Feeds:
Posts
Comments

Posts Tagged ‘Curation of Scientific Findings’

Will Web 3.0 Do Away With Science 2.0? Is Science Falling Behind?

Curator: Stephen J. Williams, Ph.D.

UPDATED 4/06/2022

A while back (actually many moons ago) I had put on two posts on this site:

Scientific Curation Fostering Expert Networks and Open Innovation: Lessons from Clive Thompson and others

Twitter is Becoming a Powerful Tool in Science and Medicine

Each of these posts were on the importance of scientific curation of findings within the realm of social media and the Web 2.0; a sub-environment known throughout the scientific communities as Science 2.0, in which expert networks collaborated together to produce massive new corpus of knowledge by sharing their views, insights on peer reviewed scientific findings. And through this new media, this process of curation would, in itself generate new ideas and new directions for research and discovery.

The platform sort of looked like the image below:

 

This system lied above a platform of the original Science 1.0, made up of all the scientific journals, books, and traditional literature:

In the old Science 1.0 format, scientific dissemination was in the format of hard print journals, and library subscriptions were mandatory (and eventually expensive). Open Access has tried to ameliorate the expense problem.

Previous image source: PeerJ.com

To index the massive and voluminous research and papers beyond the old Dewey Decimal system, a process of curation was mandatory. The dissemination of this was a natural for the new social media however the cost had to be spread out among numerous players. Journals, faced with the high costs of subscriptions and their only way to access this new media as an outlet was to become Open Access, a movement first sparked by journals like PLOS and PeerJ but then begrudingly adopted throughout the landscape. But with any movement or new adoption one gets the Good the Bad and the Ugly (as described in my cited, above, Clive Thompson article). The bad side of Open Access Journals were

  1. costs are still assumed by the individual researcher not by the journals
  2. the arise of the numerous Predatory Journals

 

Even PeerJ, in their column celebrating an anniversary of a year’s worth of Open Access success stories, lamented the key issues still facing Open Access in practice

  • which included the cost and the rise of predatory journals.

In essence, Open Access and Science 2.0 sprung full force BEFORE anyone thought of a way to defray the costs

 

Can Web 3.0 Finally Offer a Way to Right the Issues Facing High Costs of Scientific Publishing?

What is Web 3.0?

From Wikipedia: https://en.wikipedia.org/wiki/Web3

Web 1.0 and Web 2.0 refer to eras in the history of the Internet as it evolved through various technologies and formats. Web 1.0 refers roughly to the period from 1991 to 2004, where most websites were static webpages, and the vast majority of users were consumers, not producers, of content.[6][7] Web 2.0 is based around the idea of “the web as platform”,[8] and centers on user-created content uploaded to social-networking services, blogs, and wikis, among other services.[9] Web 2.0 is generally considered to have begun around 2004, and continues to the current day.[8][10][4]

Terminology[edit]

The term “Web3”, specifically “Web 3.0”, was coined by Ethereum co-founder Gavin Wood in 2014.[1] In 2020 and 2021, the idea of Web3 gained popularity[citation needed]. Particular interest spiked towards the end of 2021, largely due to interest from cryptocurrency enthusiasts and investments from high-profile technologists and companies.[4][5] Executives from venture capital firm Andreessen Horowitz travelled to Washington, D.C. in October 2021 to lobby for the idea as a potential solution to questions about Internet regulation with which policymakers have been grappling.[11]

Web3 is distinct from Tim Berners-Lee‘s 1999 concept for a semantic web, which has also been called “Web 3.0”.[12] Some writers referring to the decentralized concept usually known as “Web3” have used the terminology “Web 3.0”, leading to some confusion between the two concepts.[2][3] Furthermore, some visions of Web3 also incorporate ideas relating to the semantic web.[13][14]

Concept[edit]

Web3 revolves around the idea of decentralization, which proponents often contrast with Web 2.0, wherein large amounts of the web’s data and content are centralized in the fairly small group of companies often referred to as Big Tech.[4]

Specific visions for Web3 differ, but all are heavily based in blockchain technologies, such as various cryptocurrencies and non-fungible tokens (NFTs).[4] Bloomberg described Web3 as an idea that “would build financial assets, in the form of tokens, into the inner workings of almost anything you do online”.[15] Some visions are based around the concepts of decentralized autonomous organizations (DAOs).[16] Decentralized finance (DeFi) is another key concept; in it, users exchange currency without bank or government involvement.[4] Self-sovereign identity allows users to identify themselves without relying on an authentication system such as OAuth, in which a trusted party has to be reached in order to assess identity.[17]

Reception[edit]

Technologists and journalists have described Web3 as a possible solution to concerns about the over-centralization of the web in a few “Big Tech” companies.[4][11] Some have expressed the notion that Web3 could improve data securityscalability, and privacy beyond what is currently possible with Web 2.0 platforms.[14] Bloomberg states that sceptics say the idea “is a long way from proving its use beyond niche applications, many of them tools aimed at crypto traders”.[15] The New York Times reported that several investors are betting $27 billion that Web3 “is the future of the internet”.[18][19]

Some companies, including Reddit and Discord, have explored incorporating Web3 technologies into their platforms in late 2021.[4][20] After heavy user backlash, Discord later announced they had no plans to integrate such technologies.[21] The company’s CEO, Jason Citron, tweeted a screenshot suggesting it might be exploring integrating Web3 into their platform. This led some to cancel their paid subscriptions over their distaste for NFTs, and others expressed concerns that such a change might increase the amount of scams and spam they had already experienced on crypto-related Discord servers.[20] Two days later, Citron tweeted that the company had no plans to integrate Web3 technologies into their platform, and said that it was an internal-only concept that had been developed in a company-wide hackathon.[21]

Some legal scholars quoted by The Conversation have expressed concerns over the difficulty of regulating a decentralized web, which they reported might make it more difficult to prevent cybercrimeonline harassmenthate speech, and the dissemination of child abuse images.[13] But, the news website also states that, “[decentralized web] represents the cyber-libertarian views and hopes of the past that the internet can empower ordinary people by breaking down existing power structures.” Some other critics of Web3 see the concept as a part of a cryptocurrency bubble, or as an extension of blockchain-based trends that they see as overhyped or harmful, particularly NFTs.[20] Some critics have raised concerns about the environmental impact of cryptocurrencies and NFTs. Others have expressed beliefs that Web3 and the associated technologies are a pyramid scheme.[5]

Kevin Werbach, author of The Blockchain and the New Architecture of Trust,[22] said that “many so-called ‘web3’ solutions are not as decentralized as they seem, while others have yet to show they are scalable, secure and accessible enough for the mass market”, adding that this “may change, but it’s not a given that all these limitations will be overcome”.[23]

David Gerard, author of Attack of the 50 Foot Blockchain,[24] told The Register that “web3 is a marketing buzzword with no technical meaning. It’s a melange of cryptocurrencies, smart contracts with nigh-magical abilities, and NFTs just because they think they can sell some monkeys to morons”.[25]

Below is an article from MarketWatch.com Distributed Ledger series about the different forms and cryptocurrencies involved

From Marketwatch: https://www.marketwatch.com/story/bitcoin-is-so-2021-heres-why-some-institutions-are-set-to-bypass-the-no-1-crypto-and-invest-in-ethereum-other-blockchains-next-year-11639690654?mod=home-page

by Frances Yue, Editor of Distributed Ledger, Marketwatch.com

Clayton Gardner, co-CEO of crypto investment management firm Titan, told Distributed Ledger that as crypto embraces broader adoption, he expects more institutions to bypass bitcoin and invest in other blockchains, such as Ethereum, Avalanche, and Terra in 2022. which all boast smart-contract features.

Bitcoin traditionally did not support complex smart contracts, which are computer programs stored on blockchains, though a major upgrade in November might have unlocked more potential.

“Bitcoin was originally seen as a macro speculative asset by many funds and for many it still is,” Gardner said. “If anything solidifies its use case, it’s a store of value. It’s not really used as originally intended, perhaps from a medium of exchange perspective.”

For institutions that are looking for blockchains that can “produce utility and some intrinsic value over time,” they might consider some other smart contract blockchains that have been driving the growth of decentralized finance and web 3.0, the third generation of the Internet, according to Gardner. 

Bitcoin is still one of the most secure blockchains, but I think layer-one, layer-two blockchains beyond Bitcoin, will handle the majority of transactions and activities from NFT (nonfungible tokens) to DeFi,“ Gardner said. “So I think institutions see that and insofar as they want to put capital to work in the coming months, I think that could be where they just pump the capital.”

Decentralized social media? 

The price of Decentralized Social, or DeSo, a cryptocurrency powering a blockchain that supports decentralized social media applications, surged roughly 74% to about $164 from $94, after Deso was listed at Coinbase Pro on Monday, before it fell to about $95, according to CoinGecko.

In the eyes of Nader Al-Naji, head of the DeSo foundation, decentralized social media has the potential to be “a lot bigger” than decentralized finance.

“Today there are only a few companies that control most of what we see online,” Al-Naji told Distributed Ledger in an interview. But DeSo is “creating a lot of new ways for creators to make money,” Al-Naji said.

“If you find a creator when they’re small, or an influencer, you can invest in that, and then if they become bigger and more popular, you make money and they make and they get capital early on to produce their creative work,” according to AI-Naji.

BitClout, the first application that was created by AI-Naji and his team on the DeSo blockchain, had initially drawn controversy, as some found that they had profiles on the platform without their consent, while the application’s users were buying and selling tokens representing their identities. Such tokens are called “creator coins.”

AI-Naji responded to the controversy saying that DeSo now supports more than 200 social-media applications including Bitclout. “I think that if you don’t like those features, you now have the freedom to use any app you want. Some apps don’t have that functionality at all.”

 

But Before I get to the “selling monkeys to morons” quote,

I want to talk about

THE GOOD, THE BAD, AND THE UGLY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE GOOD

My foray into Science 2.0 and then pondering what the movement into a Science 3.0 led me to an article by Dr. Vladimir Teif, who studies gene regulation and the nucleosome, as well as creating a worldwide group of scientists who discuss matters on chromatin and gene regulation in a journal club type format.

For more information on this Fragile Nucleosome journal club see https://generegulation.org/fragile-nucleosome/.

Fragile Nucleosome is an international community of scientists interested in chromatin and gene regulation. Fragile Nucleosome is active in several spaces: one is the Discord server where several hundred scientists chat informally on scientific matters. You can join the Fragile Nucleosome Discord server. Another activity of the group is the organization of weekly virtual seminars on Zoom. Our webinars are usually conducted on Wednesdays 9am Pacific time (5pm UK, 6pm Central Europe). Most previous seminars have been recorded and can be viewed at our YouTube channel. The schedule of upcoming webinars is shown below. Our third activity is the organization of weekly journal clubs detailed at a separate page (Fragile Nucleosome Journal Club).

 

His lab site is at https://generegulation.org/ but had published a paper describing what he felt what the #science2_0 to #science3_0 transition would look like (see his blog page on this at https://generegulation.org/open-science/).

This concept of science 3.0 he had coined back in 2009.  As Dr Teif had mentioned

So essentially I first introduced this word Science 3.0 in 2009, and since then we did a lot to implement this in practice. The Twitter account @generegulation is also one of examples

 

This is curious as we still have an ill defined concept of what #science3_0 would look like but it is a good read nonetheless.

His paper,  entitled “Science 3.0: Corrections to the Science 2.0 paradigm” is on the Cornell preprint server at https://arxiv.org/abs/1301.2522 

 

Abstract

Science 3.0: Corrections to the Science 2.0 paradigm

The concept of Science 2.0 was introduced almost a decade ago to describe the new generation of online-based tools for researchers allowing easier data sharing, collaboration and publishing. Although technically sound, the concept still does not work as expected. Here we provide a systematic line of arguments to modify the concept of Science 2.0, making it more consistent with the spirit and traditions of science and Internet. Our first correction to the Science 2.0 paradigm concerns the open-access publication models charging fees to the authors. As discussed elsewhere, we show that the monopoly of such publishing models increases biases and inequalities in the representation of scientific ideas based on the author’s income. Our second correction concerns post-publication comments online, which are all essentially non-anonymous in the current Science 2.0 paradigm. We conclude that scientific post-publication discussions require special anonymization systems. We further analyze the reasons of the failure of the current post-publication peer-review models and suggest what needs to be changed in Science 3.0 to convert Internet into a large journal club. [bold face added]
In this paper it is important to note the transition of a science 1.0, which involved hard copy journal publications usually only accessible in libraries to a more digital 2.0 format where data, papers, and ideas could be easily shared among networks of scientists.
As Dr. Teif states, the term “Science 2.0” had been coined back in 2009, and several influential journals including Science, Nature and Scientific American endorsed this term and suggested scientists to move online and their discussions online.  However, even at present there are thousands on this science 2.0 platform, Dr Teif notes the number of scientists subscribed to many Science 2.0 networking groups such as on LinkedIn and ResearchGate have seemingly saturated over the years, with little new members in recent times. 
The consensus is that science 2.0 networking is:
  1. good because it multiplies the efforts of many scientists, including experts and adds to the scientific discourse unavailable on a 1.0 format
  2. that online data sharing is good because it assists in the process of discovery (can see this evident with preprint servers, bio-curated databases, Github projects)
  3. open-access publishing is beneficial because free access to professional articles and open-access will be the only publishing format in the future (although this is highly debatable as many journals are holding on to a type of “hybrid open access format” which is not truly open access
  4. only sharing of unfinished works and critiques or opinions is good because it creates visibility for scientists where they can receive credit for their expert commentary

There are a few concerns on Science 3.0 Dr. Teif articulates:

A.  Science 3.0 Still Needs Peer Review

Peer review of scientific findings will always be an imperative in the dissemination of well-done, properly controlled scientific discovery.  As Science 2.0 relies on an army of scientific volunteers, the peer review process also involves an army of scientific experts who give their time to safeguard the credibility of science, by ensuring that findings are reliable and data is presented fairly and properly.  It has been very evident, in this time of pandemic and the rapid increase of volumes of preprint server papers on Sars-COV2, that peer review is critical.  Many of these papers on such preprint servers were later either retracted or failed a stringent peer review process.

Now many journals of the 1.0 format do not generally reward their peer reviewers other than the self credit that researchers use on their curriculum vitaes.  Some journals, like the MDPI journal family, do issues peer reviewer credits which can be used to defray the high publication costs of open access (one area that many scientists lament about the open access movement; where the burden of publication cost lies on the individual researcher).

An issue which is highlighted is the potential for INFORMATION NOISE regarding the ability to self publish on Science 2.0 platforms.

 

The NEW BREED was born in 4/2012

An ongoing effort on this platform, https://pharmaceuticalintelligence.com/, is to establish a scientific methodology for curating scientific findings where one the goals is to assist to quell the information noise that can result from the massive amounts of new informatics and data occurring in the biomedical literature. 

B.  Open Access Publishing Model leads to biases and inequalities in the idea selection

The open access publishing model has been compared to the model applied by the advertising industry years ago and publishers then considered the journal articles as “advertisements”.  However NOTHING could be further from the truth.  In advertising the publishers claim the companies not the consumer pays for the ads.  However in scientific open access publishing, although the consumer (libraries) do not pay for access the burden of BOTH the cost of doing the research and publishing the findings is now put on the individual researcher.  Some of these publishing costs can be as high as $4000 USD per article, which is very high for most researchers.  However many universities try to refund the publishers if they do open access publishing so it still costs the consumer and the individual researcher, limiting the cost savings to either.  

However, this sets up a situation in which young researchers, who in general are not well funded, are struggling with the publication costs, and this sets up a bias or inequitable system which rewards the well funded older researchers and bigger academic labs.

C. Post publication comments and discussion require online hubs and anonymization systems

Many recent publications stress the importance of a post-publication review process or system yet, although many big journals like Nature and Science have their own blogs and commentary systems, these are rarely used.  In fact they show that there are just 1 comment per 100 views of a journal article on these systems.  In the traditional journals editors are the referees of comments and have the ability to censure comments or discourse.  The article laments that comments should be easy to do on journals, like how easy it is to make comments on other social sites, however scientists are not offering their comments or opinions on the matter. 

In a personal experience, 

a well written commentary goes through editors which usually reject a comment like they were rejecting an original research article.  Thus many scientists, I believe, after fashioning a well researched and referenced reply, do not get the light of day if not in the editor’s interests.  

Therefore the need for anonymity is greatly needed and the lack of this may be the hindrance why scientific discourse is so limited on these types of Science 2.0 platforms.  Platforms that have success in this arena include anonymous platforms like Wikipedia or certain closed LinkedIn professional platforms but more open platforms like Google Knowledge has been a failure.

A great example on this platform was a very spirited conversation on LinkedIn on genomics, tumor heterogeneity and personalized medicine which we curated from the LinkedIn discussion (unfortunately LinkedIn has closed many groups) seen here:

Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn

 

 

Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn

 

In this discussion, it was surprising that over a weekend so many scientists from all over the world contributed to a great discussion on the topic of tumor heterogeneity.

But many feel such discussions would be safer if they were anonymized.  However then researchers do not get any credit for their opinions or commentaries.

A Major problem is how to take the intangible and make them into tangible assets which would both promote the discourse as well as reward those who take their time to improve scientific discussion.

This is where something like NFTs or a decentralized network may become important!

See

https://pharmaceuticalintelligence.com/portfolio-of-ip-assets/

 

UPDATED 5/09/2022

Below is an online @TwitterSpace Discussion we had with some young scientists who are just starting out and gave their thoughts on what SCIENCE 3.0 and the future of dissemination of science might look like, in light of this new Meta Verse.  However we have to define each of these terms in light of Science and not just the Internet as merely a decentralized marketplace for commonly held goods.

This online discussion was tweeted out and got a fair amount of impressions (60) as well as interactors (50).

 For the recording on both Twitter as well as on an audio format please see below

<blockquote class=”twitter-tweet”><p lang=”en” dir=”ltr”>Set a reminder for my upcoming Space! <a href=”https://t.co/7mOpScZfGN”>https://t.co/7mOpScZfGN</a&gt; <a href=”https://twitter.com/Pharma_BI?ref_src=twsrc%5Etfw”>@Pharma_BI</a&gt; <a href=”https://twitter.com/PSMTempleU?ref_src=twsrc%5Etfw”>@PSMTempleU</a&gt; <a href=”https://twitter.com/hashtag/science3_0?src=hash&amp;ref_src=twsrc%5Etfw”>#science3_0</a&gt; <a href=”https://twitter.com/science2_0?ref_src=twsrc%5Etfw”>@science2_0</a></p>&mdash; Stephen J Williams (@StephenJWillia2) <a href=”https://twitter.com/StephenJWillia2/status/1519776668176502792?ref_src=twsrc%5Etfw”>April 28, 2022</a></blockquote> <script async src=”https://platform.twitter.com/widgets.js&#8221; charset=”utf-8″></script>

 

 

To introduce this discussion first a few startoff material which will fram this discourse

 






The Intenet and the Web is rapidly adopting a new “Web 3.0” format, with decentralized networks, enhanced virtual experiences, and greater interconnection between people. Here we start the discussion what will the move from Science 2.0, where dissemination of scientific findings was revolutionized and piggybacking on Web 2.0 or social media, to a Science 3.0 format. And what will it involve or what paradigms will be turned upside down?

Old Science 1.0 is still the backbone of all scientific discourse, built on the massive amount of experimental and review literature. However this literature was in analog format, and we moved to a more accesible digital open access format for both publications as well as raw data. However as there was a structure for 1.0, like the Dewey decimal system and indexing, 2.0 made science more accesible and easier to search due to the newer digital formats. Yet both needed an organizing structure; for 1.0 that was the scientific method of data and literature organization with libraries as the indexers. In 2.0 this relied on an army mostly of volunteers who did not have much in the way of incentivization to co-curate and organize the findings and massive literature.

Each version of Science has their caveats: their benefits as well as deficiencies. This curation and the ongoing discussion is meant to solidy the basis for the new format, along with definitions and determination of structure.

We had high hopes for Science 2.0, in particular the smashing of data and knowledge silos. However the digital age along with 2.0 platforms seemed to excaccerbate this somehow. We still are critically short on analysis!

 

We really need people and organizations to get on top of this new Web 3.0 or metaverse so the similar issues do not get in the way: namely we need to create an organizing structure (maybe as knowledgebases), we need INCENTIVIZED co-curators, and we need ANALYSIS… lots of it!!

Are these new technologies the cure or is it just another headache?

 

There were a few overarching themes whether one was talking about AI, NLP, Virtual Reality, or other new technologies with respect to this new meta verse and a concensus of Decentralized, Incentivized, and Integrated was commonly expressed among the attendees

The Following are some slides from representative Presentations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other article of note on this topic on this Open Access Scientific Journal Include:

Electronic Scientific AGORA: Comment Exchanges by Global Scientists on Articles published in the Open Access Journal @pharmaceuticalintelligence.com – Four Case Studies

eScientific Publishing a Case in Point: Evolution of Platform Architecture Methodologies and of Intellectual Property Development (Content Creation by Curation) Business Model 

e-Scientific Publishing: The Competitive Advantage of a Powerhouse for Curation of Scientific Findings and Methodology Development for e-Scientific Publishing – LPBI Group, A Case in Point

@PharmaceuticalIntelligence.com –  A Case Study on the LEADER in Curation of Scientific Findings

Real Time Coverage @BIOConvention #BIO2019: Falling in Love with Science: Championing Science for Everyone, Everywhere

Old Industrial Revolution Paradigm of Education Needs to End: How Scientific Curation Can Transform Education

 

Read Full Post »

Old Industrial Revolution Paradigm of Education Needs to End: How Scientific Curation Can Transform Education

Curator: Stephen J. Williams, PhD.

Dr. Cathy N. Davidson from Duke University gives a talk entitled: Now You See It.  Why the Future of Learning Demands a Paradigm Shift

In this talk, shown below, Dr. Davidson shows how our current education system has been designed for educating students for the industrial age type careers and skills needed for success in the Industrial Age and how this educational paradigm is failing to prepare students for the challenges they will face in their future careers.

Or as Dr. Davidson summarizes

Designing education not for your past but for their future

As the video is almost an hour I will summarize some of the main points below

PLEASE WATCH VIDEO

Summary of talk

Dr. Davidson starts the talk with a thesis: that Institutions tend to preserve the problems they were created to solve.

All the current work, teaching paradigms that we use today were created for the last information age (19th century)

Our job to to remake the institutions of education work for the future not the one we inherited

Four information ages or technologies that radically changed communication

  1. advent of writing: B.C. in ancient Mesopotamia allowed us to record and transfer knowledge and ideas
  2. movable type – first seen in 10th century China
  3. steam powered press – allowed books to be mass produced and available to the middle class.  First time middle class was able to have unlimited access to literature
  4. internet- ability to publish and share ideas worldwide

Interestingly, in the early phases of each of these information ages, the same four complaints about the new technology/methodology of disseminating information was heard

  • ruins memory
  • creates a distraction
  • ruins interpersonal dialogue and authority
  • reduces complexity of thought

She gives an example of Socrates who hated writing and frequently stated that writing ruins memory, creates a distraction, and worst commits ideas to what one writes down which could not be changed or altered and so destroys ‘free thinking’.

She discusses how our educational institutions are designed for the industrial age.

