Feeds:
Posts
Comments

Posts Tagged ‘Decode Genetics’

Icelandic Population Genomic Study Results by deCODE Genetics come to Fruition: Curation of Current genomic studies

Reporter/Curator: Stephen J. Williams, Ph.D.

 

UPDATED on 9/6/2017

On 9/6/2017, Aviva Lev-Ari, PhD, RN had attend a talk by Paul Nioi, PhD, Amgen, at HMS, Harvard BioTechnology Club (GSAS).

Nioi discussed his 2016 paper in NEJM, 2016, 374:2131-2141

Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease

Paul Nioi, Ph.D., Asgeir Sigurdsson, B.Sc., Gudmar Thorleifsson, Ph.D., Hannes Helgason, Ph.D., Arna B. Agustsdottir, B.Sc., Gudmundur L. Norddahl, Ph.D., Anna Helgadottir, M.D., Audur Magnusdottir, Ph.D., Aslaug Jonasdottir, M.Sc., Solveig Gretarsdottir, Ph.D., Ingileif Jonsdottir, Ph.D., Valgerdur Steinthorsdottir, Ph.D., Thorunn Rafnar, Ph.D., Dorine W. Swinkels, M.D., Ph.D., Tessel E. Galesloot, Ph.D., Niels Grarup, Ph.D., Torben Jørgensen, D.M.Sc., Henrik Vestergaard, D.M.Sc., Torben Hansen, Ph.D., Torsten Lauritzen, D.M.Sc., Allan Linneberg, Ph.D., Nele Friedrich, Ph.D., Nikolaj T. Krarup, Ph.D., Mogens Fenger, Ph.D., Ulrik Abildgaard, D.M.Sc., Peter R. Hansen, D.M.Sc., Anders M. Galløe, Ph.D., Peter S. Braund, Ph.D., Christopher P. Nelson, Ph.D., Alistair S. Hall, F.R.C.P., Michael J.A. Williams, M.D., Andre M. van Rij, M.D., Gregory T. Jones, Ph.D., Riyaz S. Patel, M.D., Allan I. Levey, M.D., Ph.D., Salim Hayek, M.D., Svati H. Shah, M.D., Muredach Reilly, M.B., B.Ch., Gudmundur I. Eyjolfsson, M.D., Olof Sigurdardottir, M.D., Ph.D., Isleifur Olafsson, M.D., Ph.D., Lambertus A. Kiemeney, Ph.D., Arshed A. Quyyumi, F.R.C.P., Daniel J. Rader, M.D., William E. Kraus, M.D., Nilesh J. Samani, F.R.C.P., Oluf Pedersen, D.M.Sc., Gudmundur Thorgeirsson, M.D., Ph.D., Gisli Masson, Ph.D., Hilma Holm, M.D., Daniel Gudbjartsson, Ph.D., Patrick Sulem, M.D., Unnur Thorsteinsdottir, Ph.D., and Kari Stefansson, M.D., Ph.D.

N Engl J Med 2016; 374:2131-2141June 2, 2016DOI: 10.1056/NEJMoa1508419

Abstract
Article
References
Citing Articles (22)
Metrics

BACKGROUND

Several sequence variants are known to have effects on serum levels of non–high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease.

METHODS

We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability.

RESULTS

We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10−16), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10−6). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10−3).

CONCLUSIONS

ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.)

 

Amgen’s deCODE Genetics Publishes Largest Human Genome Population Study to Date

Mark Terry, BioSpace.com Breaking News Staff reported on results of one of the largest genome sequencing efforts to date, sequencing of the genomes of 2,636 people from Iceland by deCODE genetics, Inc., a division of Thousand Oaks, Calif.-based Amgen (AMGN).

Amgen had bought deCODE genetics Inc. in 2012, saving the company from bankruptcy.

There were a total of four studies, published on March 25, 2015 on the online version of Nature Genetics; titled “Large-scale whole-genome sequencing of the Icelandic population[1],” “Identification of a large set of rare complete human knockouts[2],” “The Y-chromosome point mutation rate in humans[3]” and “Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease[4].”

The project identified some new genetic variants which increase risk of Alzheimer’s disease and confirmed some variants known to increase risk of diabetes and atrial fibrillation. A more in-depth post will curate these findings but there was an interesting discrete geographic distribution of certain rare variants located around Iceland. The dataset offers a treasure trove of meaningful genetic information not only about the Icelandic population but offers numerous new targets for breast, ovarian cancer as well as Alzheimer’s disease.

View Mark Terry’s article here on Biospace.com.

“This work is a demonstration of the unique power sequencing gives us for learning more about the history of our species,” said Kari Stefansson, founder and chief executive officer of deCode and one of the lead authors in a statement, “and for contributing to new means of diagnosing, treating and preventing disease.”

The scale and ambition of the study is impressive, but perhaps more important, the research identified a new genetic variant that increases the risk of Alzheimer’s disease and already had identified an APP variant that is associated with decreased risk of Alzheimer’s Disease. It also confirmed variants that increase the risk of diabetes and a variant that results in atrial fibrillation.
The database of human genetic variation (dbSNP) contained over 50 million unique sequence variants yet this database only represents a small proportion of single nucleotide variants which is thought to exist. These “private” or rare variants undoubtedly contribute to important phenotypes, such as disease susceptibility. Non-SNV variants, like indels and structural variants, are also under-represented in public databases. The only way to fully elucidate the genetic basis of a trait is to consider all of these types of variants, and the only way to find them is by large-scale sequencing.

Curation of Population Genomic Sequencing Programs/Corporate Partnerships

Click on “Curation of genomic studies” below for full Table

Curation of genomic studies
Study Partners Population Enrolled Disease areas Analysis
Icelandic Genome

Project

deCODE/Amgen Icelandic 2,636 Variants related to: Alzheimer’s, cardiovascular, diabetes WES + EMR; blood samples
Genome Sequencing Study Geisinger Health System/Regeneron Northeast PA, USA 100,000 Variants related to hypercholestemia, autism, obesity, other diseases WES +EMR +MyCode;

– Blood samples

The 100,000 Genomes Project National Health Service/NHS Genome Centers/ 10 companies forming Gene Consortium including Abbvie, Alexion, AstraZeneca, Biogen, Dimension, GSK, Helomics, Roche,   Takeda, UCB Rare disorders population UK Starting to recruit 100,000 Initially rare diseases, cancer, infectious diseases WES of blood, saliva and tissue samples

Ref paper

Saudi Human Genome Program 7 centers across Saudi Arabia in conjunction with King Abdulaziz City Science & Tech., King Faisal Hospital & Research Centre/Life Technologies General population Saudi Arabia 20,000 genomes over three years First focus on rare severe early onset diseases: diabetes, deafness, cardiovascular, skeletal deformation Whole genome sequence blood samples + EMR
Genome of the Netherlands (GoNL) Consortium consortium of the UMCG,LUMCErasmus MCVU university and UMCU. Samples where contributed by LifeLinesThe Leiden Longevity StudyThe Netherlands Twin Registry (NTR), The Rotterdam studies, and The Genetic Research in Isolated Populations program. All the sequencing work is done by BGI Hong Kong. Families in Netherlands 769 Variants, SNV, indels, deletions from apparently healthy individuals, family trios Whole genome NGS of whole blood no EMR

Ref paper in Nat. Genetics

Ref paper describing project

Faroese FarGen project Privately funded Faroe Islands Faroese population 50,000 Small population allows for family analysis Combine NGS with EMR and genealogy reports
Personal Genome Project Canada $4000.00 fee from participants; collaboration with University of Toronto and SickKids Organization; technical assistance with Harvard Canadian Health System Goal: 100,000 ? just started no defined analysis goals yet Whole exome and medical records
Singapore Sequencing Malay Project (SSMP) Singapore Genome Variation Project

Singapore Pharmacogenomics Project

Malaysian 100 healthy Malays from Singapore Pop. Health Study Variant analysis Deep whole genome sequencing
GenomeDenmark four Danish universities (KU, AU, DTU and AAU), two hospitals (Herlev and Vendsyssel) and two private firms (Bavarian Nordic and BGI-Europe). 150 complete genomes; first 30 published in Nature Comm. ? See link
Neuromics Consortium University of Tübingen and 18 academic and industrial partners (see link for description) European and Australian 1,100 patients with neuro-

degenerative and neuro-

muscular disease

Moved from SNP to whole exome analysis Whole Exome, RNASeq

References

  1. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E et al: Large-scale whole-genome sequencing of the Icelandic population. Nature genetics 2015, advance online publication.
  2. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, Hjartarson E, Sigurdsson GT, Jonasdottir A, Jonasdottir A et al: Identification of a large set of rare complete human knockouts. Nature genetics 2015, advance online publication.
  3. Helgason A, Einarsson AW, Gumundsdottir VB, Sigursson A, Gunnarsdottir ED, Jagadeesan A, Ebenesersdottir SS, Kong A, Stefansson K: The Y-chromosome point mutation rate in humans. Nature genetics 2015, advance online publication.
  4. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, Sulem P, Magnusson OT, Gudjonsson SA, Unnsteinsdottir U et al: Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nature genetics 2015, advance online publication.

Other post related to DECODE, population genomics, and NGS on this site include:

Illumina Says 228,000 Human Genomes Will Be Sequenced in 2014

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics and Computational Genomics – Part IIB

Human genome: UK to become world number 1 in DNA testing

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

Sequencing the exomes of 1,100 patients with neurodegenerative and neuromuscular diseases: A consortium of 18 European and Australian institutions

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Three Ancestral Populations Contributed to Modern-day Europeans: Ancient Genome Analysis

Impact of evolutionary selection on functional regions: The imprint of evolutionary selection on ENCODE regulatory elements is manifested between species and within human populations

Read Full Post »

Alzheimer’s Genomic Diagnosis and Treatment

Curator: Larry H Bernstein, MD, FCAP

 

Gene Mutation Protects Against Alzheimer’s

by Greg Miller on 11 July 2012
Brain preserver. A newly discovered gene mutation appears to protect against Alzheimer’s disease. Credit: Alzheimer’s Disease Education and Referral Center/NIA/NIH
http://news.sciencemag.org/sciencenow/2012/07/gene-mutation-protects-against-a.html

A rare mutation that alters a single letter of the genetic code protects people from the

  • memory-robbing dementia of Alzheimer’s disease.

The DNA change may inhibit the buildup of β amyloid, the

  • protein fragment that forms the hallmark plaques in the brains of Alzheimer’s patients.
  • The mutation affects a gene called APP,
  • which encodes a protein that gets broken down into pieces,
  • including β amyloid.

Researchers previously identified more than 30 mutations to APP, none of them good. Several of these changes increase β amyloid formation and cause

•      a devastating inherited form of Alzheimer’s that afflicts people in their 30s and 40s—

•      much earlier than the far more common “late-onset” form of Alzheimer’s

  • that typically strikes people their 70s and 80s.

The new mutation, discovered from whole-genome data from 1795 Icelanders for variations in APP that protect against Alzheimer’s, appears to do the opposite. The mutation interferes with one of the enzymes that breaks down the APP protein and causes a 40% reduction in β amyloid formation

New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs.
Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F.
University of Catania, Viale Andrea Doria 6, Catania, Italy.
Br J Clin Pharmacol. 2012 Apr;73(4):504-17. doi: 10.1111/j.1365-2125.2011.04134.x.

Current approved drug treatments for Alzheimer disease (AD) include

These drugs provide symptomatic relief but poorly affect the progression of the disease. Drug discovery has been directed, in the last 10 years, to develop ‘disease modifying drugs’ hopefully able to counteract the progression of AD. Because in a chronic, slow progressing pathological process, such as AD, an early start of treatment enhances the chance of success,

  • it is crucial to have biomarkers for early detection of AD-related brain dysfunction,
    • usable before clinical onset.

Reliable early biomarkers need therefore to be prospectively tested for predictive accuracy,

  • with specific cut off values validated in clinical practice.

Disease modifying drugs developed so far include drugs to

  • reduce β amyloid () production,
  • drugs to prevent Aβ aggregation,
  • drugs to promote Aβ clearance,
  • drugs targeting tau phosphorylation and assembly

None of these drugs has demonstrated efficacy in phase 3 studies. The failure of clinical trials with disease modifying drugs raises a number of questions, spanning from

  • methodological flaws to
  • fundamental understanding of AD pathophysiology and biology.

Diagnostic criteria applicable to presymptomatic stages of AD have now been published.

These new criteria may impact on drug development, such that future trials on disease modifying drugs will include populations susceptible to AD, before clinical onset. http://www.ncbi.nlm.nih.gov/pubmed/22035455

Gene mutation defends against Alzheimer’s disease
Rare genetic variant suggests a cause and treatment for cognitive decline.
Ewen Callaway  11 July 2012
http://www.nature.com/news/gene-mutation-defends-against-alzheimer-s-disease-1.10984

J. NIETH/CORBIS
Almost 30 million people live with Alzheimer’s disease worldwide, a staggering health-care burden that is expected to quadruple by 2050. Yet doctors can offer no effective treatment, and scientists have been unable to pin down the underlying mechanism of the disease.
Research published this week offers some hope on both counts – few people carry a genetic mutation that naturally prevents them from developing the condition – 0.5% of Icelanders have a protective gene, as are 0.2–0.5% of Finns, Swedes and Norwegians. Icelanders who carry it have a 50% better chance of reaching age 85, are more than five times more likely to reach it 85 without Alzheimer’s.   The mutation seems to put a brake on the milder mental deterioration that most elderly people experience. Carriers are about 7.5 times more likely than non-carriers to reach the age of 85 without major cognitive decline, and perform better on the cognitive tests that are administered thrice yearly to Icelanders who live in nursing homes.
The discovery not only confirms the principal suspect that is responsible for Alzheimer’s, it also suggests that the disease could be

  • an extreme form of the cognitive decline seen in many older people.

The mutation — the first ever found to protect against the disease — lies in a gene that produces

  • amyloid-β precursor protein (APP),
  • which has an unknown role in the brain

APP was discovered 25 years ago in patients with rare,

  • inherited forms of Alzheimer’s that strike in middle age.
  • In the brain, APP is broken down into a smaller molecule called amyloid-β.

Visible clumps, or plaques, of amyloid-β found in the autopsied brains of patients are a hallmark of Alzheimer’s.
Scientists have long debated whether the plaques are a cause of the neuro­degenerative condition

  • or a consequence of other biochemical changes associated with the disease.

The latest finding supports other genetics studies blaming amyloid-β, according to Rudolph Tanzi, a neurologist at the Massachusetts General Hospital in Boston and a member of one of the four teams that discovered APP’s role in the 1980s.
If amyloid-β plaques were confirmed as the cause of Alzheimer’s, it would bolster efforts to develop drugs that block their formation, says Kári Stefánsson, chief executive of deCODE Genetics in Reykjavik, Iceland, who led the latest research. He and his team first discovered the mutation by comparing the complete genome sequences of 1,795 Icelanders with their medical histories. The researchers then studied the variant in nearly 400,000 more Scandinavians.
This suggests that Alzheimer’s disease and cognitive decline are two sides of the same coin, with a common cause — the build-up of amyloid-β plaques in the brain, something seen to a lesser degree in elderly people who do not develop full-blown Alzheimer’s. A drug that mimics the effects of the mutation, might slow cognitive decline as well as prevent Alzheimer’s.
Stefánsson and his team discovered that the mutation introduces a single amino-acid alteration to APP. This amino acid is close to the site where an enzyme called

  • β-secretase 1 (BACE1) ordinarily snips APP into smaller amyloid-β chunks —
  • and the alteration is enough to reduce the enzyme’s efficiency.

Stefánsson’s study suggests that blocking β-secretase from cleaving APP has the potential to prevent Alzheimer’s, but Philippe Amouyel, an epidemiologist at the Pasteur Institute in Lille, France, says “it is very difficult to identify the

  • precise time when this amyloid toxic effect could still be modified”.

“If this effect needs to be blocked as early as possible in life to protect against Alzheimer’s disease, we will need to propose a new design for clinical trials” to identify an effective treatment.

The results demonstrate that whole-genome sequencing can uncover very rare mutations that might offer insight into common diseases.

  • disease risk, may be determined by genetic variants that slightly tilt the odds of developing disease
  • In this case a rare mutant may provide very key mechanistic insights into Alzheimer’s

Jonsson, T. et al. Nature     http://dx.doi.org/10.1038/nature11283 (2012).
Kang, J. et al. Nature 325, 733–736 (1987).
Goldgaber, D., Lerman, M. I., McBride, O. W., Saffiotti, U. & Gajdusek, D. C. Science 235, 877–880 (1987).

BHCE genetic data combined with brain imaging using agent florbetapir connects the BHCE gene to AD plaque buildup. BHCE is an enzyme that breaks down acetylcholine in the brain, which is depleted early in the disease and results in memory loss.   http://www.genengnews.com/

New Alzheimer’s Genes Found
Gigantic Scientific Effort Discovers Clues to Treatment, Diagnosis of Alzheimer’s Disease
By Daniel J. DeNoon
WebMD Health News Reviewed by Laura J. Martin, MD
http://www.webmd.com/alzheimers/news/20110403/new-alzheimers-genes-found

A massive scientific effort has found five new gene variants linked to Alzheimer’s disease. The undertaking involved analyzing the genomes of nearly 40,000 people with and without Alzheimer’s. This study was undertaken by two separate research consortiums in the U.S. and in Europe, which collaborated to confirm each other’s results.
Four genes had previously been linked to Alzheimer’s. Three of them affect only the risk of relatively rare forms of Alzheimer’s. The fourth is APOE, until now the only gene known to affect risk of the common, late-onset form of Alzheimer’s. Roughly 27% of Alzheimer’s disease can be attributed to the five new gene variants.  Even though Alzheimer’s is a very complex disease, the new findings represent a large chunk of Alzheimer’s risk, according to Margaret A. Pericak-Vance, PhD, of the U.S. consortium –

  • 20% of the causal risk of Alzheimer’s disease and
  • 32% of the genetic risk.

Alzheimer’s Tied to Mutation Harming Immune Response
By GINA KOLATA   Published: November 14, 2012  in NY Times
http://www.nytimes.com/2012/11/15/health/gene-mutation-that-hobbles-immune-response-is-linked-to-alzheimers.html?_r=0
Alzheimer’s researchers and drug companies have for years concentrated on one hallmark of Alzheimer’s disease: the production of toxic shards of a protein that accumulate in plaques on the brain.
Two groups of researchers working from entirely different starting points have converged on a mutated gene involved in another aspect of Alzheimer’s disease:

  • the immune system’s role in protecting against the disease.

The mutation is suspected of interfering with

  • the brain’s ability to prevent the buildup of plaque.

When the gene is not mutated, white blood cells in the brain spring into action,

  • gobbling up and eliminating the plaque-forming toxic protein, beta amyloid.

As a result, Alzheimer’s can be staved off or averted.  People with the mutated gene have a threefold to fivefold increase in the likelihood of developing Alzheimer’s disease in old age.

Comparing Differences

Dr. Julie Williams’s, Cardiff, Wales (European team leader) report identified CLU and Picalm. A second study published in Nature Genetics, by Philippe Amouyel from Institut Pasteur de Lille in France, pinpointed CLU and CR1. The greatest inherited risk comes from the APOE gene, discovered in 1993 by a team led by Allen Roses, now director of the Deane Drug Discovery Institute at Duke UMC, in Durham, North Carolina.
The findings “are beginning to give us insight into the biology, but I don’t think you can expect treatments overnight,” Dr. Michael Owen (Cardiff, Wales) said. Instead, the genes will show a mosaic of risk, and “the key issue is what hand of cards you’re dealt,” he said.

Promise for Early Diagnosis
BHCE genetic data combined with brain imaging using agent florbetapir connects the BHCE gene to AD plaque buildup. BHCE is an enzyme that breaks down acetylcholine in the brain, which is depleted early in the disease and results in memory loss.

Dr. Bernstein’s comments:

  1. There has been a long history of failure of drugs to slow down the progression of Alzheimer’s.  Regression of the plaques has not corresponded with retention of cognitive ability, which has been behind the arguments over beta amyloid or tau.
  2. We now have two particularly interesting mutations –
    1. ApoE gene mutation that increases risk
    2. APP mutation that quite dramatically affects retention of cognition
β-amyloid fibrils.

β-amyloid fibrils. (Photo credit: Wikipedia)

English: PET scan of a human brain with Alzhei...

English: PET scan of a human brain with Alzheimer’s disease (Photo credit: Wikipedia)

Depiction of amyloid precursor protein process...

Depiction of amyloid precursor protein processing, created by I. Peltan Ipeltan (Photo credit: Wikipedia)

English: Diagram of how microtubules desintegr...

English: Diagram of how microtubules desintegrate with Alzheimer’s disease Français : La protéine Tau dans un neurone sain et dans un neurone malade Español: Esquema que muestra cómo se desintegran los microtúbulos en la enfermedad de Alzheimer (Photo credit: Wikipedia)

English: Histopathogic image of senile plaques...

English: Histopathogic image of senile plaques seen in the cerebral cortex in a patient with presenile onset of Alzheimer disease. Bowdian stain. The same case as shown in a file “Alzheimer_dementia_(1)_presenile_onset.jpg”. (Photo credit: Wikipedia)

 

Read Full Post »

Reporter: Aviva Lev-Ari, PhD, RN

With $15.5M Grant, EU Consortium to Sequence 1,100 Exomes to Develop Diagnostics for Neurologic Diseases

November 28, 2012

A consortium of 18 European and Australian institutions and industry partners will spend five years sequencing the exomes of 1,100 patients with neurodegenerative and neuromuscular diseases to create diagnostic panels and uncover novel therapeutic targets.

The group, known as the Neuromics Consortium, is funded with €12 million ($15.5 million) under the European Union’s seventh framework program.

Headed by the University of Tübingen, the project will involve collaboration between 12 academic centers. Iceland’s Decode Genetics will do the sequencing and will support analysis and return of results to participants. The group also plans to work with Agilent Technologies to develop and validate targeted sequencing-based diagnostic panels for specific neurologic diseases, including ataxia/paraplegias, spinal muscular atrophies and lower motor neuron diseases, and neuromuscular diseases, according to Tübingen’s Holm Graessner, the manager of the consortium.

Graessner told Clinical Sequencing News in an email that the Neuromics Consortium hopes its work will yield better diagnostic panels that can increase the diagnosis rate for ten main neurodegenerative and neuromuscular disease types — including ataxia, spastic paraplegia, Huntington’s disease, muscular dystrophy and spinal muscular atrophy — as well as provide information on genes and pathways that could inform new treatments.

According to the consortium, 30 percent to 80 percent of patients with these diseases are still undiagnosed by current single-gene tests or gene panels, and cohorts for each individual disorder are small. By combining patient groups and data from many centers and looking for commonality between some of these diseases, the consortium hopes to create diagnostics that cover a greater range of causative mutations.

While each specific disorder the group will study is relatively rare, many have overlapping manifestations, which suggest similarities in disease pathways pointing to common therapeutic strategies, according to the group.

Graessner said that the project’s whole-exome sequencing component will take place mostly in the first two years. According to the consortium’s plan, Decode Genetics — which expanded last year from array-based SNP genotyping research to a next-gen sequencing approach (CSN 11/9/2011) — will use its Illumina HiSeqs to sequence at least 1,100 subjects. The group expects this to increase the percentage of disease genes known for some of the more heterogeneous diseases in the set from about 50 percent to 80 percent.

According to Graessner, RNA sequencing is also part of the plan, as well as proteomic and other ‘omic analyses, especially as the researchers move from sequencing toward diagnostic panel development and therapeutic target research.

“We plan to [do whole-exome sequencing for] 1,100 subjects for gene identification … equally distributed over 10 disease areas,” Graessner wrote. “[This] will be done mainly in the first two years. However, for some of the diseases, such as ataxia/paraplegias, we have diagnostic panels already and in that case we [will] do the panels first and send the still unclear families for WES or WGS,” he wrote.

Graessner said that the group is just now shipping its first sample package to Decode. When this is finished the group will hold a workshop to discuss and train all the participating academic centers in the use of the Decode database for analysis of the results.

He said the team plans to work with the Halo Genomics division of Agilent, to validate diagnostic panels for ataxia, spinal muscular atrophies, lower motor neuron disease, and neuromuscular diseases. Halo was acquired by Agilent last year, and had developed an enrichment technology dubbed HaloPlex that it said was especially suited for targeted gene panels less than one megabase in size (IS 12/6/2011).

The group’s bioinformatics partner, Ariadne Genomics, will also analyze data to support the diagnostics research, as well as research on potential novel therapeutic targets, according to Graessner.

In a document describing the project, the consortium wrote that at the end of the funding period, it expects “to have elucidated the genetic basis for [more than] 80 [percent] of investigated patient groups.”

According to the group, the new genes will be added to existing databases and used to develop the first overlapping gene panel that can be used to diagnose several of these individual diseases, “overcoming time consuming and costly single gene analysis.”

Molika Ashford is a GenomeWeb contributing editor and covers personalized medicine and molecular diagnostics. E-mail her here.

Read Full Post »

%d bloggers like this: