs containing these four target spacers resulted in detectable off-target editing at only 3 out of 16 off-target sites, with only 1 of 16 showing an off-target editing efficiency of 1% or more (Extended Data Fig. 6h). Average off-target prime editing for pegRNAs targeting HEK3HEK4EMX1, and FANCFat the top four known Cas9 off-target sites for each protospacer was <0.1%, <2.2 ± 5.2%, <0.1%, and <0.13 ± 0.11%, respectively (Extended Data Fig. 6h).
  • The PE3 system was very efficient at editing the most common mutation that causes Tay-Sachs disease, a 4-bp insertion in HEXA(HEXA1278+TATC).

References

  1. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res44, D862–D868 (2016).
  2. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012).
  3. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013).

 

  1. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science339, 823–826 (2013).
  2. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements.  Biotechnol. 36, 765–771 (2018).
  3. Anzalone, A.V., Randolph, P.B., Davis, J.R. et al.Search-and-replace genome editing without double-strand breaks or donor DNA. Nature576, 149–157 (2019). https://doi.org/10.1038/s41586-019-1711-4

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Reporter: Stephen J. Williams, PhD

New Drugs on the Horizon: Part 3
Introduction

Andrew J. Phillips, C4 Therapeutics

  • symposium brought by AACR CICR and had about 30 proposals for talks and chose three talks
  • unfortunately the networking event is not possible but hope to see you soon in good health

ABBV-184: A novel survivin specific T cell receptor/CD3 bispecific therapeutic that targets both solid tumor and hematological malignancies

Edward B Reilly
AbbVie Inc. @abbvie

  • T-cell receptors (TCR) can recognize the intracellular targets whereas antibodies only recognize the 25% of potential extracellular targets
  • survivin is expressed in multiple cancers and correlates with poor survival and prognosis
  • CD3 bispecific TCR to survivn (Ab to CD3 on T- cells and TCR to survivin on cancer cells presented in MHC Class A3)
  • ABBV184  effective in vivo in lung cancer models as single agent;
  • in humanized mouse tumor models CD3/survivin bispecific can recruit T cells into solid tumors; multiple immune cells CD4 and CD8 positive T cells were found to infiltrate into tumor
  • therapeutic window as measured by cytokine release assays in tumor vs. normal cells very wide (>25 fold)
  • ABBV184 does not bind platelets and has good in vivo safety profile
  • First- in human dose determination trial: used in vitro cancer cell assays to determine 1st human dose
  • looking at AML and lung cancer indications
  • phase 1 trial is underway for safety and efficacy and determine phase 2 dose
  • survivin has very few mutations so they are not worried about a changing epitope of their target TCR peptide of choice

The discovery of TNO155: A first in class SHP2 inhibitor

Matthew J. LaMarche
Novartis @Novartis

  • SHP2 is an intracellular phosphatase that is upstream of MEK ERK pathway; has an SH2 domain and PTP domain
  • knockdown of SHP2 inhibits tumor growth and colony formation in soft agar
  • 55 TKIs there are very little phosphatase inhibitors; difficult to target the active catalytic site; inhibitors can be oxidized at the active site; so they tried to target the two domains and developed an allosteric inhibitor at binding site where three domains come together and stabilize it
  • they produced a number of chemical scaffolds that would bind and stabilize this allosteric site
  • block the redox reaction by blocking the cysteine in the binding site
  • lead compound had phototoxicity; used SAR analysis to improve affinity and reduce phototox effects
  • was very difficult to balance efficacy, binding properties, and tox by adjusting stuctures
  • TNO155 is their lead into trials
  • SHP2 expressed in T cells and they find good combo with I/O with uptick of CD8 cells
  • TNO155 is very selective no SHP1 inhibition; SHP2 can autoinhibit itself when three domains come together and stabilize; no cross reactivity with other phosphatases
  • they screened 1.5 million compounds and got low hit rate so that is why they needed to chemically engineer and improve on the classes they found as near hits

Closing Remarks

 

Xiaojing Wang
Genentech, Inc. @genentech

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »

New Type of Killer T-Cell

Reporter: Irina Robu, PhD

Scientists at Cardiff University have revealed a new type of killer T-cell which offers hope of a “one-size-fits-all” cancer therapy. Cancer-targeting via MR1-restricted T-cells is a thrilling new frontier, it increases the prospect of a ‘one-size-fits-all’ cancer treatment; a single type of T-cell that could be proficient of destroying numerous different types of cancers across the population.

T-cell therapies for cancer anywhere immune cells are removed, modified and returned to the patient’s blood to seek and destroy cancer cells – are the latest paradigm in cancer treatments. The most extensively-used therapy, known as CAR-T (Chimeric Antigen Receptor T-cell therapy) encompasses genetic modification of patient’s autologous T-cells to express a CAR specific for a tumor antigen, subsequent by ex vivo cell expansion and re-infusion back to the patient. The therapy is personalized to each patient, but targets only a few types of cancers.

Currently, Cardiff academics discovered T-cells equipped with a new type of T-cell receptor (TCR) which recognizes and kills most human cancer types, while ignoring healthy cells. This new TCR distinguishes when a molecule is present on the surface of a wide range of cancer cells and is able to distinguish between cancerous and healthy cells. Normal T-cells scans the surface of other cells to find anomalies and eliminate cancerous cells, yet ignores cells that contain only normal proteins.

The researchers at Cardiff was published in Nature Immunology, labels a unique TCR that can identify various types of cancer via a single HLA-like molecule called MR1 which varies in the human population. HLA differs extensively between individuals, which has previously prevented scientists from creating a single T-cell-based treatment that targets most cancers in all people. To investigate the therapeutic potential of these cells in vivo, the investigators injected T-cells able to identify MR1 into mice bearing human cancer and with a human immune system.

The Cardiff group were able to demonstrate that T-cells of melanoma patients modified to express this new TCR could destroy not only the patient’s own cancer cells, but also other patients’ cancer cells in the laboratory, irrespective of the patient’s HLA type. Experiments are under way to regulate the exact molecular mechanism by which the new TCR differentiates between healthy cells and cancer.

Source

https://www.eurekalert.org/pub_releases/2020-01/cu-don012020.php

 

Read Full Post »

DISCOVER BRIGHAM | NOVEMBER 7, 2019, 10AM – 6PM

Reporter: Aviva Lev-Ari, PhD, RN

 

#DISCOVERBRIGHAM

@pharma_BI

@AVIVA1950

 Aviva Lev-Ari, PhD, RN will be attending and will cover presentations in real time

ABOUT BRIGHAM RESEARCH

Discover Brigham is hosted by the Brigham Research Institute (BRI), under the umbrella of Brigham Health. Launched in 2005, the BRI’s mission is to accelerate discoveries that improve human health by bridging the gaps between science, communication and funding. The BRI’s resources help to foster groundbreaking interdepartmental and interdisciplinary research. They provide a voice for the research community and raise the profile of Brigham Research.

Speakers

http://www.discoverbrigham.org/speakers/

 

AGENDA

http://www.discoverbrigham.org/agenda/

ASK A QUESTION WITH SLI.DO!

DO YOU WANT TO SUBMIT A QUESTION TO A SPEAKER OF A SESSION? YOU CAN DO IT THROUGH SLI.DO!

2. ENTER THE EVENT CODE: DB19. THEN HIT JOIN!
3. PICK THE SESSION YOU WANT TO ASK A QUESTION. THEN ASK YOUR QUESTION!
4. YOUR QUESTION WILL BE REVIEWED AND MAY BE FORWARDED TO THE CHAIR TO ASK THE SPEAKER(S).

IT WORKS ON ANY DEVICE, YOU DO NOT NEED TO INSTALL ANYTHING!

 

Registration will open at 9:00 AM and will be located throughout the hospital including

  • Schlager Atrium (formerly known as Cabot Atrium, 45 Francis Street Lobby),
  • Schuster Lobby (75 Francis Street Entrance),
  • Shapiro Cardiovascular Center (70 Francis Street Entrance), and the
  • Hale Building for Transformative Medicine (HBTM) 1st Floor (60 Fenwood Road).

 

Click here for directions to these locations.  

NAVIGATING THE BRIGHAM IS EASIER THAN EVER

Need directions to a clinic, conference room, public space, or help assisting someone who looks lost?

Try our browser-based wayfinding tool and mobile app, BWH Maps,
which provides real-time location tracking and directions in the hospital.

Look for BWH Maps on the Apple App Store and Google Play Store,
or visit maps.brighamandwomens.org.

REGISTRATION LOCATIONS

Please visit one of the registration desks listed below to check-in, receive your badge, and collect any necessary materials. Registration will begin starting at 9:00 AM at each of the locations below.

 

Click on each location below for directions. 

  • SCHLAGER ATRIUM, FORMERLY KNOWN AS CABOT ATRIUM (45 FRANCIS ST. LOBBY)
  • SCHUSTER LOBBY (75 FRANCIS ST. LOBBY)
  • CARL J. AND RUTH SHAPIRO
    CARDIOVASCULAR CENTER
  • HALE BUILDING FOR
    TRANSFORMATIVE MEDICINE

SESSION LOCATIONS

Below you will find directions to each of the session locations.

MARSHALL A. WOLF CONFERENCE ROOM

HALE BUILDING FOR TRANSFORMATIVE MEDICINE

SESSION ROOM

FROM 60 FENWOOD ROAD:
Enter at 60 Fenwood Rd lobby entrance.

STAIRS:
Take the lobby staircase to the 2nd floor. Walk past the balcony overlooking the atrium and take the stairs on the left (Stair 2) to the 3rd floor. Once on the 3rd floor, exit the stairwell and take a right. The room is to your right through the double glass door, straight ahead.

ELEVATOR:
Take S Elevator to 3rd floor. Take a right out of the elevator. The room is past the stairwell, on your right through the double glass doors.

HALE VTC 02006B CONFERENCE ROOM

HALE BUILDING FOR TRANSFORMATIVE MEDICINE

OVERFLOW ROOM FOR MARSHALL A. WOLF CONFERENCE ROOM

FROM 60 FENWOOD ROAD:
Enter at 60 Fenwood Rd lobby entrance.

STAIRS:
Take the lobby staircase to the 2nd floor. The conference room will be on your right near the display monitor.

ELEVATOR:
Enter at 60 Fenwood Rd main entrance and take the S Elevator to the 2nd floor. Once you exit the elevator, take a right and walk past the balcony overlooking the atrium and the conference room will be straight ahead near the display monitor.

ZINNER BREAKOUT ROOM

CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER

SESSION ROOM

FROM 70 FRANCIS STREET:
The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.

ZINNER BOARDROOM

CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER

OVERFLOW ROOM FOR ZINNER BREAKOUT ROOM

FROM 70 FRANCIS STREET:
The Zinner Boardroom is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalator, keeping to the left side of the building. The Conference Center is located on your right; the Boardroom is through the large doors on the back wall.

BORNSTEIN FAMILY AMPHITHEATER

MAIN PIKE, 45 FRANCIS STREET LOBBY

SESSION ROOM

FROM 45 FRANCIS STREET:
Coming from 45 Francis Street lobby, walk towards the Main Pike (2nd floor hallway). Then take left on the Main Pike, 2nd door on right.

AGENDA

10:00 AM – 11:00 AM

Opening remarks

Elizabeth G. Nabel, MD, President Brigham Health, Prof. Medicine @HarvardMed

  • 8th event since 2012
  • show casing amazing research
  • Open to the Public: Patients, Families to educate
  • 90 Posters
  • Health equity perspective as DNA of the Brigham
  • Learn a new idea, meet someone new, create a new idea

Keynote Introduction

David Bates, MD @DBatesSafety

KEYNOTE

KYU RHEE, MD, MPP, VICE PRESIDENT & CHIEF HEALTH OFFICER, IBM CORPORATION & IBM WATSON HEALTH

MAIN PIKE, 45 FRANCIS STREET LOBBY
  • Partnership BWH & IBM WATSON
  • Big data of claims from providers to payers
  • Waiting rookms in Healthcare delivery
  • Government: ACA
  • AI Spring is here, no more Winter for AI
  • Health disparities, salaries, sexual orientation – improving health of populations
  • Science & Security
  • Red Hat – data security – big data statoscope
  • Healthcare Culture & Technology Culture: IBM & Amazon hire healthcare professionals
  • Cost: Burnout, managing population health,
  • Reduce physicians burnout
  • Culture Tech – Competition by IBM’s Project Debater

11:15 AM – 12:50 PM

1:00 – 1:50 PM

FROM 70 FRANCIS STREET:
The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.

Aaron Goldman
HaeLin Jang
Greog K. Gerber
  • Microbiome – Bacteria and Fungus therapies – computational tools for applications on microbiome
  • Diagnostics
  • Microbiome in early childhood
  • temporal variability during adulthood
  • host disease bacteriptherapeutics: C-Diff
  • Bugs as drugs
  • Gnotobiotic mice model for c-Diff in mice
  • MDSINE – Microbial dynamin model interaction model
  • cancer microbiome: Bacteria causing cancer, cancer changing the bacteria environment

 

Jeff Karp BENG PhD @MrJeffKarp

  • tissue based patch to seal open foramane ovale. Project remained in Academic settings however
  • GLUE component was commercialized
  • bioinspiration from living organs in Nature, slugs
  1. Viscose secretions
  2. Hydrophobic secretions and snails and sand castle worms

1:00 – 1:50 PM

Lina Matta, PharmD
Joji Suzuki, MD
Lisa WIchmann
Kevin Elias, MD
Daiva Braunfelds,MBA HPH
Elizabeth Cullen, MS

2:00 – 2:50 PM

3:00 – 3:50 PM

David Levin
Christopher baugh
Kathryn Britton
Joanne Feinberg Goldstein
Amrita Shahani
If patient meets criteria for Home Hospital : all services are sent home.
2016 – Pilot randomized controlled trial
2017-2018 – Repeat of Pilot on larger population
2018 – High-volume single arm innovation services
2019 – studies within home hospital wtth sensors at home
2020 – continue
Operation and Research lead to innovations

Anna Krichevsky, PhD HMS Initiative for RNA Medicine

  • paradox of organismal complexity and # protein encoding genes
  • Human genome, 70% Transcriptome Non-coding RNA only 2% encode proteins
  • Non-coding RNA small, long, multifunctional
  • biogenesis of offending RNAs can be drugged
  • RNA novel therapies: RNA as a Drug,
  • Indications: Brain Tumors and AD: MicroRNA (miRNA)the smallest Glioblastoma – only 4 drugs FDA approved in 25 years miRNA – 10b inhibition kills gliomacells miR-132 most neuroprotective RNA
  • Cardiovascular

Paul Anderson, MD, PhD

  • ALS and FTD – Fronto Temporal Dimensia
  • Riluzone 1970 – anti Anti-glutamateric
  • Edarabone 2017 drugs approved – anti-oxidative
  • Andogenesis role in Motor protection from Stress Cytoplasmatic tRNA – ANdiogenin (ANG) production
  • 20 amino acids
  • 5″-tiRNAs assemble G-quadruples – G4
  • point mutationin ANG (mANG) reduce its RNanase
  • G4-containing DNA analogs of 5″-tiRNA (Ala)

Marc Feinberg, MD

  • Cardiovascular: CAD, Insulin resistence – Vascular inflammation
  • Impaired angiogenesis: post MI repair CHF
  • MiRNA therapeutics for Atherosclerosis – miR-181b: Aortic ECs Athero (mice) CAD (Human)
  • miRNA _ Liposomes injected in the vessel wall – reduction of inflammation in vessel – microRNA Group
  • monocyte – How can we increase or amintain mir-181b expression in endothelial cells?
  • LncRNA Therapeutics for vascular Senescence and Atherosclerosis – no effect on leucocyte accumulation no difference in inflammation
  • DNA-dependent protein kinase (DNA-PK)
  • Does Loss SNHG12 triggers vascular senescence in the vessel wall

 

Clemens Scherzer, MD

  • The Protein RNA Brain
  • Dopamin p
  • BRAINCODE: 64% RNA: mRNA, ncRNA,
  • cell-type-spacific putative enhancer RNAs (eRNAs)
  • eRNAs indicate active genetic switches
  • central dogma in Biology: DNA, non-coding RNA, Protein
  • Top 10 Markers
  • Neuropsychiatric Disease: Parkinson: How do genetic variants function in specific brain cells: neurons, microglia, astrocytes
  • genetic variants of neuropsychiatric diseases over-localize to active eRNA sites in dopamine neurons
  • enhancers RNA – ADHD,
  • enhacers RNA – schizoprania, bipolar, addiction – antopsychotic Vlporic acid
  • BRAINCODE Project: BWH MGH HMS

5:00 – 6:00 PM

AWARDS & RECEPTION

SPECIAL PHOTO-OP TO CELEBRATE YOU!
WE WILL TAKE A GROUP PHOTO DURING THE RECEPTION AND AWARDS CEREMONY TO CELEBRATE YOU, OUR INNOVATORS!
THE PHOTO WILL BE DISPLAYED AT THE BRIGHAM IN THE HALE BUILDING. WE HOPE YOU CAN JOIN US IN CELEBRATING YOUR ACHIEVEMENTS.

SOURCE

http://www.discoverbrigham.org/agenda/

Read Full Post »

Real Time Coverage @BIOConvention #BIO2019: Chat with @FDA Commissioner, & Challenges in Biotech & Gene Therapy June 4 Philadelphia

Reporter: Stephen J. Williams, PhD @StephenJWillia2

 

  • taking patient concerns and voices from anecdotal to data driven system
  • talked about patient accrual hearing patient voice not only in ease of access but reporting toxicities
  • at FDA he wants to remove barriers to trial access and accrual; also talk earlier to co’s on how they should conduct a trial

Digital tech

  • software as medical device
  • regulatory path is mixed like next gen sequencing
  • wearables are concern for FDA (they need to recruit scientists who know this tech

Opioids

  • must address the crisis but in a way that does not harm cancer pain patients
  • smaller pain packs “blister packs” would be good idea

Clinical trial modernization

  • for Alzheimers disease problem is science
  • for diabetes problem is regulatory
  • different diseases calls for different trial design
  • have regulatory problems with rare diseases as can’t form control or placebo group, inhumane. for example ras tumors trials for MEK inhibitors were narrowly focused on certain ras mutants
Realizing the Promise of Gene Therapies for Patients Around the World

103ABC, Level 100

Speakers
Lots of promise, timeline is progressing faster but we need more education on use of the gene therapy
Regulatory issues: Cell and directly delivered gene based therapies have been now approved. Some challenges will be the ultrarare disease trials and how we address manufacturing issues.  Manufacturing is a big issue at CBER and scalability.  If we want to have global impact of these products we need to address the manufacturing issues
 of scalability.
Pfizer – clinical grade and scale is important.
Aventis – he knew manufacturing of biologics however gene therapy manufacturing has its separate issues and is more complicated especially for regulatory purposes for clinical grade as well as scalability.  Strategic decision: focusing on the QC on manufacturing was so important.  Had a major issue in manufacturing had to shut down and redesign the system.
Albert:  Manufacturing is the most important topic even to the investors.  Investors were really conservative especially seeing early problems but when academic centers figured out good efficacy then they investors felt better and market has exploded.  Now you can see investment into preclinical and startups but still want mature companies to focus on manufacturing.  About $10 billion investment in last 4 years.

How Early is Too Early? Valuing and De-Risking Preclinical Opportunities

109AB, Level 100

Speakers
Valuing early-stage opportunities is challenging. Modeling will often provide a false sense of accuracy but relying on comparable transactions is more art than science. With a long lead time to launch, even the most robust estimates can ultimately prove inaccurate. This interactive panel will feature venture capital investors and senior pharma and biotech executives who lead early-stage transactions as they discuss their approaches to valuing opportunities, and offer key learnings from both successful and not-so-successful experiences.
Dr. Schoenbeck, Pfizer:
  • global network of liaisons who are a dedicated team to research potential global startup partners or investments.  Pfizer has a separate team to evaluate academic laboratories.  In Most cases Pfizer does not initiate contact.  It is important to initiate the first discussion with them in order to get noticed.  Could be just a short chat or discussion on what their needs are for their portfolio.

Question: How early is too early?

Luc Marengere, TVM:  His company has early stage focus, on 1st in class molecules.  The sweet spot for their investment is a candidate selected compound, which should be 12-18 months from IND.  They will want to bring to phase II in less than 4 years for $15-17 million.  Their development model is bad for academic labs.  During this process free to talk to other partners.

Dr. Chaudhary, Biogen:  Never too early to initiate a conversation and sometimes that conversation has lasted 3+ years before a decision.  They like build to buy models, will do convertible note deals, candidate compound selection should be entering in GLP/Tox phase (sweet spot)

Merck: have MRL Venture Fund for pre series A funding.  Also reiterated it is never too early to have that initial discussion.  It will not put you in a throw away bin.  They will have suggestions and never like to throw out good ideas.

Michael Hostetler: Set expectations carefully ; data should be validated by a CRO.  If have a platform, they will look at the team first to see if strong then will look at the platform to see how robust it is.

All noted that you should be completely honest at this phase.  Do not overstate your results or data or overhype your compound(s).  Show them everything and don’t have a bias toward compounds you think are the best in your portfolio.  Sometimes the least developed are the ones they are interested in.  Also one firm may reject you however you may fit in others portfolios better so have a broad range of conversations with multiple players.

 

 

Read Full Post »

TWEETS by @pharma_BI and @AVIVA1950 at #IESYMPOSIUM – @kochinstitute 2019 #Immune #Engineering #Symposium, 1/28/2019 – 1/29/2019

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

2.1.3.4

2.1.3.4   TWEETS by @pharma_BI and @AVIVA1950 at #IESYMPOSIUM – @kochinstitute 2019 #Immune #Engineering #Symposium, 1/28/2019 – 1/29/2019, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

eProceedings for Day 1 and Day 2

LIVE Day One – Koch Institute 2019 Immune Engineering Symposium, January 28, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/28/live-day-one-koch-institute-2019-immune-engineering-symposium-january-28-2019-kresge-auditorium-mit/

LIVE Day Two – Koch Institute 2019 Immune Engineering Symposium, January 29, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/29/live-day-two-koch-institute-2019-immune-engineering-symposium-january-29-2019-kresge-auditorium-mit/

  1. AMAZING Conference I covered in Real Time

  2. Aviv Regev Melanoma: malignant cells with resistance in cold niches in situ cells express the resistance program pre-treatment: resistance UP – cold Predict checkpoint immunotherapy outcomes CDK4/6 abemaciclib in cell lines

  3. Aviv Regev, a cell-cell interactions from variations across individuals Most UC-risk genes are cell type specificVariation – epithelial cell signature – organize US GWAS into cell type spec

  4. Diane Mathis Age-dependent Treg and mSC changes – Linear with increase in age Sex-dependent Treg and mSC changes – Female Treg loss in cases of Obesity leading to fibrosis Treg keep IL-33-Producing mSCs under rein Lean tissue/Obese tissue

  5. Martin LaFleur Loss of Ptpn2 enhances CD8+ T cell responses to LCMV and Tumors PTpn2 deletion in the immune system enhanced tumor immunity CHIME enables in vivo screening

  6. Alex Shalek Identifying and rationally modulating cellular drivers of enhanced immunity T Cells, Clusters Expression of Peak and Memory Immunotherapy- Identifying Dendritic cells enhanced in HIV-1 Elite Controllers

  7.   Retweeted

    Onward: our own Michael Birnbaum, who assures us that if you feel like you’re an immunoengineer, then you ARE one!

  8. Glenn Dranoff Adenosine level in blood or tissue very difficult to measure in blood even more than in tissue – NIR178 + PDR 001 Monotherapy (NIR178) combine with PD receptor blockage (PDR) show benefit A alone vs A+B in Clinical trial

  9. Glenn Dranoff PD-L1 blockade elicits responses in some patients: soft part sarcoma LAG-3 combined with PD-1 – human peripheral blood tumor TIM-3 key regulator of T cell and Myeloid cell function: correlates in the TCGA DB myeloid

  10. Glenn Dranoff Institute for Biomedical Research of Neurologic toxicities of CART t IL-6 activation AML – complete response – weekly dose of XmAb CD123X CD3 bispecific antibody anti tumor effect

  11. of protective HLA-DR4 effects outside of “peptide anchor” residues Class I MHC – HLA-E down regulate T and NK cells Receptor Binding: Positional preferences noted for NKG2A

  12. Yvonne Chen Activation of t Cell use CAR t Engineer CAR-T to respond to soluble form of antigens: CD19 CAR Responds to soluble CD19 GFP MCAR responds to Dimeric GFP “Tumor microenvironment is a scary place”

  13. Yvonne Chen Do we need a ligand to be a dimers? Co-expressed second-generation TGF-beta signaling

  14. Yvonne Chen “Engineering smarter and stronger T cells for cancer immunotherapy” OR-Gate cause no relapse – Probing limits of modularity in CAR Design Bispecific CARs are superior to DualCAR: One vs DualCAR (some remained single CAR)

  15.   Retweeted

    Ending the 1st session is Cathy Wu of detailing some amazing work on vaccination strategies for melanoma and glioblastoma patients. They use long peptides engineered from tumor sequencing data.

  16.   Retweeted

    Some fancy imaging: Duggan gives a nice demo of how dSTORM imaging works using a micropatterend image of Kennedy Institute for Rheumatology! yay!

  17.   Retweeted

    Lots of interesting talks in the second session of the – effects of lymphoangiogenesis on anti-tumor immune responses, nanoparticle based strategies to improve bNAbs titers/affinity for HIV therapy, and IAPi cancer immunotherapy

  18.   Retweeted

    Looking forward to another day of the . One more highlight from yesterday – from our own lab showcased her work developing cytokine fusions that bind to collagen, boosting efficacy while drastically reducing toxicities

  19.   Retweeted

    Members of our cell therapy team were down the street today at neighboring for the presented by .

  20.   Retweeted

    He could have fooled me that he is, in fact, an immunologist!

  21.  
  22.   Retweeted

    Come and say Hi! ACIR will be back tomorrow at the Immune Engineering Symposium at MIT. Learn more at . . And stay tuned to read our summary of the talks on Feb 6.

  23. Facundo Batista @MGH # in BG18 Germline Heavy CHain (BG18-gH) High-mannose patch – mice exhibit normal B cell development B cells from naive human germline BG18-gH bind to GT2 immunogen

  24. Preeti Sharma, U Illinois T cell receptor and CAR-T engineering TCR engineering for Targeting glycosylated cancer antigens Nornal glycosylation vs Aberrant Engineering 237-CARs libraries with conjugated (Tn-OTS8) against Tn-antigend In vitro

  25. Bryan Bryson Loss of polarization potential: scRNAseq reveals transcriptional differences Thioredoxin facilitates immune response to Mtb is a marker of an inflammatory macrophage state functional spectrum of human microphages

  26. Bryan Bryson macrophage axis in Mycobacterium tuberculosis Building “libraries” – surface marker analysis of Microphages Polarized macrophages are functionally different quant and qual differences History of GM-CSF suppresses IL-10

  27. Jamie Spangler John Hopkins University “Reprogramming anti-cancer immunity RESPONSE through molecular engineering” De novo IL-2 potetiator in therapeutic superior to the natural cytokine by molecular engineering mimicking other cytokines

  28. Jamie Spangler JES6-1 Immunocytokine – inhibiting melanoma Engineering a Treg cell-biased immunocytokine double mutant immunocytokine shows enhanced IL-2Ralpha exchange Affinity De Novo design of a hyper-stable, effector biased IL-2

  29. , Volume Five: in of Cardiovascular Diseases. On com since 12/23/2018

  30. Michael Dustin ESCRT pathway associated with synaptic ectosomes Locatization, Microscopy Cytotoxic T cell granules CTLs release extracellular vescicles similar to T Helper with perforin and granzyme – CTL vesicles kill targets

  31. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Synaptic ectosome biogenisis Model: T cells: DOpamine cascade in germinal cell delivered to synaptic cleft – Effector CD40 – Transfer is cooperative

  32. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Laterally mobile ligands track receptor interaction ICAM-1 Signaling of synapse – Sustain signaling by transient in microclusters TCR related Invadipodia

  33. Mikael Pittet @MGH Myeloid Cells in Cancer Indirect mechanism AFTER a-PD-1 Treatment IFN-gamma Sensing Fosters IL-12 & therapeutic Responses aPD-1-Mediated Activation of Tumor Immunity – Direct activation and the ‘Licensing’ Model

  34. Stefani Spranger KI Response to checkpoint blockade Non-T cell-inflamed – is LACK OF T CELL INFILTRATION Tumor CD103 dendritic cells – Tumor-residing Batf3-drivenCD103 Tumor-intrinsic Beta-catenin mediates lack of T cell infiltration

  35. Max Krummel Gene expression association between two genes: and numbers are tightly linked to response to checkpoint blockage IMMUNE “ACCOMODATION” ARCHYTYPES: MYELOID TUNING OF ARCHITYPES Myeloid function and composition

  36. Noor Momin, MIT Lumican-cytokines improve control of distant lesions – Lumican-fusion potentiates systemic anti-tumor immunity

    Translate Tweet

  37. Noor Momin, MIT Lumican fusion to IL-2 improves treatment efficacy reduce toxicity – Anti-TAA mAb – TA99 vs IL-2 Best efficacy and least toxicity in Lumican-MSA-IL-2 vs MSA-IL2 Lumican synergy with CAR-T

  38.   Retweeted

    excited to attend the immune engineering symposium this week! find me there to chat about and whether your paper could be a good fit for us! 🦠🧬🔬🧫📖

  39.   Retweeted

    Bob Schreiber and Tyler Jacks kicked off the with 2 great talks on the role of Class I and Class II neo-Ag in tumor immunogenicity and how the tumor microenvironment alters T cell responsiveness to tumors in vivo

  40.   Retweeted

    Scott Wilson from gave a fantastic talk on glycopolymer conjugation to antigens to improve trafficking to HAPCs and enhanced tolerization in autoimmunity models. Excited to learn more about his work at his faculty talk!