The need for collaborative (group) learning AND teaching

Designing education not for your past but for the future

In other words preparing students for THEIR future not your past and the future careers that do not exist today.

In the West we were all taught to answer silently and alone.  However in Japan, education is arranged in the han or group think utilizing the best talents of each member in the group.  In Japan you are arranged in such groups at an early age.  The concept is that each member of the group contributes their unique talent and skill for the betterment of the whole group.  The goal is to demonstrate that the group worked well together.

see https://educationinjapan.wordpress.com/education-system-in-japan-general/the-han-at-work-community-spirit-begins-in-elementary-school/ for a description of “in the han”

In the 19th century in institutions had to solve a problem: how to get people out of the farm and into the factory and/or out of the shop and into the firm

Takes a lot of regulation and institutionalization to convince people that independent thought is not the best way in the corporation

keywords for an industrial age

  • timeliness
  • attention to task
  • standards, standardization
  • hierarchy
  • specialization, expertise
  • metrics (measures, management)
  • two cultures: separating curriculum into STEM versus artistic tracts or dividing the world of science and world of art

This effort led to a concept used in scientific labor management derived from this old paradigm in education, an educational system controlled and success measured using

  • grades (A,B,C,D)
  • multiple choice tests

keywords for our age

  • workflow
  • multitasking attention
  • interactive process (Prototype, Feedback)
  • data mining
  • collaboration by difference

Can using a methodology such as scientific curation affect higher education to achieve this goal of teaching students to collaborate in an interactive process using data mining to create a new workflow for any given problem?  Can a methodology of scientific curation be able to affect such changes needed in academic departments to achieve the above goal?

This will be the subject of future curations tested using real-world in class examples.

However, it is important to first discern that scientific content curation takes material from Peer reviewed sources and other expert-vetted sources.  This is unique from other types of content curation in which take from varied sources, some of which are not expert-reviewed, vetted, or possibly ‘fake news’ or highly edited materials such as altered video and audio.  In this respect, the expert acts not only as curator but as referee.  In addition, collaboration is necessary and even compulsory for the methodology of scientific content curation, portending the curator not as the sole expert but revealing the CONTENT from experts as the main focus for learning and edification.

Other article of note on this subject in this Open Access Online Scientific Journal include:

The above articles will give a good background on this NEW Conceived Methodology of Scientific Curation and its Applicability in various areas such as Medical Publishing, and as discussed below Medical Education.

To understand the new paradigm in medical communication and the impact curative networks have or will play in this arena please read the following:

Scientific Curation Fostering Expert Networks and Open Innovation: Lessons from Clive Thompson and others

This article discusses a history of medical communication and how science and medical communication initially moved from discussions from select individuals to the current open accessible and cooperative structure using Web 2.0 as a platform.

 

Read Full Post »

@PharmaceuticalIntelligence.com –  A Case Study on the LEADER in Curation of Scientific Findings

Author: Aviva Lev-Ari, PhD, RN

 

Multi-facets of the LPBI Group Intellectual Property (IP) ASSETS

 

 

 

  • Editorial & Publication of Articles in e-Books by Leaders in Pharmaceutical Business Intelligence: Contributions of Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/10/16/editorial-publication-of-articles-in-e-books-by-leaders-in-pharmaceutical-business-intelligence-contributions-of-larry-h-bernstein-md-fcap/

  • Editorial & Publication of Articles in e-Books by Leaders in Pharmaceutical Business Intelligence: Contributions of Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/10/16/editorial-publication-of-articles-in-e-books-by-leaders-in-pharmaceutical-business-intelligence-contributions-of-aviva-lev-ari-phd-rn/

 

Innovations in e-Scientific Publishing Methodology Development accomplished by LPBI Group:

A.  Methodology for Curation of Scientific Findings – implementations for

  • Multi-Auhtors Authoring Cloud-based Platform

 

  • Journal Statistics – Interdisciplinary Journal covers interfaces of six domains (Life sciences, Pharmaceuticals, Medicine, Healthcare Policy, Biotech Intelligence and Medical Devices)

Curations of Scientific Findings of peer reviewed articles in top three journals in each of the Six domain

Curations written on a multi-Authoring platform by MDs, MD/PhDs, PharmD and PhDs, all 15 years after graduation of the advanced degree program, and each has a publication list before joined my team – they write clinical and medical interpretations of the scientific frontier as evidenced in the Scientific Finding section of published articles in Cell, Nature, Science, NEJM, other top journals in these six domains.

  1. Volume: 1.3 Million eReaders, ~5,150 Scientific articles, +500 categories of Research defining the Journal Ontology, 9,500 tags, 7,300, scientific comment on the articles submitted and exchange recorded between the Scientific community and our Team members
  2. Top two articles >25,000 eReaders
  3. Clicks on two Top Authors: >551,000
  4. from NIH +3,700 hits
  5. 2250 Journal subscribers by e-mail
  6. +6,200 Biotech Executive following up on LinkedIn
  • BioMed e-Series of e-Books in Medicine – 16 Volumes in Five e-Series: Cardiovascular, Genomics, Cancer, Immunology, Patient-centered Medicine

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_9?ie=UTF8&text=Aviva+Lev-Ari&search-alias=digital-text&field-author=Aviva+Lev-Ari&sort=relevancerank

  • Team expertise
  1. e-Scientific Publishing: The Competitive Advantage of a Powerhouse for Curation of Scientific Findings and Methodology Development for e-Scientific Publishing – LPBI Group, A Case in Point
  2. FIVE years of e-Scientific Publishing @pharmaceuticalintellicence.com, Top Articles by Author and by e-Views >1,000, 4/27/2012 to 4/27/2017
  3. Innovations in electronic Scientific Publishing (eSP): Case Studies in Marketing eContent, Curation Methodology, Categories of Research Functions, Interdisciplinary conceptual innovations by Cross Section of Categories, Exposure to Frontiers of Science by Real Time Press coverage of Scientific Conferences

B.  Methodology for REAL TIME Coverage of Scientific Conferences using Social Media and Real Time e-Proceedings Generation: Conferences in Biotech, Life Sciences and Medicine

  • In House Developed Methodology for Real Time Press Coverage of Biotech Top International conferences – selective  topics covered at conferences lead to NEW Curations in the Journal

https://pharmaceuticalintelligence.com/press-coverage/

 

9 results for Kindle Store : “Aviva Lev-Ari”

Sort by 
Relevance
Featured
Price: Low to High
Price: High to Low
Avg. Customer Review
Publication Date
Showing most relevant results. See all results for .
  • Product Details

    Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2)

    May 13, 2017 | Kindle eBook

    by Larry H. Bernstein and Demet Sag
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics

    Nov 28, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams PhD
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Perspectives on Nitric Oxide in Disease Mechanisms (Biomed e-Books Book 1)

    Jun 20, 2013 | Kindle eBook

    by Margaret Baker PhD and Tilda Barliya PhD
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Genomics Orientations for Personalized Medicine (Frontiers in Genomics Research Book 1)

    Nov 22, 2015 | Kindle eBook

    by Sudipta Saha PhD and Marcus W Feldman PhD
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Metabolic Genomics & Pharmaceutics (BioMedicine – Metabolomics, Immunology, Infectious Diseases Book 1)

    Jul 21, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Prabodah Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics (Series E: Patient-Centered Medicine Book 3)

    Dec 26, 2015 | Kindle eBook

    by Larry H. Bernstein MD FACP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Cancer Biology and Genomics for Disease Diagnosis (Series C: e-Books on Cancer & Oncology Book 1)

    Aug 10, 2015 | Kindle eBook

    by Larry H Bernstein MD FCAP and Prabodh Kumar Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Regenerative and Translational Medicine: The Therapeutic Promise for Cardiovascular Diseases

    Dec 26, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Ritu Saxena PhD
    Subscribers read for free.
    Auto-delivered wirelessly
  • Product Details

    Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation: The Art of Scientific & Medical Curation

    Nov 29, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly

Read Full Post »

%d bloggers like this: