Feeds:
Posts
Comments

Posts Tagged ‘viral capsid’

Non-toxic antiviral nanoparticles with a broad spectrum of virus inhibition

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Infectious diseases account for 20% of global deaths, with viruses accounting for over a third of these deaths (1). Lower respiratory effects and human immunodeficiency viruses (HIV) are among the top ten causes of death worldwide, both of which contribute significantly to health-care costs (2). Every year, new viruses (such as Ebola) increase the mortality toll. Vaccinations are the most effective method of avoiding viral infections, but there are only a few of them, and they are not available in all parts of the world (3). After infection, antiviral medications are the only option; unfortunately, only a limited number of antiviral medications are approved in this condition. Antiviral drugs on a big scale that can influence a wide spectrum of existing and emerging viruses are critical.

The three types of treatments currently available are small molecules (such as nucleoside analogues and peptidomimetics), proteins that stimulate the immune system (such as interferon), and oligonucleotides (for example, fomivirsen). The primary priorities include HIV, hepatitis B and C viruses, Herpes Simplex Virus (HSV), human cytomegalovirus (HCMV), and influenza virus. They work mainly on viral enzymes, which are necessary for viral replication but which differ from other host enzymes to ensure selective function. The specificity of antivirals is far from perfect because viruses rely on the biosynthesis machinery for reproduction of infected cells, which results in a widespread and inherent toxicity associated with such therapy. However, most viruses mutate rapidly due to their improper replicating mechanisms and so often develop resistance (4). Finally, since antiviral substances are targeted at viral proteins, it is challenging to build broad-based antivirals that can act with a wide range of phylogenetic and structurally different virus.

Over the last decade breakthroughs in nanotechnology have led to scientists developing incredibly specialized nanoparticles capable of traveling in specific cells through a human body. A broad spectrum of destructive viruses is being targeted and not only bind to, but also destroy, by modern computer modeling technology.

An international team of researchers led by the University of Illinois at Chicago chemistry professor Petr Kral developed novel anti-viral nanoparticles that bind to a variety of viruses, including herpes simplex virus, human papillomavirus, respiratory syncytial virus, Dengue, and lentiviruses. In contrast to conventional broad-spectrum antivirals, which just prevent viruses from invading cells, the new nanoparticles eradicate viruses. The team’s findings have been published in the journal “Nature Materials.”

A molecular dynamics model showing a nanoparticle binding to the outer envelope of the human papillomavirus. (Credit: Petr Kral) https://today.uic.edu/files/2017/09/viralbindingcropped.png

The goal of this new study was to create a new anti-viral nanoparticle that could exploit the HSPG binding process to not only tightly attach with virus particles but also to destroy them. The work was done by a group of researchers ranging from biochemists to computer modeling experts until the team came up with a successful nanoparticle design that could, in principle, accurately target and kill individual virus particles.

The first step to combat many viruses consists in the attachment of heparin sulfate proteoglycan on cell surfaces to a protein (HSPG). Some of the antiviral medications already in place prevent an infection by imitating HSPG’s connection to the virus. An important constraint of these antivirals is that not only is this antiviral interaction weak, it does not kill the virus.

Kral said

We knew how the nanoparticles should bind on the overall composition of HSPG binding viral domains and the structures of the nanoparticles, but we did not realize why the various nanoparticles act so differently in terms of their both bond strength and viral entry in cells

Kral and colleagues assisted in resolving these challenges and guiding the experimentalists in fine-tuning the nanoparticle design so that it performed better.

The researchers have employed advanced computer modeling techniques to build exact structures of several target viruses and nanoparticles up to the atom’s position. A profound grasp of the interactions between individual atom groupings in viruses and nanoparticles allows the scientists to evaluate the strength and duration of prospective links between these two entities and to forecast how the bond could change over time and eventually kill the virus.


Atomistic MD simulations of an L1 pentamer of HPV capsid protein with the small NP (2.4 nm core, 100 MUP ligands). The NP and the protein are shown by van der Waals (vdW) and ribbon representations respectively. In the protein, the HSPG binding amino acids are displayed by vdW representation.

Kral added

We were capable of providing the design team with the data needed to construct a prototype of an antiviral of high efficiency and security, which may be utilized to save lives

The team has conducted several in vitro experiments following the development of a prototype nanoparticle design which have demonstrated success in binding and eventually destroying a wide spectrum of viruses, including herpes simplex, human papillomaviruses, respiratory syncytial viruses and dengue and lentiviruses.

The research is still in its early phases, and further in vivo animal testing is needed to confirm the nanoparticles’ safety, but this is a promising new road toward efficient antiviral therapies that could save millions of people from devastating virus infections each year.

The National Centers of Competence in Research on Bio-Inspired Materials, the University of Turin, the Ministry of Education, Youth and Sports of the Czech Republic, the Leenards Foundation, National Science Foundation award DMR-1506886, and funding from the University of Texas at El Paso all contributed to this study.

Main Source

Cagno, V., Andreozzi, P., D’Alicarnasso, M., Silva, P. J., Mueller, M., Galloux, M., … & Stellacci, F. (2018). Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nature materials17(2), 195-203. https://www.nature.com/articles/nmat5053

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Rare earth-doped nanoparticles applications in biological imaging and tumor treatment

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/04/rare-earth-doped-nanoparticles-applications-in-biological-imaging-and-tumor-treatment/

Nanoparticles Could Boost Effectiveness of Allergy Shots

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/05/25/nanoparticles-could-boost-effectiveness-of-allergy-shots/

Immunoreactivity of Nanoparticles

Author: Tilda Barliya PhD

https://pharmaceuticalintelligence.com/2012/10/27/immunoreactivity-of-nanoparticles/

Nanotechnology and HIV/AIDS Treatment

Author: Tilda Barliya, PhD

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

Nanosensors for Protein Recognition, and gene-proteome interaction

Curator: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/01/30/nanosensors-for-protein-recognition-and-gene-proteome-interaction/

Read Full Post »

Memory Gene Goes Viral

Reporter: Irina Robu, PhD

A gene crucial for learning, called Arc can send genetic material from one neuron to another by using viruses was discovered by two independent team of scientist from University of Massachusetts Medical School and University of Utah which was published in Cell.  According to Dr. Edmund Talley, a program director at National Institute of Neurological Disorders and Stroke “this work is a great example of the importance of basic neuroscience research”.

Arc plays an important role in the brain’s ability to store new information, however little is known of how it works. According to the University of Utah scientists, research into the examination of the Arc gene began by introducing it into bacterial cells. When the cells made the Arc protein, it clumped together into a form that resembled a viral capsid, the shell that contains a virus’ genetic information. The Arc “capsids” appeared to mirror viral capsids in their physical structure in addition as their behavior and other properties.

At the same time, University of Massachusetts scientist led by Vivian Budnik, Ph. D and Travis Thomson, Ph.D. set out to scrutinize the contents of tiny sacks released by cells called extracellular vesicles. Their experiments in fruit flies revealed that motor neurons that control the flies’ muscles release vesicles containing a high concentration of the Arcgene’s messenger RNA (mRNA), the DNA-like intermediary molecule cells use to create the protein encoded by a DNA sequence.

Both groups similarly found evidence that Arc capsids contain Arc mRNA and that the capsids are released from neurons inside those vesicles. Also, both groups suggest that Arc capsids act like viruses by delivering mRNA to nearby cells. Furthermore, Dr. Shepherd’s team presented that the more active neurons are, the more of those vesicles they release. Dr. Shepherd’s group grew mouse neurons lacking the Arc gene in petri dishes filled with Arc-containing vesicles or Arc capsids alone. They revealed that the formerly Arc-less neurons took in the vesicles and capsids and used the Arc mRNA contained within to produce the Arc protein themselves. Finally, just like neurons that naturally manufacture the Arc protein, those cells made more of it when their electrical activity increased.

Both groups of scientists plan to examine why cells use this virus-like strategy to shuttle Arc mRNA between cells and which might allow the toxic proteins responsible for Alzheimer’s disease to spread through the brain.

SOURCE

http://www.sciencenewsline.com/news/2018011717480045.html

Read Full Post »