  41. AMAZING Symposinm

  42.   Retweeted

    Immune Engineering Symposium at MIT is underway!

  43.   Retweeted

    ACIR is excited to be covering the Immune Engineering Symposium at MIT on January 28-29. Learn more at .

  44. Tyler Jacks talk was outstanding, Needs be delivered A@TED TALKs, needs become contents in the curriculum of Cell Biology graduate seminar as an Online class. BRAVO

  45.   Retweeted

    Here we go!! Today and tomorrow the tippity top immunologists converge at

  46.   Retweeted

    Exciting start to this year’s Immune Engineering Symposium put on by at . A few highlights from the first section…

  47. Stephanie Dougan (Dana-Farber Cancer Institute) Dept. Virology IAPi outperforms checkpoint blockade in T cell cold tumors reduction of tumor burden gencitabine cross-presenting DCs and CD8 T cells – T cell low 6694c2

  48. Darrell Irvine (MIT, Koch Institute; HHMI) Engineering follicle delivery through synthetic glycans: eOD-60mer nanoparticles vs Ferritin-trimer 8-mer (density dependent)

  49. Darrell Irvine (MIT, Koch Institute; HHMI) GC targeting is dependent on complement component CIQ – activation: Mannose-binding lectins recognize eOD-60mer but not eOD monomer or trimers

  50. Melody Swartz (University of Chicago) Lymphangiogenesis attractive to Native T cells, in VEGF-C tumors T cell homing inhibitors vs block T cell egress inhibitors – Immunotherapy induces T cell killing

  51. Cathy Wu @MGH breakthrough for Brain Tumor based neoantigen-specific T cell at intracranial site Single cells brain tissue vs single cells from neoantigen specific T cells – intratumoral neoantigen-specific T cells: mutARGAP35-spacific

  52. Cathy Wu (Massachusetts General Hospital) – CoFounder of NEON Enduring complete radiographic responses after + alpha-PD-1 treatment (anti-PD-1) NeoVax vs IVAC Mutanome for melanoma and Glioblastoma clinical trials

  53. , U of Chicago IV INJECTION: OVAALBUMIN OVA-P(GALINAC), P(GLCNAC), SUPRESS T CELL RESPONSE Abate T cells response – Reduced cytokine production & increased -regs

  54. Interrogating markers of T cell dysfunction – chance biology of cells by CRISPR – EGR2 at 2 weeks dysfuntioning is reduced presence of EDR2 mutant class plays role in cell metabolism cell becomes functional regulator CD8 T cell

  55. Bob Schreiber (Wash University of St. Louis) Optimal CD8+ T cells mediated to T3 require CD4+ T help

Read Full Post »

Juno acquired by Celgene for $9Billion following Gilead acquisition of Kite Pharma for 12.9 Billion

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 2/5/2018

Hans Bishop gets a $287M payday as Juno execs see windfall fortunes — with a $922M payoff for Arch

by john carroll — on February 5, 2018 05:47 AM EST
Updated: 05:48 AM

https://endpts.com/hans-bishop-gets-a-287m-payday-as-juno-execs-see-windfall-fortunes-with-a-922m-payoff-for-arch/?utm_medium=email&utm_campaign=Monday%20February%205%202018&utm_content=Monday%20February%205%202018+CID_aecea465e79bcafc58b92d3615dfacda&utm_source=ENDPOINTS%20emails&utm_term=Hans%20Bishop%20gets%20a%20287M%20payday%20as%20Juno%20execs%20see%20windfall%20fortunes%20%20with%20a%20922M%20payoff%20for%20Arch

Anatomy of a $9B buyout: Celgene’s quick turn from Juno’s close collaborator to new owner

 john carroll — on February 5, 2018 05:50 AM EST

https://endpts.com/anatomy-of-a-9b-buyout-celgenes-quick-turn-from-junos-close-collaborator-to-new-owner/?utm_medium=email&utm_campaign=Monday%20February%205%202018&utm_content=Monday%20February%205%202018+CID_aecea465e79bcafc58b92d3615dfacda&utm_source=ENDPOINTS%20emails&utm_term=Anatomy%20of%20a%209B%20buyout%20Celgenes%20quick%20turn%20from%20Junos%20close%20collaborator%20to%20new%20owner

 

Other related articles on JUNO published in this Open Access Online Scientific Journal include the following:

Anatomy of a $9B buyout: Celgene’s quick turn from Juno’s close collaborator to new owner

https://pharmaceuticalintelligence.com/2018/02/05/anatomy-of-a-9b-buyout-celgenes-quick-turn-from-junos-close-collaborator-to-new-owner/

Juno Therapeutics to Resume JCAR015 Phase II ROCKET Trial AND Acquires privately held Boston, MA-based RedoxTherapies

https://pharmaceuticalintelligence.com/2016/07/14/juno-therapeutics-to-resume-jcar015-phase-ii-rocket-trial-and-acquires-privately-held-boston-ma-based-redoxtherapies/

What does this mean for Immunotherapy? FDA put a temporary hold on Juno’s JCAR015, Three Death of Celebral Edema in CAR-T Clinical Trial and Kite Pharma announced Phase II portion of its CAR-T ZUMA-1 trial

https://pharmaceuticalintelligence.com/2016/07/09/what-does-this-mean-for-immunotherapy-fda-put-a-temporary-hold-on-jcar015-three-death-of-celebral-edema-in-car-t-clinical-trial-and-kite-pharma-announced-phase-ii-portion-of-its-car-t-zuma-1-trial/

Juno Acquires AbVitro for $125M: high-throughput and single-cell sequencing capabilities for Immune-Oncology Drug Discovery

https://pharmaceuticalintelligence.com/2016/01/12/juno-acquires-abvitro-for-125m-high-throughput-and-single-cell-sequencing-capabilities-for-immune-oncology-drug-discovery/

Juno’s approach eradicated cancer cells in 10 of 12 leukemia patients, indicating potential to transform the standard of care in oncology

https://pharmaceuticalintelligence.com/2014/01/14/junos-approach-eradicated-cancer-cells-in-10-of-12-leukemia-patients-indicating-potential-to-transform-the-standard-of-care-in-oncology/

 

Economic Potential of a Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent) versus a Cancer Drug in Clinical Trials: CAR-T as a Case in Point, developed by Kite Pharma, under Arie Belldegrun, CEO, acquired by Gilead for $11.9 billion, 8/2017.

https://pharmaceuticalintelligence.com/2017/10/04/economic-potential-of-a-drug-invention-prof-zelig-eshhar-weitzman-institute-registered-the-patent-versus-a-cancer-drug-in-clinical-trials-car-t-as-a-case-in-point-developed-by-kite-pharma-unde/

 

 

 

Read Full Post »

Economic Potential of a Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent) versus a Cancer Drug in Clinical Trials: CAR-T as a Case in Point, developed by Kite Pharma, under Arie Belldegrun, CEO, acquired by Gilead for $11.9 billion, 8/2017.

Curator: Aviva Lev-Ari, PhD, RN

UPDATED on 2/21/2021

The Announcement of the 2021 Dan David Prize Laureates – YouTube – PRIZE $1MM per Winner for contributors to CAR-T MOA leading to development of immunotherapy anti cancer drugs

  • Prof. Zelig Eshhar – Weitzmann Institute his student Arie S. Belldegrun was CEO at Kate Pharmaceutics sold to Gilead for $12Bil
  • Prof. Carl June of UPenn
  • Steven Rosenberg, PhD, NIH

UPDATED on 10/15/2020

Hooked by the science, Arie Belldegrun joins a group of influentials who believe Dewpoint may have the key to the next big thing in biotech
John Carroll
Editor & Founder
Amir Nashat knew he had years of preclinical work to do when he talked to me at the beginning of 2019 about Dewpoint Therapeutics and its rare focus on the role bimolecular condensates could play in crafting a wide-ranging pipeline of therapeutics.

SOURCE

The Cambridge, MA-based Dewpoint team, which will now double in size over the next year, doesn’t have a late-stage preclinical program it can shove into the clinic. The biotech is investing in neurodegeneration, cancer, cardiovascular and other areas for a platform that could, eventually, have extensive applications. But asked about a timeline to proof-of-concept data, Nashat frankly estimates that it will take 4-5 years to birth some hard human data. The money should get them through 3 years and a considerable de-risking approach to their preclinical efforts

The CSO is Mark Murcko, an experienced and well known startup player.

Mark Murcko
“When I think about new companies a lot of it is about timing; is it too soon or too late?” Murcko notes enthusiastically in our interview. “Is there enough information available to make you think you can take that and use it toward new drugs? Five years ago it was too early, too nascent.”

Now, Murcko adds, seems like a great time to give this a go.

SOURCE

UPDATED on 7/16/2019

Part club, part guide, part landlord: Arie Belldegrun is blueprinting a string of bespoke biotech complexes in global boomtowns — starting with Boston

UPDATED on 3/11/2019

At California Central District Court Juno Therapeutics, Inc. et al v. Kite Pharma, Inc. – Multi-party Patent Infringement

UPDATED on 2/6/2019

Gilead takes an $820M hit after axing a Kite CAR-T. Are billions more going to be incinerated?

 

Gilead is writing off its anti-BCMA CAR-T for multiple myeloma, eliminating one of the many efforts focused on that target and driving a big part of the company’s $820 million impairment charge for R&D in the 4th quarter of last year.  But this could just be a taste of what’s to come.

A $12 billion buyout of Kite Pharma in 2017 brought with it the CAR-T therapy Yescarta (axicabtagene ciloleucel) and a foothold in immuno-oncology. But last year’s results make clear that return on that investment will be slow to materialize.

https://www.biopharmadive.com/news/gilead-earnings-q4-investors-trial-readouts/547697/

Buried in among Gilead’s fourth-quarter results statement is a line revealing it has abandoned an anti-BCMA cell therapy for multiple myeloma, part of its $12 billion acquisition of Kite Pharma.

The failed KITE-585 program and other costs associated with the acquisition resulted in a whopping $820 million impairment charge in the quarter and add to analyst speculation that with sales of approved CAR-T Yescarta still disappointing, Gilead may have to write down the value of the Kite deal entirely, according to a Bloomberg report.

Gilead’s decision to drop the KITE-585 CAR-T program reflects the increasing competition in the anti-BCMA category and doesn’t come out of the blue. The company said at the J.P. Morgan conference (JPM) last month that it would only press ahead with development of KITE-585 if its profile was very compelling.

https://www.fiercebiotech.com/biotech/gilead-drops-anti-bcma-car-t-from-kite-takes-820m-charge

Yescarta Projections

Street sees sales rising to $2.3 billion by 2025

Robert W. Baird & Co. analyst Brian Skorney says Gilead may have to write down the deal, which the company values at $11.9 billion. That means lowering the projections on its balance sheet, if the multi billion-dollar sales Wall Street expects don’t materialize. The long-time bull cut his rating on the stock to neutral in July following the management exodus.

UPDATED on 1/23/2018

Two CARTs, Two Charts: Dissecting Returns From T-Cell Therapy M&A

Bruce Booth

1/22/2018 Celgene finalized its acquisition of Juno Therapeutics for $9B, only a few short months after Gilead bought Kite Pharma for $11.9B.

It’s also clear that public investors did quite well in these deals – unlike some outcomes, both private and public investors can only be happy with these deals. Kite’s IPO investors made over a whopping 10x, and Juno’s nearly a 3.6x (in 3 years, so still a very strong public market return). Even the follow-on financing participants made handsome returns: both Kite’s and Juno’s follow-on financings about 4-6 months prior to acquisition delivered a 2x return in a short period. What’s clear is that participating at any point only these price curves was a positive for investors. Obviously that doesn’t always happen, but great to see when it does.

A final takeaway is that there is “no one size fits all” for how to build business models that can work in biotech these days, even to get to similar product and patient outcomes. While Kite and Juno have remarkably similar products, similar platforms, and similar overall acquisition valuations, the stories were built quite differently when it comes to financing their growth.

https://www.forbes.com/sites/brucebooth/2018/01/23/two-carts-two-charts-dissecting-returns-from-t-cell-therapy-ma/#23f0b7a2459e

UPDATED on 10/18/2017

Kite Pharma, under Arie Belldegrun, CEO, acquired by Gilead for $11.9 billion, 8/2017.

Kite’s Yescarta™ (Axicabtagene Ciloleucel) Becomes First CAR T Therapy Approved by the FDA for the Treatment of Adult Patients With Relapsed or Refractory Large B-Cell Lymphoma After Two or More Lines of Systemic Therapy

— Manufacturing Success Rate of 99 Percent in ZUMA-1 Pivotal Trial with a Median 17 Day Turnaround Time —

CAR T therapy is a breakthrough in hematologic cancer treatment in which a patient’s own T cells are engineered to seek and destroy cancer cells. CAR T therapy is manufactured specifically for each individual patient.

“The FDA approval of Yescarta is a landmark for patients with relapsed or refractory large B-cell lymphoma. This approval would not have been possible without the courageous commitment of patients and clinicians, as well as the ongoing dedication of Kite’s employees,” said Arie Belldegrun, MD, FACS, Founder of Kite. “We must also recognize the FDA for their ability to embrace and support transformational new technologies that treat life-threatening illnesses. We believe this is only the beginning for CAR T therapies.”

“Today is an important day for patients with relapsed or refractory large B-cell lymphoma who have run out of options and have been waiting for new treatments that may help them in their fight against cancer,” said John Milligan, PhD, President and Chief Executive Officer of Gilead Sciences. “With the combined innovation, talent and drive of the Kite and Gilead teams, we will rapidly advance cell therapy research and aim to bring new options to patients with many other types of cancer.”

The list price of Yescarta in the United States is $373,000.

Yescarta has been granted Priority Medicines (PRIME) regulatory support for DLBCL in the European Union. A Marketing Authorization Application (MAA) for axicabtagene ciloleucel is currently under review with the European Medicines Agency (EMA) and potential approval is expected in the first half of 2018.

Yescarta (axicabtagene ciloleucel) Pivotal Trial Results

The approval of Yescarta is supported by data from the ZUMA-1 pivotal trial. In this study, 72 percent of patients treated with a single infusion of Yescarta (n=101) responded to therapy (overall response rate) including 51 percent of patients who had no detectable cancer remaining (complete remission; 95% CI: 41, 62). At a median follow-up of 7.9 months, patients who had achieved a complete remission had not reached the estimated median duration of response (95% CI: 8.1 months, not estimable [NE]).

In the study, 13 percent of patients experienced grade 3 or higher cytokine release syndrome (CRS) and 31 percent experienced neurologic toxicities. The most common (≥ 10%) Grade 3 or higher reactions include febrile neutropenia, fever, CRS, encephalopathy, infections-pathogen unspecified, hypotension, hypoxia and lung infections. Serious adverse reactions occurred in 52% of patients and included CRS, neurologic toxicity, prolonged cytopenias (including neutropenia, thrombocytopenia and anemia), and serious infections. Fatal cases of CRS and neurologic toxicity occurred. FDA approved Yescarta with a Risk Evaluation and Mitigation Strategy.

Yescarta Indication

Yescarta is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma.

Yescarta is not indicated for the treatment of patients with primary central nervous system lymphoma.

Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma (NHL), accounting for three out of every five cases. In the United States each year, there are approximately 7,500 patients with refractory DLBCL who are eligible for CAR T therapy. Historically, when treated with the current standard of care, patients with refractory large B-cell lymphoma had a median overall survival of approximately six months, with only seven percent attaining a complete response. Currently, patients with large B-cell lymphoma in second or later lines of therapy have poor outcomes and greater unmet need, since nearly half of them either do not respond or relapse shortly after transplant.

“With CAR T therapy, we are reengineering a patient’s own immune system to detect and kill cancer cells, and the results have been impressive,” said Frederick L. Locke, MD, ZUMA-1 Co-Lead Investigator and Vice Chair of the Department of Blood and Marrow Transplant and Cellular Immunotherapy at Moffitt Cancer Center in Tampa, Florida. “Many of the patients that received CAR T therapy had already relapsed several times with traditional treatments such as chemotherapy or hematopoietic stem cell transplant. Now, thanks to this new therapy many patients are in remission for months.”

“This therapy is a new option for patients with relapsed or refractory large B-cell lymphoma who have run out of treatment options and face a dire prognosis,” said Louis J. DeGennaro, PhD, President and Chief Executive Officer of The Leukemia & Lymphoma Society (LLS). “Early on, LLS recognized the potential of CAR T therapy and we are proud to be part of making this historic approval possible.”

“Engineered cell therapies like Yescarta represent the potential for a changing treatment paradigm for cancer patients,” said David Chang, MD, PhD, Worldwide Head of Research and Development and Chief Medical Officer at Kite. “Together, Gilead and Kite will accelerate studies of CAR T therapy in multiple blood cancers and advance other cell therapy approaches for solid tumors, with the goal of helping patients with diverse cancers benefit from this new era of personalized cancer therapy.”

http://www.businesswire.com/news/home/20171018006639/en/Kite%E2%80%99s-Yescarta%E2%84%A2-Axicabtagene-Ciloleucel-CAR-Therapy-Approved

This article has the following structure:

  • ABOUT Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent)
  • ABOUT Gilead’s $12 billion buy of Kite Pharma
  • ABOUT  the Drug Development process and the COMMERCIALIZATION GENIUS of Arie Belldegrun – Interviewed by Globes
  • ABOUT the Perspective of Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent) following the Gilead’s $12 billion buy of Kite Pharma – Interviewed by Globes
  • ABOUT the Economic significance of Kite Pharma Acquisition for the Venture Capital Investment in Biotech in Israel
  • Key Opinion Leader’s View: Aviva Lev-Ari, PhD, RN
  1. I agree with Prof. Zelig Eshhar that this Case in Point is “one more invention, or parts of an invention, came from an Israeli laboratory (at the Weizmann Institute in this case) and fell into foreign hands. It is another enormous missed opportunity in the field of biomedicine and ethical drugs.”
  2. I agree with Prof. Zelig Eshhar that this Case in Point should have been a TEVA commercialization effort. It is a regrettable reality that the development and the manufacturing will not benefit the State of Israel, home of the Weitzman Institute where the Patentable invention took place by Prof. Zelig Eshhar.
  3. It is to be acknowledged that for CAR-T – the process of treatment using the drug – personalized genetic engineering of each patient’s cells – a grafting process with no precedent in the pharmaceutical industry (Juno has related process) – is bringing to the Oncology arena a NOVEL treatment for hematological malignancies cancer patients
  4. I agree with Prof. Zelig Eshhar that the Barriers in the pharmaceutical industry are especially high. Developing ethical drugs is a process requiring huge amounts of time, patience, money, and failures. It is exactly, therefore, all need to acknowledge that the Drug Development process and the COMMERCIALIZATION GENIUS of Arie Belldegrun is inseparable from the breakthrough invention of Prof. Zelig Eshhar to develop the drug from the Lab bench to the FDA accelerated process of Drug approval.
  5. The Biotech industry in Israel needs to develop more MDs, PhDs with the level of training of Arie Belldegrun and with his entrepreneur acumen, keenness and depth of perception, discernmentdiscrimination especially in practical aspects of Translation Medicine, Clinical Research, Clinical Trial Design and abilities to engage in innovating the FDA processes.
  6. The Biotech industry in US needs to develop more MDs, PhDs with the level of training of Prof. Zelig Eshhar to carry the scientific gravitas and the creativity to become inventors of novel drugs.

ABOUT Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent)

Pioneers of Cancer Cell Therapy:  Turbocharging the Immune System to Battle Cancer Cells — Success in Hematological Cancers vs. Solid Tumors

Curator: Aviva Lev-Ari, PhD, RN

ABOUT Gilead’s $12 billion buy of Kite Pharma

FDA has approved the world’s first CAR-T therapy, Novartis for Kymriah (tisagenlecleucel) and Gilead’s $12 billion buy of Kite Pharma, no approved drug and Canakinumab for Lung Cancer (may be?)

Curator: Aviva Lev-Ari, PhD, RN

ABOUT  the Drug Development process and the COMMERCIALIZATION GENIUS of Arie Belldegrun – Interviewed by Globes

“Chemotherapy will become just a bad memory”

More energetic than ever, Arie Belldegrun talks to “Globes” about Kite Pharma’s remarkable journey and the future of cancer treatment.

http://www.globes.co.il/en/article-chemotherapy-will-become-just-a-bad-memory-1001206978

ABOUT the Perspective of Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent) following the Gilead’s $12 billion buy of Kite Pharma – Interviewed by Globes

Kite Pharma was a $12b missed opportunity for Israel – Interview with Professor Zelig Eshhar

Some Israeli media headlines depicted Kite as an Israeli exit. But it is a US company that does no business in Israel and has no employees here.

Professor Zelig Eshhar is the man who registered the patent on the cancer treatment drug developed by Kite Pharma, recently acquired by Gilead for $11.9 billion.

“Globes”: Do you believe that any party in Israel could have financed the product and brought it where it is today?

Eshhar: “On the one hand, yes. The level of investment in the product before it reached Nasdaq was something that an Israeli concern could certainly have financed. On the other hand, Kite Pharma founder Professor Arie Belldegrun, with his energy and connections, brought it to a completely different place (Eshhar previously tried to interest various concerns in Israel in financing the drug, but all of them told him that it was too early, or that the product was not effective enough, E.T.).

Was the development already in its final form in the 1980s?

“Almost. I went to the National Institutes of Health (NIH), where I met for the first time Professor Steven Rosenberg, who later became the first doctor to conduct clinical trials with the technology. Rosenberg heard about my technology, and offered me exceptional conditions. We set up a team there, and had the best of everything. I only wish I had it now.”

They say that Belldegrun didn’t want the product at first. Today, he’s devoting all his efforts to it.

“When Arie founded Cougar Biotechnology, which developed a drug for prostate cancer, and was eventually sold to Johnson & Johnson for $1 billion, I contacted him and offered him the technology, but he was busy with Cougar’s product, and maybe didn’t think that he had enough capital for such a production. Only after he sold Cougar did he get back to me with an offer to buy the rights to my patent. At that time (2009-2010), the technology was already arousing great interest, and there were negotiations with several large companies.” (from an April 2015 “Globes” interview with Eshhar, who was awarded the Israel Prize).

Israelis can be very provincial. In at least some of the media headlines, Kite Pharma was portrayed as a “huge Israeli exit,” and the impression was given that it was an Israeli company. The truth is very different. Kite Pharma is not an Israeli company; it is a 100% US company. It does no business in Israel; its nearly $12 billion exit has no significance whatsoever for the Israeli economy, and will contribute nothing to it: no jobs, and the tax contribution will be marginal, and certainly not on the scale of Mobileye, for example. Let me say it again: Kite Pharma does not have even one employee in Israel (and has no reason to employ anyone here), and certainly does not pay taxes in Israel. There are no Israelis on the company’s management team or board of directors. This is a US company for all intents and purposes. The word “Israel” appears exactly once in the company’s full documents – where registration of the company’s patents is concerned. The fact that every story about the company mentions the small holdings of several Israeli financial institutions in it is a bad joke. Everyone should remember that Israeli financial institutions are of course entitled to invest in any foreign share, such as Google, Amazon, Facebook, Apple Computers, and so forth. Kite Pharma is one of those foreign shares, and nothing more.

Of course, there is cause for pride in the fact that Eshhar, owner of the patent for Kite Pharma’s drug is “one of ours,” i.e. an Israeli researcher at the Weizmann Institute of Science. Another source of pride is Kite Pharma founder and CEO Arie Belldegrun, a graduate of the Hebrew University Medical School who did his post-doctorate at the Weizmann Institute, where he met Eshhar, and Kite Pharma later bought his patent for the cancer drug. Belldegrun was also a director at Teva Pharmaceutical Industries Ltd. (NYSE: TEVA; TASE: TEVA) until recently, resigning at the peak of that company’s crisis. Beyond this Israeli connection, however, the Kite Pharma exit has no great significance for Israel. All it means is that one more invention, or parts of an invention, came from an Israeli laboratory (at the Weizmann Institute in this case) and fell into foreign hands. It is another enormous missed opportunity in the field of biomedicine and ethical drugs.

It is necessary to realize that while Belldegrun is indeed a big biomedical brain with many achievements in the field, he is a brain that has left Israel, and we all have to ask ourselves why he left, why Kite Pharma is not an Israeli company, and why its (as yet non-existent) product was not developed in Israel and will not be manufactured there. The headline in Israel for the Kite Pharma exit should ask why Israel lost out on it, even though the patent came from Israeli laboratories, albeit with US cooperation.

Belldegrun is likely to keep his experiences on the Teva board of directors to himself. Of all the directors in the company, what he has to say is the most interesting, but he is unlikely to divulge what happened there with the inflated deal with Allergan, and exactly what he said at the board of directors meeting that approved the deal that led Teva into its current major crisis. The Kite Pharma exit and his other exits only highlight the lost opportunity. Kite Pharma, still without a product and without approval for a product, was sold for $11.9 billion in cash. Teva yesterday hit another low point, with a market cap of $16 billion. It is simply inconceivable: a company with an enormous potential, but no product, is worth three quarters of a huge veteran company with at least dozens of products, including products in the ethical drug sector. Kite Pharma is actually one of the indirect reasons for Teva’s decline – for the fact that Teva, which could have been a hothouse for developments like Copaxone, chose a huge inflated gamble on the generics market – a gamble that is now jeopardizing Teva’s future and very existence.

It is true that developing drugs is a very long process, requires huge amounts of capital, and involves many failures, but Teva decided to neglect it, and when a major company like Teva neglects Israeli developments, there are enough competitors in the pharma industry ready to turn Israeli research into gold. Kite Pharma is one example of this research.

The Weizmann Institute is a fruitful source of biomedical research. According to previous estimates published in “Globes,” the Weizmann Institute gets NIS 1 billion each year in royalties on medical and other developments, amounting to half of its budget. Directly and indirectly, the Weizmann Institute, together with other universities in Israel, is responsible for tens of billions of pharmaceutical sales. Only a few billions of this, however, results from drugs developed in Israel, like Copaxone, and far less than that is also made in Israel. The reports by Yeda R&D Company Ltd., the technology transfer arm of the Weizmann Institute of Science, are top secret, and there is a good reason for that. Exposing them will only highlight the scale of the missed opportunities. Instead of these inventions providing a base for a major pharmaceutical industry here, the commercialization companies are benefiting only the inventors and the Weizmann Institute itself (that is certainly natural and legitimate, and they are entitled to it), even though the research infrastructure from which they sprung is Israeli know-how, as in the case of Eshhar.

Barriers in the pharmaceutical industry are especially high. Developing ethical drugs is a process requiring huge amounts of time, patience, money, and failures. When it succeeds, however, the profit is enormous – for the industry, the employees, and the state (provided that some tax is paid). For example, Pfizer’s peak sales of Lipitor, a very popular drug for reducing cholesterol and fat in the bloodstream, reached $11 billion, and its profit on the drug was $9 billion, before competition from a generic version began. In addition to money, a great deal of experience and marketing power is required, and that is the reason why most developments wind up in the hands of major companies like Pfizer, Merck, and others at some stage. After all these qualifying statements, everyone who celebrated Kite Pharma’s exit should weep over it – it is another part of the sale of Israeli know-how overseas for a mess of pottage. Instead of consolidating a splendid pharma industry here, Israel is selling the brains with their know-how to foreigners. More than anything else, Teva’s decline and the Kite Pharma exit epitomize this sad and dangerous trend.

Published by Globes [online], Israel Business News – www.globes-online.com – on August 30, 2017

© Copyright of Globes Publisher Itonut (1983) Ltd. 2017

http://www.globes.co.il/en/article-kite-pharma-the-huge-exit-that-israel-missed-1001203173

ABOUT the Economic significance of Kite Pharma Acquisition for the Venture Capital Investment in Biotech in Israel

Israeli investors profit from $11.9b Kite acquisition

Pontifax fund and Israeli institutional investors will profit from the US personalized cancer drug company’s huge sale.  Part of the technology was developed at the Weizmann Institute

Pharmaceutical company Gilead Sciences Inc. has announced that it will acquire US company Kite Pharma Inc., developer of personalized cancer treatment drugs, at a company value of $11.9 billion. This is one of the biggest ever acquisitions of a company whose products have not yet been approved for marketing. The company value for the acquisition reflects a 29% premium on the market price.

Kite Pharma has developed a new method for genetically engineering immune system cells, so that they will make a focused attack on the malignant tumor. The company was founded in the US by Israeli-American Professor Arie Belldegrun, who already has two exits to his credit. He is also a former director at Teva Pharmaceutical Industries Ltd. (NYSE: TEVA; TASE: TEVA) (whose current value is not much more than the value at which Kite Pharma, a company with no products approved for marketing yet, is being acquired).

A significant part of the technology on which the product is based was developed by Professor Zelig Eshhar of the Weizmann Institute of Science.

The main Israeli beneficiary of the acquisition is the Pontifax fund, which invested $3.8 million in Kite Pharma at an early stage, but which distributed Kite Pharma shares worth $120 million to its investors. Among the investors in Pontifax that received shares in Kite Pharma are Menorah Mivtachim Holdings Ltd. (TASE: MORA) (which also bought shares on the market, and whose stake in the company is now worth over $100 million), The Phoenix Holdings Ltd. (TASE: PHOE1;PHOE5), Altshuler Shaham Ltd.Meitav Dash Investments Ltd. (TASE:MTDS), Harel Insurance Investments and Financial Services Ltd. (TASE: HARL), and Mori Arkin.

Kite Pharma is waiting for marketing approval of its first product, following a successful trial on 100 patients on a very abbreviated track for innovative cancer products. The product was initially designed for treatment of blood cancer, but it is now hoped that its use can later be expanded to treatment of other types of cancer. Gilead is making a big gamble, first of all that the US Food and Drug Administration (FDA) will fulfill its commitment to approve the product, even though the development plan it devised, together with the company, was very short and limited. The second gamble involves the process of treatment using the drug – personalized genetic engineering of each patient’s cells – a grafting process with no precedent in the pharmaceutical industry.

Speaking about the talks to sell Kite, Prof. Arie Belldegrun told “Globes.” “We handled like in the IDF 669 unit. Nobody knew anything. Nobody heard anything. We held meetings in places where nobody would see us. And before we announced it only five employees knew about it.”

Published by Globes [online], Israel Business News – www.globes-online.com – on August 28, 2017

© Copyright of Globes Publisher Itonut (1983) Ltd. 2017

http://www.globes.co.il/en/article-israeli-investors-profit-from-119b-kite-acquisition-1001202841

Other related articles published in this Open Access Online Scientific Journal include the following: 

Curators: Stephen J Williams, PhD and Aviva Lev-Ari, PhD, RN

  • Cancer Biology & Genomics for Disease Diagnosis, on Amazon since 8/11/2015

http://www.amazon.com/dp/B013RVYR2K

  • Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2) – on Amazon since 5/18/2017

http://www.amazon.com/dp/B071VQ6YYK

Read Full Post »

Lectures by The 2017 Award Recipients of Warren Alpert Foundation Prize in Cancer Immunology, October 5, 2017, HMS, 77 Louis Paster, Boston

Reporter: Aviva Lev-Ari, PhD, RN

Top, from left: James Allison and Lieping Chen. Bottom, from left: Gordon Freeman, Tasuku Honjo (NOT ATTENDED), Arlene Sharpe.

Aviva Lev-Ari, PhD, RN was in attendance and covered this event LIVE

The 2017 Warren Alpert Foundation Prize has been awarded to five scientists for transformative discoveries in the field of cancer immunology.

Collectively, their work has elucidated foundational mechanisms in cancer’s ability to evade immune recognition and, in doing so, has profoundly altered the understanding of disease development and treatment. Their discoveries have led to the development of effective immune therapies for several types of cancer.

The 2017 award recipients are:

  • James Allison, professor of immunology and chair of the Department of Immunology, The University of Texas MD Anderson Cancer Center – Immune checkpoint blockage in Cancer Therapy strictly Genomics based drug
  1. 2017 FDA approved a genomics based drug
  2. and co-stimulatory signals
  3. CTLA-4 blockade, CD28, AntiCTLA-4 induces regression of Transplantable Murine tumor
  4. enhance tumor-specific immune response
  5. Fully antibody human immune response in 10,000 patients – FDA approved 2011
  6. Metastatic melanoma – 3 years survival, programmed tumor death, PD-1, MHC-A1
  7. Ipi/Nivo vs. Ipi – combination – 60% survival vs Ipi alone
  8. Anti CTA4 vs Anti-PD-1
  9. responsive T cell population – MC38 TILs
  10. MC38 Infiltrating T cell populations: T-reg, CD4, Effector, CD8, NKT/gamma-delta
  11. Checkpoint blockage modulates infiltrating T cell population frequencies
  12. T reg correlated with Tumor growth
  13. Combination therapy lead to CURE survival at 80% rate vs CTAL-4 40% positive outcome

Not Attended — Tasuku Honjo, professor of immunology and genomic medicine, Kyoto University – Immune regulation of Cancer Therapy by PD-1 Blockade

 

  • Lieping Chen, United Technologies Corporation Professor in Cancer Research and Professor of immunobiology, of dermatology and of medicine, Yale University – Adoptive Resistance: Molecular Pathway t Cancer Therapy – focus on solid tumors
  1. Enhancement – Enhance normal immune system – Co-stimulation/Co-inhibition Treg, and Cytokines, adoptive cell therapy, Lymphoid organs stores
  2. Normalization – to correct defective immune system – normalizing tumor immunity, diverse tumor escape mechanisms
  3. Anti-PD therapy: regression of large solid tumors: normalizing tumor immunity targeting tumor microenvironment: Heterogeneity, functional modulation, cellular and molecular components – classification by LACK of inflamation, adaptive resistance, other inhibitory pathways, intrinsic induction
  4. avoid autoimmune toxicity,
  5. Resetting immune response (melanoma)
  6. Understad Resistance: Target missing resistance or Adaptive resistance Type II= acquired immunity
  • Gordon Freeman, professor of medicine, Dana-Farber Cancer Institute, Harvard Medical School – PD-L1/PD-1 Cancer Immunotherapy
  1. B7 antibody
  2. block pathway – checkpoint blockage, Expand the T cells after recognition of the disease. T cell receptor signal, activation, co -stimulatory: B71 molecule, B72 – survival signals and cytokine production,.Increased T cell proliferation,
  3. PDL-1 is a ligand of PD 1. How T cell die? genes – PD1 Gene was highly expressed,
  4. Interferon gamma upregulate PD-L1 expression
  5. Feedback loop Tumor – stimulating immune response, interferon turn off PD1
  6. PD-L1 and PD-L2 Expression: Interferom
  7. Trancefuctor MHC, B7-2
  8. PD-L! sisgnat inhibit T-cell activation: turn off Proliferation and cytokine production — Decreasing the immune response
  9. T cell DNA Content: No S-phase devided cell
  10. PD-L1 engagement of PD-1 results in activation : Pd-1 Pathway inhibits T Cell Actiivation – lyposite motility,
  11. Pd-L2 is a second ligand for PD-1 and inhibits T cell activation
  12. PDl-1 expression: BR CA, Ovarian, Colonol-rectal, tymus, endothelial
  13. Blockage of the Pathway – Immune response enhanced
  14. Dendritic cells express PD-L1, PD-L2 and combination of Two, Combination was best of all by increase of cytokine production, increasing the immune response.
  15. PD-L1 blockade enhanced the immune response , increase killing and increased production of cytokines,
  16. anti-tumor efficacy of anti-PD-1/Pd-L1
  17. Pancreatic and colono-rector — PD-L, PDL1, PDL2 — does not owrkd.
  18. In menaloma: PD-1 works better than CYLA-4
  19. Comparison of Targeted Therapy: BRAF TKI vs Chemo high % but short term
  20. Immunotherapy – applies several mechanism: pre-existing anti-therapy
  21. Immune desert: PD=L does not work for them
  22. COMBINATION THERAPY: BLOCK TUMOR INVASION THEN STIMULATE IMMUNE RESPONSE — IT WILL WORK
  23. PD blockage + nutrients and probiotic
  24. Tumor Genome Therapy
  25. Tumore Immuno-evasion Score
  26. Antigens for immune response – choose the ones
  27. 20PD-1 or PD-L1 drugs in development
  28. WHO WILL THE DRUG WORK FOR?

 

  • Arlene Sharpe, the George Fabyan Professor of Comparative Pathology, Harvard Medical School; senior scientist, department of pathology, Brigham and Women’s Hospital – Multi-faceted Functionsof the PD-1 Pathway
  1. function of the pathway: control T cell activation and function of maintain immune tolerance
  2. protect tissues from damage by immune response
  3. T cell dysfunction during cancer anf viral infection
  4. protection from autoimmunity, inflammation,
  5. Mechanism by which PD-1 pathway inhibits anti-tumor immunity
  6. regulation of memoryT cell responce of PD-1
  7. PD-1 signaling inhibit anti-tumor immunity
  8. Compare: Mice lacking CD8-Cre- (0/5) cleared vs PD-1-/-5/5 – PD-1 DELETION: PARTIAL AND TIMED: DELETION OF PD-1 ON HALF OG TILS STARTING AT DAY 7 POSTTUMOR IMPLANTATION OF BOTH PD-1 AND PD-1 TILS: – Tamoxifen days 7-11
  9. Transcription profile: analysis of CD8+ TILs reveal altered metabolism: Fatty Acid Metabolism vs Oxidative Phosphorylation
  10. DOes metabolic shift: WIld type mouth vs PD-1-/_ P14: analyze Tumor cell killingPD-1-/- enhanced FAO increases CD8+ T cell tocicity
  11. Summary: T cell memory development and PD-1: T effectors vs T cell memory: Primary vs Secondary infection: In the absent of PD-1, CD8+ T cels show increase expansion of T cells
  12. INFLUENZA INFECTION: PRIMARY more virus in lung in PD-1 is lacking
  13. Acute infection: PD-1 controls memory T cell differentiation vs PD-1 increase expansion during effector phase BUT impaired persistence during memory phase: impaired cytokine production post re-challenge
  14. PD-1 immunotherapy work for patients with tumor: Recall Response and Primary response
  15. TIL density Primary vs Long term survivor – 5 days post tumor implantation – rechallenged long term survival
  16. Hot tumor vs Cold tumor – Deletion of PD-1 impairs T memory cell development

Opening Remarks: George Q. Daley, MD, PhD, DEAN, HMS

  • Scientific collaboration check point – avoid the body attacking itself, sabotaging the immune system
  • 1987 – Vaccine for HepB
  • Eight of the awardees got the Nobel Prize

 

Moderated by Joan Brugge, PhD, HMS, Prof. of Cell Biology

  • Evolution of concepts of Immunotherapy: William Coley’s Toxin streptoccocus skin infection.
  • 20th century: Immuno-surveilence, Immune response – field was dead in 1978 replaced by Immunotherapy
  • Rosenberg at NIH, high dose of costimulatory molecule prevented tumor reappearanceantbody induce tumor immunity–>> immune theraphy by check point receptor blockade – incidence of tumor in immune compromised mice – transfer T cell
  • T cell defficient, not completely defficient, self recognition of tumor,
  • suppress immmune – immune evasion
  • Michael Atkins, MD, Detupy Director, Georgetown-Lombardi, Comprehensive Cancer Center Clinical applications of Checkpoint inhibitors: Progress and Promise
  1. Overwhelm the Immune system, hide, subvert, Shield, defend-deactivating tumor trgeting T cells that ATTACK the immune system
  2. Immune system to TREAT the cancer
  3. Monotherapy – anti PD1/PD-L1: Antagonist activity
  4. Evading immune response: prostate, colcn
  5. MMR deficiency
  6. Nivolumab in relaped/Refractory HODGKIN LYMPHOMAS – over expression of PD-L1 and PDL2in Lymphomas
  7. 18 month survival better with Duv in Lung cancer stage 3 – anti PD-1- adjuvant therapy with broad effectiveness
  8. Biomarkers for pD-L1 Blockage
  9. ORR higher in PD-L1
  10. Improve Biomarkers: Clonality of T cells in Tumors
  11. T-effector Myeloid Inflammation Low – vs Hogh:
  12. Biomarker Model: Neoantigen burden vs Gene expression vs CD8+
  13. Tissue DIagnostic Labs: Tumor microenveironmenr
  14. Microbiome
  15. Combination: Nivo vs Nivo+Ipi is superior: DETERMINE WHEN TO STOP TREATMENT
  16. 15/16 stopped treatment – Treatment FREE SURVIVAL
  17. Sequencing with Standard Therapies
  18. Brain metastasis – Immune Oncology Therapy – crosses the BBB
  19. Less Toxic regimen, better toxicity management,
  20. Use Immuno therapy TFS
  21. combination – survival must be justified
  22. Goal: to make Cancer a curable disease vs cancer becoming a CHronic disease

Closing Remarks: George Q. Daley, MD, PhD, DEAN, HMS

The honorees will share a $500,000 prize and will be recognized at a day-long symposium on Oct. 5 at Harvard Medical School.

The Warren Alpert Foundation, in association with Harvard Medical School, honors trailblazing scientists whose work has led to the understanding, prevention, treatment or cure of human disease. The award recognizes seminal discoveries that hold the promise to change our understanding of disease or our ability to treat it.

“The discoveries honored by the Warren Alpert Foundation over the years are remarkable in their scope and potential,” said George Q. Daley, dean of Harvard Medical School. “The work of this year’s recipients is nothing short of breathtaking in its profound impact on medicine. These discoveries have reshaped our understanding of the body’s response to cancer and propelled our ability to treat several forms of this recalcitrant disease.”

The Warren Alpert Foundation Prize is given internationally. To date, the foundation has awarded nearly $4 million to 59 scientists. Since the award’s inception, eight honorees have also received a Nobel Prize.

“We commend these five scientists. Allison, Chen, Freeman, Honjoand Sharpe are indisputable standouts in the field of cancer immunology,” said Bevin Kaplan, director of the Warren Alpert Foundation. “Collectively, they are helping to turn the tide in the global fight against cancer. We couldn’t honor more worthy recipients for the Warren Alpert Foundation Prize.”

The 2017 award: Unraveling the mysterious interplay between cancer and immunity

Understanding how tumor cells sabotage the body’s immune defenses stems from the collective work of many scientists over many years and across multiple institutions.

Each of the five honorees identified key pieces of the puzzle.

The notion that cancer and immunity are closely connected and that a person’s immune defenses can be turned against cancer is at least a century old. However, the definitive proof and demonstration of the steps in this process were outlined through findings made by the five 2017 Warren Alpert prize recipients.

Under normal conditions, so-called checkpoint inhibitor molecules rein in the immune system to ensure that it does not attack the body’s own cells, tissues and organs. Building on each other’s work, the five award recipients demonstrated how this normal self-defense mechanism can be hijacked by tumors as a way to evade immune surveillance and dodge an attack. Subverting this mechanism allows cancer cells to survive and thrive.

A foundational discovery made in the 1980s elucidated the role of a molecule on the surface of T cells, the body’s elite assassins trained to seek, spot and destroy invaders.

A protein called CTLA-4 emerged as a key regulator of T cell behavior—one that signals to T cells the need to retreat from an attack. Experiments in mice lacking CTLA-4 and use of CTLA-4 antibodies demonstrated that absence of CTLA-4 or blocking its activity could lead to T cell activation and tumor destruction.

Subsequent work identified a different protein on the surface of T cells—PD-1—as another key regulator of T cell response. Mice lacking this protein developed an autoimmune disease as a result of aberrant T cell activity and over-inflammation.

Later on, scientists identified a molecule, B7-H1, subsequently renamed PD-L1, which binds to PD-1, clicking like a key in a lock. This was followed by the discovery of a second partner for PD-1—the molecule PD-L2—which also appeared to tame T-cell activity by binding to PD-1.

The identification of these molecules led to a set of studies showing that their presence on human and mouse tumors rendered the tumors resistant to immune eradication.

A series of experiments further elucidated just how tumors exploit the interaction between PD-1 and PD-L1 to survive. Specifically, some tumor cells appeared to express PD-L1, essentially “wrapping” themselves in it to avoid immune recognition and destruction.

Additional work demonstrated that using antibodies to block this interaction disarmed the tumors, rendering them vulnerable to immune destruction.

Collectively, the five scientists’ findings laid the foundation for antibody-based therapies that modulate the function of these molecules as a way to unleash the immune system against cancer cells.

Antibody therapy that targets CTLA-4 is currently approved by the FDA for the treatment of melanoma. PD-1/PD-L1 inhibitors have already shown efficacy in a broad range of cancers and have been approved by the FDA for the treatment of melanoma; kidney; lung; head and neck cancer; bladder cancer; some forms of colorectal cancer; Hodgkin lymphoma and Merkel cell carcinoma.

In their own words

“I am humbled to be included among the illustrious scientists who have been honored by the Warren Alpert Foundation for their contributions to the treatment and cure of human disease in its 30+ year history.  It is also recognition of the many investigators who have labored for decades to realize the promise of the immune system in treating cancer.”
        -James Allison


“The award is a great honor and a wonderful recognition of our work.”
         Lieping Chen



I am thrilled to have made a difference in the lives of cancer patients and to be recognized by fellow scientists for my part in the discovery of the PD-1/PD-L1 and PD-L2 pathway and its role in tumor immune evasion.  I am deeply honored to be a recipient of the Alpert Award and to be recognized for my part in the work that has led to effective cancer immunotherapy. The success of immunotherapy has unleashed the energies of a multitude of scientists to further advance this novel strategy.”
                                        -Gordon Freeman


I am extremely honored to receive the Warren Alpert Foundation Prize. I am very happy that our discovery of PD-1 in 1992 and subsequent 10-year basic research on PD-1 led to its clinical application as a novel cancer immunotherapy. I hope this development will encourage many scientists working in the basic biomedical field.”
-Tasuku Honjo


“I am truly honored to be a recipient of the Alpert Award. It is especially meaningful to be recognized by my colleagues for discoveries that helped define the biology of the CTLA-4 and PD-1 pathways. The clinical translation of our fundamental understanding of these pathways illustrates the value of basic science research, and I hope this inspires other scientists.”
-Arlene Sharpe

Previous winners

Last year’s award went to five scientists who were instrumental in the discovery and development of the CRISPR bacterial defense mechanism as a tool for gene editing. They were RodolpheBarrangou of North Carolina State University, Philippe Horvath of DuPont in Dangé-Saint-Romain, France, Jennifer Doudna of the University of California, Berkeley, Emmanuelle Charpentier of the Max Planck Institute for Infection Biology in Berlin and Umeå University in Sweden, and Virginijus Siksnys of the Institute of Biotechnology at Vilnius University in Lithuania.

Other past recipients include:

  • Tu Youyou of the China Academy of Chinese Medical Science, who went on to receive the 2015 Nobel Prize in Physiology or Medicine with two others, and Ruth and Victor Nussenzweig, of NYU Langone Medical Center, for their pioneering discoveries in chemistry and parasitology of malaria and the translation of their work into the development of drug therapies and an anti-malarial vaccine.
  • Oleh Hornykiewicz of the Medical University of Vienna and the University of Toronto; Roger Nicoll of the University of California, San Francisco; and Solomon Snyder of the Johns Hopkins University School of Medicine for research into neurotransmission and neurodegeneration.
  • David Botstein of Princeton University and Ronald Davis and David Hogness of Stanford University School of Medicine for contributions to the concepts and methods of creating a human genetic map.
  • Alain Carpentier of Hôpital Européen Georges-Pompidou in Paris and Robert Langer of MIT for innovations in bioengineering.
  • Harald zur Hausen and Lutz Gissmann of the German Cancer Research Center in Heidelberg for work on the human papillomavirus (HPV) and cancer of the cervix. Zur Hausenand others were honored with the Nobel Prize in Physiology or Medicine in 2008.

The Warren Alpert Foundation

Each year the Warren Alpert Foundation receives between 30 and 50 nominations from scientific leaders worldwide. Prize recipients are selected by the foundation’s scientific advisory board, which is composed of distinguished biomedical scientists and chaired by the dean of Harvard Medical School.

Warren Alpert (1920-2007), a native of Chelsea, Mass., established the prize in 1987 after reading about the development of a vaccine for hepatitis B. Alpert decided on the spot that he would like to reward such breakthroughs, so he picked up the phone and told the vaccine’s creator, Kenneth Murray of the University of Edinburgh, that he had won a prize. Alpert then set about creating the foundation.

To award subsequent prizes, Alpert asked Daniel Tosteson (1925-2009), then dean of Harvard Medical School, to convene a panel of experts to identify scientists from around the world whose research has had a direct impact on the treatment of disease.

SOURCE

https://hms.harvard.edu/news/warren-alpert-foundation-honors-pioneers-cancer-immunology

Read Full Post »

Older Posts »

%d bloggers like this: