Inhibitory CD161 receptor recognized as a potential immunotherapy target in glioma-infiltrating T cells by single-cell analysis
Reporter: Dr. Premalata Pati, Ph.D., Postdoc
Brain tumors, especially the diffused Gliomas are of the most devastating forms of cancer and have so-far been resistant to immunotherapy. It is comprehended that T cells can penetrate the glioma cells, but it still remains unknown why infiltrating cells miscarry to mount a resistant reaction or stop the tumor development.
Gliomas are brain tumors that begin from neuroglial begetter cells. The conventional therapeutic methods including, surgery, chemotherapy, and radiotherapy, have accomplished restricted changes inside glioma patients. Immunotherapy, a compliance in cancer treatment, has introduced a promising strategy with the capacity to penetrate the blood-brain barrier. This has been recognized since the spearheading revelation of lymphatics within the central nervous system. Glioma is not generally carcinogenic. As observed in a number of cases, the tumor cells viably reproduce and assault the adjoining tissues, by and large, gliomas are malignant in nature and tend to metastasize. There are four grades in glioma, and each grade has distinctive cell features and different treatment strategies. Glioblastoma is a grade IV glioma, which is the crucial aggravated form. This infers that all glioblastomas are gliomas, however, not all gliomas are glioblastomas.
Decades of investigations on infiltrating gliomas still take off vital questions with respect to the etiology, cellular lineage, and function of various cell types inside glial malignancies. In spite of the available treatment options such as surgical resection, radiotherapy, and chemotherapy, the average survival rate for high-grade glioma patients remains 1–3 years (1).
A recent in vitro study performed by the researchers of Dana-Farber Cancer Institute, Massachusetts General Hospital, and the Broad Institute of MIT and Harvard, USA, has recognized that CD161 is identified as a potential new target for immunotherapy of malignant brain tumors. The scientific team depicted their work in the Cell Journal, in a paper entitled, “Inhibitory CD161 receptor recognized in glioma-infiltrating T cells by single-cell analysis.” on 15th February 2021.
To further expand their research and findings, Dr. Kai Wucherpfennig, MD, PhD, Chief of the Center for Cancer Immunotherapy, at Dana-Farber stated that their research is additionally important in a number of other major human cancer types such as
- melanoma,
- lung,
- colon, and
- liver cancer.
Dr. Wucherpfennig has praised the other authors of the report Mario Suva, MD, PhD, of Massachusetts Common Clinic; Aviv Regev, PhD, of the Klarman Cell Observatory at Broad Institute of MIT and Harvard, and David Reardon, MD, clinical executive of the Center for Neuro-Oncology at Dana-Farber.
Hence, this new study elaborates the effectiveness of the potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes.
The Study-

The group utilized single-cell RNA sequencing (RNA-seq) to mull over gene expression and the clonal picture of tumor-infiltrating T cells. It involved the participation of 31 patients suffering from diffused gliomas and glioblastoma. Their work illustrated that the ligand molecule CLEC2D activates CD161, which is an immune cell surface receptor that restrains the development of cancer combating activity of immune T cells and tumor cells in the brain. The study reveals that the activation of CD161 weakens the T cell response against tumor cells.
Based on the study, the facts suggest that the analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 that codes for CD161 as a candidate inhibitory receptor. This was followed by the use of
- CRISPR/Cas9 gene-editing technology to inactivate the KLRB1 gene in T cells and showed that CD161 inhibits the tumor cell-killing function of T cells. Accordingly,
- genetic inactivation of KLRB1 or
- antibody-mediated CD161 blockade
enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other forms of human cancers. The work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immune checkpoint targets.
Further, it has been identified that many cancer patients are being treated with immunotherapy drugs that disable their “immune checkpoints” and their molecular brakes are exploited by the cancer cells to suppress the body’s defensive response induced by T cells against tumors. Disabling these checkpoints lead the immune system to attack the cancer cells. One of the most frequently targeted checkpoints is PD-1. However, recent trials of drugs that target PD-1 in glioblastomas have failed to benefit the patients.
In the current study, the researchers found that fewer T cells from gliomas contained PD-1 than CD161. As a result, they said, “CD161 may represent an attractive target, as it is a cell surface molecule expressed by both CD8 and CD4 T cell subsets [the two types of T cells engaged in response against tumor cells] and a larger fraction of T cells express CD161 than the PD-1 protein.”
However, potential side effects of antibody-mediated blockade of the CLEC2D-CD161 pathway remain unknown and will need to be examined in a non-human primate model. The group hopes to use this finding in their future work by
utilizing their outline by expression of KLRB1 gene in tumor-infiltrating T cells in diffuse gliomas to make a remarkable contribution in therapeutics related to immunosuppression in brain tumors along with four other common human cancers ( Viz. melanoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma, and colorectal cancer) and how this may be manipulated for prevalent survival of the patients.
References
(1) Anders I. Persson, QiWen Fan, Joanna J. Phillips, William A. Weiss, 39 – Glioma, Editor(s): Sid Gilman, Neurobiology of Disease, Academic Press, 2007, Pages 433-444, ISBN 9780120885923, https://doi.org/10.1016/B978-012088592-3/50041-4.
Main Source
Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx S, et al. 2021. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell.https://www.cell.com/cell/fulltext/S0092-8674(21)00065-9?elqTrackId=c3dd8ff1d51f4aea87edd0153b4f2dc7
Related Articles
VIDEOS on Cancer Biology, Cancer Genetics, Cancer Immunotherapy
Other related articles published in this Open Access Online Scientific Journal include the following:
Single Cell Sequencing:
Part 4.1 in Genomics Volume 2
Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS & BioInformatics, Simulations and the Genome Ontology
On Amazon.com since 12/28/2019
https://www.amazon.com/dp/B08385KF87
4.1.3 Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute
Curator: Aviva Lev-Ari, PhD, RN
4.1.4 Cellular Genetics
https://www.sanger.ac.uk/science/programmes/cellular-genetics
4.1.5 Cellular Genomics
https://www.garvan.org.au/research/cellular-genomics
4.1.6 SINGLE CELL GENOMICS 2019 – sometimes the sum of the parts is greater than the whole, September 24-26, 2019, Djurönäset, Stockholm, Sweden http://www.weizmann.ac.il/conferences/SCG2019/single-cell-genomics-2019
Reporter: Aviva Lev-Ari, PhD, RN
4.1.7 Norwich Single-Cell Symposium 2019, Earlham Institute, single-cell genomics technologies and their application in microbial, plant, animal and human health and disease, October 16-17, 2019, 10AM-5PM
Reporter: Aviva Lev-Ari, PhD, RN
4.1.8 Newly Found Functions of B Cell
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
https://pharmaceuticalintelligence.com/2019/05/23/newly-found-functions-of-b-cell/
4.1.9 RESEARCH HIGHLIGHTS: HUMAN CELL ATLAS
https://www.broadinstitute.org/research-highlights-human-cell-atlas
CRISPR – 200 articles in the Journal
Chapter 21 in Genomics Volume 1
Genomics Orientations for Personalized Medicine. On Amazon.com since 11/23/2015
http://www.amazon.com/dp/B018DHBUO6
Glioblastoma – 150 articles in the Journal
Most recent
Immunotherapy may help in glioblastoma survival
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
https://pharmaceuticalintelligence.com/2019/03/16/immunotherapy-may-help-in-glioblastoma-survival/
New Treatment in Development for Glioblastoma: Hopes for Sen. John McCain
Reporter: Aviva Lev-Ari, PhD, RN
Funding Oncorus’s Immunotherapy Platform: Next-generation Oncolytic Herpes Simplex Virus (oHSV) for Brain Cancer, Glioblastoma Multiforme (GBM)
Reporter: Aviva Lev-Ari, PhD, RN
Glioma, Glioblastoma and Neurooncology
Curator: Larry H. Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/
Positron Emission Tomography (PET) and Near-Infrared Fluorescence Imaging: Noninvasive Imaging of Cancer Stem Cells (CSCs) monitoring of AC133+ glioblastoma in subcutaneous and intracerebral xenograft tumors
Reporter: Aviva Lev-Ari, PhD, RN
Gamma Linolenic Acid (GLA) as a Therapeutic tool in the Management of Glioblastoma
Eric Fine* (1), Mike Briggs* (1,2), Raphael Nir# (1,2,3)
Leave a Reply