Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘whole exome sequencing’


Weill Cornell Medicine to Expand Tumor Exome Test (EXaCT-1 identifies alterations within tumors) to Thousands of Advanced Cancer Patients

Reporter: Aviva Lev-Ari, PhD, RN

PRECISION MEDICINE TEAM AT WEILL CORNELL MEDICINE AND NEWYORK-PRESBYTERIAN WILL INTRODUCE WHOLE EXOME SEQUENCING TEST, EXACT-1, TO CLINICAL SETTING

Tumor cells from a biopsy of a patient enrolled in the EXaCT-1 pilot program that investigators are culturing in the lab for further biologic studies and drug testing.
Image credit: Dr. Loredana Puca

NEW YORK (November 13, 2015) — A powerful new test that can reveal untapped therapies for patients with advanced cancers by scanning thousands of their genes will soon be available for patients at Weill Cornell Medicine and NewYork-Presbyterian/Weill Cornell Medical Center. The test, EXaCT-1, identifies alterations within tumors — some of which drive cancerous growth — on a magnitude up to hundreds of times greater than similar technologies designed to pinpoint the most precise ways of treating the disease.

Weill Cornell Medicine recently received approval for EXaCT-1 by the New York State Department of Health. The test was developed by the institutions’ precision medicine team. In May, the team published findings on its first 97 patients who underwent the test and found that scanning a patient’s tumor to look for any genomic mutations — rather than limiting the screen to mutations commonly associated with a given patient’s tumor type — worked. In 92 percent of cases in the pilot program, the precision medicine team was able to recommend new treatment options based on the test’s findings. Now that the state has approved the test, precision medicine leaders will begin the process to implement it for large-scale clinical use for oncology patients treated at NewYork-Presbyterian/Weill Cornell. Until that time, patients with advanced cancers will be able to access EXaCT-1 through the Caryl and Israel Englander Institute for Precision Medicine at Weill Cornell Medicine, the research enterprise of the two institutions’ joint precision medicine efforts.

Unlike these focused tests, typically called panel sequencing, the EXaCT-1 assay takes an unbiased, exploratory look at more than 21,000 genes in cells both healthy and malignant, allowing researchers to find alterations in the cancer-development process in unexpected regions of the exome, where DNA is transcribed into RNA. This type of test, known as whole exome sequencing, can be effective in advanced-stage patients for whom other treatments have failed because it uncovers mutations that the less comprehensive tests miss. In practice, this means, for example, that a patient with bladder cancer whom EXaCT-1 shows to share a mutation associated with breast cancer might benefit from a drug typically prescribed to fight the latter type of tumor.

Dr. Olivier Elemento
Photo credit: Roger Tully

“That’s the nice thing about sequencing the entire tumor genome – we cover genes that other tests will miss,” said Dr. Olivier Elemento, head of the Englander Institute for Precision Medicine’s computational biology group, an associate professor of physiology and biophysics and head of the laboratory of cancer systems biology in the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine at Weill Cornell. “This test is ideal for patients with advanced cancer because it allows us to identify mutations that may be related to the resistance of their disease, and helps us to pinpoint the best way to treat them.”

The screen requires a blood sample and a sample of the patient’s tumor. Computational biologists at the Englander Institute analyze the data and generate patient-and physician-friendly reports that summarize the key clinical and genetic findings. Once the precision medicine team has reviewed the results, it consults with the patient’s oncologist at NewYork-Presbyterian/Weill Cornell to help decide which treatment options and clinical trials may best target the patient’s disease.

Read more @SOURCE

SOURCE

http://weill.cornell.edu/news/pr/2015/11/new-treatment-options-for-advanced-stage-cancer-patients-revealed-through-next-generation-sequencing.html

Advertisements

Read Full Post »


Icelandic Population Genomic Study Results by deCODE Genetics come to Fruition: Curation of Current genomic studies

Reporter/Curator: Stephen J. Williams, Ph.D.

 

UPDATED on 9/6/2017

On 9/6/2017, Aviva Lev-Ari, PhD, RN had attend a talk by Paul Nioi, PhD, Amgen, at HMS, Harvard BioTechnology Club (GSAS).

Nioi discussed his 2016 paper in NEJM, 2016, 374:2131-2141

Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease

Paul Nioi, Ph.D., Asgeir Sigurdsson, B.Sc., Gudmar Thorleifsson, Ph.D., Hannes Helgason, Ph.D., Arna B. Agustsdottir, B.Sc., Gudmundur L. Norddahl, Ph.D., Anna Helgadottir, M.D., Audur Magnusdottir, Ph.D., Aslaug Jonasdottir, M.Sc., Solveig Gretarsdottir, Ph.D., Ingileif Jonsdottir, Ph.D., Valgerdur Steinthorsdottir, Ph.D., Thorunn Rafnar, Ph.D., Dorine W. Swinkels, M.D., Ph.D., Tessel E. Galesloot, Ph.D., Niels Grarup, Ph.D., Torben Jørgensen, D.M.Sc., Henrik Vestergaard, D.M.Sc., Torben Hansen, Ph.D., Torsten Lauritzen, D.M.Sc., Allan Linneberg, Ph.D., Nele Friedrich, Ph.D., Nikolaj T. Krarup, Ph.D., Mogens Fenger, Ph.D., Ulrik Abildgaard, D.M.Sc., Peter R. Hansen, D.M.Sc., Anders M. Galløe, Ph.D., Peter S. Braund, Ph.D., Christopher P. Nelson, Ph.D., Alistair S. Hall, F.R.C.P., Michael J.A. Williams, M.D., Andre M. van Rij, M.D., Gregory T. Jones, Ph.D., Riyaz S. Patel, M.D., Allan I. Levey, M.D., Ph.D., Salim Hayek, M.D., Svati H. Shah, M.D., Muredach Reilly, M.B., B.Ch., Gudmundur I. Eyjolfsson, M.D., Olof Sigurdardottir, M.D., Ph.D., Isleifur Olafsson, M.D., Ph.D., Lambertus A. Kiemeney, Ph.D., Arshed A. Quyyumi, F.R.C.P., Daniel J. Rader, M.D., William E. Kraus, M.D., Nilesh J. Samani, F.R.C.P., Oluf Pedersen, D.M.Sc., Gudmundur Thorgeirsson, M.D., Ph.D., Gisli Masson, Ph.D., Hilma Holm, M.D., Daniel Gudbjartsson, Ph.D., Patrick Sulem, M.D., Unnur Thorsteinsdottir, Ph.D., and Kari Stefansson, M.D., Ph.D.

N Engl J Med 2016; 374:2131-2141June 2, 2016DOI: 10.1056/NEJMoa1508419

Abstract
Article
References
Citing Articles (22)
Metrics

BACKGROUND

Several sequence variants are known to have effects on serum levels of non–high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease.

METHODS

We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability.

RESULTS

We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10−16), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10−6). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10−3).

CONCLUSIONS

ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.)

 

Amgen’s deCODE Genetics Publishes Largest Human Genome Population Study to Date

Mark Terry, BioSpace.com Breaking News Staff reported on results of one of the largest genome sequencing efforts to date, sequencing of the genomes of 2,636 people from Iceland by deCODE genetics, Inc., a division of Thousand Oaks, Calif.-based Amgen (AMGN).

Amgen had bought deCODE genetics Inc. in 2012, saving the company from bankruptcy.

There were a total of four studies, published on March 25, 2015 on the online version of Nature Genetics; titled “Large-scale whole-genome sequencing of the Icelandic population[1],” “Identification of a large set of rare complete human knockouts[2],” “The Y-chromosome point mutation rate in humans[3]” and “Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease[4].”

The project identified some new genetic variants which increase risk of Alzheimer’s disease and confirmed some variants known to increase risk of diabetes and atrial fibrillation. A more in-depth post will curate these findings but there was an interesting discrete geographic distribution of certain rare variants located around Iceland. The dataset offers a treasure trove of meaningful genetic information not only about the Icelandic population but offers numerous new targets for breast, ovarian cancer as well as Alzheimer’s disease.

View Mark Terry’s article here on Biospace.com.

“This work is a demonstration of the unique power sequencing gives us for learning more about the history of our species,” said Kari Stefansson, founder and chief executive officer of deCode and one of the lead authors in a statement, “and for contributing to new means of diagnosing, treating and preventing disease.”

The scale and ambition of the study is impressive, but perhaps more important, the research identified a new genetic variant that increases the risk of Alzheimer’s disease and already had identified an APP variant that is associated with decreased risk of Alzheimer’s Disease. It also confirmed variants that increase the risk of diabetes and a variant that results in atrial fibrillation.
The database of human genetic variation (dbSNP) contained over 50 million unique sequence variants yet this database only represents a small proportion of single nucleotide variants which is thought to exist. These “private” or rare variants undoubtedly contribute to important phenotypes, such as disease susceptibility. Non-SNV variants, like indels and structural variants, are also under-represented in public databases. The only way to fully elucidate the genetic basis of a trait is to consider all of these types of variants, and the only way to find them is by large-scale sequencing.

Curation of Population Genomic Sequencing Programs/Corporate Partnerships

Click on “Curation of genomic studies” below for full Table

Curation of genomic studies
Study Partners Population Enrolled Disease areas Analysis
Icelandic Genome

Project

deCODE/Amgen Icelandic 2,636 Variants related to: Alzheimer’s, cardiovascular, diabetes WES + EMR; blood samples
Genome Sequencing Study Geisinger Health System/Regeneron Northeast PA, USA 100,000 Variants related to hypercholestemia, autism, obesity, other diseases WES +EMR +MyCode;

– Blood samples

The 100,000 Genomes Project National Health Service/NHS Genome Centers/ 10 companies forming Gene Consortium including Abbvie, Alexion, AstraZeneca, Biogen, Dimension, GSK, Helomics, Roche,   Takeda, UCB Rare disorders population UK Starting to recruit 100,000 Initially rare diseases, cancer, infectious diseases WES of blood, saliva and tissue samples

Ref paper

Saudi Human Genome Program 7 centers across Saudi Arabia in conjunction with King Abdulaziz City Science & Tech., King Faisal Hospital & Research Centre/Life Technologies General population Saudi Arabia 20,000 genomes over three years First focus on rare severe early onset diseases: diabetes, deafness, cardiovascular, skeletal deformation Whole genome sequence blood samples + EMR
Genome of the Netherlands (GoNL) Consortium consortium of the UMCG,LUMCErasmus MCVU university and UMCU. Samples where contributed by LifeLinesThe Leiden Longevity StudyThe Netherlands Twin Registry (NTR), The Rotterdam studies, and The Genetic Research in Isolated Populations program. All the sequencing work is done by BGI Hong Kong. Families in Netherlands 769 Variants, SNV, indels, deletions from apparently healthy individuals, family trios Whole genome NGS of whole blood no EMR

Ref paper in Nat. Genetics

Ref paper describing project

Faroese FarGen project Privately funded Faroe Islands Faroese population 50,000 Small population allows for family analysis Combine NGS with EMR and genealogy reports
Personal Genome Project Canada $4000.00 fee from participants; collaboration with University of Toronto and SickKids Organization; technical assistance with Harvard Canadian Health System Goal: 100,000 ? just started no defined analysis goals yet Whole exome and medical records
Singapore Sequencing Malay Project (SSMP) Singapore Genome Variation Project

Singapore Pharmacogenomics Project

Malaysian 100 healthy Malays from Singapore Pop. Health Study Variant analysis Deep whole genome sequencing
GenomeDenmark four Danish universities (KU, AU, DTU and AAU), two hospitals (Herlev and Vendsyssel) and two private firms (Bavarian Nordic and BGI-Europe). 150 complete genomes; first 30 published in Nature Comm. ? See link
Neuromics Consortium University of Tübingen and 18 academic and industrial partners (see link for description) European and Australian 1,100 patients with neuro-

degenerative and neuro-

muscular disease

Moved from SNP to whole exome analysis Whole Exome, RNASeq

References

  1. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E et al: Large-scale whole-genome sequencing of the Icelandic population. Nature genetics 2015, advance online publication.
  2. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, Hjartarson E, Sigurdsson GT, Jonasdottir A, Jonasdottir A et al: Identification of a large set of rare complete human knockouts. Nature genetics 2015, advance online publication.
  3. Helgason A, Einarsson AW, Gumundsdottir VB, Sigursson A, Gunnarsdottir ED, Jagadeesan A, Ebenesersdottir SS, Kong A, Stefansson K: The Y-chromosome point mutation rate in humans. Nature genetics 2015, advance online publication.
  4. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, Sulem P, Magnusson OT, Gudjonsson SA, Unnsteinsdottir U et al: Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nature genetics 2015, advance online publication.

Other post related to DECODE, population genomics, and NGS on this site include:

Illumina Says 228,000 Human Genomes Will Be Sequenced in 2014

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics and Computational Genomics – Part IIB

Human genome: UK to become world number 1 in DNA testing

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

Sequencing the exomes of 1,100 patients with neurodegenerative and neuromuscular diseases: A consortium of 18 European and Australian institutions

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Three Ancestral Populations Contributed to Modern-day Europeans: Ancient Genome Analysis

Impact of evolutionary selection on functional regions: The imprint of evolutionary selection on ENCODE regulatory elements is manifested between species and within human populations

Read Full Post »


Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

Curator, Writer: Stephen J. Williams, Ph.D.

lung cancer

(photo credit: cancer.gov)

A report Lung Cancer Genome Surveys Find Many Potential Drug Targets, in the NCI Bulletin,

http://www.cancer.gov/ncicancerbulletin/091812/page2

summarizes the clinical importance of five new lung cancer genome sequencing projects. These studies have identified genetic and epigenetic alterations in hundreds of lung tumors, of which some alterations could be taken advantage of using currently approved medications.

The reports, all published this month, included genomic information on more than 400 lung tumors. In addition to confirming genetic alterations previously tied to lung cancer, the studies identified other changes that may play a role in the disease.

Collectively, the studies covered the main forms of the disease—lung adenocarcinomas, squamous cell cancers of the lung, and small cell lung cancers.

“All of these studies say that lung cancers are genomically complex and genomically diverse,” said Dr. Matthew Meyerson of Harvard Medical School and the Dana-Farber Cancer Institute, who co-led several of the studies, including a large-scale analysis of squamous cell lung cancer by The Cancer Genome Atlas (TCGA) Research Network.

Some genes, Dr. Meyerson noted, were inactivated through different mechanisms in different tumors. He cautioned that little is known about alterations in DNA sequences that do not encode genes, which is most of the human genome.

Four of the papers are summarized below, with the first described in detail, as the Nature paper used a multi-‘omics strategy to evaluate expression, mutation, and signaling pathway activation in a large cohort of lung tumors. A literature informatics analysis is given for one of the papers.  Please note that links on GENE names usually refer to the GeneCard entry.

Paper 1. Comprehensive genomic characterization of squamous cell lung cancers[1]

The Cancer Genome Atlas Research Network Project just reported, in the journal Nature, the results of their comprehensive profiling of 230 resected lung adenocarcinomas. The multi-center teams employed analyses of

  • microRNA
  • Whole Exome Sequencing including
    • Exome mutation analysis
    • Gene copy number
    • Splicing alteration
  • Methylation
  • Proteomic analysis

Summary:

Some very interesting overall findings came out of this analysis including:

  • High rates of somatic mutations including activating mutations in common oncogenes
  • Newly described loss of function MGA mutations
  • Sex differences in EGFR and RBM10 mutations
  • driver roles for NF1, MET, ERBB2 and RITI identified in certain tumors
  • differential mutational pattern based on smoking history
  • splicing alterations driven by somatic genomic changes
  • MAPK and PI3K pathway activation identified by proteomics not explained by mutational analysis = UNEXPLAINED MECHANISM of PATHWAY ACTIVATION

however, given the plethora of data, and in light of a similar study results recently released, there appears to be a great need for additional mining of this CGAP dataset. Therefore I attempted to curate some of the findings along with some other recent news relevant to the surprising findings with relation to biomarker analysis.

Makeup of tumor samples

230 lung adenocarcinomas specimens were categorized by:

Subtype

33% acinar

25% solid

14% micro-papillary

9% papillary

8% unclassified

5% lepidic

4% invasive mucinous
Gender

Smoking status

81% of patients reported past of present smoking

The authors note that TCGA samples were combined with previous data for analysis purpose.

A detailed description of Methodology and the location of deposited data are given at the following addresses:

Publication TCGA Web Page: https://tcga-data.nci.nih.gov/docs/publications/luad_2014/

Sequence files: https://cghub.ucsc.edu

Results:

Gender and Smoking Habits Show different mutational patterns

 

WES mutational analysis

  1. a) smoking status

– there was a strong correlations of cytosine to adenine nucleotide transversions with past or present smoking. In fact smoking history separated into transversion high (past and previous smokers) and transversion low (never smokers) groups, corroborating previous results.

mutations in groups              Transversion High                   Transversion Low

TP53, KRAS, STK11,                 EGFR, RB1, PI3CA

     KEAP1, SMARCA4 RBM10

 

  1. b) Gender

Although gender differences in mutational profiles have been reported, the study found minimal number of significantly mutated genes correlated with gender. Notably:

  • EGFR mutations enriched in female cohort
  • RBM10 loss of function mutations enriched in male cohort

Although the study did not analyze the gender differences with smoking patterns, it was noted that RBM10 mutations among males were more prevalent in the transversion high group.

Whole exome Sequencing and copy number analysis reveal Unique, Candidate Driver Genes

Whole exome sequencing revealed that 62% of tumors contained mutations (either point or indel) in known cancer driver genes such as:

KRAS, EGFR, BRMF, ERBB2

However, authors looked at the WES data from the oncogene-negative tumors and found unique mutations not seen in the tumors containing canonical oncogenic mutations.

Unique potential driver mutations were found in

TP53, KEAP1, NF1, and RIT1

The genomics and expression data were backed up by a proteomics analysis of three pathways:

  1. MAPK pathway
  2. mTOR
  3. PI3K pathway

…. showing significant activation of all three pathways HOWEVER the analysis suggested that activation of signaling pathways COULD NOT be deduced from DNA sequencing alone. Phospho-proteomic analysis was required to determine the full extent of pathway modification.

For example, many tumors lacked an obvious mutation which could explain mTOR or MAPK activation.

 

Altered cell signaling pathways included:

  • Increased MAPK signaling due to activating KRAS
  • Higher mTOR due to inactivating STK11 leading to increased proliferation, translation

Pathway analysis of mutations revealed alterations in multiple cellular pathways including:

  • Reduced oxidative stress response
  • Nucleosome remodeling
  • RNA splicing
  • Cell cycle progression
  • Histone methylation

Summary:

Authors noted some interesting conclusions including:

  1. MET and ERBB2 amplification and mutations in NF1 and RIT1 may be unique driver events in lung adenocarcinoma
  2. Possible new drug development could be targeted to the RTK/RAS/RAF pathway
  3. MYC pathway as another important target
  4. Cluster analysis using multimodal omics approach identifies tumors based on single-gene driver events while other tumor have multiple driver mutational events (TUMOR HETEROGENEITY)

Paper 2. A Genomics-Based Classification of Human Lung Tumors[2]

The paper can be found at

http://stm.sciencemag.org/content/5/209/209ra153

by The Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic Medicine (NGM),*,

Paper Summary

This sequencing project revealed discrepancies between histologic and genomic classification of lung tumors.

Methodology

– mutational analysis by whole exome sequencing of 1255 lung tumors of histologically

defined subtypes

– immunohistochemistry performed to verify reclassification of subtypes based on sequencing data

Results

  • 55% of all cases had at least one oncogenic alteration amenable to current personalized treatment approaches
  • Marked differences existed between cluster analysis within and between preclassified histo-subtypes
  • Reassignment based on genomic data eliminated large cell carcinomas
  • Prospective classification of 5145 lung cancers allowed for genomic classification in 75% of patients
  • Identification of EGFR and ALK mutations led to improved outcomes

Conclusions:

It is feasible to successfully classify and diagnose lung tumors based on whole exome sequencing data.

Paper 3. Genomic Landscape of Non-Small Cell Lung Cancer in Smokers and Never-Smokers[3]

A link to the paper can be found here with Graphic Summary: http://www.cell.com/cell/abstract/S0092-8674%2812%2901022-7?cc=y?cc=y

Methodology

  • Whole genome sequencing and transcriptome sequencing of cancerous and adjacent normal tissues from 17 patients with NSCLC
  • Integrated RNASeq with WES for analysis of
    • Variant analysis
    • Clonality by variant allele frequency anlaysis
    • Fusion genes
  • Bioinformatic analysis

Results

  • 3,726 point mutations and more than 90 indels in the coding sequence
  • Smokers with lung cancer show 10× the number of point mutations than never-smokers
  • Novel lung cancer genes, including DACH1, CFTR, RELN, ABCB5, and HGF were identified
  • Tumor samples from males showed high frequency of MYCBP2 MYCBP2 involved in transcriptional regulation of MYC.
  • Variant allele frequency analysis revealed 10/17 tumors were at least biclonal while 7/17 tumors were monoclonal revealing majority of tumors displayed tumor heterogeneity
  • Novel pathway alterations in lung cancer include cell-cycle and JAK-STAT pathways
  • 14 fusion proteins found, including ROS1-ALK fusion. ROS1-ALK fusions have been frequently found in lung cancer and is indicative of poor prognosis[4].
  • Novel metabolic enzyme fusions
  • Alterations were identified in 54 genes for which targeted drugs are available.           Drug-gable mutant targets include: AURKC, BRAF, HGF, EGFR, ERBB4, FGFR1, MET, JAK2, JAK3, HDAC2, HDAC6, HDAC9, BIRC6, ITGB1, ITGB3, MMP2, PRKCB, PIK3CG, TERT, KRAS, MMP14

Table. Validated Gene-Fusions Obtained from Ref-Seq Data

Note: Gene columns contain links for GeneCard while Gene function links are to the    gene’s GO (Gene Ontology) function.

GeneA (5′) GeneB (3′) GeneA function (link to Gene Ontology) GeneB function (link to Gene Ontology) known function (refs)
GRIP1 TNIP1 glutamate receptor IP transcriptional repressor
SGMS1 STK10 sphingolipid synthesis ser/thr kinase
RASSF3 TTYH2 GTP-binding protein chloride anion channel
KDELR2 ROS1, GOPC ER retention seq. binding proto-oncogenic tyr kinase
ACSL4 DCAF6 fatty acid synthesis ?
MARCH8 PRKG1 ubiquitin ligase cGMP dependent protein kinase
APAF1 UNC13B, TLN1 caspase activation cytoskeletal
EML4 ALK microtubule protein tyrosine kinase
EDR3,PHC3 LOC441601 polycomb pr/DNA binding ?
DKFZp761L1918,RHPN2 ANKRD27 Rhophilin (GTP binding pr ankyrin like
VANGL1 HAO2 tetraspanin family oxidase
CACNA2D3 FLNB VOC Ca++ channel filamin (actin binding)

Author’s Note:

There has been a recent literature on the importance of the EML4-ALK fusion protein in lung cancer. EML4-ALK positive lung tumors were found to be les chemo sensitive to cytotoxic therapy[5] and these tumor cells may exhibit an epitope rendering these tumors amenable to immunotherapy[6]. In addition, inhibition of the PI3K pathway has sensitized EMl4-ALK fusion positive tumors to ALK-targeted therapy[7]. EML4-ALK fusion positive tumors show dependence on the HSP90 chaperone, suggesting this cohort of patients might benefit from the new HSP90 inhibitors recently being developed[8].

Table. Significantly mutated genes (point mutations, insertions/deletions) with associated function.

Gene Function
TP53 tumor suppressor
KRAS oncogene
ZFHX4 zinc finger DNA binding
DACH1 transcription factor
EGFR epidermal growth factor receptor
EPHA3 receptor tyrosine kinase
ENSG00000205044
RELN cell matrix protein
ABCB5 ABC Drug Transporter

Table. Literature Analysis of pathways containing significantly altered genes in NSCLC reveal putative targets and risk factors, linkage between other tumor types, and research areas for further investigation.

Note: Significantly mutated genes, obtained from WES, were subjected to pathway analysis (KEGG Pathway Analysis) in order to see which pathways contained signicantly altered gene networks. This pathway term was then used for PubMed literature search together with terms “lung cancer”, “gene”, and “NOT review” to determine frequency of literature coverage for each pathway in lung cancer. Links are to the PubMEd search results.

KEGG pathway Name # of PUBMed entries containing Pathway Name, Gene ANDLung Cancer
Cell cycle 1237
Cell adhesion molecules (CAMs) 372
Glioma 294
Melanoma 219
Colorectal cancer 207
Calcium signaling pathway 175
Prostate cancer 166
MAPK signaling pathway 162
Pancreatic cancer 88
Bladder cancer 74
Renal cell carcinoma 68
Focal adhesion 63
Regulation of actin cytoskeleton 34
Thyroid cancer 32
Salivary secretion 19
Jak-STAT signaling pathway 16
Natural killer cell mediated cytotoxicity 11
Gap junction 11
Endometrial cancer 11
Long-term depression 9
Axon guidance 8
Cytokine-cytokine receptor interaction 8
Chronic myeloid leukemia 7
ErbB signaling pathway 7
Arginine and proline metabolism 6
Maturity onset diabetes of the young 6
Neuroactive ligand-receptor interaction 4
Aldosterone-regulated sodium reabsorption 2
Systemic lupus erythematosus 2
Olfactory transduction 1
Huntington’s disease 1
Chemokine signaling pathway 1
Cardiac muscle contraction 1
Amyotrophic lateral sclerosis (ALS) 1

A few interesting genetic risk factors and possible additional targets for NSCLC were deduced from analysis of the above table of literature including HIF1-α, mIR-31, UBQLN1, ACE, mIR-193a, SRSF1. In addition, glioma, melanoma, colorectal, and prostate and lung cancer share many validated mutations, and possibly similar tumor driver mutations.

KEGGinliteroanalysislungcancer

 please click on graph for larger view

Paper 4. Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing[9]

For full paper and graphical summary please follow the link: http://www.cell.com/cell/abstract/S0092-8674%2812%2901061-6

Highlights

  • Exome and genome characterization of somatic alterations in 183 lung adenocarcinomas
  • 12 somatic mutations/megabase
  • U2AF1, RBM10, and ARID1A are among newly identified recurrently mutated genes
  • Structural variants include activating in-frame fusion of EGFR
  • Epigenetic and RNA deregulation proposed as a potential lung adenocarcinoma hallmark

Summary

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.

Paper 5. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer[10]

Highlights

  • Whole exome and transcriptome (RNASeq) sequencing 29 small-cell lung carcinomas
  • High mutation rate 7.4 protein-changing mutations/million base pairs
  • Inactivating mutations in TP53 and RB1
  • Functional mutations in CREBBP, EP300, MLL, PTEN, SLIT2, EPHA7, FGFR1 (determined by literature and database mining)
  • The mutational spectrum seen in human data also present in a Tp53-/- Rb1-/- mouse lung tumor model

 

Curator Graphical Summary of Interesting Findings From the Above Studies

DGRAPHICSUMMARYNSLCSEQPOST

The above figure (please click on figure) represents themes and findings resulting from the aforementioned studies including

questions which will be addressed in Future Posts on this site.

References:

  1. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489(7417):519-525.
  2. A genomics-based classification of human lung tumors. Science translational medicine 2013, 5(209):209ra153.
  3. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L, Wallis J et al: Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012, 150(6):1121-1134.
  4. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H et al: RET, ROS1 and ALK fusions in lung cancer. Nature medicine 2012, 18(3):378-381.
  5. Morodomi Y, Takenoyama M, Inamasu E, Toyozawa R, Kojo M, Toyokawa G, Shiraishi Y, Takenaka T, Hirai F, Yamaguchi M et al: Non-small cell lung cancer patients with EML4-ALK fusion gene are insensitive to cytotoxic chemotherapy. Anticancer research 2014, 34(7):3825-3830.
  6. Yoshimura M, Tada Y, Ofuzi K, Yamamoto M, Nakatsura T: Identification of a novel HLA-A 02:01-restricted cytotoxic T lymphocyte epitope derived from the EML4-ALK fusion gene. Oncology reports 2014, 32(1):33-39.
  7. Yang L, Li G, Zhao L, Pan F, Qiang J, Han S: Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014.
  8. Workman P, van Montfort R: EML4-ALK fusions: propelling cancer but creating exploitable chaperone dependence. Cancer discovery 2014, 4(6):642-645.
  9. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A et al: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012, 150(6):1107-1120.
  10. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T et al: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature genetics 2012, 44(10):1104-1110.

Other posts on this site which refer to Lung Cancer and Cancer Genome Sequencing include:

Multi-drug, Multi-arm, Biomarker-driven Clinical Trial for patients with Squamous Cell Carcinoma called the Lung Cancer Master Protocol, or Lung-MAP launched by NCI, Foundation Medicine, and Five Pharma Firms

US Personalized Cancer Genome Sequencing Market Outlook 2018 –

Comprehensive Genomic Characterization of Squamous Cell Lung Cancers

International Cancer Genome Consortium Website has 71 Committed Cancer Genome Projects Ongoing

Non-small Cell Lung Cancer drugs – where does the Future lie?

Lung cancer breathalyzer trialed in the UK

Diagnosing Lung Cancer in Exhaled Breath using Gold Nanoparticles

Multi-drug, Multi-arm, Biomarker-driven Clinical Trial for patients with Squamous Cell Carcinoma called the Lung Cancer Master Protocol, or Lung-MAP launched by NCI, Foundation Medicine, and Five Pharma Firms

Read Full Post »