Posts Tagged ‘immunomodulation’

Issues Need to be Resolved With Immuno-Modulatory Therapies: NK cells, mAbs, and adoptive T cells

Curator: Stephen J. Williams, PhD













Immunotherapy. 2014;6(3):309-20. doi: 10.2217/imt.13.175.

Optimizing NKT cell ligands as vaccine adjuvants.

Carreño LJ1Kharkwal SSPorcelli SA.

Author information


NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.



Cancer Res. 2013 Jul 1;73(13):3842-51. doi: 10.1158/0008-5472.CAN-12-1974. Epub 2013 May 23.

Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment.

Baird JR1Fox BASanders KLLizotte PHCubillos-Ruiz JRScarlett UKRutkowski MRConejo-Garcia JRFiering SBzik DJ.

Author information


Reversing tumor-associated immunosuppression seems necessary to stimulate effective therapeutic immunity against lethal epithelial tumors. Here, we show this goal can be addressed using cps, an avirulent, nonreplicating uracil auxotroph strain of the parasite Toxoplasma gondii (T. gondii), which preferentially invades immunosuppressive CD11c(+) antigen-presenting cells in the ovarian carcinoma microenvironment. Tumor-associated CD11c(+) cells invaded by cps were converted to immunostimulatory phenotypes, which expressed increased levels of the T-cell receptor costimulatory molecules CD80 and CD86. In response to cps treatment of the immunosuppressive ovarian tumor environment, CD11c(+) cellsregained the ability to efficiently cross-present antigen and prime CD8(+) T-cell responses. Correspondingly, cps treatment markedly increased tumor antigen-specific responses by CD8(+) T cells. Adoptive transfer experiments showed that these antitumor T-cell responses were effective in suppressing solid tumor development. Indeed, intraperitoneal cps treatment triggered rejection of established ID8-VegfA tumors, an aggressive xenograft model of ovarian carcinoma, also conferring a survival benefit in a related aggressive model (ID8-Defb29/Vegf-A). The therapeutic benefit of cps treatment relied on expression of IL-12, but it was unexpectedly independent of MyD88 signaling as well as immune experience with T. gondii. Taken together, our results establish that cps preferentially invades tumor-associated antigen-presenting cells and restores their ability to trigger potent antitumor CD8(+) T-cell responses. Immunochemotherapeutic applications of cps might be broadly useful to reawaken natural immunity in the highly immunosuppressive microenvironment of most solid tumors.


Oncoimmunology. 2013 Jun 1;2(6):e24677. Epub 2013 Apr 29.

TLR3 agonists improve the immunostimulatory potential of cetuximab against EGFR+ head and neck cancer cells.

Ming Lim C1Stephenson RSalazar AMFerris RL.

Author information


Toll-like receptor 3 (TLR3) agonists have been extensively used as adjuvants for anticancer vaccines. However, their immunostimulatory effects and precise mechanisms of action in the presence of antineoplastic monoclonal antibodies (mAbs) have not yet been evaluated. We investigated the effect of TLR3 agonists on cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) against head and neck cancer (HNC) cells, as well as on dendritic cell (DC) maturation and cross-priming of epidermal growth factor receptor (EGFR)-specific CD8+ T cells. The cytotoxic activity of peripheral blood mononuclear cells (PBMCs) or isolated natural killer (NK) cells expressing polymorphic variants (at codon 158) of the Fcγ receptor IIIa (FcγIIIa) was determined in 51Cr release assays upon incubation with the TLR3 agonist poly-ICLC. NK cell stimulation was measured based on activation and degranulation markers, while DC maturation in the presence of poly-ICLC was assessed using flow cytometry. The DC-mediated cross priming of EGFR-specific CD8+ T cells was monitored upon in vitro stimulation with tetramer-based flow cytometry. TLR3-stimulated, unfractionated PBMCs from HNC patients mediated robust cetuximab-dependent ADCC, which was abrogated by NK-cell depletion. The cytolytic activity of TLR3-stimulated NK cells differed among cells expressing different polymorphic variants of FcγRIIIa, and NK cells exposed to both poly-ICLC and cetuximab expressed higher levels of CD107a and granzyme B than their counterparts exposed to either stimulus alone. Poly-ICLC plus cetuximab also induced a robust upregulation of CD80, CD83 and CD86 on the surface of DCs, a process that was partially NK-cell dependent. Furthermore, DCs matured in these conditions exhibited improved cross-priming abilities, resulting in higher numbers of EGFR-specific CD8+ T cells. These findings suggest that TLR3 agonists may provide a convenient means to improve the efficacy of mAb-based anticancer regimens.

Ann Oncol. 2012 Sep; 23(Suppl 8): viii6–viii9.

doi:  10.1093/annonc/mds256

PMCID: PMC4085883

Immuno-oncology: understanding the function and dysfunction of the immune system in cancer

  1. J. Finn*

Interactions between the Immune System and Cancer

Evidence has been accumulating since the middle of the last century, first from animal models and later from studies in cancer patients, that the immune system can recognise and reject tumours. The goal of tumour immunology has been to understand the components of the immune system that are important for tumour immunosurveillance and tumour rejection to understand how, when, and why they fail in cases of clinical disease. Immunotherapy, which involves strengthening the cancer patient’s immune system by improving its ability to recognise the tumour or providing a missing immune effector function, is one treatment approach that holds promise of a life-long cure [4].

Studies of cancer–immune system interactions have revealed that every known innate and adaptive immune effector mechanism participates in tumour recognition and control [5]. The first few transformed cells are detected by NK cells through their encounter with specific ligands on tumour cells. This leads to the destruction of some transformed cells and the uptake and processing of their fragments by macrophages and dendritic cells. In turn, these macrophages and dendritic cells are activated to secrete many inflammatory cytokines and present tumour cell-derived molecules to T- and B cells. Activation of T- and B cells leads to the production of additional cytokines that further promote activation of innate immunity and support the expansion and production of tumour-specific T cells and antibodies, respectively. The full power of the adaptive immune system leads to the elimination of remaining tumour cells and, importantly, to the generation of immune memory to specific tumour components that will serve to prevent tumour recurrence.

Effectors of adaptive immunity, such as CD4+ helper T cells, CD8+ cytotoxic T cells, and antibodies, specifically target tumour antigens; i.e. molecules expressed in tumour cells, but not in normal cells. Tumour antigens are normal cellular proteins that are abnormally expressed as a result of genetic mutations, quantitative differences in expression, or differences in posttranslational modifications [5]. In tumour types that have a well-documented viral origin, such as cervical cancer, caused by the human papillomavirus [5], or hepatocellular carcinoma caused by the hepatitis B virus [6], viral proteins can also serve as tumour antigens and targets for antitumour immune response [7].

The first indication that tumours carried molecules distinct from those on the normal cell of origin was derived from immunising mice with human tumours and selecting antibodies that recognised human tumour cells but not their normal counterparts. The major question was whether some, or all, of these molecules would also be recognised by the human immune system. 2011 was an important anniversary for human tumour immunology, marking 20 years since the publication by van der Bruggen et al. [8] that described the cloning of MAGE-1, a gene that encodes a human melanoma antigen recognised by patient’s antitumour T cells. This was not a mutant protein; its recognition by the immune system was due to the fact that it was only expressed by transformed, malignant cells and, with the exception of testicular germ cells, was not expressed in normal adult tissue. Many similar discoveries followed, with each new molecule providing a better understanding of what might be good targets for different forms of cancer immunotherapy. Tumour antigens have been tested as vaccines, as targets for monoclonal antibodies, and as targets for adoptively transferred cytotoxic T cells. There is a wealth of publications from preclinical studies targeting these antigens and results from phase I/II clinical trials. Recently, these studies were critically reviewed and a list of tumour antigens with the largest body of available data compiled [9]. The goal was to encourage faster progress in the design, testing, and approval of immunotherapeutic reagents that incorporate or target the most promising antigens.


As highlighted in the article two scenarios which present problems emerged:

  1. In the past, immunotherapy was referred to as ‘passive’ (e.g. the infusion of preformed immune effectors, such as antibodies, cytokines, or activated T cells, NK cells, or lymphokine-activated killer cells), presumably acting directly on the tumour and independent of the immune system or ‘active’ (e.g. vaccines), designed to activate and therefore be dependent on the patient’s immune system. it has since become clear that both passive and active immunotherapies depend on the patient’s immune system for long-term tumour control or complete tumour elimination. anticancer monoclonal antibodies are a well-established class of immunotherapeutic agent. HOWEVER, The potential of these antibodies is drastically undermined by their administration relatively late in the disease course, when the patient’s immune system is largely compromised. Under more optimal conditions, antibody treatment might result not only in the direct cytostatic or cytotoxic effect on the tumour cell, but also in the loading of antibody-bound tumour antigens onto antigen presenting cells (APC) in the tumour microenvironment. The resultant cross-presentation to antitumour T- and B cells could result in additional antibodies to these antigens being produced, and propagation of the immune response at the tumour site would maintain tumour elimination long after the infused monoclonal antibody is gone.
  2. The same scenario could be predicted for adoptively transferred T cells. Unlike antibodies, transferred T cells persist longer and may provide a memory response [14]; however, as long as the memory response is restricted to one clone, or a limited number of clones, then antigen-negative tumours will be able to escape. In addition, cancer vaccines encounter large numbers of immunosuppressive Tregand MDSC in circulation, as well as immunosuppressive cell-derived soluble products that flood the lymph nodes, preventing maturation of APCs and activation of T cells. Even when vaccines are delivered in the context of ex vivo matured and activated dendritic cells, their ability to activate T cells is compromised by the high-level expression of various molecules on T cells that block this process.

The scenarios proposed above present a rather bleak picture of the potential of immunotherapy to achieve the cure for cancer that has eluded standard therapy [15]. Interestingly, failures of some standard therapies are beginning to be ascribed to their inability to activate the patient’s immune system [16]. However, rather than seeing the picture as a deterrent, it should be considered as a road map, providing at least two major directions for new developments in immunotherapy.

The first direction is to continue using the old classes of immunotherapy that target the cancer directly, but to use them in combination with therapies that target the immune system in the tumour microenvironment, such as cytokines, suppressors of Treg or MDSC activity, or antibodies that modulate T-cell activity. The recently approved antibody, ipilimumab, which acts to sustain cytotoxic T-cell activity by augmenting T-cell activation and proliferation, is one example of such an immunomodulatory agent [17].

The other direction is to use immunotherapies, both old and new, for preventing cancer in individuals at high risk [18]. Studies of the tumour microenvironment are providing information about immunosurveillance of tumours from early premalignant lesions to more advanced dysplastic lesions to cancer. At each step, tumour-derived and immune system-derived components have a unique composition that will have distinct effects on immunotherapy. Because these premalignant microenvironments are less developed and immunosuppression is less entrenched, it should be easier to modulate towards the elimination of abnormal cells.


Cancer Immunol Immunother. 2011 Sep;60(9):1309-17. doi: 10.1007/s00262-011-1038-y. Epub 2011 May 28.

Tumor immunotherapy using adenovirus vaccines in combination with intratumoral doses of CpG ODN.

Geary SM1Lemke CDLubaroff DMSalem AK.

Author information


The combination of viral vaccination with intratumoral (IT) administration of CpG ODNs is yet to be investigated as an immunotherapeutic treatment for solid tumors. Here, we show that such a treatment regime can benefit survival of tumor-challenged mice. C57BL/6 mice bearing ovalbumin (OVA)-expressing EG.7 thymoma tumors were therapeutically vaccinated with adenovirus type 5 encoding OVA (Ad5-OVA), and the tumors subsequently injected with the immunostimulatory TLR9 agonist, CpG-B ODN 1826 (CpG), 4, 7, 10, and 13 days later. This therapeutic combination resulted in enhanced mean survival times that were more than 3.5× longer than naïve mice, and greater than 40% of mice were cured and capable of resisting subsequent tumor challenge. This suggests that an adaptive immune response was generated. Both Ad5-OVA and Ad5-OVA + CpG IT treatments led to significantly increased levels of H-2 K(b)-OVA-specific CD8+ lymphocytes in the peripheral blood and intratumorally. Lymphocyte depletion studies performed in vivo implicated both NK cells and CD8+ lymphocytes as co-contributors to the therapeutic effect. Analysis of tumor infiltrating lymphocytes (TILs) on day 12 post-tumor challenge revealed that mice treated with Ad5-OVA + CpG IT possessed a significantly reduced percentage of regulatory T lymphocytes (Tregs) within the CD4+ lymphocyte population, compared with TILs isolated from mice treated with Ad5-OVA only. In addition, the proportion of CD8+ TILs that were OVA-specific was reproducibly higher in the mice treated with Ad5-OVA + CpG IT compared with other treatment groups. These findings highlight the therapeutic potential of combining intratumoral CpG and vaccination with virus encoding tumor antigen.


Adv Drug Deliv Rev. 2009 Mar 28;61(3):268-74. doi: 10.1016/j.addr.2008.12.005. Epub 2009 Jan 7.

CpG oligonucleotide as an adjuvant for the treatment of prostate cancer.

Lubaroff DM1Karan D.

Author information


The use of an adenovirus transduced to express a prostate cancer antigen (PSA) as a vaccine for the treatment of prostate cancer has been shown to be active in the destruction of antigen-expressing prostate tumor cells in a pre-clinical model, using Balb/C or PSA transgenic mice. The destruction of PSA-secreting mouse prostate tumors was observed in Ad/PSA immunized mice in a prophylaxis study with 70% of the mice surviving long term tumor free. This successful immunotherapy was not observed in therapeutic studies in which tumors were established before vaccination and the development of anti-PSA immune response was not as easily generated in PSA transgenic mice. Immunization of conventional and transgenic animals was enhanced by incorporating a collagen matrix into the immunizing injection. Therefore the need to strengthen anti-PSA and anti-prostate cancer immunity was an obvious next step in developing a successful prostate cancer immunotherapy. Because the use ofimmunostimulatory CpG motifs was shown to enhance immune responses to a wide variety of antigens, our studies incorporated CpG into the Ad/PSA vaccine experimental plans. The results of the subsequent studies demonstrated a dichotomy where Ad/PSA plus CpG enhanced the in vivo destruction of PSA-secreting tumors and the survival of experimental animals, but revealed that the number and in vitro activities of antigen specific CD8+ T cells was decreased as compared to the values observed when the vaccine alone was used for immunization. The dichotomous observations were confirmed using another antigen system, OVA also incorporated into a replication defective adenovirus. Despite the reduction in antigen-specific CD8+ cells after vaccine plus CpG immunization the enhanced destruction of sc and systemic tumors was shown to be mediated entirely by CD8+ T cells. Finally, the reduction of the CD8+ T cells was the result of an observed decrease in the proliferation of the antigen specific cell population.

J Invest Dermatol. 2004 Aug;123(2):371-9.


CpG motifs are efficient adjuvants for DNA cancer vaccines.

Schneeberger A1Wagner CZemann ALührs PKutil RGoos MStingl GWagner SN.

Author information


DNA vaccines can induce impressive specific cellular immune response (IR) when taking advantage of their recognition as pathogen-associated molecular patterns (PAMP) through Toll-like receptors (TLR) expressed on/in cells of the innate immune system. Among the many types of PAMP,immunostimulatory DNA, so-called CpG motifs, was shown to interact specifically with TLR9, which is expressed in plasmacytoid dendritic cells(pDC), a key regulatory cell for the activation of innate and adaptive IR. We now report that CpG motifs, when introduced into the backbone, are a useful adjuvant for plasmid-based DNA (pDNA) vaccines to induce melanoma antigen-specific protective T cell responses in the Cloudman M3/DBA/2 model. The CpG-enriched pDNA vaccine induced protection against subsequent challenge with melanoma cells at significantly higher levels than its parental unmodified vector. Preferential induction of an antigen-specific, protective T cell response could be demonstrated by (i) induction of antigen-dependent tumor cell protection, (ii) complete loss of protection by in vivo CD4+/CD8+T cell- but not NK cell-depletion, and (iii) the detection of antigen-specific T cell responses but not of relevant NK cell activity in vitro. These results demonstrate that employing PAMP in pDNA vaccines improves the induction of protective, antigen-specific, T cell-mediated IR.


J Biomed Sci. 2016 Jan 25;23(1):16. doi: 10.1186/s12929-016-0238-3.

Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine.

Gableh F1Saeidi M2Hemati S3Hamdi K4Soleimanjahi H5Gorji A6,7,8Ghaemi A9,10,11.

Author information



DNA vaccines have emerged as an attractive approach for the generation of cytotoxic T lymphocytes (CTL). In our previous study, we found That Toll like receptor (TLR) ligands are promising candidates for the development of novel adjuvants for DNA vaccine. To improve the efficacy of DNA vaccine directed against human papillomavirus (HPV) tumors, we evaluated whether co-administration of a TLR4 ligand, monophosphoryl lipid A (MPL), and Natural Killer T Cell Ligand α-Galactosylceramide(α-GalCer) adjuvants with DNA vaccine would influence the anti-tumor efficacy of DNA vaccinations.


We investigated the effectiveness of α-GalCer and MPL combination as an adjuvant with an HPV-16 E7 DNA vaccine to enhance antitumor immune responses.


By using adjuvant combination for a DNA vaccine, we found that the levels of lymphocyte proliferation, CTL activity, IFN- γ, IL-4 and IL-12 responses, and tumor protection against TC-1 cells were significantly increased compared to the DNA vaccine with individual adjuvants. In addition, inhibition of IL-18 signaling during vaccination decreased IFN-γ responses and tumor protection, and that this inhibition suggested stimulatory role of IL-18 in adjuvant effects of α-GalCer and MPL combination.


The strong adjuvanticity associated with α-GalCer/MPL combination may to be an important tool in the development of novel and strong cancer immunotherapy.

Cancer Sci. 2015 Dec;106(12):1659-68. doi: 10.1111/cas.12824. Epub 2015 Nov 18.

Adjuvant for vaccine immunotherapy of cancer – focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity.

Seya T1Shime H1Takeda Y1Tatematsu M1Takashima K1Matsumoto M1.

Author information


Immune-enhancing adjuvants usually targets antigen (Ag)-presenting cells to tune up cellular and humoral immunity. CD141(+) dendritic cells (DC) represent the professional Ag-presenting cells in humans. In response to microbial pattern molecules, these DCs upgrade the maturation stage sufficient to improve cross-presentation of exogenous Ag, and upregulation of MHC and costimulators, allowing CD4/CD8 T cells to proliferate and liberating cytokines/chemokines that support lymphocyte attraction and survival. These DCs also facilitate natural killer-mediated cell damage. Toll-like receptors (TLRs) and their signaling pathways in DCs play a pivotal role in DC maturation. Therefore, providing adjuvants in addition to Ag is indispensable for successful vaccine immunotherapy for cancer, which has been approved in comparison with antimicrobial vaccines. Mouse CD8α(+) DCs express TLR7 and TLR9 in addition to the TLR2 family (TLR1, 2, and 6) and TLR3, whereas human CD141(+) DCs exclusively express the TLR2 family and TLR3. Although human and mouse plasmacytoid DCs commonly express TLR7/9 to respond to their agonists, the results on mouse adjuvant studies using TLR7/9 agonists cannot be simply extrapolated to human adjuvant immunotherapy. In contrast, TLR2 and TLR3 are similarly expressed in both human and mouse Ag-presenting DCs. Bacillus Calmette-Guerin peptidoglycan and polyinosinic-polycytidylic acid are representative agonists for TLR2 and TLR3, respectively, although they additionally stimulate cytoplasmic sensors: their functional specificities may not be limited to the relevant TLRs. These adjuvants have been posted up to a certain achievement in immunotherapy in some cancers. We herein summarize the history and perspectives of TLR2 and TLR3 agonists in vaccine-adjuvant immunotherapy for cancer.

Adv Exp Med Biol. 2015;850:81-91. doi: 10.1007/978-3-319-15774-0_7.

Molecular Programming of Immunological Memory in Natural Killer Cells.

Beaulieu AM1Madera SSun JC.

Author information


Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells have traditionally been classified as a component of the innate immune system, they have recently been shown in mice and humans to exhibit certain features of immunological memory, including an ability to undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e. memory cells), and mediate recall responses against previously encountered pathogens–all characteristics previously ascribed only to adaptive immune responses by B and T cells in mammals. To date, the molecular events that govern the generation of NK cell memory are not completely understood. Using a mouse model of cytomegalovirus infection, we demonstrate that individual pro-inflammatory IL-12, IL-18, and type I-IFN signaling pathways are indispensible and play non-redundant roles in the generation of virus-specific NK cell memory. Furthermore, we discovered that antigen-specific proliferation and protection by NK cells is mediated by the transcription factor Zbtb32, which is induced by pro-inflammatory cytokines and promotes a cell cycle program in activated NK cells. A greater understanding of the molecular mechanisms controlling NK cell responses will provide novel strategies for tailoring vaccines to target infectious disease.



Read Full Post »

Demet Sag, PhD, CRA, GCP


Gene engineering and editing specifically are becoming more attractive. There are many applications derived from microbial origins to correct genomes in many organisms including human to find solutions in health.

There are four customizable DNA specific binding protein applications to edit the gene expression in translational genomics. The targeted DNA double-strand breaks (DSBs) could greatly stimulate genome editing through HR-mediated recombination events.  We can mainly name these site-specific DNA DSBs:


  1. meganucleases derived from microbial mobile genetic elements (Smith et al., 2006),
  2. zinc finger (ZF) nucleases based on eukaryotic transcription factors (Urnov et al., 2005;Miller et al., 2007),
  3. transcription activator-like effectors (TALEs) from Xanthomonasbacteria (Christian et al., 2010Miller et al., 2011Boch et al., 2009; Moscou and Bogdanove, 2009), and
  4. most recently the RNA-guided DNA endonuclease Cas9 from the type II bacterial adaptive immune system CRISPR (Cong et al., 2013;Mali et al., 2013a).

There is a new ground breaking study published in Science by Valentino Gantz and Ethan Bier of the University of California, San Diego, described an approach called mutagenic chain reaction (MCR).

This group developed a new technology for editing genes that can be transferable change to the next generation by combining microbial immune defense mechanism, CRISPR/Cas9 that is the latest ground breaking technology for translational genomics with gene therapy-like approach.

  • In short, this so-called “mutagenic chain reaction” (MCR) introduces a recessive mutation defined by CRISPR/Cas9 that lead into a high rate of transferable information to the next generation. They reported that when they crossed the female MCR offspring to wild type flies, the yellow phenotype observed more than 95 percent efficiency.


Development and Applications of CRISPR-Cas9 for Genome Engineeri

Structural and Metagenomic Diversity of Cas9 Orthologs

(A) Crystal structure of Streptococcus pyogenes Cas9 in complex with guide RNA and target DNA.

(B) Canonical CRISPR locus organization from type II CRISPR systems, which can be classified into IIA-IIC based on their cas gene clusters. Whereas type IIC CRISPR loci contain the minimal set of cas9, cas1, andcas2, IIA and IIB retain their signature csn2 and cas4 genes, respectively.

(C) Histogram displaying length distribution of known Cas9 orthologs as described in UniProt, HAMAP protein family profile MF_01480.

(D) Phylogenetic tree displaying the microbial origin of Cas9 nucleases from the type II CRISPR immune system. Taxonomic information was derived from greengenes 16S rRNA gene sequence alignment, and the tree was visualized using the Interactive Tree of Life tool (iTol).

(E) Four Cas9 orthologs from families IIA, IIB, and IIC were aligned by ClustalW (BLOSUM). Domain alignment is based on the Streptococcus pyogenes Cas9, whereas residues highlighted in red indicate highly conserved catalytic residues within the RuvC I and HNH nuclease domains.

(Cell. Author manuscript; available in PMC 2015 Feb 27.Published in final edited form as:

Cell. 2014 Jun 5; 157(6): 1262–1278.doi:  10.1016/j.cell.2014.05.010)


The uniqueness of this study comes from:


  • There is a big difference between the new type of mutation and traditional mutation is expressivity of the character since previously mutations were passive and non-transferable at 100% rate. However,  in classical Mendelian Genetics, only one fourth f the recessive traits can be presented in new generation. Yet, in this case this can be achieve about 97% plus transferred to new generation.


  • MCR alterations is active that is they convert matching sequences at the same target site so mutated sites took over the wild type character without degenerating by wild type alleles segregating independently during the breeding process


  • Therefore, the altered sequences routinely replace the wild type (original) sequences at that site. The data demonstrated that among 92 flies, only one female became wild type but remaining 41 females had yellow eyes yet all 50 males showed wild type eye coloring at the second generation.


  • The genetic engineering of the genome occurred in a single generation with high efficiency.


Their technique developed by Gantz and Bier had three basic parts:


  1. Both somatic and germline cells expressed a Cas9 gene,


  1. A guide RNA (gRNA) targeted to a genomic sequence of interest,


  1. The Cas9/gRNA cassettes have the flanking homolog arms that matches the two genomic sequences immediately adjacent to either side of the target cut site


There are many applications in translational genomics that requires multiple steps to make it perfect for complicated organisms, such as plants, mosquitoes and human diseases.

Short Walk from Past to the Future of CRISPR/Cas9

Development and Applications of CRISPR-Cas9 for Genome Engineeri

The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA.

CRISPR/Cas systems are part of the adaptive immune system of bacteria and archaea, protecting them against invading nucleic acids such as viruses by cleaving the foreign DNA in a sequence-dependent manner.

The latest ground-breaking technology for genome editing is based on RNA-guided engineered nucleases, which already hold great promise due to their:

  • simplicity,
  • efficiency and
  • versality

Although CRISPR arrays were first identified in the Escherichia coli genome in 1987 (Ishino et al., 1987),

their biological function was not understood until 2005, when it was shown that the spacers were homologous to viral and plasmid sequences suggesting a role in adaptive immunity (Bolotin et al., 2005; Mojica et al., 2005; Pourcel et al., 2005).

Two years later, CRISPR arrays were confirmed to provide protection against invading viruses when combined with Cas genes (Barrangou et al., 2007).

The mechanism of this immune system based on RNA-mediated DNA targeting was demonstrated shortly thereafter (Brouns et al., 2008; Deltcheva et al., 2011; Garneau et al., 2010; Marraffini and Sontheimer, 2008).


The most widely used system is the type II clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 (CRISPR-associated) system from Streptococcus pyogenes (Jinek et al., 2012).

Then, five independent groups demonstrated that the two-component system was functional in eukaryotes (human, mouse and zebrafish), indicating that the other functions of the CRISPR locus genes were supported by endogenous eukaryotic enzymes (Cho et al., 2013Cong et al., 2013Hwang et al., 2013Jinek et al., 2013 and Mali et al., 2013).

Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified colonial cell lines can be derived within 2-3 weeks


Development and Applications of CRISPR-Cas9 for Genome Engineeri

Genome editing with site-specific nucleases.

Double-strand breaks induced by a nuclease at a specific site can be repaired either by non-homologous end joining (NHEJ) or homologous recombination (HR).  In most cases, NHEJ causes random insertions or deletions (indels), which can result in frameshift mutations if they occur in the coding region of a gene, effectively creating a gene knockout.

Alternatively, when the DSB generates overhangs, NHEJ can mediate the targeted introduction of a double-stranded DNA template with compatible overhangs

Even though the generation of breaks in both DNA strands induces recombination at specific genomic loci, NHEJ is by far the most common DSB repair mechanism in most organisms, including higher plants, and the frequency of targeted integration by HR remains much lower than random integration.

  • Unlike its predecessors, the CRISPR/Cas9 system does not require any protein engineering steps, making it much more straightforward to test multiple gRNAs for each target gene


  • Unlike ZFNs and TALENs, the CRISPR/Cas9 system can cleave methylated DNA in human cells (Hsu et al., 2013), allowing genomic modifications that are beyond the reach of the other nucleases (Ding et al., 2013).


  • The main practical advantage of CRISPR/Cas9 compared to ZFNs and TALENs is the ease of multiplexing. The simultaneous introduction of DSBs at multiple sites can be used to edit several genes at the same time (Li et al., 2013; Mao et al., 2013) and can be particularly useful to knock out redundant genes or parallel pathways.


  • Finally, the open access policy of the CRISPR research community has promoted the widespread uptake and use of this technology in contrast, for example, to the proprietary nature of the ZFN platform.

The community provides access to plasmids (e.g., via the non-profit repository Addgene), web tools for selecting gRNA sequences and predicting specificity:


One area that will likely need to be addressed when moving to more complex genomes, for instance, is off-target CRISPR/Cas9 activity since fruit fly has only four chromosomes and less likely to have off-target effects. However, this study provided proof of principle.

  • Yet, this critics is not new since one of the few criticisms of the CRISPR/Cas9 technology is the relatively high frequency of off-target mutations reported in some of the earlier studies (Cong et al., 2013; Fu et al., 2013; Hsu et al., 2013; Jiang et al., 2013a; Mali et al., 2013; Pattanayak et al., 2013).


Several strategies have been developed to reduce off-target genome editing, the most important of which is the considered design of the gRNA.


  • fusions of catalytically inactive Cas9 and FokI nuclease have been generated, and these show comparable efficiency to the nickases but substantially higher (N140-fold) specificity than the wild-type enzyme (Guilinger et al., 2014; Tsai et al., 2014)


  • Altering the length of the gRNA can also minimize non-target modifications. Guide RNAs with two additional guanidine residues at the 5′ end were able to avoid off-target sites more efficiently than normal gRNAs but were also slightly less active at on-target sites (Cho et al., 2014)

Development and Applications of CRISPR-Cas9 for Genome Engineeri

What more:

The CRISPR/Cas9 system can be used for several purposes in addition to genome editing:

  • The ectopic regulation of gene expression, which can provide useful information about gene functions and can also be used to engineer novel genetic regulatory circuits for synthetic biology applications.


  • The external control of gene expression typically relies on the use of inducible or repressible promoters, requiring the introduction of a new promoter and a particular treatment (physical or chemical) for promoter activation or repression.


  • Disabled nucleases can be used to regulate gene expression because they can still bind to their target DNA sequence. This is the case with the catalytically inactive version of Cas9 which is known as dead Cas9 (dCas9).


  • Preparing the host for an immunotherapy is possible if it is combined with TLR mechanism:

On the other hand, the host mechanism needs to be review carefully for the design of an effective outcome.

The mechanism of microbial response and infectious tolerance are complex.


During microbial responses, Toll-like receptors (TLRs) play a role to differentiate and determine the microbial structures as a ligand to initiate production of cytokines and pro-inflammatory agents to activate specific T helper cells.


Uniqueness of TLR comes from four major characteristics of each individual TLR :


  1. ligand specificity,
  2. signal transduction pathways,
  3. expression profiles and
  4. cellular localization.


Thus, TLRs are important part of the immune response signaling mechanism to initiate and design adoptive responses from innate (naïve) immune system to defend the host.


TLRs are expressed cell type specific patterns and present themselves on APCs (DCs, MQs, monocytes) with a rich expression  levels Specific TLR stimulat ion links innate and acquired responses through simple recognition of pathogen-associated molecular patterns (PAMPs) or co-stimulation of PAMPs with other TLR or non-TLR receptors, or even better with proinflammatory cytokines.


Some examples of ligand – TLR specificity shown in Table1, which are bacterial lipopeptides, Pam3Cys through TLR2, double stranded (ds) RNAs through TLR3, lipopolysaccharide (LPS) through TLR4, bacterial flagellin through TLR5, single stranded RNAs through TLR7/8, synthetic anti-viral compounds imiquinod through TLR 7 and resiquimod through TLR8, unmethylated CpG DNA motifs through TLR9.


The specificity is established by correct pairing of a TLR with its proinflammatory cytokine(s), so that these permutations influence creation and maintenance of cell differentiat ion.

Development and Applications of CRISPR-Cas9 for Genome Engineeri


  • Immunotherapy: The immune cells can be used as a sensor to scavenger the circulating malformed cells in vivo diagnostics or attack and remember them, for instance, relapse of cancer, re-infection with a same or similar agent (bacteria or virus) etc.

Not only using unique microbial and other model organism properties but also using the human host defense mechanism during innate immune responses may bring a new combat to create a new method of precision medicine. This can be a new type of immunotherapy, immune cell mediated gene therapy or vaccine even a step for an in vivo diagnostics.


Molecular Genetics took a long road from discovery of restriction enzymes, developing PCR assays, cloning were the beginning. Now, having technology to sequence and compare the sequences between organisms also help to design more sophisticated methods.

Generating mutant lines in Drosophila with the classical genetics methods relies on P elements, a type of transposon and balancers after crossing selected flies with specific markers. This fly pushing is a very tedious work but powerful to identify primary pathways, mechanisms and gene interactions in system and translational  genomics.

 Thus, Microbial Immunomodulation is an important factor not only using the microorganisms or their mechanisms but also modulating the immune cells based on the host interaction may generate new types of diagnostics and targeted therapy tools.


Microbial immunomodulation. Microbes from the environment, and from the various microbiota, modulate the immune system. Some of this is due to direct effects of defined microbial products on elements of the immune system. But modulation of the immune system also secondarily alters the host–microbiota relationship and leads to changes in the composition of the microbiota, and so to further changes in immunoregulation (shown as indirect pathways). At the end of the day balance is the key for survival.

microbial immunomodulationGrahamnihms199923f2 A. W. Rook,*,1 Christopher A. Lowry,2 and Charles L. Raison3  Microbial ‘Old Friends’, immunoregulation and stress resilience  Evol Med Public Health. 2013; 2013(1): 46–64. Published online 2013 Apr 9. doi:  10.1093/emph/eot004 PMCID: PMC3868387


CRISPR-Cas9 mediated NHEJ in transient transfection experiments.

Table 1.
Species Transformation method Cas9 codon optimization Promoters (Cas9,  gRNA) Target Mutation frequency Detection method Off-target (no. of sites analyzed) Detection method Multiplex (deletion) Reference
Arabidopsis thaliana PEG-protoplast transfection Arabidopsis (with intron) CaMV35SPDK, AtU6 PDS3<comma> FLS2 1.1–5.6% PCR + sequencing Li et al. (2013)
A. thaliana Leaf agroinfiltration Arabidopsis (with intron) CaMV35SPDK, AtU6 PDS3 2.70% PCR + sequencing Yes (48 bp) Li et al. (2013)
A. thaliana PEG-protoplast transfection Arabidopsis (with intron) CaMV35SPDK,  AtU6 RACK1b<comma> RACK1c 2.5–2.7% PCR + sequencing No (1 site) PCR + sequencing Li et al. (2013)
A. thaliana Leaf agroinfiltration C. reinhardtii CaMV35S, AtU6 Co-transfected GFP n.a. Pre-digested PCR + RE Jiang et al. 2013a and Jiang et al. 2013b
Nicotiana benthamiana PEG-protoplast transfection Arabidopsis (with intron) CaMV35SPDK, AtU6 PDS3 37.7–38.5% PCR + sequencing Li et al. (2013)
N. benthamiana Leaf agroinfiltration Arabidopsis (with intron) CaMV35SPDK,  AtU6 PDS3 4.80% PCR + sequencing Li et al. (2013)
N. benthamiana Leaf agroinfiltration Human CaMV35S,  AtU6 PDS 1.8–2.4% PCR + RE No (18 sites) PCR + RE Nekrasov et al. (2013)
N. benthamiana Leaf agroinfiltration C. reinhardtii CaMV35S, AtU6 Co-transfected GFP n.a. pre-digested PCR + RE Jiang et al. 2013a and Jiang et al. 2013b
N. benthamiana Leaf agroinfiltration Human CaMV35S, CaMV35S PDS 12.7–13.8% Upadhyay et al. (2013)
Nicotiana tabacum PEG-protoplast transfection Tobacco 2xCaMV35S, AtU6 PDS<comma> PDR6 16.27–20.3% PCR + RE Yes (1.8 kb) Gao et al. (2014)
Oryza sativa PEG-protoplast transfection Rice 2xCaMV35S, OsU3 PDS<comma> BADH2<comma> MPK2<comma> Os02g23823 14.5–38.0% PCR + RE Noa (3 sites) PCR + RE Shan et al. (2013)
O. sativa PEG-protoplast transfection Human CaMV35S,  OsU3 or OsU6 MPK5 3–8% RE + qPCR and T7E1 assay No (2 sites) Yes (1 site with a mismatch at position 12) RE + PCR Xie and Yang (2013)
O. sativa PEG-protoplast transfection Rice CaMV35S,  OsU6 SWEET14 n.a. pre-digested PCR + RE Jiang et al. 2013a and Jiang et al. 2013b
O. sativa PEG-protoplast transfection Rice ZmUbi,  OsU6 KO1 KOL5; CPS4 CYP99A2; CYP76M5 CYP76M6 n.a. PCR + sequencing Yes (115<comma> 170<comma> 245 kb) Zhou et al. (2014)
Triticum aestivum PEG-protoplast transfection Rice 2xCaMV35S, TaU6 MLO 28.50% PCR + RE Shan et al. (2013)
T. aestivum PEG-protoplast transfection Plant ZmUbi, TaU6 MLO-A1 36% T7E1 Wang et al. 2014a and Wang et al. 2014b
T. aestivum Agrotransfection of cells from immature embryos Human CaMV35S,  CaMV35S PDS<comma> INOX 18–22% PCR + sequencing Upadhyay et al. (2013)
T. aestivum Agrotransfection of cells from immature embryos Human CaMV35S,  CaMV35S INOX PCR + sequencing No* PCR + RE Yes (53 bp) Upadhyay et al. (2013)
Zea mays PEG-protoplast transfection Rice 2xCaMV35S,  ZmU3 IPK 16.4–19.1% PCR + RE Liang et al. (2014)
Citrus sinensis Leaf agroinfiltration Human CaMv35S,  CaMV35S PDS 3.2–3.9% PCR + RE No (8 sites) PCR + RE Jia et al. (2014)





A brief overview of CRISPR-mediated immunity and explain how the emerging new properties of this defense system are being repurposed for genome engineering in bacteria, yeast, human cells, insects, fish, worms, plants, frogs, pigs, and rodents.

Also look at F1000Prime Rep. 2014; 6: 3. For the list of microorganisms use in CRISPR applications.

Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429–37. doi: 10.1093/nar/gkt520.

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31:233–9. doi: 10.1038/nbt.2508.

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83. doi: 10.1016/j.cell.2013.02.022

Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods.2013;10:1116–21. doi: 10.1038/nmeth.2681.

Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.Cell. 2013;154:442–51. doi: 10.1016/j.cell.2013.06.044.

DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336–43. doi: 10.1093/nar/gkt135.

Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res.2013;23:1163–71. doi: 10.1038/cr.2013.122.

 Hou Z, Zhang Y, Propson NE, Howden SE, Chu L, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA. 2013;110:15644–9. doi: 10.1073/pnas.1313587110.

Ran FA, Hsu PD, Lin C, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9. doi: 10.1016/j.cell.2013.08.021.

Cho SW, Kim S, Kim JM, Kim J. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2. doi: 10.1038/nbt.2507.

Le Cong, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems.Science. 2013;339:819–23. doi: 10.1126/science.1231143.

Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res.2013;41:9584–92. doi: 10.1093/nar/gkt714.

Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12:393–4. doi: 10.1016/j.stem.2013.03.006.

Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. doi: 10.1038/srep02510.

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.Nat Biotechnol. 2013;31:822–6. doi: 10.1038/nbt.2623.

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32. doi: 10.1038/nbt.2647.

Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471. doi: 10.7554/eLife.00471.

Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10:977–9. doi: 10.1038/nmeth.2598.

Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31:833–8. doi: 10.1038/nbt.2675.

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6. doi: 10.1126/science.1232033.

Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31:839–43. doi: 10.1038/nbt.2673.

Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10:973–6. doi: 10.1038/nmeth.2600.

Yang L, Guell M, Byrne S, Yang JL, Los Angeles A de, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, Huang P, Daley G, Church G. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41:9049–61. doi: 10.1093/nar/gkt555.

Bassett AR, Tibbit C, Ponting CP, Liu J. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013;4:220–8. doi: 10.1016/j.celrep.2013.06.020.

Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013;194:1029–35. doi: 10.1534/genetics.113.152710.

Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics.2013;195:289–91. doi: 10.1534/genetics.113.153825.

Kondo S, Ueda R. Highly improved gene targeting by germline-specific cas9 expression in Drosophila. Genetics. 2013;195:715–21. doi: 10.1534/genetics.113.156737.

Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong J, Xi JJ. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 2013;23:465–72. doi: 10.1038/cr.2013.45.

Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JJ. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS ONE. 2013;8:e68708. doi: 10.1371/journal.pone.0068708.

Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JJ, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system.Nat Biotechnol. 2013;31:227–9. doi: 10.1038/nbt.2501.

Jao L, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA. 2013;110:13904–9. doi: 10.1073/pnas.1308335110.

Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, Zhu Z, Lin S, Zhang B. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013;41:e141. doi: 10.1093/nar/gkt464.

Chen C, Fenk LA, Bono M de. Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res.2013;41:e193. doi: 10.1093/nar/gkt805.

Chiu H, Schwartz HT, Antoshechkin I, Sternberg PW. Transgene-Free Genome Editing in Caenorhabditis elegans Using CRISPR-Cas. Genetics. 2013;195:1167–71. doi: 10.1534/genetics.113.155879.

Cho SW, Lee J, Carroll D, Kim J, Lee J. Heritable Gene Knockout in Caenorhabditis elegans by Direct Injection of Cas9-sgRNA Ribonucleoproteins.Genetics. 2013;195:1177–80. doi: 10.1534/genetics.113.155853.

Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods.2013;10:741–3. doi: 10.1038/nmeth.2532.

Katic I, Großhans H. Targeted Heritable Mutation and Gene Conversion by Cas9-CRISPR in Caenorhabditis elegans. Genetics. 2013;195:1173–6. doi: 10.1534/genetics.113.155754.

Lo T, Pickle CS, Lin S, Ralston EJ, Gurling M, Schartner CM, Bian Q, Doudna JA, Meyer BJ. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.Genetics. 2013;195:331–48. doi: 10.1534/genetics.113.155382.

Tzur YB, Friedland AE, Nadarajan S, Church GM, Calarco JA, Colaiácovo MP. Heritable Custom Genomic Modifications in Caenorhabditis elegans via a CRISPR-Cas9 System. Genetics. 2013;195:1181–5. doi: 10.1534/genetics.113.156075.

Waaijers S, Portegijs V, Kerver J, Lemmens BBLG, Tijsterman M, van den Heuvel S, Boxem M. CRISPR/Cas9-Targeted Mutagenesis in Caenorhabditis elegans. Genetics. 2013;195:1187–91. doi: 10.1534/genetics.113.156299.

Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination.Nat Methods. 2013;10:1028–34. doi: 10.1038/nmeth.2641.

Feng Z, Zhang B, Ding W, Liu X, Yang D, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res.2013;23:1229–32. doi: 10.1038/cr.2013.114.

Li J, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31:688–91. doi: 10.1038/nbt.2654.

Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:691–3. doi: 10.1038/nbt.2655.

Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system.Nat Biotechnol. 2013;31:686–8. doi: 10.1038/nbt.2650.

 Xie K, Yang Y. RNA-Guided Genome Editing in Plants Using a CRISPR-Cas System. Mol Plant. 2013;6:1975–83. doi: 10.1093/mp/sst119.

Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 2013;23:1233–6. doi: 10.1038/cr.2013.123.

Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41:e188. doi: 10.1093/nar/gkt780.

Upadhyay SK, Kumar J, Alok A, Tuli R. RNA Guided Genome Editing for Target Gene Mutations in Wheat. G3 (Bethesda) 2013

Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis. 2013 doi: 10.1002/dvg.22720.

Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA. 2013;110:16526–31. doi: 10.1073/pnas.1310478110.

Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system.Nat Biotechnol. 2013;31:681–3. doi: 10.1038/nbt.2661.

Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol.2013;31:684–6. doi: 10.1038/nbt.2652.

Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23:720–3. doi: 10.1038/cr.2013.46.

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8. doi: 10.1016/j.cell.2013.04.025.


Previously Published at Leaders in Pharmaceutical Intelligence:


CRISPR/Cas9: Contributions on Endoribonuclease Structure and Function, Role in Immunity and Applications in Genome Engineering larryhbern 2015/03/27
CRISPR-CAS editing brings cloning of woolly mammoth one step closer to reality 2012pharmaceutical 2015/03/26
GUIDE-seq: First genome-wide method of detecting off-target DNA breaks induced by CRISPR-Cas nucleases 2012pharmaceutical 2014/12/22
The Patents for CRISPR, the DNA editing technology as the Biggest Biotech Discovery of the Century 2012pharmaceutical 2014/12/05
CRISPR: Applications for Autoimmune Diseases @UCSF 2012pharmaceutical 2014/11/04
“Gene Editing at CRISPR Speed”: Services and Tools 2012pharmaceutical 2014/10/29
Licensing CRISPR-Cas9 Technology from Broad Institute: Clontech, Horizon Discovery, Sage Labs 2012pharmaceutical 2014/10/28
CRISPR-Cas9 Discovery and Development of Programmable Genome Engineering – Gabbay Award Lectures in Biotechnology and Medicine – Hosted by Rosenstiel Basic Medical Sciences Research Center, 10/27/14 3:30PM Brandeis University, Gerstenzang 121 2012pharmaceutical 2014/10/26
Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells using a bacterial CRISPR/Cas 2012pharmaceutical 2014/10/24
CRISPR-Cas9 Foundational Technology originated at UC, Berkeley & UCSF, Broad Institute is developing Biotech Applications — Intellectual Property emerging as Legal Potential Dispute 2012pharmaceutical 2014/06/18
2:15 – 2:45, 6/13/2014, Jennifer Doudna “The biology of CRISPRs: from genome defense to genetic engineering” 2012pharmaceutical 2014/06/13
CRISPR @MIT – Genome Surgery 2012pharmaceutical 2014/04/21
Gene Therapy and the Genetic Study of Disease: @Berkeley and @UCSF – New DNA-editing technology spawns bold UC initiative as Crispr Goes Global 2012pharmaceutical 2014/03/27
Evaluate your Cas9 Gene Editing Vectors: CRISPR/Cas Mediated Genome Engineering – Is your CRISPR gRNA optimized for your cell lines? 2012pharmaceutical 2014/03/25
CRISPR-Cas: A powerful new tool for precise genetic engineering 2012pharmaceutical 2013/11/29
Manipulate Signaling Pathways [7.6] larryhbern 2015/04/08
RNAi – On Transcription and Metabolic Control larryhbern 2015/03/26
Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session 2012pharmaceutical 2015/03/24
Advances in Gene Editing Technology: New Gene Therapy Options in Personalized Medicine 2012pharmaceutical 2015/03/16
Annual Margaret Pittman Lecture, honors the NIH’s first female lab chief, March 11, 2015, 3:00:00 PM by Jennifer Doudna, Ph.D., University of California, Berkeley 2012pharmaceutical 2015/03/11
Protecting Your Biotech IP and Market Strategy: Notes from Life Sciences Collaborative 2015 Meeting sjwilliamspa 2015/03/11
Genomics Diagnostics Companies attractive to Institutional Investors 2012pharmaceutical 2015/03/10
attn #1: Investors in HealthCare — Platforms in the Ecosystem of Regulatory & Reimbursement – Integrated Informational Platforms in Medical Devices, Global Oncology Drugs Market and Peer-Reviewed Curations: Cancer, Genomics and Cardiovascular – Draft 2012pharmaceutical 2015/02/24
Last Modified
attn #2: Investors in HealthCare — Cardiovascular Medical Devices: Platforms in the Ecosystem of Regulatory & Reimbursement with Integrated Informational Platforms of Peer-Reviewed Global Scientific Curations on Medical Devices and Cardiac Surgery, Interventional Cardiology and Cardiovascular Imaging – Draft 2012pharmaceutical 2015/02/24
Last Modified
attn #3: Investors in HealthCare — Platforms in the Ecosystem of Regulatory & Reimbursement – Integrated Informational Platforms in Orthopedic Medical Devices, and Global Peer-Reviewed Scientific Curations: Bone Disease and Orthopedic Medicine – Draft 2012pharmaceutical 2015/02/23
Last Modified
attn #7: Investors in HealthCare — Platforms in the Ecosystem of Regulatory & Reimbursement – Integrated Informational Platforms in Medical Devices, Global Oncology Drugs Market and Peer-Reviewed Curations: Cancer, Genomics and Cardiovascular – Draft 2012pharmaceutical 2015/02/22
Last Modified
attn #6: Investors in HealthCare — Platforms in the Ecosystem of Regulatory & Reimbursement – Integrated Informational Platforms in Medical Devices, Global Oncology Drugs Market and Peer-Reviewed Curations: Cancer, Genomics and Cardiovascular – Draft 2012pharmaceutical 2015/02/22
Last Modified
attn #5: Investors in HealthCare — Platforms in the Ecosystem of Regulatory & Reimbursement – Integrated Informational Platforms in Medical Devices, Global Oncology Drugs Market and Peer-Reviewed Curations: Cancer, Genomics and Cardiovascular – Draft 2012pharmaceutical 2015/02/22
Last Modified
attn #4: Investors in HealthCare — Platforms in the Ecosystem of Regulatory & Reimbursement – Integrated Informational Platforms in Medical Devices, Global Oncology Drugs Market and Peer-Reviewed Curations: Cancer, Genomics and Cardiovascular – Draft 2012pharmaceutical 2015/02/22
Last Modified
7:55AM – 9AM, January 26, 2015 – Introduction and Overview – LIVE @Silicon Valley 2015 Personalized Medicine World Conference, Mountain View, CA 2012pharmaceutical 2015/01/26
Litigation on the Way: Broad Institute Gets Patent on Revolutionary Gene-Editing Method 2012pharmaceutical 2014/12/05
3:15PM 11/12/2014 – Discussion Complex Disorders @10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston 2012pharmaceutical 2014/11/12
Twitter is Becoming a Powerful Tool in Science and Medicine sjwilliamspa 2014/11/06
New Frontiers in Gene Editing: Transitioning From the Lab to the Clinic, February 19-20, 2015 | The InterContinental San Francisco | San Francisco, CA 2012pharmaceutical 2014/10/29
Geneticist George Church: A Future Without Limits 2012pharmaceutical 2014/10/24
Metabolomics is about Metabolic Systems Integration larryhbern 2014/10/13
Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia 2012pharmaceutical 2014/09/26
New Frontiers in Gene Editing — Cambridge Healthtech Institute’s Inaugural, February 19-20, 2015 | The Inter Continental San Francisco | San Francisco, CA 2012pharmaceutical 2014/08/27
The role and importance of transcription factors larryhbern 2014/08/06
  Pathology Emergence in the 21st Century larryhbern 2014/08/03
  Regulation of somatic stem cell Function larryhbern 2014/07/29
  Prediction of the Winner RNA Technology, the FRONTIER of SCIENCE on RNA Biology, Cancer and Therapeutics & The Start Up Landscape in Boston 2012pharmaceutical 2014/06/16
  Lecture Contents delivered at Koch Institute for Integrative Cancer Research, Summer Symposium 2014: RNA Biology, Cancer and Therapeutic Implications, June 13, 2014 @MIT 2012pharmaceutical 2014/06/16
  3:45 – 4:15, 2014, Scott Lowe “Tumor suppressor and tumor maintenance genes” 2012pharmaceutical 2014/06/13
  11:30 – 12:00, 6/13/2014, Daniel Anderson “Intracellular RNA delivery” 2012pharmaceutical 2014/06/13
  9:10 – 9:30, 6/13/2014, Phillip Sharp “Why RNA Biology?” Phillip Sharp, PhD Institute Professor, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 2012pharmaceutical 2014/06/13
  The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research sjwilliamspa 2014/06/11
  Koch Institute for Integrative Cancer Research @MIT – Summer Symposium 2014: RNA Biology, Cancer and Therapeutic Implications, June 13, 2014 8:30AM – 4:30PM, Kresge Auditorium @MIT 2012pharmaceutical 2014/06/04
  An expanded-DNA Biology from Scripps Research Institute: Beyond A-T and C-G: Applications for new Medicines and Nanotechnology 2012pharmaceutical 2014/05/11
  Foundation Medicine reported 4,702 Clinical Tests in Q1, 715 were the FoundationOne Heme Cancer Test, average Reimbursement of $3,400 per Test 2012pharmaceutical 2014/05/08
  The Cancer Research Concentration @ Leaders in Pharmaceutical Business Intelligence sjwilliamspa 2014/05/06
  Aviva’s Perspective on New Oncology Database Asset Positioning by Business Scenario – Password protected 2012pharmaceutical 2014/05/05
  Cancer Research: Curations and Reporting: Aviva Lev-Ari, PhD, RN 2012pharmaceutical 2014/04/20
  Predictions on Biotech Sector’s Two-year Boom 2012pharmaceutical 2014/03/27
  DNA: One man’s trash is another man’s treasure, but there is no JUNK after all Demet Sag, Ph.D., CRA, GCP 2013/06/24
  Ribozymes and RNA Machines – Work of Jennifer A. Doudna 2012pharmaceutical 2013/04/15
  Zebrafish—Susceptible to Cancer larryhbern 2013/04/02
  Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling 2012pharmaceutical 2013/03/28
  Directions for Genomics in Personalized Medicine larryhbern 2013/01/27



About the author:

Dr Sag has a Bachelor’s degree in Basic and Industrial Microbiology as a Sum cum Laude among 450 graduating class of Science faculty,  an MSc in Microbial Engineering and Biotechnology (Bioprocessing improvement) and PhD in Molecular and Developmental Genetics (Functional Genome and Stem Cell Biology).

She is an translational functional genomic scientist to develop diagnostics and targeted therapies by non-invasive methods for personalized medicine from bench to bedside and engineering tools through clinical trials and regulatory affairs.

You may contact with her at 858-729-4942 or by if you have questions.



Read Full Post »

Acute Lung Injury

Writer and Curator: Larry H. Bernstein, MD, FCAP 




Acute lung injury is a serious phenomenon only recognized as having significant relevance to allogeneic blood transfusion in the last 15 years.  It is not limited to transfusion events, and is also related to SIRS and sepsis.  It is simulated in experimental models by lipoprotein, such as endotoxin.  It occurs in the pretransfused surgical patient, or in the medical patient as well.  Why it was not recognized earlier is a matter of conjecture.  The significant reduction in immune modulated blood type incompatibility reactions in Western countries is a factor.  The other factor is that the lipoprotein antigenic fractions involved are associated with component transfusions other than stored red cells. The following discussion will elaborate on what is increasingly recognized as a relevant issue in medicine today.
Transfusion Related Reaction

In medicinetransfusion related acute lung injury (TRALI) is a serious blood transfusion complication characterized by the acute onset of non-cardiogenic pulmonary edema following transfusion of blood products.[1]

Although the incidence of TRALI has decreased with modified transfusion practices, it is still the leading cause of transfusion-related fatalities in the United States from fiscal year 2008 through fiscal year 2012.

Transfusion Related Acute Lung Injury



Micrograph of diffuse alveolar damage, the histologic correlate of TRALI. H&E stain. Very high magnification micrograph of hyaline membranes, as seen in diffuse alveolar damage (DAD), the histologic correlate of acute respiratory distress syndrome (ARDS), transfusion related acute lung injury (TRALI), acute interstitial pneumonia (AIP).

TRALI is defined as an acute lung injury that is temporally related to a blood transfusion; specifically, it occurs within the first six hours following a transfusion.[3]

It is typically associated with plasma components such as platelets and Fresh Frozen Plasma, though cases have been reported with packed red blood cells since there is some residual plasma in the packed cells. The blood component transfused is not part of the case definition. Transfusion-related acute lung injury (TRALI) is an uncommon syndrome that is due to the presence of leukocyte antibodies in transfused plasma. TRALI is believed to occur in approximately one in every 5000 transfusions. Leukoagglutination and pooling of granulocytes in the recipient’s lungs may occur, with release of the contents of leukocyte granules, and resulting injury to cellular membranes, endothelial surfaces, and potentially to lung parenchyma. In most cases leukoagglutination results in mild dyspnea and pulmonary infiltrates within about 6 hours of transfusion, and spontaneously resolves;

Occasionally more severe lung injury occurs as a result of this phenomenon and Acute Respiratory Distress Syndrome (ARDS) results. Leukocyte filters may prevent TRALI for those patients whose lung injury is due to leukoagglutination of the donor white blood cells, but because most TRALI is due to donor antibodies to leukocytes, filters are not helpful in TRALI prevention. Transfused plasma (from any component source) may also contain antibodies that cross-react with platelets in the recipient, producing usually mild forms of posttransfusion purpura or platelet aggregation after transfusion.

Another nonspecific form of immunologic transfusion complication is mild to moderate immunosuppression consequent to transfusion. This effect of transfusion is not completely understood, but appears to be more common with cellular transfusion and may result in both desirable and undesirable effects. Mild immunosuppression may benefit organ transplant recipients and patients with autoimmune diseases; however, neonates and other already immunosuppressed hosts may be more vulnerable to infection, and cancer patients may possibly have worse outcomes postoperatively.



Perioperative transfusion-related acute lung injury: The Canadian Blood Services experience

Asim Alam, Mary Huang, Qi-Long Yi, Yulia Lin, Barbara Hannach
Transfusion and Apheresis Science 50 (2014) 392–398

Purpose: Transfusion-related acute lung injury (TRALI) is a devastating transfusion-associated adverse event. There is a paucity of data on the incidence and characteristics of TRALI cases that occur perioperatively. We classified suspected perioperative TRALI cases reported to Canadian Blood Services between 2001 and 2012, and compared them to non-perioperative cases to elucidate factors that may be associated with an increased risk of developing TRALI in the perioperative setting. Methods: All suspected TRALI cases reported to Canadian Blood Services (CBS) since 2001 were reviewed by two experts or, from 2006 to 2012, the CBS TRALI Medical Review Group (TMRG). These cases were classified based on the Canadian Consensus Conference (CCC) definitions and detailed in a database. Two additional reviewers further categorized them as occurring within 72 h from the onset of surgery (perioperative) or not in that period (non-perioperative). Various demographic and characteristic variables of each case were collected and compared between groups. Results: Between 2001 and 2012, a total of 469 suspected TRALI cases were reported to Canadian Blood Services; 303 were determined to be within the TRALI diagnosis spectrum. Of those, 112 (38%) were identified as occurring during the perioperative period. Patients who underwent cardiac surgery requiring cardiopulmonary bypass (25.0%), general surgery (18.0%) and orthopedics patients (12.5%) represented the three largest surgical groups. Perioperative TRALI cases comprised more men (53.6% vs. 41.4%, p = 0.04) than non-perioperative patients. Perioperative TRALI patients more often required supplemental O2 (14.3% vs. 3.1%, p = 0.0003), mechanical ventilation (18.8% vs. 3.1%), or were in the ICU (14.3% vs. 3.7%, p = 0.0043) prior to the onset of TRALI compared to non-perioperative TRALI patients. The surgical patients were transfused on average more components than non-perioperative patients (6.0 [SD = 8.3] vs. 3.6 [5.2] products per patient, p = 0.0002). Perioperative TRALI patients were transfused more plasma (152 vs. 105, p = 0.013) and cryoprecipitate (51 vs. 23, p < 0.01) than non-perioperative TRALI patients. There was no difference between donor antibody test results between the groups. Conclusion: CBS data has provided insight into the nature of TRALI cases that occur perioperatively; this  group represents a large proportion of TRALI cases.


Transfusion-related acute lung injury: a clinical review

Alexander P J Vlaar, Nicole P Juffermans
Lancet 2013; 382: 984–94

Three decades ago, transfusion-related acute lung injury (TRALI) was considered a rare complication of transfusion medicine. Nowadays, the US Food and Drug Administration acknowledge the syndrome as the leading cause of transfusion-related mortality. Understanding of the pathogenesis of TRALI has resulted in the design of preventive strategies from a blood-bank perspective. A major breakthrough in efforts to reduce the incidence of TRALI has been to exclude female donors of products with high plasma volume, resulting in a decrease of roughly two-thirds in incidence. However, this strategy has not completely eradicated the complication. In the past few years, research has identified patient-related risk factors for the onset of TRALI, which have empowered physicians to take an individualized approach to patients who need transfusion.

Development of an international consensus definition has aided TRALI research, yielding a higher incidence in specific patient populations than previously acknowledged Patients suffering from a clinical disorder such as sepsis are increasingly recognized as being at risk for development of TRALI. Thereby, from a diagnosis by exclusion, TRALI has become the leading cause of transfusion-related mortality. However, the syndrome is still under diagnosed and under-reported in some countries.

Although blood transfusion can be life-saving, it can also be a life-threatening intervention. Physicians use blood transfusion on a daily basis. Increased awareness of the risks of this procedure is needed, because management of patient-tailored transfusion could reduce the risk of TRALI. Such an individualized approach is now possible as insight into TRALI risk factors evolves. Furthermore, proper reporting of TRALI could prevent recurrence.

Absence of an international definition for TRALI previously contributed to underdiagnosis. As such, a consensus panel, and the US National Heart, Lung and Blood Institute Working Group in 2004, formulated a case definition of TRALI based on clinical and radiological parameters. The definition is derived from the widely used definition of acute lung injury (panel 1). Suspected TRALI is defined as fulfilment of the definition of acute lung injury within 6 h of transfusion in the absence of another risk factor (panel 1).

Although this definition seems to be straightforward, the characteristics of TRALI are indistinguishable from acute lung injury due to other causes, such as sepsis or lung contusion. Therefore, this definition would rule out the possibility of diagnosing TRALI in a patient with an underlying risk factor for acute lung injury who has also received a transfusion. To identify such cases, the term possible TRALI was developed.

Although the TRALI definition is an international consensus definition, surveillance systems in some countries, including the USA, France and the Netherlands, use an alternative in which imputability is scored. Imputability aims to identify the likelihood that transfusion is the causal factor. Imputability scores mostly imply that other causes of acute lung injury can be ruled out, so that diagnosis of TRALI is by exclusion. However, observational and animal studies suggest that risk factors for TRALI include other disorders, such as sepsis. Therefore, an imputability definition would result in underdiagnosis of TRALI. The consensus definition accommodates the uncertainty of the association of acute lung injury to the transfusion in possible TRALI. The conventional definition of TRALI uses a timeframe of 6 h in which acute lung injury needs to develop after a blood transfusion. In critically ill patients, transfusion increases the risk (odds ratio 2·13, 95% CI 1·75–2·52) for development of acute lung injury 6–72 h after transfusion.  However, whether the pathogenesis of delayed TRALI is similar to that of TRALI is unclear.

A two-hit hypothesis has been proposed for TRALI. The first hit is underlying patient factors, resulting in adherence of primed neutrophils to the pulmonary endothelium. The second hit is caused by mediators in the blood transfusion that activate the endothelial cells and pulmonary neutrophils, resulting in capillary leakage and subsequent pulmonary edema. The second hit can be antibody-mediated or non-antibody-mediated.

Panel 1: Definition of transfusion-related acute lung injury (TRALI)

Suspected TRALI

  • Acute onset within 6 h of blood transfusion
    • PaO2/FIO2<300 mm Hg, or worsening of P to F ratio
    • Bilateral infi ltrative changes on chest radiograph
    • No sign of hydrostatic pulmonary oedema (pulmonary arterial occlusion
    pressure ≤18 mm Hg or central venous pressure ≤15 mm Hg)
    • No other risk factor for acute lung injury

Possible TRALI
Same as for suspected TRALI, but another risk factor present for acute lung injury

Delayed TRALI
Same as for (possible) TRALI and onset within 6–72 h of blood transfusion

Pathophysiology of two-hit mediated transfusion-related acute lung injury (TRALI).  The pre-phase of the syndrome consists of a fi rst hit, which is mainly systemic. This first hit is the underlying disorder of the patient (eg, sepsis or pneumonia) causing neutrophil attraction to the capillary of the lung. Neutrophils are attracted to the lung by release of cytokines and chemokines from upregulated lung endothelium. Loose binding by L-selectin takes place. Firm adhesion is mediated by E-selectin and platelet-derived P-selectin and intracellular adhesion molecules (ICAM-1). In the acute phase of the syndrome, a second hit caused by mediators in the blood transfusion takes place. This hit results in activation of inflammation and coagulation in the pulmonary compartment. Neutrophils adhere to the injured capillary endothelium and marginate through the interstitium into the air space, which is filled with protein-rich edema fluid. In the air space, cytokines interleukin-1, -6, and -8, (IL-1, IL-6, and IL-8, respectively) are secreted, which act locally to stimulate chemotaxis and activate neutrophils resulting in formation of the elastase-α1-antitrypsin (EA) complex. Neutrophils can release oxidants, proteases, and other proinflammatory molecules, such as platelet-activating factor (PAF), and form neutrophil extracellular traps (NETs). Furthermore, activation of the coagulation system happens, shown by an increase in thrombin-antithrombin complexes (TATc), as does a decrease in activity of the fibrinolysis system, shown by a reduction in plasminogen activator activity. The influx of protein-rich edema fluid into the alveolus leads to the inactivation of surfactant, which contributes to the clinical picture of acute respiratory distress in the onset of TRALI. PAI-1 = plasminogen activator inhibitor-1.

Antibody-mediated TRALI is caused by passive transfusion of HLA or human neutrophil antigen (HNA) and corresponding antibodies from the donor directed against antigens of the recipient. Neutrophil activation occurs directly by binding of the antibody to the neutrophil surface (HNA antibodies) or indirectly, mainly by binding to the endothelial cells with activation of the neutrophil (HLA class I antibodies) or to monocytes with subsequent activation of the neutrophil (HLA class II antibodies). The antibody titer and the volume of antibody containing plasma both increase the risk for onset of TRALI. Although the role of donor HLA and HNA antibodies from transfused blood is widely accepted, not all TRALI cases are antibody mediated. In many patients, antibodies cannot be detected. Furthermore, many blood products containing antibodies do not lead to TRALI. This finding has led to development of an alternative hypothesis for the onset of TRALI, termed non-antibody-mediated TRALI.

Non-antibody-mediated TRALI is caused by accumulation of proinflammatory mediators during storage of blood products, and possibly by ageing of the erythrocytes and platelets themselves. Although most preclinical studies have noted a positive correlation between storage time of cell-containing blood products and TRALI, the mechanism is controversial. Two mechanisms have been suggested, including either plasma or the aged cells. In a small-case study and animal experiments, accumulation of bioactive lipids and soluble CD40 ligand (sCD40L) in the plasma layer of cell-containing blood products has been associated with TRALI. Bioactive lipids are thought to cause neutrophil activation through the G-protein coupled receptor on the neutrophil.

The two-hit model suggests that patients in a poor clinical state are at risk for development of TRALI. However, cases have been described of antibody-mediated TRALI developing in fairly healthy recipients. To explain this discrepancy, a threshold model has been suggested in which a threshold must be overcome to induce a TRALI reaction. The threshold is dependent both on the predisposition of the patient (first hit) and the quantity of antibodies in the transfusion (second hit). A large quantity of antibody that matches the recipient’s antigen can cause severe TRALI in a recipient with no predisposition.

Threshold model of antibody-mediated transfusion-related acute lung injury (TRALI). A specific threshold must be overcome to induce a TRALI reaction. To overcome a threshold, several factors act together: the activation status of the pulmonary neutrophils at the time of transfusion, the strength of the neutrophil-priming activity of transfused mediators (A), and the clinical status of the patient (B).

Panel 2: Clinical characteristics of transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO)

• Dyspnea
• Fever
• Usually hypotension
• Hypoxia
• Leukopenia
• Thrombocytopenia
• Pulmonary edema on chest x-ray
• Normal left ventricular function*
• Normal pulmonary artery occlusion pressure

• Dyspnea
• Usually hypertension
• Hypoxia
• Pulmonary edema on chest radiographs
• Normal or decreased left ventricular function
• Increased pulmonary artery occlusion pressure
• Raised brain natriuretic peptide

Restrictive transfusion policy

The most effective prevention is a restrictive transfusion strategy. In a randomised clinical trial in critically ill patients, a restrictive transfusion policy for red blood cells was associated with a decrease in incidence of acute lung injury compared with a liberal strategy (7·7% vs 11·4%), suggesting that some of these patients might have had TRALI. The restrictive threshold was well tolerated and has greatly helped in guidance of red blood cell transfusion in the intensive-care unit.

Patient-tailored transfusion policy

Transfusion cannot be avoided altogether. A multivariate analysis in patients in intensive care showed that patient related risk factors contributed more to the onset of TRALI than did transfusion-related risk factors, suggesting that development of a TRALI reaction is dependent more on host factors then on factors in the blood product. Therefore, a patient-tailored approach aimed at reducing TRALI risk factors could be effective to alleviate the risk of TRALI.

Despite limitations of diagnostic tests, TRALI incidence seems to be high in at-risk patient populations. Therefore, TRALI is an underestimated health-care problem. Preventive measures, such as mainly male donor strategies, have been successful in reducing risk of TRALI. Identification of risk factors further improves the risk–benefit assessment of a blood transfusion. Efforts to further decrease the risk of TRALI needs increased awareness of this syndrome among physicians.


Transfusion-related acute lung injury: Current understanding and preventive strategies

A.P.J. Vlaar
Transfusion Clinique et Biologique 19 (2012) 117–124

Transfusion-related acute lung injury (TRALI) is the most serious complication of transfusion medicine. TRALI is defined as the onset of acute hypoxia within 6 hours of a blood transfusion in the absence of hydrostatic pulmonary edema. The past decades have resulted in a better understanding of the pathogenesis of this potentially life-threating syndrome. The present notion is that the onset of TRALI follows a threshold model in which both patient and transfusion factors are essential. The transfusion factors can be divided into immune and non-immune mediated TRALI. Immune-mediated TRALI is caused by the passive transfer of human neutrophil antibodies (HNA) or human leukocyte antibodies (HLA) present in the blood product reacting with a matching antigen in the recipient. Non-immune mediated TRALI is caused by the transfusion of stored cell-containing blood products. Although the mechanisms behind immune-mediated TRALI are reasonably well understood, this is not the case for non-immune mediated TRALI. The increased understanding of pathways involved in the onset of immune-mediated TRALI has led to the design of preventive strategies. Preventive strategies are aimed at reducing the risk to exposure of HLA and HNA to the recipient of the transfusion. These strategies include exclusion of “at risk” donors and pooling of high plasma volume products and have shown to reduce the TRALI incidence effectively.

Studies show that, in at risk patient populations, up to 8% of transfused patients may develop TRALI. Since the syndrome TRALI has been recognized, evidence on the pathogenesis of TRALI has been accumulating. The present notion is that the onset of TRALI follows a threshold model in which both patient and transfusion factors are essential in the development of TRALI. The transfusion factors can be divided into immune and non-immune mediated TRALI. Immune-mediated TRALI is caused by the passive transfer of human neutrophil antibodies (HNA) or human leukocyte antibodies (HLA) present in the blood product, reacting with a matching antigen in the recipient. Non-immune mediated TRALI is caused by the transfusion of stored cell-containing blood products. In recent years, many countries have successfully implemented preventive strategies resulting in a decrease of the incidence of TRALI.

Definition of transfusion-related acute lung injury (TRALI).

  • Acute onset within 6 hours after a blood transfusion
  • PaO2/FiO2 < 300 mmHg
  • Bilateral infiltrative changes on the chest X-ray
  • No sign of hydrostatic pulmonary edema (PAOP < 18 mmHg or CVP < 15 mmHg)
  • No other risk factor for acute lung injury present

Possible TRALI

  • Other risk factor for acute lung injury present

PAOP: pulmonary arterial occlusion pressure; CVP: central venous pressure

The first landmark report creating the basis for the understanding of the pathogenesis of TRALI was published by Popovsky et al. in 1983. They provided evidence on the association between the presence of leucocyte antibodies in the donor serum and onset of acute lung injury in the recipient of the transfusion. It was also recognized that multiparous blood donors whose plasma contained these antibodies represented a potential transfusion hazard. It was this research group that was the first to identify TRALI as a distinct clinical entity. Subsequently, many other authors reported on the association between the presence of HLA or HNA antibodies in donor blood and the onset of TRALI in the recipient.

Although the role of transfused blood donor HLA and HNA antibodies was widely accepted to be involved in the onset of TRALI, not all cases could be explained by this theory. A significant part of reported TRALI cases have no detectable antibodies. Also, many antibody-containing blood products fail to produce TRALI.

The alternative hypothesis proposed by the group of Silliman posed that TRALI is a “two hit” event. The “first hit” is the underlying condition of the patient, resulting in priming of the pulmonary neutrophil. The “second hit” is the transfusion of a blood product causing activation of the neutrophils in the pulmonary compartment, causing pulmonary edema finally resulting in TRALI. The transfusion factors causing the “second hit” are divided in two groups; immune and non-immune mediated TRALI.

The “second hit” is the transfusion itself and is either immune or non-immune mediated TRALI. The mechanisms behind immune-mediated TRALI are widely accepted and proven in both pre-clinical and clinical studies.  The mechanisms involved in non-immune mediated TRALI are less clear.

The role of stored cell-containing blood products in the onset of non-immune TRALI has extensively been studied in preclinical and clinical studies. Although most of the pre-clinical studies find a positive correlation between the transfusion of stored cell-containing blood products in the presence of a “first hit” and the onset of TRALI, the mechanism behind the onset is controversial.

TRALI management consists mainly of preventing future adverse reactions and providing proper incidence estimates. All suspected TRALI cases should be reported to the blood bank for immunologic work-up as it is impossible to distinguish immune-mediated TRALI from non-immune mediated TRALI at bedside. Immunologic work-up includes testing of incompatibility by cross-matching donor plasma against recipient’s leucocytes. A donor with antibodies which are incompatible with the patient is excluded from further donation of blood for transfusion products. Furthermore, it is important to stress that the absence of a positive serologic work-up does not exclude the diagnosis of TRALI. TRALI is a clinical diagnosis and the immunologic work-up can be supportive but is not part of the diagnosis of TRALI. the two-event hypothesis and threshold hypothesis do not exclude the role of antibodies in the occurrence of TRALI in the presence of an inflammatory condition. Thus any patient fulfilling the TRALI definition (including possible TRALI) should be reported to the blood bank for an immunologic work-up of the recipient and the implicated donors on the presence of HLA and HNA antibodies.

Prevention of immune-mediated TRALI is achieved by exclusion of donors proven to have HLA or HNA antibodies in their plasma present or donors “at risk” to have these antibodies present.

  1. Exclusion of HLA or HNA positive donors
  2. Exclusion of donors “at risk” of being HLA or HNA positive
    Female donors – more specifically, multiparous donors
  3. Testing donors for HLA or HNA antibodies
  4. Multiple plasma pooling
    solvent/detergent plasma is produced from multiple donations, leading to an at least 500-fold dilution of a single plasma unit;
    neither HNA nor HLA antibodies are detectable in solvent/detergent fresh frozen plasma.
  5. To prevent non-immune mediated TRALI, the use of fresh blood only has been suggested

Strategies to prevent the onset of TRALI include the exclusion of female plasma donors and the pooling of plasma products. These strategies have already been implemented in some countries resulting in a reduction of the incidence of TRALI.
Transfusion-related immunomodulation (TRIM): An update

Eleftherios C. Vamvakas, Morris A. Blajchman
Blood Reviews (2007) 21, 327–348

Allogeneic blood transfusion (ABT)-related immunomodulation (TRIM) encompasses the laboratory immune aberrations that occur after ABT and their established or purported clinical effects. TRIM is a real biologic phenomenon resulting in at least one established beneficial clinical effect in humans, but the existence of deleterious clinical TRIM effects has not yet been confirmed. Initially, TRIM encompassed effects attributable to ABT by immunomodulatory mechanisms (e.g., cancer recurrence, postoperative infection, or virus activation). More recently, TRIM has also included effects attributable to ABT by pro-inflammatory mechanisms (e.g., multiple-organ failure or mortality). TRIM effects may be mediated by: (1) allogeneic mononuclear cells; (2) white-blood-cell (WBC)-derived soluble mediators; and/or (3) soluble HLA peptides circulating in allogeneic plasma. This review categorizes the available randomized controlled trials based on the inference(s) that they permit about possible mediator(s) of TRIM, and examines the strength of the evidence available for relying on WBC reduction or autologous transfusion to prevent TRIM effects.

Allogeneic blood transfusion (ABT) may either cause alloimmunization or induce tolerance in recipients. ABTs introduce a multitude of foreign antigens into the recipient, including HLA-DR antigens found on the donor’s dendritic antigen presenting cells (APCs). The presence or absence of recipient HLA-DR antigens on the donor’s white blood cells (WBCs) plays a decisive role as to whether alloimmunization or immune suppression will ensue following ABT. In general, allogeneic transfusions sharing at least one HLA-DR antigen with the recipient induce tolerance, while fully HLA-DR-mismatched transfusions lead to alloimmunization.

In addition to the degree of HLA-DR compatibility between donor and recipient, the immunogenicity of cellular or soluble HLA antigens associated with transfused blood components depends on the viability of the donor dendritic APCs and the presence of co-stimulatory signals for the presentation of the donor antigens to the recipient’s T cells. Nonviable APCs and/or the absence of the requisite co-stimulatory signals result in T-cell unreponsiveness.  Thus, when a multitude of antigens is introduced into the host by an ABT, the host response to some of these antigens is often decreased, and immune tolerance ensues. ABT has been shown to cause decreased helper T-cell count, decreased helper/suppressor T-lymphocyte ratio, decreased lymphocyte response to mitogens, decreased natural killer (NK) cell function, reduction in delayed-type hypersensitivity, defective antigen presentation, suppression of lymphocyte blastogenesis, decreased cytokine (IL-2, interferon-c) production, decreased monocyte/macrophage phagocytic function, and increased production of antiidiotypic and anticlonotypic antibodies.

All these laboratory immune aberrations that indicate immune suppression and occur in transfused patients could potentially be associated with clinically-manifest ABT effects. Thus a variety of beneficial or deleterious clinical effects, potentially attributable to ABT-related immunosuppression, have been described over the last 30 years. The constellation of all such ABT-associated laboratory and clinical findings is known as ABT-related immunomodulation (TRIM). Initially, TRIM encompassed effects attributable to ABT by means of immunologic mechanisms only; however more recently, the term has been used more broadly, to encompass additional effects that could be related to ABT by means of ‘‘proinflammatory’’ rather than ‘‘immunomodulatory’’ mechanisms.

Over 30 years ago, it was reported that pre-transplant ABTs could improve renal-allograft survival in patients who had undergone renal transplantation.  This beneficial immunosuppressive effect of ABT has been confirmed by animal data, observational clinical studies, and clinical experience worldwide, although it has not been proven in randomized controlled trials (RCTs). Before the advent of the AIDS pandemic, it had become standard policy in many renal units to deliberately expose patients on transplant waiting lists to one or more red blood cell (RBC) transfusions.

All the available data considered together indicate that TRIM is most likely a real biologic phenomenon, which results in at least one established beneficial clinical effect in humans, although the available evidence has not yet confirmed  the existence and/or magnitude of the deleterious clinical TRIM effects. In fact, the debate over the existence of such deleterious clinical TRIM effects has been long and sometimes acrimonious.

Many studies tended to indicate that patients receiving perioperative transfusion (compared with those not needing transfusion) almost always had a higher risk of developing postoperative bacterial infection. The studies also indicated that patients receiving ABT differed from those not receiving a transfusion in several prognostic factors that predisposed to adverse clinical outcomes.

The specific constituent(s) of allogeneic blood that mediate(s) either or both the immunomodulatory and the pro-inflammatory effect(s) of ABT remain
(s) unknown, and the published literature suggests that these TRIM effects
may be mediated by: (1) allogeneic mononuclear cells; (2) soluble biologic response modifiers released in a time dependent manner from WBC granules or membranes into the supernatant fluid of RBC or platelet concentrates
during storage; and/or  (3) soluble HLA class I peptides that circulate in allogeneic plasma. If each of these mediators do cause TRIM effects, ABT effects mediated by allogeneic mononuclear cells would be expected to be preventable by WBC reduction (performed either before or after storage of cellular blood components), as well as by autologous transfusion. The ABT effects mediated by soluble HLA peptides circulating in allogeneic plasma would be expected to be preventable only by autologous transfusion.


  1. Enhanced survival of renal allografts
  2. Reduced recurrence rate of Crohn’s disease


  1. Increased recurrence rate of resected malignancies
  2. Increased incidence of postoperative bacterial infections
  3. Activation of endogenous CMV or HIV infection
  4. Increased short-term (up to 3-month) mortality

Possible mechanisms and mediators of TRIM effects

Although the mechanisms of TRIM have been debated extensively, the exact mechanism(s) of this phenomenon has yet to be elucidated. A number of putative mechanisms have been postulated. The three major mechanisms accounting for much of the experimental data include:

  • clonal deletion,
  • induction of anergy, and
  • immune suppression.

Conceptually, clonal deletion refers to the inactivation and removal of alloreactive lymphocytes that would, for example, cause the rejection of an allograft; anergy implies immunologic nonresponsiveness; and immune suppression suggests that the responding cell is being inhibited of doing so by a cellular mechanism or by a cytokine. Antiidiotypic antibodies, which are predominantly of the VH6 gene family, have also been demonstrated in the sera of ABT recipients and in patients with long-term functioning renal allografts.

To date, no RCT has enrolled patients with sarcomas—tumors whose growth is stimulated by TGF-β—or patients with tumors for which the immune response plays a major role. (These would include skin tumors—such as melanomas, keratoacanthomas, squamous and basal-cell carcinomas—and certain virus-induced tumors—notably Kaposi’s sarcoma and certain lymphomas.) Instead, the 3 available RCTs of ABT and cancer recurrence enrolled patients with colorectal cancer—a tumor that is not sufficiently antigenic to render an impairment of host immunity capable of facilitating tumor growth, and a tumor whose cells have not been shown to be stimulated by TGF-β.

Fig not shown. Randomized controlled trials (RCTs) investigating the association of WBC-containing allogeneic blood transfusion (ABT) with cancer recurrence. For each RCT, the figure shows the odds ratio (OR) of cancer recurrence in recipients of non-WBC-reduced allogeneic versus autologous or WBC-reduced allogeneic RBCs, as calculated from an intention-to-treat analysis. A deleterious effect of ABT (and thus a benefit from autologous transfusion or WBC reduction) exists when the OR is greater than 1 as well as statistically significant. (In the figure, each OR is surrounded by its 95% confidence interval [CI]; if the 95% CI of the OR includes the null value of 1, the TRIM effect is not statistically significant [p > 0.05]).

Fig not shown. Randomized controlled trials (RCTs) investigating the association of WBC-containing allogeneic blood transfusions with postoperative infection (n = 17). For each RCT, the figure shows the odds ratio (OR) of postoperative infection in recipients of non-WBC reduced allogeneic versus autologous or WBC-reduced allogeneic RBCs, as calculated from an intention-to-treat analysis. A deleterious effect of ABT (and thus a benefit from autologous transfusion or WBC reduction) exists when the OR is greater than 1 as well as statistically significant. (In the figure, each OR is surrounded by its 95% confidence interval [CI]; if the 95% CI of the OR includes the null value of 1, the TRIM effect is not statistically significant [p > 0.05]).

The totality of the evidence from RCTs does not demonstrate a TRIM effect manifest across all clinical settings and transfused RBC products. Instead, WBC-containing ABT is associated with an increased risk of short-term (up to 3-month post transfusion) mortality from all causes combined specifically in cardiac surgery. The additional deleterious TRIM effect detected by the latest meta-analysis (i.e., the effect on postoperative infection prevented by poststorage filtration) contradicts current theories about the pathogenesis of TRIM, because it is not accompanied by a similar or larger effect prevented by prestorage filtration.

Thus, only in cardiac surgery (Fig. 5 – not shown) are the findings of RCTs pertaining to a deleterious TRIM effect consistent. Even in this setting, however, the reasons for the excess deaths attributed to WBC containing ABT remain elusive. The initial hypothesis suggested that WBC-containing ABT may predispose to MOF which, in turn, may predispose to mortality. However, hitherto, no cardiac-surgery RCT has demonstrated an association between WBC-containing ABT and MOF, and no other cause of death specifically attributed to WBC-containing ABT has been proposed.

The TRIM effect seen in cardiac surgery deserves further study to pinpoint the cause(s) of the excess deaths, but-now that the majority of transfusions in Western Europe and North America are WBC reduced- the undertaking of further RCTs comparing recipients of non-WBC-reduced versus WBC reduced allogeneic RBCs in cardiac surgery is unlikely. For countries that have not yet converted to universal WBC reduction, whether to opt for WBC reduction of all cellular blood components transfused in cardiac surgery-in the absence of information on the specific cause(s) of death ascribed to WBC-containing ABT-is a policy decision that will have to be made based on the hitherto available data.


Regulation of alveolar fluid clearance and ENaC expression in lung by exogenous angiotensin II

Jia Denga, Dao-xin Wanga, Wang Deng, Chang-yi Li, Jin Tong, Hilary Ma
Respiratory Physiology & Neurobiology 181 (2012) 53– 61

Angiotensin II (Ang II) has been demonstrated as a pro-inflammatory effect in acute lung injury, but studies of the effect of Ang II on the formation of pulmonary edema and alveolar filling remains unclear. Therefore, in this study the regulation of alveolar fluid clearance (AFC) and the expression of epithelial sodium channel (ENaC) by exogenous Ang II was verified. SD rats were anesthetized and were given Ang II with increasing doses (1, 10 and 100 [1]g/kg per min) via osmotic minipumps, whereas control rats received only saline vehicle. AT1 receptor antagonist ZD7155 (10 mg/kg) and inhibitor of cAMP degeneration rolipram (1 mg/kg) were injected intraperitoneally 30 min before administration of Ang II. The lungs were isolated for measurement of alveolar fluid clearance. The mRNA and protein expression of ENaC were detected by RT-PCR and Western blot. Exposure to higher doses of Ang II reduced AFC in a dose-dependent manner and resulted in a non-coordinate regulation of α-ENaC vs the regulation of β- and ϒ-ENaC, however Ang II type 1 (AT1) receptor antagonist ZD7155 prevented the Ang II-induced inhibition of fluid clearance and dysregulation of ENaC expression. In addition, exposure to inhibitor of cAMP degradation rolipram blunted the Ang II-induced inhibition of fluid clearance. These results indicate that through activation of AT1 receptor, exogenous Ang II promotes pulmonary edema and alveolar filling by inhibition of alveolar fluid clearance via downregulation of cAMP level and dysregulation of ENaC expression.

Effects of angiotensin II (Ang II) receptor antagonists and rolipram  on AFC

Effects of angiotensin II (Ang II) receptor antagonists and rolipram on AFC

Effects of angiotensin II (Ang II) receptor antagonists and rolipram on rat alveolar fluid clearance (AFC). Then AFC was measured 1 h after fluid instillation (4 mL/kg). Amiloride (100 [1]M), Ang II (10−7 M), ZD7155 (10−6 M), and rolipram (10−5 M) were added to the instillate as indicated (n = 10 per group). Mean values ± SEM. p < 0.01 vs control. p < 0.01 vs Ang II + ZD7155.
p < 0.05 vs amiloride. p < 0.05 vs Ang II.

Effects of angiotensin II (Ang II) on cyclic adenosine monophosphate (cAMP)

Effects of angiotensin II (Ang II) on cyclic adenosine monophosphate (cAMP)

Effects of angiotensin II (Ang II) on cyclic adenosine monophosphate (cAMP) concentration in lung. Rats were given saline or Ang II (1, 10 and 100 µg/kg per min) for 6 h, and cAMP in lung was determined by RIA (n = 30 per group). Mean values ± SEM. p < 0.01 vs control. p < 0.05 vs 10 µg/kg Ang II.

Histological examination of lung

Histological examination of lung

Histological examination of lung. Rats were given saline or Ang II (10 µg/kg per min) by osmotic minipump for 6 h. ZD7155 (10 mg/kg) was injected intraperitoneally 30 min before administration of Ang II. Shown are representative lung specimens obtained from the control (A), Ang II (B) and Ang II + ZD7155 (C) groups. All photographs are at 100× magnification. Interstitial edema and inflammatory cell infiltration were seen in Ang II group, but reduced in Ang II + ZD7155 group.
The present results demonstrate that Ang II infusion is associated with pulmonary edema and alveolar filling. Three important findings were observed:

(1) high doses of Ang II led to reduction of alveolar fluid clearance, and this effect was blunted by an AT1 receptor antagonist.
(2) Ang II infusion increased the abundance of α-ENaC, whereas decreased the abundance ofβ and ϒ-ENaC, and these effects were reversed in response to an AT1 receptor antagonist.
(3) Ang II infusion decreased cAMP concentration in lung tissue, and an inhibitor of cAMP degradation prevented inhibition of alveolar fluid clearance by Ang II, but had no effect on the dysregulation of ENaC.

Our data indicate that Ang II results in pulmonary edema by inhibition of alveolar fluid clearance via down-regulation of cellular cAMP level and dysregulation of the abundance of ENaC, whereas these effects are prevented by an AT1 receptor antagonist.

The renin-angiotensin system is a major regulator of body fluid and sodium balance, predominantly through the actions of its main effector Ang II. Several previous experimental studies demonstrated that plasma Ang II levels vary in both physiological and pathological conditions. In the kidney, Ang II added to the peritubular perfusion has a biphasic action with stimulation of sodium reabsorption at low doses (10−12–10−10M) and inhibition at high doses (10−7–10−6M) (Harris and Young, 1977). In vitro, Ang II also exerts a dose-dependent dual action on intestinal absorption (Levens, 1985). The evidence shows that the effect of Ang II on sodium and water absorption is dose-dependent. Our results showed that low intravenous doses of Ang II (<1 µg/kg per min) had no effect on alveolar fluid clearance which represents the sodium and water reabsorption in alveoli. However, with high intravenous doses, Ang II decreased alveolar fluid clearance. This finding suggests that the effect of Ang II on fluid absorption in lung is also dose-dependent.


Rat models of acute lung injury: Exhaled nitric oxide as a sensitive,noninvasive real-time biomarker of prognosis and efficacy of intervention

Fangfang Liu, Wenli Lib, Jürgen Pauluhn, Hubert Trübel, Chen Wang
Toxicology 310 (2013) 104– 114

Exhaled nitric oxide (eNO) has received increased attention in clinical settings because this technique is easy to use with instant readout. However, despite the simplicity of eNO in humans, this endpoint has not frequently been used in experimental rat models of septic (endotoxemia) or irritant acute lung injury (ALI). The focus of this study is to adapt this method to rats for studying ALI-related lung disease and whether it can serve as instant, non-invasive biomarker of ALI to study lung toxicity and pharmacological efficacy. Measurements were made in a dynamic flow of sheath air containing the exhaled breath from spontaneously breathing, conscious rats placed into a head-out volume plethysmograph. The quantity of eNO in exhaled breath was adjusted (normalized) to the physiological variables (breathing frequency, concentration of exhaled carbon dioxide) mirroring pulmonary perfusion and ventilation. eNO was examined on the instillation/inhalation exposure day and first post-exposure day in Wistar rats intratracheally instilled with lipopolysaccharide (LPS) or single inhalation exposure to chlorine or phosgene gas. eNO was also examined in a Brown Norway rat asthma model using the asthmagen toluene diisocyanate (TDI). The diagnostic sensitivity of adjusted eNO was superior to the measurements not accounting forthe normalization of physiological variables. In all bioassays – whether septic, airway or alveolar irritant or allergic, the adjusted eNO was significantly increased when compared to the concurrent control. The maximum increase of the adjusted eNO occurred following exposure to the airway irritant chlorine. The specificity of adjustment was experimentally verified by decreased eNO following inhalation dosing ofthe non-selective nitric oxide synthase inhibitor amoni-guanidine. In summary, the diagnostic sensitivity of eNO can readily be applied to spontaneously breathing, conscious rats without any intervention or anesthesia. Measurements are definitely improved by accounting for the disease-related changes inexhaled CO2and breathing frequency. Accordingly, adjusted eNO appears to be a promising methodological improvement for utilizing eNO in inhalation toxicology and pharmacological disease models
with fewer animals.


Role of p38 MAP Kinase in the Development of Acute Lung Injury

J Arcaroli, Ho-Kee Yum, J Kupfner, JS Park, Kuang-Yao Yang, and E Abraham
Clinical Immunology 2001; 101(2):211–219

Acute lung injury (ALI) is characterized by an intense pulmonary inflammatory response, in which neutrophils play a central role. The p38 mitogen-activated protein kinase pathway is involved in the regulation of stress-induced cellular functions and appears to be important in modulating neutrophil activation, particularly in response to endotoxin. Although p38 has potent effects on neutrophil functions under in vitro conditions, there is relatively little information concerning the role of p38 in affecting neutrophil driven inflammatory responses in vivo. To examine this issue, we treated mice with the p38 inhibitor SB203580 and then examined parameters of neutrophil activation and acute lung injury after hemorrhage or endotoxemia. Although p38 was activated in lung neutrophils after hemorrhage or endotoxemia, inhibition of p38 did not decrease neutrophil accumulation in the lungs or the development of lung edema under these conditions. Similarly, the increased production of proinflammatory cytokines and activation of NF-kB in lung neutrophils induced by hemorrhage or endotoxemia was not diminished by p38 inhibition. These results indicate that p38 does not have a central role
in the development of ALI after either hemorrhage or endotoxemia.


The coagulation system and pulmonary endothelial function in acute lung injury

James H. Finigan
Microvascular Research 77 (2009) 35–38

Acute lung injury (ALI) is a disease marked by diffuse endothelial injury and increased capillary permeability. The coagulation system is a major participant in ALI and activation of coagulation is both a consequence and contributor to ongoing lung injury. Increased coagulation and depressed fibrinolysis result in diffuse alveolar fibrin deposition which serves to amplify pulmonary inflammation. In addition, existing evidence demonstrates a direct role for different components of coagulation on vascular endothelial barrier function. In particular, the pro-coagulant protein thrombin disrupts the endothelial actin cytoskeleton resulting in increased endothelial leak. In contrast, the anti-coagulant activated protein C (APC) confers a barrier protective actin configuration and enhances the vascular barrier in vitro and in vivo. However, recent studies suggest a complex landscape with receptor cross-talk, temporal heterogeneity and pro-coagulant/anticoagulant protein interactions. In this article, the major signaling pathways governing endothelial permeability in lung injury are reviewed with a particular focus on the role that endothelial proteins, such as thrombin and APC, which play on the vascular barrier function.

Acute lung injury (ALI) is a devastating illness with an annual incidence of approximately 200,000 and a mortality of 40%. Most commonly seen in the setting of sepsis, ALI is a complex inflammatory syndrome marked by increased vascular permeability resulting in tissue edema and organ dysfunction. The vascular endothelium is a key target and critical participant in the pathogenesis of sepsis-induced organ dysfunction and disruption of the endothelial barrier is central to the pathophysiology of both sepsis and ALI. Sepsis and acute lung injury (ALI) are syndromes marked by diffuse inflammation with a key feature being endothelial cell barrier disruption and increased vascular permeability resulting in widespread organ dysfunction. The endothelial cytoskeleton has been identified as a critical regulator of vascular barrier integrity with a current model of endothelial barrier regulation suggesting a balance between barrier-disrupting cellular contractile forces and barrier-protective cell–cell and cell–matrix forces. These competing forces exert their opposing effects via manipulation of the actin-based endothelial cytoskeleton and associated endothelial regulatory proteins. Endothelial cells generate tension via an actomyosin motor, and focally distributed changes in tension/relaxation can be accomplished by spatially-defined regulation of the phosphorylation of the regulatory 20 kDa myosin light chain (MLC) catalyzed by the Ca2+/calmodulin (CaM)-dependent enzyme myosin light chain kinase (MLCK).

Thrombin is the proto-typical coagulation protein with direct effects on the endothelial barrier via alterations in the cytoskeleton. In the coagulation cascade, thrombin converts fibrinogen to fibrin in the final step of thrombus formation and also activated platelets. In addition, this multifunctional protease is present at sites of vascular inflammation and induces barrier dysfunction. Through its receptor, protease-activated receptor-1 (PAR1), thrombin initiates a series of events which includes MLC phosphorylation, dramatic cytoskeletal reorganization and stress fiber formation, increased cellular contractility, paracellular gap formation, and enhanced fluid and protein transport. Similarly, thrombin exposure results in increased pulmonary edema in vivo, a finding which is also seen after treatment with a PAR1 activating peptide and attenuated in PAR1 knockout mice.

Disruptions in the coagulation system have long been recognized to be an integral part of inflammation, sepsis and ALI. In 1969, Saldeen demonstrated that thrombin infusion produced canine respiratory insufficiency which was linked pathologically to emboli in the pulmonary microcirculation, a condition he labeled the “Microembolism Syndrome” (Saldeen, 1979). Elemental to the pathophysiology of sepsis and ALI is a shift towards a pro-coagulant state. Bronchoalveolar (BAL) fluid from patients with ALI reflects this increase in procoagulant activity with elevated levels of fibrinopeptide A, factor VII and d-dimer. Concomitantly, there is a decrease in fibrinolytic activity, as shown by depressed BAL levels of urokinase and increased levels of the fibrinolysis inhibitors plasminogen activator inhibitor (PAI) and α2-antiplasmin.

Given that APC is a vascular endothelial protein which interacts with other coagulation proteins such as thrombin, it seems logical that it might have an effect on endothelial integrity. In cultured human pulmonary endothelial cells, while thrombin results in decreased electrical resistance, a reflection of increased permeability, pre- or post-exposure to physiologic concentrations of APC significantly attenuates this thrombin-induced drop in resistance. These APC-mediated alterations in barrier function are associated with MLC phosphorylation as well as activation of the endothelial protein Rac, and cytoskeletal re-arrangement in a barrier protective configuration all findings very reminiscent of the barrier protective signaling induced by the bioactive lipid, S1P. Interestingly, APC appears to activate sphingosine kinase and mediate its barrier protective effects through PI3 kinase and AKT-dependent ligation of the S1P receptor, S1P1. Moreover, the endothelial barrier-protective effects of APC have been observed in other tissues including brain and kidney. The barrier protection in these beds appears independent of any anti-coagulant effect of APC and is associated with decreased endothelial apoptosis.

Recently, the endothelial protein C receptor (EPCR) has been identified as a crucial participant in the protein C pathway. Structurally similar to the major histocompatibility class I/CD1 family of molecules, EPCR binds protein C, presenting it to the thrombin/TM complex, thereby increasing the activation of protein C by ∼20 fold. Importantly, APC can also bind EPCR, and while the bound form of APC loses its extra-cellular anti-coagulant activity, increasing evidence indicates that much, if not all, of APC intra-cellular signaling requires EPCR. APC-mediated increases in endothelial phosphor-MLC and activated Rac are all EPCR-dependent and APC-induced endothelial barrier protection requires ligation of EPCR.

Sepsis and ALI are significant causes of morbidity and mortality in the intensive care unit and are marked by zealous activation of the coagulation system. While this could conceivably confer certain benefits, such as enclosing and spatially controlling an infection, it is clear that this pro-coagulant environment participates in the pathophysiology of ALI, particularly via exacerbating endothelial damage and augmenting endothelial permeability. However, the biology of coagulation in ALI is incompletely understood and trials of new therapies specifically targeting coagulation in patients with ALI have been disappointing. Despite this, recent advances in the knowledge of the dynamic interplay between inflammation and coagulation in ALI as well as endothelial receptor-ligand binding and receptor cross talk have stimulated promising research and identified novel therapeutic targets for patients with ALI.


Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect?

  1. Saas, F. Angelot, L. Bardiaux, E. Seilles, F. Garnache-Ottou, S. Perruche
    Transfusion Clinique et Biologique 19 (2012) 90–97

Labile blood products contain phosphatidylserine-expressing cell dusts, including apoptotic cells and microparticles. These cell by-products are produced during blood product process or storage and derived from the cells of interest that exert a therapeutic effect (red blood cells or platelets). Alternatively, phosphatidylserine-expressing cell dusts may also derived from contaminating cells, such as leukocytes, or may be already present in plasma, such as platelet-derived microparticles. These cell by-products present in labile blood products can be responsible for transfusion induced immunomodulation leading to either transfusion-related acute lung injury (TRALI) or increased occurrence of post-transfusion infections or cancer relapse. In this review, we report data from the literature and our laboratory dealing with interactions between antigen-presenting cells and phosphatidylserine-expressing cell dusts, including apoptotic leukocytes and blood cell-derived microparticles. Then, we discuss how these phosphatidylserine-expressing cell by-products may influence transfusion.

Potential consequences of phosphatidylserine-expressing cell by-products in transfusion

Potential consequences of phosphatidylserine-expressing cell by-products in transfusion

Potential consequences of phosphatidylserine-expressing cell by-products in transfusion. Interactions of phosphatidylserine-expressing cell dusts (apoptotic cells or microparticles) may lead to antigen-presenting cell activation or inhibition. Antigen-presenting cell activation may trigger inflammation and be involved in transfusion-related acute lung injury (TRALI), while antigen-presenting cell inhibition may exert transient immunosuppression or tolerance. Blood product process or storage may influence the generation of phosphatidylserine-expressing cell dusts. PtdSer: phosphatidylserine; APC: antigen-presenting cell.

Several publications report the presence of phosphatidylserine-expressing cell by-products in blood products. These cell by-products may be generated during the blood product process, such as filtration, or during storage (either cold storage for red blood cells or between 20–24 ◦C for platelets). Alternatively, they may be limited by filtration. Phosphatidylserine-expressing cell by-products can be apoptotic cells. Apoptotic cells have been found in different blood products: red blood cell units and platelet concentrates. These apoptotic cells correspond to dying cells of interest: red blood cells or platelets, both enucleated cells that can undergo apoptosis.

Immunomodulatory effects of apoptotic leukocytes

Immunomodulatory effects of apoptotic leukocytes

Immunomodulatory effects of apoptotic leukocytes. Early during the apoptotic program, phosphatidylserine-exposure occurs leading to apoptotic cell removal by macrophages or conventional dendritic cells. This uptake by antigen-presenting cells induces the production of anti-inflammatory factors and concomitantly inhibits the synthesis of inflammatory cytokines. These antigen-presenting cells are refractory to TLR activation. This leads to a transient immunosuppressive microenvironment. If antigen-presenting cells from this microenvironment migrate to secondary lymphoid organs, naive T cells are converted into inducible regulatory T cells. This leads to tolerance against apoptotic cell-derived antigens. M[1]: macrophage; cDC: conventional dendritic cells; PtdSer: phosphatidylserine; Treg: regulatory T cells; Th1: helper T cells; HGF: hepatocyte growth factor; IL-: interleukin; NO: nitrite oxide; PGE-2: prostaglandin-E2; TGF: transforming growth factor; TNF: tumor necrosis factor; TLR: Toll-like receptor.

Implication of phosphatidylserine in the inhibition of both inflammation and specific immune responses has been further demonstrated using  phosphatidylserine-expressing liposomes and is sustained by the following observations:

  • phosphatidylserine-dependent ingestion of apoptotic cells induces TGF-β secretion and resolution of lung inflammation;
  • inhibition of phosphatidylserine recognition through annexin-V enhances the immunogenicity of irradiated tumor cells in vivo;
  • masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice.

Based on data from our group and Peter Henson’s group, some authors have speculated that apoptotic leukocytes present in blood products may be responsible for transfusion-related immunosuppression.

The first consequences of phosphatidylserine-expressing apoptotic cells in blood products may be a transient immunosuppression−responsible for an increase in infection rate and of cancer relapse−or tolerance induction− as observed after donor-specific transfusion − when Treg have been generated. However, apoptotic leukocytes become secondarily necrotic in the absence of phagocytes. This may certainly occur in blood product bags. Necrotic cells, through the release of damage-associated molecular patterns, may become immunogenic. The same process may occur for platelets. Necrotic platelets may represent the procoagulant form of platelets. Thus, hemostatic activation of platelets or their by-products may link thrombosis and inflammation to amplify lung microvascular damage during nonimmune TRALI.

What are the next steps to answer the question on the role of phosphatidylserine-expressing cell dusts in the modulation of immune responses after transfusion?

The next steps are to characterize or identify factors involved in the triggering of inflammation or its inhibition and produced during blood product storage or process. Several factors influence the immune responses against dying cells. We can speculate on some factors, including:

  • the number of phosphatidylserine-expressing cell byproducts contained per blood product, as the immunogenicity of apoptotic cells may be proportional to their number;
  • the occurrence of secondary necrosis and so the passive release of intracellular damage-associated molecular patterns that overpasses the inhibitory signals delivered by phosphatidylserine. One of these damage associated molecular patterns can be the heme released from stored red blood cells which signals via TLR4;
  • the size of cell by-products and especially microparticles, since these latter exert different functions according to their size. Moreover, antigen-presenting cells, such as plasmacytoid dendritic cells, respond only to lower size synthetic particles. This may explain the different responses observed between “amateur” phagocytes (plasmacytoid dendritic cells) versus professional phagocytes (conventional dendritic cells/macrophages) after incubation with microparticles. The size of cell by-products diminishes during plasma filtration, as assessed by dynamic light scattering from 101 to 464 nm in unfiltered fresh-frozen plasma versus 21 to 182 nm after 0.2 µm filtration process;
  • expression of the recently described phosphatidylserine receptors on different antigen-presenting cell subsets may also explain the different responses between plasmacytoid dendritic cells versus conventional dendritic cells/macrophages and may impact on the overall immune response.


Peroxisome proliferator-activated receptors and inflammation

Leonardo A. Moraes, Laura Piqueras, David Bishop-Bailey
Pharmacology & Therapeutics 110 (2006) 371 – 385

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptors family. PPARs are a family of 3 ligand-activated transcription factors: PPARa (NR1C1), PPARh/y (NUC1; NR1C2), and PPARg (NR1C3). PPARα, -h/y, and -ϒ are encoded by different genes but show substantial amino acid similarity, especially within the DNA and ligand binding domains. All PPARs act as heterodimers with the 9-cis-retinoic acid receptors (retinoid X receptor; RXRs) and play important roles in the regulation of metabolic pathways, including those of lipid of biosynthesis and glucose metabolism, as well as in a variety of cell differentiation, proliferation, and apoptosis pathways. Recently, there has been a great deal of interest in the involvement of PPARs in inflammatory processes. PPAR ligands, in particular those of PPARα and PPARϒ, inhibit the activation of inflammatory gene expression and can negatively interfere with proinflammatory transcription factor signaling pathways in vascular and inflammatory cells. Furthermore, PPAR levels are differentially regulated in a variety of inflammatory disorders in man, where ligands appear to be promising new therapies.

Fig. not shown.  Structure and transcriptional activation of PPARs. (A) Generic schematic of the structure of the PPAR family of nuclear receptors. Indicated are the N–C terminal regions subdivided in to 4 domains: the A/B, N terminal domain [also called the activation function (AF)-1 domain]; C, the DNA binding domain; D, the F hinge_region; and E, the ligand binding domain (AF-2). (B) Generic scheme for the activation of a PPAR receptor as a transcription factor. PPAR activation leads to heterodimerization with RXR and an accumulation in the nucleus. Ligand activation of PPAR results in a change from a repressed binding protein complex which may contain histone deacetylases (HDAC), the nuclear receptor corepressor (NCo-R), and the silencing mediator of retinoid and thyroid signaling (SMRT) to an activation complex that may contain the histone acetylases, steroid receptor co-activator-1 (SRC-1), the PPAR binding protein (PBP), cAMP response element binding protein (CBP/p300), TATA box binding proteins, and RNA polymerase (RNA pol) III. The activated PPAR–RXR heterodimer complex binds to DNA sequences called PPAR response elements (PPRE) in target genes initiation their transcription.

Although the nature of true endogenous PPAR ligands are still not known (Bishop-Bailey & Wray, 2003), PPARs can be activated by a wide variety of F endogenous or pharmacological ligands. PPARα activators include a variety of endogenously present fatty acids, LTB4 and hydroxyeicosatetraenoic acids (HETEs), and clinically used drugs, such as the fibrates, a class of first-line drugs in the treatment of dyslipidemia. Similarly, PPARg can be activated by a number of ligands, including docosahexaenoic acid, linoleic acid, the anti-diabetic glitazones, used as insulin sensitizers, and a number of lipids, including oxidized LDL, azoyle-PAF, and eicosanoids, such as 5,8,11,14-eicosatetraynoic acid and the prostanoids PGA1, PGA2, PGD2, and its dehydration products of the PGJ series of cyclopentanones (e.g., 15 deoxy-D12,14-PGJ2). Dyslipidemia and insulin-dependent diabetes are commonly found existing together as part of the metabolic X syndrome.

Because PPARa and PPARg ligands independently are useful clinical drugs in the treatment of these respective disorders, synthetic dual PPARα/ϒ ligands have recently been developed and show a combined clinical efficacy. PPAR h/y activators include fatty acids and prostacyclin and synthetic compounds L-165,041, GW501516, compound F and L-783,483. Unlike PPARα or-ϒ, there are no PPAR h/y drugs in the clinic, although ligands are in phase II clinical trials for dyslipidemia ( Indeed, part of the challenge in determining the function of PPARh/y has been the identification and availability of new ligands with more potency and selectivity for use as pharmacological tools.

Fig. not shown. Mechanisms of the anti-inflammatory effects of PPARα. PPARα ligands inhibit the activities of NF-nB, AP-1, and T-bet within cells. In sites of local inflammation, tissue and endothelial cell activity is inhibited, and expressions of adhesion molecules (ICAM-1 and VCAM-1), pro-inflammatory cytokines (IL-1, -6, -8, -12, and TNFα), vasoactive mediators (inducible cyclo-oxygenase, inducible nitric oxide synthase, and endothelin-1; COX-2, iNOS, and ET-1), and proteases (MMP-9) are decreased. The inflammatory responses in leukocytes are also diminished. Monocyte/macrophage activity is decreased, and lipid metabolizing pathways increased, T- and B-lymphocyte proliferation and differentiation are inhibited, and T-lymphocyte and eosinophil chemotaxis reduced. Bold italic text indicates positive regulation by the PPAR, all other text indicates a negative regulation.

Fig. not shown. Mechanisms of the anti-inflammatory effects of PPAR h/y. PPAR h/y ligands inhibit the activities of NF-nB and release the suppressor BCL-6 from PPAR h/y. In sites of local inflammation, endothelial cell adhesion molecule (VCAM-1) and chemokine (MCP-1) are reduced. PPAR h/y and its endogenous ligand(s) are induced during the inflammatory response in keratinocytes, which then promotes cell survival (integrin-linked kinase—Akt pathway) and wound healing. The inflammatory responses in monocyte/ macrophages are modulated. In the absence of ligand, PPAR h/y sequesters BCL-6 and induces MCP-1, MCP-3, and IL-1h. When PPAR h/y ligand is given, BCL-6 is released and MCP-1, -3, and IL-1h levels are reduced. Bold italic text indicates positive regulation by the PPAR, all other text indicates a negative regulation.

Fig. not shown. Mechanisms of the anti-inflammatory effects of PPARg. PPARg ligands can inhibit the activities of NF-nB, AP-1, STAT-1, N-FAT, Erg-1, Jun, and GATA-3 within cells. In sites of local inflammation, tissue and endothelial cell activity is inhibited, and expression of adhesion molecules (ICAM-1), proinflammatory cytokines (IL-8, -12, and TNFα), chemokines (MCP-1, MCP-3, IP-10, Mig, and I-TAC), vasoactive mediators (inducible nitric oxide synthase and endothelin-1; iNOS and ET-1), and proteases (MMP-9) are decreased. The inflammatory responses in leukocytes are also diminished. Monocyte/ macrophage activity is decreased, T- and B-lymphocyte proliferation and differentiation are inhibited, and T-lymphocyte and eosinophil chemotaxis reduced. Platelet activity is inhibited and dendritic cell production of IL-12, and expression of CCL3, CCL5, and CD80 is reduced, so pro-inflammatory TH1 lymphocytes maturation is inhibited. Bold italic text indicates positive regulation by the PPAR, all other text indicates a negative regulation.

The PPARs are one of the most intensely studied members of the nuclear receptor gene family, and since their initial discovery just over decade ago, the PPARs have attracted an increasing amount of experimental and clinical research by investigators from different scientific areas. PPARs through their central roles in regulating energy homeostasis regulate physiological function in many cell types, tissues, and organ systems. Many disease states from carcinogenesis to inflammation have been linked to abnormalities in the function of PPAR-regulated transcription factors. PPARs are expressed or regulate pathophysiology of diverse human disorders including atherosclerosis, inflammation, obesity, diabetes, and the immune response. PPARs have beneficial effects in many inflammatory conditions, where they regulate cytokine production, adhesion molecule expression, fibrinolysis cell proliferation, apoptosis, and differentiation. Further studies and development of novel PPAR ligands and their selective modulators may lead to novel therapeutic agents in the many conditions associated with inflammatory processes.


Regulators of endothelial and epithelial barrier integrity and function in acute lung injury

Rudolf Lucas, Alexander D. Verin, Stephen M. Black, John D. Catravas
Biochemical Pharmacology 77 (2009) 1763–1772

Pulmonary permeability edema is a major complication of acute lung injury (ALI), severe pneumonia and ARDS. This pathology can be accompanied by

(1) a reduction of alveolar liquid clearance capacity, caused by an inhibition of the expression of crucial sodium transporters, such as the epithelial sodium channel (ENaC) and the Na+-K+-ATPase,
(2) an epithelial and endothelial hyperpermeability and
(3) a disruption of the epithelial and endothelial barriers, caused by increased apoptosis or necrosis.

Since, apart from ventilation strategies, no standard treatment exists for permeability edema, the following chapters will review a selection of novel approaches aiming to improve these parameters in the capillary endothelium and the alveolar epithelium.

Apoptosis is an essential physiological process for the selective elimination of cells. However, the dysregulation of apoptotic pathways is thought to play an important role in the pathogenesis of ALI. Both delayed neutrophil apoptosis and enhanced endothelial/epithelial cell apoptosis have been identified in ALI/ARDS. In the case of neutrophils, which contribute significantly to ALI/ ARDS, studies in both animals and ARDS patients suggest that apoptosis is inhibited during the early stages (<2 h) of inflammation.

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily, that includes receptors for steroid hormones, thyroid hormones, retinoic acid, and fat-soluble vitamins. Since their discovery in 1990, increasing data has been published on the role of PPARs in diverse processes, including lipid and glucose metabolism, diabetes and obesity, atherosclerosis, cellular proliferation and differentiation, neurological diseases, inflammation and immunity. PPARs have both gene-dependent and gene-independent effects. Gene-dependent functions involve the formation of heterodimers with the retinoid X-receptor. Activation by PPAR ligands results in the binding of the heterodimer to peroxisome proliferator response elements, located in the promoter regions of PPAR-regulated genes. Gene independent effects involve the direct binding of PPARs to transcription factors, such as NF-kB, which then alters their binding to DNA promoter elements. PPARs can also bind and sequester various cofactors for transcription factors, and thus further alter gene expression. Importantly, the precise effects of PPARs vary greatly between cell types. To date, three subtypes of PPAR have been identified: α, β, and ϒ. There is increasing data suggesting that PPAR signaling may play an important role in the pathobiology of systemic vascular disease. However, there is less data implicating PPAR signaling in diseases of the lung.

A role for PPARs in the control of inflammation was first evidenced for PPARα, where mice deficient in PPARα exhibited an increased duration of ear-swelling in response to the proinflammatory mediator, LTB4. More recently, a number of studies in mice and in humans have shown that PPAR agonists exhibit anti-inflammatory effects under a wide range of conditions. There are two main mechanisms by which PPARs exert their anti-inflammatory effect. The first involves complex formation, and the inhibition of transcription factors that positively regulate the transcription of pro-inflammatory genes. These include nuclear factor-kB (NF-kB), signal transducers and activators of transcription (STATs), nuclear factor of activated T cells (NF-AT), CAAT/enhancer binding protein (C/EBP) and activator protein 1 (AP-1). These transcription factors are the main mediators of the major proinflammatory cytokines, chemokines, and adhesion molecules involved in inflammation. The second PPAR-mediated anti-inflammatory pathway is mediated by the sequestration of rate limiting, but essential, co-activators or co-repressors.

Recent studies have shown that PPAR signaling can attenuate the airway inflammation induced by LPS in the mouse. It was shown that mice treated with the PPARα agonist, fenofibrate, had decreases in both inflammatory cell infiltration and inflammatory mediators. Conversely, PPARα -/- mice have been shown to have a greater number of neutrophils and macrophages, and increased levels of inflammatory mediators in bronchoalveolar lavage fluids (BALF). Other PPAR agonists, such as rosiglitazone or SB 21994 have also been shown to reduce LPS-mediated ALI in the mouse lung. PPARϒ signaling has also been shown to be protective in regulating pulmonary inflammation associated with fluorescein isothiocyanate (FITC)-induced lung injury, with the PPARϒ ligand pioglitazone decreasing neutrophil infiltration. Collectively, these data suggest that therapeutic agents that activate either or both PPARα and PPARϒ could be beneficial for the treatment of ALI.

Permeability edema is characterized by a reduced alveolar liquid clearance capacity, combined with an endothelial hyperpermeability. Various signaling pathways, such as those involving reactive oxygen species (ROS), Rho GTPases and tyrosine phosphorylation of junctional proteins, converge to regulate junctional permeability, either by affecting the stability of junctional proteins or by modulating their interactions. The regulation of junctional permeability is mainly mediated by dynamic interactions between the proteins of the adherens junctions and the actin cytoskeleton. Actin-mediated endothelial cell contraction is the result of myosin light chain (MLC) phosphorylation by MLC kinase (MLCK) in a Ca2+/calmodulin-dependent manner. RhoA additionally potentiates MLC phosphorylation, by inhibiting MLC phosphatase activity through its downstream effector Rho kinase (ROCK). As such, actin/myosin-driven contraction will generate a contractile force that pulls VE-cadherin inward. This contraction will force VE-cadherin to dissociate from its adjacent partner, as such producing interendothelial gaps.

Vascular endothelial cells can be regulated by nucleotides released from platelets. During vascular injury, broken cells are also the source of the extracellular nucleotides. Furthermore, endothelium may provide a local source of ATP within vascular beds. Primary cultures of human endothelial cells derived from multiple blood vessels release ATP constitutively and exclusively across the apical membrane under basal conditions. Hypotonic challenge or the calcium agonists (ionomycin and thapsigargin) stimulate ATP release in a reversible and regulated manner. Enhanced release of pharmacologically relevant amounts of ATP was observed in endothelial cells under such stimuli as shear stress, lipopolysaccharide (LPS), and ATP itself. Pearson and Gordon demonstrated that incubation of aortic endothelial and smooth muscle cells with thrombin resulted in the specific release of ATP, which was converted to ADP by vascular hydrolases. Yang et al. showed that endothelial cells isolated from guinea pig heart release nucleotides in response to bradykinin, acetylcholine, serotonin and ADP. Nucleotide action is mediated by cell surface purinoreceptors. Once released from endothelial cells, ATP may act in the blood vessel lumen at P2 receptors on nearby endothelium downstream from the site of release. ATP is also degraded rapidly and its metabolites have also been recognized as signaling molecules, which can initiate additional receptor-mediated functions. These include ADP and the final hydrolysis product adenosine.

Signal transduction pathways implicated in ATP-mediated endothelial barrier enhancement

Signal transduction pathways implicated in ATP-mediated endothelial barrier enhancement

Signal transduction pathways implicated in ATP-mediated endothelial barrier enhancement

During the course of ALI, the alveolar space, as well as the interstitium, are sites of intense inflammation, leading to the local production of pro-inflammatory cytokines, such as IL-1β, TGF-β and TNF. The latter pleiotropic cytokine is a 51 kDa homotrimeric protein, binding to two types of receptors, i.e. TNF-R1 and TNF-R2 and which is mainly produced by activated macrophages and T cells. Soluble TNF, as well as the soluble TNF receptors 1 and 2, are generated upon cleavage of membrane TNF or of the membrane associated receptors, respectively, by the enzyme TNF-α convertase (TACE). TNF-R1, but not TNF-R2, contains a death domain, which signals apoptosis upon the formation of the Death Inducing Signaling Complex (DISC). In spite of its lack of a death domain, TNF-R2 can nevertheless be implicated in apoptosis induction, since its activation causes degradation of TNF Receptor Associated Factor 2 (TRAF2), an inhibitor of the TNF-R1-induced DISC formation. Moreover, apoptosis induction of lung microvascular endothelial cells by TNF was shown to require activation of both TNF receptors. TNF-R2 was also shown to be important for ICAM-1 upregulation in endothelial cells in vitro and in vivo, an activity important in the sequestration of leukocytes in the microvessels. Moreover, lung microvascular endothelial cells isolated from ARDS patients express significantly higher levels of TNF-R2 and of ICAM-1 than cells isolated from patients who had undergone a lobectomy for lung carcinoma, used as controls. These findings therefore suggest that ICAM-1 and TNF-R2 may have a particular involvement in the pathogenesis of acute lung injury.

Dichotomous activity of TNF in alveolar liquid clearance and barrier protection

Dichotomous activity of TNF in alveolar liquid clearance and barrier protection

Dichotomous activity of TNF in alveolar liquid clearance and barrier protection during ALI. TNF, which is induced during ALI, causes a downregulation of ENaC expression in type II alveolar epithelial cells, upon activating TNF-R1. Moreover, TNF increases permeability, by means of interfering with tight junctions (TJ) in both alveolar epithelial (AEC) and capillary endothelial cells (MVEC). ROS, the generation of which is frequently increased during ALI, were also shown to downregulate ENaC and Na+-K+-ATPase expression and moreover also lead to decreased endothelial barrier integrity. The TIP peptide, mimicking the lectin-like domain of TNF, is able to increase sodium uptake in alveolar epithelial cells and to restore endothelial barrier integrity, as such providing a significant protection against the development of permeability edema (red lines: inhibition, green arrows: activation).

Proposed mechanism of action for the anti-inflammatory and barrier-protective actions of hsp90 inhibitors.

Proposed mechanism of action for the anti-inflammatory and barrier-protective actions of hsp90 inhibitors.

Proposed mechanism of action for the anti-inflammatory and barrier-protective actions of hsp90 inhibitors.

Permeability edema represents a life-threatening complication of acute lung injury, severe pneumonia and ARDS, characterized by a combined dysregulation of pulmonary epithelial and endothelial apoptosis, endothelial barrier integrity and alveolar liquid clearance capacity. As such, it is likely that several of these parameters have to be targeted in order to obtain a successful therapy. This review focuses on a selection of recently discovered substances and mechanisms that might improve ALI therapy. As such, we have discussed the inhibition of apoptosis and necrosis occurring during ALI, by means of the restoration of Zn2+ homeostasis. PPARα and ϒ agonists can represent therapeutically  promising molecules, since they inhibit transcription factors as well as essential co-activators involved in the activation of pro-inflammatory cytokines, chemokines and adhesion molecules, all of which are implicated in ALI. Apart from inducing a potent inhibition of inflammation upon interfering with NF-kB activation, hsp90 inhibitors were shown to prevent and restore endothelial barrier integrity. These agents are able to significantly improve survival and lung function during LPS-induced ALI. A restoration of endothelial barrier integrity during ALI can also be obtained upon increasing extracellular levels of ATP or adenosine, which activate the purinoreceptors P2Y and P1A2, respectively, leading to a decrease in myosin light chain phosphorylation and an increase in MLC phosphatase 1 activity. The pro-inflammatory cytokine TNF is involved in endothelial apoptosis and hyperpermeability, as well as in the reduction of alveolar liquid clearance, upon activating its receptors. However, apart from its receptor binding sites, TNF harbors a lectin-like domain, which can be mimicked by the TIP peptide. This peptide has been shown to increase alveolar liquid clearance and moreover induces endothelial barrier protection. As such, TNF can be considered as a moonlighting cytokine, combining both positive and negative activities for permeability edema generation within one molecule.


The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice

Tong Chen, Yi Moua, Jiani Tan, LinlinWei, Yixue Qiao, Tingting Wei, et al.
International Immunopharmacology 25 (2015) 55–64

ALI is a clinical syndrome characterized by a disruption of epithelial integrity, neutrophil accumulation, noncardiogenic pulmonary edema, severe hypoxemia and an intense pulmonary inflammatory response with a wide array of increasing severity of lung parenchymal injury. Previous studies have shown that lots of pathogenesis contribute to ALI, such as oxidant/antioxidant dysfunction, dysregulation of inflammatory/anti-inflammatory pathway, upregulation of chemokine production and adhesion molecules. However, to date there is no effective medicine to control ALI. Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram negative bacteria. It has been reported to activate toll like receptors 4 (TLR4) and to stimulate the release of inflammatory mediators inducing ALI-like symptoms. Intratracheal administration of LPS has been used to construct animal models of ALI.

The biological importance of naturally occurring triterpenoids has long been recognized. Oleanolic acid, exhibiting modest biological activities, has been marketed in China as an oral drug for the treatment of liver disorders in humans. Among its derivatives, bardoxolonemethyl (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methylester) CDDO-Me, had completed a successful phase I clinical trial for the treatment of cancer and started a phase II trial for the treatment of patients with pulmonary arterial hypertension. For its broad spectrum antiproliferative and anti-tumorigenic activities, CDDO-Me has also been reported to possess a number of pharmacological activities such as antioxidant, anti-tumor and anti-inflammatory effects. However, the mechanisms by which CDDO-Me exerted its anti-inflammatory effects on macrophage were insufficiently elucidated. More importantly, there is no available report to evaluate its therapeutic effect on acute lung injury.

CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5 mg/kg, 2 mg/kg) or dexamethasone (5 mg/kg) intraperitoneally 1 h before LPS stimulation and were sacrificed 6 h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI.

Effects of CDDO-Me on LPS-mediated lung changes

Effects of CDDO-Me on LPS-mediated lung histopathologic changes in lung tissues. (A) The lung section from the control mice; (B) the lung section from the mice administered with LPS (8 mg/kg); (C) the lung section from the mice administered with dexamethasone (5 mg/kg) and LPS (8 mg/kg); (D) the lung section from the mice administered with CDDO-Me (0.5mg/kg) and LPS (8mg/kg); (E) the lung section from the mice administered with CDDO-Me (2mg/kg) and LPS (8mg/kg); (hematoxylin and eosin staining, magnification 200×). Control group: the green arrow indicated alveolar wall, no hyperemia. All the other groups: The black arrow indicated the inflammatory cell infiltration; the green arrow indicated alveolar wall hyperemia.


The impact of cardiac dysfunction on acute respiratory distress syndrome and mortality in mechanically ventilated patients with severe sepsis and septic shock: An observational study

Brian M. Fuller, Nicholas M. Mohr, Thomas J. Graetz, et al.
Journal of Critical Care 30 (2015) 65–70

Purpose: Acute respiratory distress syndrome (ARDS) is associated with significant mortality and morbidity in survivors. Treatment is only supportive, therefore elucidating modifiable factors that could prevent ARDS could have a profound impact on outcome. The impact that sepsis-associated cardiac dysfunction has on ARDS is not known. Materials and Methods: In this retrospective observational cohort study of mechanically ventilated patients with severe sepsis and septic shock, 122 patients were assessed for the impact of sepsis-associated cardiac dysfunction on incidence of ARDS (primary outcome) and mortality. Results: Sepsis-associated cardiac dysfunction occurred in 44 patients (36.1%). There was no association of sepsis-associated cardiac dysfunction with ARDS incidence (p= 0.59) or mortality, and no association with outcomes in patients that did progress to ARDS after admission. Multivariable logistic regression demonstrated that higher BMI was associated with progression to ARDS (adjusted OR 11.84, 95% CI 1.24 to 113.0, p= 0.02). Conclusions: Cardiac dysfunction in mechanically ventilated patients with sepsis did not impact ARDS incidence, clinical outcome in ARDS patients, or mortality. This contrasts against previous investigations demonstrating an influence of nonpulmonary organ dysfunction on outcome in ARDS. Given the frequency of ARDS as a sequela of sepsis, the impact of cardiac dysfunction on outcome should be further studied.


Suppression of NF-κβ pathway by crocetin contributes to attenuation of lipopolysaccharide-induced acute lung injury in mice

Ruhui Yang, Lina Yang, Xiangchun Shen, Wenyuan Cheng, et al.
European Journal of Pharmacology 674 (2012) 391–396

Crocetin, a carotenoid compound, has been shown to reduce expression of inflammation and inhibit the production of reactive oxygen species. In the present study, the effect of crocetin on acute lung injury induced by lipopolysaccharide (LPS) was investigated in vivo. In the mouse model, pretreatment with crocetin at dosages of 50 and 100 mg/kg reduced the LPS-induced lung edema and histological changes, increased LPS-impaired superoxide dismutase (SOD) activity, and decreased lung myeloperoxidase (MPO) activity. Furthermore, treatment with crocetin significantly attenuated LPS-induced mRNA and the protein expressions of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and tumour necrosis factor-α (TNF-α) in lung tissue. In addition, crocetin at different dosages reduced phospho-IκB expression and NF-κB activity in LPS-induced lung tissue alteration. These results indicate that crocetin can provide protection against LPS-induced acute lung injury in mice.


Sauchinone, a lignan from Saururus chinensis, attenuates neutrophil pro-inflammatory activity and acute lung injury

Hui-Jing Han, Mei Li, Jong-Keun Son, Chang-Seob Seo, et al.
International Immunopharmacology 17 (2013) 471–477

Previous studies have shown that sauchinone modulates the expression of inflammatory mediators through mitogen-activated protein kinase (MAPK) pathways in various cell types. However, little information exists about the effect of sauchinone on neutrophils, which play a crucial role in inflammatory process such as acute lung injury (ALI). We found that sauchinone decreased the phosphorylation of p38 MAPK in lipopolysaccharide (LPS)-stimulated murine bone marrow neutrophils, but not ERK1/2 and JNK. Exposure of LPS-stimulated neutrophils to sauchinone or SB203580, a p38 inhibitor, diminished production of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2 compared to neutrophils cultured with LPS. Treatment with sauchinone decreased the level of phosphorylated ribosomal protein S6 (rpS6) in LPS-stimulated neutrophils. Systemic administration of sauchinone to mice led to reduced levels of phosphorylation of p38 and rpS6 in mice lungs given LPS, decreased TNF-α and MIP-2 production in bronchoalveolar lavage fluid, and also diminished the severity of LPS-induced lung injury, as determined by reduced neutrophil accumulation in the lungs, wet/dry weight ratio, and histological analysis. These results suggest that sauchinone diminishes LPS-induced neutrophil activation and ALI.

In the present study, the systemic administration of sauchinone decreased the phosphorylation of p38 MAPK and rpS6 in mice lungs subjected to LPS and diminished the severity of LPS-induced ALI. Neutrophils play an important role in acute inflammatory processes, such as ALI, which was demonstrated by various experimental models. Previous reports suggested that p38 MAPK inhibition of murine neutrophils could lead to the loss of chemotaxis toward MIP-2, as well as the loss of TNF-αandMIP-2 production in response to LPS, and also attenuated neutrophil accumulation in LPS-induced ALI models. Therefore, the beneficial effects of sauchinone on LPS-induced ALI are likely associated with decreases in the production of pro-inflammatory mediators by neutrophils, consistent with our in vitro experiments. However, we cannot exclude that the effects of sauchinone on reducing the release of TNF-α and MIP-2 in mice lungs subjected to LPS, with the resultant prevention of ALI, could be affected by various pulmonary cell populations, such as alveolar macrophages. Also, the inhibitory effects of sauchinone on NF-κB activation through various pulmonary cell populations (Supplemental Fig. S2), in addition to p38MAPK activity in mouse lungs given LPS, might enhance the anti-inflammatory action of sauchinone in mouse lungs subjected to LPS. In conclusion, we found that sauchinone significantly diminished the release of inflammatory mediators in isolated neutrophils and lungs subjected to LPS. The anti-inflammatory action of sauchinone was associated with the prevention of p38 MAPK and rpS6 activation. These findings suggest that sauchinone may be an appropriate pharmacological candidate for the treatment of ALI as well as other neutrophil driven acute inflammatory diseases.
Supplementary data to this article can be found online at


Protective effect of dexmedetomidine in a rat model of α-naphthylthiourea- induced acute lung injury

Volkan Hancı, Gamze Yurdakan, Serhan Yurtlu, et al.
J Surg Res 178 (2012):424-430

Background: We assessed the effects of dexmedetomidine in a rat model of a-naphthylthiourea (ANTU)einduced acute lung injury.  Methods: Forty Wistar Albino male rats weighing 200e240 g were divided into 5 groups (n = 8 each), including a control group. Thus, there were one ANTU group and three dexmedetomidine groups (10-, 50-, and 100-mg/kg treatment groups), plus a control group. The control group provided the normal base values. The rats in the ANTU group were given 10 mg/kg of ANTU intraperitoneally and the three treatment groups received 10, 50, or 100 mg/kg of dexmedetomidine intraperitoneally 30 min before ANTU application. The rat body weight (BW), pleural effusion (PE), and lung weight (LW) of each group were measured 4 h after ANTU administration. The histopathologic changes were evaluated using hematoxylin-eosin staining. Results: The mean PE, LW, LW/BW, and PE/BW measurements in the ANTU group were significantly greater than in the control groups and all dexmedeto-midine treatment groups (P < 0.05). There were also significant decreases in the mean PE, LW, LW/BW and PE/BW values in the dexmedetomidine 50-mg/kg group compared with those in the ANTU group (P < 0.01). The inflammation, hemorrhage, and edema scores in the ANTU group were significantly greater than those in the control or dexmedetomidine 50-mg/kg group (P < 0.01). Conclusion: Dexmedetomidine treatment has demonstrated  a potential benefit by preventing ANTU-induced acute lung injury in an experimental rat model. Dexmedetomidine could have a potential protective effect on acute lung injury in intensive care patients.


Protective effects of Isofraxidin against lipopolysaccharide-induced acute lung injury in mice

Xiaofeng Niu, YuWang, Weifeng Li, Qingli Mu, et al.
International Immunopharmacology 24 (2015) 432–439

Acute lung injury (ALI) is a life-threatening disease characterized by serious lung inflammation and increased capillary permeability, which presents a high mortality worldwide. Isofraxidin (IF), a Coumarin compound isolated from the natural medicinal plants such as Sarcandra glabra and Acanthopanax senticosus, has been reported to have definite anti-bacterial, anti-oxidant, and anti-inflammatory activities. However, the effects of IF against lipopoly-saccharide-induced ALI have not been clarified. The aim of the present study is to explore the protective effects and potential mechanism of IF against LPS-induced ALI in mice. In this study, We found that pretreatment with IF significantly lowered LPS-induced mortality and lung wet-to-dry weight (W/D) ratio and reduced the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) in serum and bronchoalveolar lavage fluid (BALF). We also found that total cells, neutrophils and macrophages in BALF,MPO activity in lung tissues were markedly decreased. Besides, IF obviously inhibited lung histopathological changes and cyclooxygenase-2 (COX-2) protein expression. These results suggest that IF has a protective effect against LPS induced ALI, and the protective effect of IF seems to result from the inhibition of COX-2 protein expression in the lung, which regulates the production of PGE2.

Ingestion of LPS stimulates vascular permeability, promotes inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from blood into lung tissues and activates numerous inflammatory cells such as neutrophils and macrophages. In macrophages, LPS challenge induces the transcription of gene encoding pro-inflammatory protein, which leads to cytokine release and synthesis of enzymes, such as cyclo-oxygenase-2 (COX-2). COX-2 usually can’t be found in normal tissues, but widely induced by pro-inflammatory stimuli, such as cytokines, endotoxins, and growth factors. COX-2 plays a vital role in the regulation of inflammatory process by modulating the production of prostaglandin E2 (PGE2). PGE2, induced by cytokines and other initiator, is an inflammatory mediator which is produced in the regulation of COX-2. Previous researches demonstrated that inhibition of COX-2 produced a dramatically anti-inflammatory effect with little gastrointestinal toxicity. Therefore, inhibition of COX-2 protein expression has far-reaching significance in the treatment of ALI.

effects of IF on LPS-induced mortality in ALI mice

effects of IF on LPS-induced mortality in ALI mice

The effects of IF on LPS-induced mortality in ALI mice (n = 12/group). IF (5, 10, 15 mg/kg, i.p.) or DEX (5 mg/kg, i.p.) were given to mice 1 h prior to LPS challenge. The mortalities were observed at 0, 12, 24, 36, 48, 60, and 72 h. ###P = 0.001 when compared with the control group; *P = 0.05, **P = 0.01, and ***P = 0.001 when compared with the LPS group.


Protective effects of intranasal curcumin on paraquot induced acute lung injury (ALI) in mice

Namitosh Tyagi, Asha Kumaria, D. Dash, Rashmi Singh
Environment  Toxicol  & Pharmacol  38 (2014) 913–921

Paraquot (PQ) is widely and commonly used as herbicide and has been reported to be hazardous as it causes lung injury. However, molecular mechanism underlying lung toxicity caused by PQ has not been elucidated. Curcumin, a known anti-inflammatory molecule derived from rhizomes of Curcuma longa has variety of pharmacological activities including free-radical scavenging properties but the protective effects of curcumin on PQ-induced acute lung injury (ALI) have not been studied. In this study, we aimed to study the effects of curcumin on ALI caused by PQ in male parke’s strain mice which were challenged acutely byPQ (50 mg/kg, i.p.) with or without curcumin an hour before (5 mg/kg, i.n.) PQ intoxication. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for pathological and biochemical analysis after 48 h of PQ exposure. Curcumin administration has significantly enhanced superoxide dismutase (SOD) and catalase activities. Lung wet/dry weight ratio, malondialdehyde (MDA) and lactate dehydrogenase (LDH) content, total cell number and myeloperoxidase (MPO) levels in BALF as well as neutrophil infiltration were attenuated by curcumin. Pathological studies also revealed that intranasal curcumin alleviate PQ-induced pulmonary damage and pro-inflammatory cytokine levels like tumor necrosis factor-α (TNF-α) and nitric oxide (NO). These results suggest that intranasal curcumin may directly target lungs and curcumin inhalers may prove to be effective in PQ-induced ALI treatment in near future.


Phillyrin attenuates LPS-induced pulmonary inflammation via suppression of MAPK and NF-κB activation in acute lung injury mice

Wei-ting Zhong, Yi-chun Wu, Xian-xing Xie, Xuan Zhou, et al.
Fitoterapia 90 (2013) 132–139

Phillyrin (Phil) is one of the main chemical constituents of Forsythia suspensa (Thunb.), which has shown to be an important traditional Chinese medicine. We tested the hypothesis that Phil modulates pulmonary inflammation in an ALI model induced by LPS. Male BALB/c mice were pretreated with or without Phil before respiratory administration with LPS, and pretreated with dexamethasone as a control. Cytokine release (TNF-α, IL-1β, and IL-6) and amounts of inflammatory cell in bronchoalveolar lavage fluid (BALF) were detected by ELISA and cell counting separately. Pathologic changes, including neutrophil infiltration, interstitial edema, hemorrhage, hyaline membrane formation, necrosis, and congestion during acute lung injury in mice were evaluated via pathological section with HE staining. To further investigate the mechanism of Phil anti-inflammatory effects, activation of MAPK and NF-κB pathways was tested by western blot assay. Phil pretreatment significantly attenuated LPS-induced pulmonary histopathologic changes, alveolar hemorrhage, and neutrophil infiltration. The lung wet-to-dry weight ratios, as the index of pulmonary edema, were markedly decreased by Phil retreatment. In addition, Phil decreased the production of the proinflammatory cytokines including (TNF-α, IL-1β, and IL-6) and the concentration of myeloperoxidase (MPO) in lung tissues. Phil pretreatment also significantly suppressed LPS-induced activation of MAPK and NF-κB pathways in lung tissues. Taken together, the results suggest that Phil may have a protective effect on LPS-induced ALI, and it potentially contributes to the suppression of the activation of MAPK and NF-κB pathways. Phil may be a new preventive agent of ALI in the clinical setting.

A mass of studies have been reported basically on alleviating LPS-induced acute lung injury in models. Phillyrin (Fig. 1), a lignin, is one of the main chemical constituents of Forsythia suspensa (Thunb.), which is an important traditional Chinese medicine (“Lianqiao” in Chinese), and has long been used for gonorrhea, erysipelas, inflammation, pyrexia and ulcer. Previous studies indicated that Phil significantly inhibited NO production in LPS-activated macrophage cells. But there is not much evidence showing the anti-inflammatory properties of phillyrin. In the present study, we sought to investigate the effects of phillyrin on LPS-induced pulmonary inflammation in mice.

Fig. not shown. A: Effects of Phil on histopathological changes in lung tissues in LPS-induced ALI mice. Mice were given an intragastric administration of Phil (10 and 20 mg/kg) or Dex (5 mg/kg) 1 h prior to an intranasal administration of LPS. Then mice were anesthetized and lung tissue samples were collected at 6 h after LPS challenge for histological evaluation. These representative histological changes of the lung were obtained from mice of different groups (hematoxylin and eosin staining, original magnification 200×, Scale bar: 50 μm). B: Effects of Phil on LPS-induced lung morphology. The slides were histopathologically evaluated using a semi-quantitative scoring method. Lung injury was graded from 0 (normal) to 4 (severe) in four categories: congestion, edema, interstitial inflammation and inflammatory cell infiltration. The total lung injury score was calculated by adding up the individual scores of each category. The values presented are the means ± S.E.M. (n = 4–6 in each group). ##P b 0.01 vs. the control group, **P b 0.01 vs. the LPS group. Cont: control group; LPS: LPS group; Phil + LPS: Phil + LPS group; Dex + LPS: Dex + LPS group.

In summary, the present study indicated that Phil has a protective effect on LPS-induced acute lung injury. Phil significantly attenuated histopathological changes initiated by LPS via reducing over inflammatory responses. We also demonstrated that MAPK and NF-κB signaling pathways are the important targets of Phil to perform its actions. Phil acts by preventing NF-κB translocation to the nucleus or inhibiting the activation of MAPKs directly or indirectly, which is to be investigated in further studies. All these results suggest that Phil may be a new therapeutic agent for the prevention of inflammation during acute lung injury.





Read Full Post »

 What is the key method to harness Inflammation to close the doors for many complex diseases?


Author and Curator: Larry H Bernstein, MD, FCAP


The main goal is to  have a quality of a healthy life.

When we look at the picture 90% of main fluid of life, blood, carried by cardiovascular system with two main pumping mechanisms, lung with gas exchange and systemic with complex scavenger actions, collection of waste, distribution of nutrition and clean gases etc.  Yet without lymphatic system body can’t make up the 100% fluid.  Therefore, 10% balance is completed by lymphatic system as a counter clockwise direction so that not only the fluid balance but also mass balance is  maintained. Finally, the immune system patches the  remaining mechanism by providing cellular support to protect the body because it contains 99% of white cells to fight against any kinds of invasion, attack, trauma.

These three musketeers, ccardiovascular, lyphatic and immune systems, create the core mechanism of survival during human life.

However, there is a cellular balance between immune and cardiovascular system since blood that made up off 99% red cells and 1% white blood cells that are used to scavenger hunt circulating foreign materials.   These three systems are acting with a harmony not only defend the body but provide basic needs of life.  Thus, controlling angiogenesis and working mechanisms in blood not only helps to develop new diagnostic tools but more importantly establishes long lasting treatments that can harness Immunomodulation.

The word inflammation comes from the Latin “inflammo”, meaning “I set alight, I ignite”.

Medical Dictionary description is:

“A fundamental pathologic process consisting of a dynamic complex of histologically apparent cytologic changes, cellular infiltration, and mediator release that occurs in the affected blood vessels and adjacent tissues in response to an injury or abnormal stimulation caused by a physical, chemical, or biologic agent, including the local reactions and resulting morphologic changes; the destruction or removal of the injurious material; and the responses that lead to repair and healing.”

The five elements makes up the signature of  inflammation:  rubor, redness; calor, heat (or warmth); tumor swelling; and dolor, pain; a fifth sign, functio laesa, inhibited or lost function.   However, these indications may not be present at once.

Please click on to the following link for genetic association of autoimmune diseases (Cho Et al selected major association signals in autoimmune diseases) from Cho JH, Gregersen PK. N Engl J Med 2011;365:1612-1623.

Inflammatory diseases grouped under two classification: the immune system related due to  inflammatory disorders, such as both allergic reactions  and some myopathies, with many immune system disorders.  The examples of inflammatory disorders  include Acne vulgaris, asthma, autoimmune disorders, celiac disease, chronic prostatitis, glomerulonepritis, hypersensitivities, inflammatory bowel diseases, pelvic inflammatory diseases, reperfusion diseases, rheumatoid arthritis, sarcoidosis, transplant rejection, vasculitis, interstitial cyctitis, The second kind of inflammation are related to  non-immune diseases such as cancer, atherosclerosis, and ischaemic heart disease.

This seems simple yet at molecular physiology and gene activation levels this is a complex response as an innate immune response from body.  There can be acute lasting few days after exposure to bacterial pathogens, injured tissues or chronic inflammation continuing few months to years after unresolved acute responses such as non-degradable pathogens, viral infection, antigens or any  foreignmaterials, or autoimmune responses.

As the system responses arise from plasma fluid, blood vessels, blood plasma through vasciular changes, differentiation in plasma cascade systems like coagulation system, fibrinolysis, complement system and kinin system.  Some of the various mediators include bradykinin produced by kinin system, C3, C5, membrane attack system (endothelial cell activation or endothelial coagulation activation mechanism) created by the complement system; factor XII that can activate kinin, fibrinolysys and coagulation systems at the same time produced in liver; plasmin from fibrinolysis system to inactivate factor Xii and C3 formation, and thrombin of coagulation system with a reaction through protein activated receptor 1 (PAR1), which is a seven spanning membrane protein-GPCR.   This system is quite fragile and well regulated.  For example activation of inactive Factor XII by collagen, platelets, trauma such as cut, wound, surgery that results in basement membrane changes since it usually circulate in inactive form in plasma automatically initiates and alerts kinin, fibrinolysis and coagulation systems.

Furthermore, the changes reflected through receptors and create gene activation by cellular mediators to establish system wide unified mechanisms. These factors (such as IFN-gamma, IL-1, IL-8, prostaglandins, leukotrene B4,  nitric oxide, histamines,TNFa) target immune cells and redesign their responses, mast cells, macrophages, granulocytes, leukocytes, B cells, T cells) platelets, some neuron cells and endothelial cells.  Therefore, immune system can react with non-specific or specific mechanisms either for a short or a long term.

As a result, controlling of mechanisms in blood and prevention of angiogenesis answer to cure/treat many diseases  Description of angiogenesis is simply formation of new blood vessels without using or changing pre-existing capillaries.  This involves serial numbers of events play a central role during physiologic and pathologic processes such as normal tissue growth, such as in embryonic development, wound healing, and the menstrual cycle.  However this system requires three main elements:  oxygen, nutrients and getting rid of waste or end products.

Genome Wide Gene Association Studies, Genomics and Metabolomics, on the other hand, development of new technologies for diagnostics and non-invasive technologies provided better targeting systems.

In this token recent genomewide association studies showed a clear view on a disease mechanism, or that suggest a new diagnostic or therapeutic approach particularly these disorders are related to  genes within the major histocompatibility complex (MHC) that predisposes the most significant genetic effect.  Presumably, these genes are reflecting the immunoregulatory effects of the HLA molecules themselves. As a result, the working mechanism of pathological conditions are revisited or created new assumptions to develop new targets for diagnosis and treatments.

Even though B and T cells are reactive to initiate responses there are several level of mechanisms control the cell differentiation for designing rules during health or diseases. These regulators are in check for both T and B cells.  For example, during Type 1 diabetes there are presence of more limited defects in selection against reactivity with self-antigens like insulin, thus, T cell differentiation is in jeopardy.  In addition, B cells have many active checkpoints to modulate the immune responses like  pre-B cells in the bone marrow are highly autoreactive yet they prefer to stay  in naïve-B cell forms in the periphery through tyrosine phosphatase nonreceptor type 22 (PTPN22) along with many genes play a role in autoimmunity.  In a nut shell this is just peeling the first layer of the onion at the level of Mendelian Genetics.

There is a great work to be done but if one can harness the blood and immune responses many complex diseases patients may have a big relief and have a quality of life.  When we look at the picture 90% of main fluid of life, blood, carried by cardiovascular system with two main pumping mechanisms, lung with gas exchange and systemic with complex scavenger actions, collection of waste, distribution of nutrition and clean gases.  Yet, without lymphatic system body can’t make up the 100% fluid.  Therefore, 10% balance is completed by lymphatic system as a counter clockwise direction so that not only the fluid balance but also mass balance is  maintained. Finally, the immune system patches the  remaining mechanism by providing cellular support to protect the body because it contains 99% of white cells to fight against any kinds of invasion, attack, trauma.


Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science (Wash DC)279:377380.

 Brouty BD, Zetter BR (1980) Inhibition of cell motility by interferon.Science (Wash DC) 208:516518.

Ferrara N, Alitalo K (1999) Clinical Applications of angiogenic growth factors and their inhibitorsNat Med 5:13591364.


Ferrara N (1999) Role of vascular endothelial growth factor in the regulation of angiogenesisKidney Int 56:794814.


Ferrara N (1995) Leukocyte adhesion: Missing link in angiogenesisNature (Lond) 376:467.


Kohn EC, Alessandro R, Spoonster J, Wersto RP, Liotta LA (1995) Angiogenesis: Role of calcium-mediated signal transduction. Proc Natl Acad Sci U S A 92:13071311

Meijer DKF, Molema G (1995) Targeting of drugs to the liverSemin Liver Dis 15:202256.

Sidky YA, Borden EC (1987) Inhibition of angiogenesis by interferons: Effects on tumor- and lymphocyte-induced vascular responsesCancer Res47:51555161.

Anonymous (1999a) Genentech takes VEGF back to lab. SCRIP 2493:24.

Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ,Bicknell R (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99:26252634.


Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M(1997) Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor α-dependent angiogenesis. Mol Cell Biol 17:40154023.


Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin SH, Uzan G,Dejana E (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation stepsBlood 88:34243431.


Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ (1998) Evidence for the involvement of endothelial cell integrin αvβ3 in the disruption of the tumor vasculature induced by TNF and IFNNat Med4:408414

Patey N, Vazeux R, Canioni D, Potter T, Gallatin WM, Brousse N (1996) Intercellular adhesion molecule-3 on endothelial cells. Expression in tumors but not in inflammatory responses. Am J Pathol 148:465472.

Oliver SJ, Banquerigo ML, Brahn E (1994) Supression of collagen-induced arthritis using an angiogenesis inhibitor AGM-1470 and microtubule stabilizer taxol. Cell Immunol 157:291299

Molema G, Griffioen AW (1998) Rocking the foundations of solid tumor growth by attacking the tumor’s blood supplyImmunol Today 19:392394.


Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M,Ashare AB, Lathi K, Isner JM (1998) Gene therapy for myocardial angiogenesis: Initial clinical results with direct myocardial injection of PhVEGF165 as sole therapy for myocardial ischemiaCirculation98:28002804.

Jain RK, Schlenger K, Hockel M, Yuan F  (1997) Quantitative angiogenesis assays: Progress and problemsNat Med 3:12031208.

Jain RK (1996) 1995 Whitaker Lecture: Delivery of molecules, particles and cells to solid tumors. Ann Biomed Eng 24:457473.


Giraudo E, Primo L, Audero E, Gerber H, Koolwijk P, Soker S,Klagsbrun M, Ferrara N, Bussolino F (1998) Tumor necrosis factor-alpha regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells. J Biol Chem273:2212822135.

Inflammation Genomics

Kocarnik JM, Pendergrass SA, Carty CL, Pankow JS, Schumacher FR, Cheng I, Durda P, Ambite JL, Deelman E, Cook NR, Liu S, Wactawski-Wende J, Hutter C, Brown-Gentry K, Wilson S, Best LG, Pankratz N, Hong CP, Cole SA, Voruganti VS, Bůžkova P, Jorgensen NW, Jenny NS, Wilkens LR, Haiman CA, Kolonel LN, Lacroix A, North K, Jackson R, Le Marchand L, Hindorff LA, Crawford DC, Gross M, Peters U. Multi-Ancestral Analysis of Inflammation-Related Genetic Variants and C-Reactive Protein in the Population Architecture using Genomics and Epidemiology (PAGE) Study. Circ Cardiovasc Genet. 2014 Mar 12

Ellis J, Lange EM, Li J, Dupuis J, Baumert J, Walston JD, Keating BJ, Durda P, Fox ER, Palmer CD, Meng YA, Young T, Farlow DN, Schnabel RB, Marzi CS, Larkin E, Martin LW, Bis JC, Auer P, Ramachandran VS, Gabriel SB, Willis MS, Pankow JS, Papanicolaou GJ, Rotter JI, Ballantyne CM, Gross MD, Lettre G, Wilson JG, Peters U, Koenig W, Tracy RP, Redline S, Reiner AP, Benjamin EJ, Lange LA. Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novelassociation at CD36 in African Americans. Hum Genet. 2014 Mar 19.

Ricaño-Ponce I, Wijmenga C. Mapping of immune-mediated disease genes. Annu Rev Genomics Hum Genet. 2013;14:325-53. doi: 10.1146/annurev-genom-091212-153450. Epub 2013 Jul 3. Review.

McKillop AM, Flatt PR. Emerging applications of metabolomic and genomic profiling in diabetic clinical medicine. Diabetes Care. 2011 Dec;34(12):2624-30. doi: 10.2337/dc11-0837. Review.

Ricaño-Ponce I, Wijmenga C. Mapping of immune-mediated disease genes. Annu Rev Genomics Hum Genet. 2013;14:325-53. doi: 10.1146/annurev-genom-091212-153450. Epub 2013 Jul 3.Review.

Chen YB, Cutler CS. Biomarkers for acute GVHD: can we predict the unpredictable? Bone Marrow Transplant. 2013 Jun;48(6):755-60. doi: 10.1038/bmt.2012.143. Epub 2012 Aug 6. Review.

Cho JH, Gregersen PK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med. 2011 Oct 27;365(17):1612-23. doi: 10.1056/NEJMra1100030. Review.

Shikama N, Nusspaumer G, Hollander GA. Clearing the AIRE: on the pathophysiological basis of the autoimmune polyendocrinopathy syndrome type-1. Endocrinol Metab Clin North Am2009;38:273-288

Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med 2009;360:1646-1654

Read Full Post »

Ulcerative colitis

Ulcerative colitis (Photo credit: Wikipedia)

Tofacitinib, an Oral Janus Kinase Inhibitor, in Active Ulcerative Colitis

Reporter: Larry Bernstein, MD

This is an overview of a recently published article about a new treatment for ulcerative colitis. It also reviews the use of a class of drug in inflammatory conditions, and introduces the problem of sepsis.

Tofacitinib, an Oral Janus Kinase Inhibitor, in Active Ulcerative Colitis.
WJ Sandborn, S Ghosh, J Panes, I Vranic, C Su, for the Study A3921063 Investigators
N Engl J Med 2012; 367:616-624 August 16, 2012


Ulcerative colitis  is a chronic inflammatory disease of the colon that belongs to a group of diseases lumped together as Inflammatory Bowel Disease (IBD). There is a distinction to be made between Crohn’s disease, which may be limited to the small intestine (regional enteritis), the terminal ileum, or a portion of the transverse colon, and ulcerative colitis.

In ulcerative colitis the inflammation is limited to the mucosa and submucosa, but in Crohn’s disease there is a deep penetration of the intestinal wall (fistula) that may extend to the peritoneum causing abscess, scarring, peritonitis and possibly volvulus, obstruction and gangrenous bowel, which necessitate surgical resection. IBD tends to occur in children and young adults, repeats in families, and requires dietary management (fluid intake, Metamucil, restriction of fiber) . It is characterized by abdominal pain, diarrhea, bleeding, weight loss, and episodic fever, but also may be associated with joint pain.
Conservative medical treatment focuses on suppressing the immune response using 5-ASA, azathioprine, 6-mercaptopurine. If severe, biologic therapy is used to treat patients with severe Crohn’s disease that does not respond to any other types of medication, such as a TNF (tumor necrosis factor) inhibitor which can have secondary effects, and they are not universally effective. The importance of immunity can’t be understated, it involves a large portion of immune system and primitive Toll-like receptors (TLRs) that trigger signaling pathways. TLRs represent an important mechanism by which the host detects a variety of microorganisms that colonize in the gut. Endothelial and epithelial cells, and resident macrophages are potent producers of inflammatory cytokines, interleukins, IL-1, IL-6, and TNF-α, which are distinguished from another set that is treated in this study. In addition, there is a balance that has to be achieved between suppression and upregulation in treatment, which is referred to as immunomodulation.
The opposite of immunosuppression is upregulation It is cental to recent advances in chemotherapy of melanolma, small cell carcinoma and NSCCL of lung, and treatment resistant prostate cancer. An example is ipilimumab, whic upregulates cytotoxic T-cells to destroy cancer cells, but it has runaway destructive effects on the GI tract.

This study investigates the use of tofacitinib (CP-690,550), an oral inhibitor of Janus kinases 1, 2, and 3 with in vitro functional specificity for kinases 1 and 3 over kinase 2, which is expected to block signaling involving gamma chain–containing cytokines including interleukins 2, 4, 7, 9, 15, and 21. These cytokines are integral to lymphocyte activation, function, and proliferation.

The mechanism of drug action

Jak 1 and 3 inhibitor, which is targeted at blocking signaling involving gamma chain–containing cytokines including interleukins 2, 4, 7, 9, 15, and 21. The result would be to block signaling involving (gamma chains)–suppressing “lymphokines” 2, 4, 7, 9, 15, and 21. The lymphocyte pool is regional, being the antibody mediated immune system of the Bursa of Fabricius (B-lymphocytes, as opposed to the thymic derived T-cells) that form the largest immune organ extending the length of the intestines and the stomach.  The family transmission suggests an epigenetic event.

  • Gastrointestinal Tract
  • Oropharynx – Tonsils
  • Distal small intestine (ilieum) – Peyer’s Patches
  • Appendix, cecum

However, this classification of the lymphocytes has much greater complexity than I indicate.  The so called B-cells have receptors that recognize foreign antigen, but the T-cells have similar receptors and are tied to both the innate and the adaptive immune response.  Lymphocytes are the predominant cells of the immune system, but macrophages and plasma cells are present also.  Lymphocytes circulate, alternating between the circulatory blood stream and the lymphatic channels.  The end result of the immune reaction is the production of specific antibodies and antigen-reactive cells. These cells are called lymphocytes and are found in the blood and in the lymphoid system.

See Appendix

Trial features: double-blind, placebo-controlled, phase 2 trial; Patients were randomly assigned to receive tofacitinib at a dose of 0.5 mg, 3 mg, 10 mg, or 15 mg or placebo twice daily for 8 weeks.
Study goal: evaluated the efficacy of tofacitinib in 194 adults with moderately to severely active ulcerative colitis.

Primary outcome: a clinical response at 8 weeks, defined as an absolute decrease from baseline in the score on the Mayo scoring system for assessment of ulcerative colitis activity (possible score, 0 to 12, with higher scores indicating more severe disease) of 3 or more and a relative decrease from baseline of 30% or more with an accompanying decrease in the rectal bleeding subscore of 1 point or more or an absolute rectal bleeding subscore of 0 or 1.
Results and conclusion: The primary outcome, clinical response at 8 weeks, occurred in 32%, 48%, 61%, and 78% of patients receiving tofacitinib at a dose of 0.5 mg (P=0.39), 3 mg (P=0.55), 10 mg (P=0.10), and 15 mg (P<0.001), respectively, as compared with 42% of patients receiving placebo.
Clinical remission (defined as a Mayo score ≤2, with no subscore >1) at 8 weeks occurred in 13%, 33%, 48%, and 41% of patients receiving tofacitinib at a dose of 0.5 mg (P=0.76), 3 mg (P=0.01), 10 mg (P<0.001), and 15 mg (P<0.001), respectively, as compared with 10% of patients receiving placebo. Three patients treated with tofacitinib had an absolute neutrophil count of less than 1500.
Patients with moderately to severely active ulcerative colitis treated with tofacitinib were more likely to have clinical response and remission than those receiving placebo. (Funded by Pfizer; number, NCT00787202.)
Commentary: The study is only phase 2, and it is also limited to disease of the descending colon. The next phase will be necessary to determine the effect on a larger population at the selected dose, and will be necessary to determine both the size of the effect and identify unexpected adverse effects. We also have to keep in mind that the success of the study would limit the treatment to a subset of patients with IBD.

Efficacy of Proposed Treatment:

  • it is effective at about 40% remission for 8 weeks compared to 10% for placebo, or an adjusted actual 30% for 8 weeks.
  • A much larger study needs to be done to see how well the dose holds up, as well as the dosing interval. There are two factors that will affect the t1/2 of the drug so that 1/2 dose could be replaced at the end of t1/2.
  • The dose of 15 mg was no better for clinical response.
  • I would think that the next trial might give a loading dose of 15 mg, and then 7 mg (better that 3 mg) would be replaced every t1/2.  But this is more complicated than usual.

I identified two steps, not one direct effect.

  • The inhibitor has to balance the production rate versus the removal rate of the T-cell population. The drug itself is not measured, only the effect. I know that albumin, the liver produced protein, has a half-life of removal of 21 days. Platelets are short shelf-life as well as rapid turnaround in plasma.
  •  I don’t know what is the local production and removal rate of lymphocytes in the gut. That would be the key determinant for dosing.

The following may shed some light on what has been discussed:

Common characteristics of the lymphoid system.

  • The lymphoid system involves organs and tissues where lymphocytic cells originate as lymphocyte precursors that mature and differentiate, and either lodge in the lymphoid organs or move throughout the body.
  • Precursor cells originate in the yolk sac, liver, spleen, or bursa of Fabricius (or its mammalian equivalent, the bone marrow) in an embryo or fetus.
  • Stem cells from bone marrow or embryonic tissues are deposited and mature into lymphocytes in the central or primary lymphoid organs, which include the thymus and the bursa or bone marrow. Upon maturation, the lymphocytes undergo further maturation toward immunocompetence and production of immunoglobulins or sensitized lymphocytes.

Adaptive immunity has 2 main classes:

  • Antibody-mediated – B Lymphocyte
  • Cell-mediated – T Lymphocyte

Lymph follicles are our point of reference:

  • Organized concentrations of Lymphocytes
  • No capsule, covered by epithelia
  • Nodules are unit structure seen in a node
  • Oval concentrations in meshwork of reticular cells

If pathogens initially evade constitutive defenses, they may yet be attacked by more specific inducible defenses. The inducible defenses are so-called because they are induced upon primary exposure to a pathogen or one of its products. The inducible defenses must be triggered in a host, take time to develop, and are a function of the immune response. The type of resistance thus developed in the host is called acquired immunity.

Three important features of the immunological system relevant to host defense and/or “immunity are:

1. Specificity. An antibody or reactive T cell will react specifically with the antigen that induced its formation; it will not react with other antigens. Generally, this specificity is of the same order as that of enzyme-substrate specificity or receptor-ligand specificity.

  • The specificity of the immune response is explained on the basis of the clonal selection hypothesis: during the primary immune response, a specific antigen selects a pre-existing clone of specific lymphocytes and stimulates exclusively its activation, proliferation and differentiation.

2.  Memory. The immunological system has a “memory”.

  • Once the immunological response has reacted to produce a specific type of antibody or reactive T cell, it is capable of producing more of the antibody or activated T cell more rapidly and in larger amounts.

3. Tolerance. An animal generally does not undergo an immunological response to its own (potentially-antigenic) components.

  • The animal is said to be tolerant, or unable to react to its own potentially-antigenic components.

Gene expression – CD28 signal transduction , λδ T repertoire and antigen reactivity

Efficient lymphokine gene expression appears to require both T-cell antigen receptor (TCR) signal transduction and an uncharacterized second or costimulatory signal. CD28 is a T-cell differentiation antigen that can generate intracellular signals that synergize with those of the TCR to increase T-cell activation and interleukin-2 (IL-2) gene expression.

  • These investigators examined the effect of CD28 signal transduction on granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3), and gamma interferon (IFN-gamma) promoter activity.
  • Stimulation of CD28 in the presence of TCR-like signals increases the activity of the GM-CSF, IL-3, and IFN-gamma promoters by three- to sixfold.
  • As previously demonstrated for the IL-2 promoter, the IL-3 and GM-CSF promoters contain distinct elements of similar sequence which specifically bind a CD28-induced nuclear complex.
  • Mutation of the CD28 response elements in the IL-3 and GM-CSF promoters abrogates the CD28-induced activity without affecting phorbol ester- and calcium ionophore-induced activity.
  • These studies indicate that the TCR and CD28-regulated signal transduction pathways, coordinately regulate the transcription of several lymphokines, and the influence of CD28 signals on transcription is mediated by a common complex.

Fraser JD, Weiss A.  Regulation of T-cell lymphokine gene transcription by the accessory molecule CD28. Mol Cell Biol. 1992 Oct;12(10):4357-63.

These investigators looked at the relevance λδ T repertoire and the antigen reactivity of clones isolated from CSF in multiple sclerosis (MS).

  • they found an increased percentage of V delta 1+ cells as compared to peripheral blood of the same donors.
  • Phenotypic analysis of cells from MS CSF with V gamma- and V delta-specific monoclonal antibodies (mAb) showed that the V delta 1 chain is most frequently associated with gamma chains belonging to the V gamma 1 family.
  • Sequence analysis of TCR genes revealed heterogeneity of junctional regions in both delta and gamma genes indicating polyclonal expansion. gamma delta clones were established and some recognized glioblastoma, astrocytoma or monocytic cell lines.
  • Stimulation with these targets induced serine esterase release and lymphokine expression characteristic of the TH0-like phenotype.
  • Remarkably, these tumor-reactive gamma delta cells were not detected in the peripheral blood using PCR oligotyping, but were found in other CSF lines independently established from the same MS patient.
  • in the CSF there is a skewed TCR gamma delta repertoire and suggest that gamma delta cells reacting against brain-derived antigens might have been locally expanded.

Nick S, Pileri P, Tongiani S, Uematsu Y, Kappos L, De Libero G. T cell receptor gamma delta repertoire is skewed in cerebrospinal fluid of multiple sclerosis patients: molecular and functional analyses of antigen-reactive gamma delta clones. Eur J Immunol. 1995 Feb;25(2):355-63. PMID: 1328852 [PubMed – indexed for MEDLINE] PMCID: PMC360359 Free PMC Article

B Cells and T Cells:  Addendum…/B/B_and_Tcells.htmlShareAIDS; Building the T-cell Repertoire; Gamma/Delta T Cells … T cells specific for this structure (i.e., with complementary TCRs) bind the B cell and; secrete lymphokines that: … Each chain has a variable (V) region and a constant (C) region.

Although mature lymphocytes all look pretty much alike, they are extraordinarily diverse in their functions. The most abundant lymphocytes are:

  • B lymphocytes (often simply called B cells) and
  • T lymphocytes (likewise called T cells).
  • B cells are produced in the bone marrow.
  •  The precursors of T cells are also produced in the bone marrow but leave the bone marrow and mature in the thymus (which accounts for their designation).
  • Each B cell and T cell is specific for a particular antigen. What this means is that each is able to bind to a particular molecular structure.

The specificity of binding resides in a receptor for antigen:

  • the B cell receptor (BCR) for antigen and
  • the T cell receptor (TCR) respectively.

Both BCRs and TCRs share these properties:

  • They are integral membrane proteins.
  • They are present in thousands of identical copies exposed at the cell surface.
  • They are made before the cell ever encounters an antigen.
  • They are encoded by genes assembled by the recombination of segments of DNA.

How antigen receptor diversity is generated.

  • They have a unique binding site.
  • This site binds to a portion of the antigen called an antigenic determinant or epitope.
    The binding, like that between an enzyme and its substrate depends on complementarity of the surface of the receptor and the surface of the epitope.
  • The binding occurs by non-covalent forces (again, like an enzyme binding to its substrate).

Successful binding of the antigen receptor to the epitope, if accompanied by additional signals, results in:

  • stimulation of the cell to leave G0 and enter the cell cycle.
  • Repeated mitosis leads to the development of a clone of cells bearing the same antigen receptor; that is, a clone of cells of the identical specificity.

BCRs and TCRs differ in:

  • their structure;
  • the genes that encode them;
  • the type of epitope to which they bind.

heavy (H) plus kappa (κ) or lambda (λ) chains for BCRs;

alpha (α) and beta (β) or gamma (γ) and delta (δ) chains for TCRs)

……is encoded by several different gene segments.

The genome contains a pool of gene segments for each type of chain. Random assortment of these segments makes the largest contribution to receptor diversity.

There are two types of T cells that differ in their TCR:

alpha/beta (αβ) T cells. Their TCR is a heterodimer of an alpha chain with a beta chain. Each chain has a variable (V) region and a constant (C) region. The V regions each contain 3 hypervariable regions that make up the antigen-binding site. [Link]

gamma/delta (γδ) T cells. Their TCR is also a heterodimer of a gamma chain paired with a delta chain.

The discussion that follows now concerns alpha/beta T cells. Gamma/delta T cells, which are less well understood, are discussed at the end [Link].

The TCR (of alpha/beta T cells) binds a bimolecular complex displayed at the surface of some other cell called an antigen-presenting cell (APC).

Most of the T cells in the body belong to one of two subsets. These are distinguished by the presence on their surface of one or the other of two glycoproteins designated:

  • CD8+ T cells bind epitopes that are part of class I histocompatibility molecules. Almost all the cells of the body express class I molecules.
  • CD4+ T cells bind epitopes that are part of class II histocompatibility molecules. Only specialized antigen-presenting cells express class II molecules.

These include:

  • dendritic cells
  • phagocytic cells like macrophages and
  • B cells!

Building the T-cell Repertoire

T cells have receptors (TCRs) that bind to antigen fragments nestled in MHC molecules. But,

  • all cells express class I MHC molecules containing fragments derived from self proteins;
  • many cells express class II MHC molecules that also contain self peptides.

This presents a risk of the T cells recognizing these self-peptide/self-MHC complexes and mounting an autoimmune attack against them. Fortunately, this is usually avoided by a process of selection that goes on in the thymus (where all T cells develop).


FDA approves Abbott Humira as Ulcerative Colitis therapy
PBR Staff Writer Published 01 October 2012
The USFDA has approved Abbott’s Humira (adalimumab) for the treatment of adult patients with moderate to severe Ulcerative Colitis (UC) when certain other medicines have not worked well enough.
Humira, which works by inhibiting tumour necrosis factor-alpha (TNF-alpha), was previously approved for the treatment of moderate to severe Crohn’s disease.

Abbott Global Pharmaceutical Research and Development senior vice president John Leonard said, “Since the first FDA approval of HUMIRA in late 2002, Abbott has continued to investigate the medication in multiple conditions with the goal of bringing this treatment option to more patients who may benefit from it.”

The approval was based on the data from two phase 3 studies, ULTRA 1 and ULTRA 2, both of which enrolled adult patients who had moderately to severely active UC despite concurrent or prior treatment with immunosuppressants.  This should have special significance in view of the past history, which may be explainable, but also keep in mind the serious risks of complications.

It is worthy of comment that anti-TNF treatment was previously rejected in trials for use in sepsis leading to Multiple Organ Dysfunction Syndrome and cardiovascular collapse (shock).  More recently an anti-Factor Xa drug, Xygris,  to prevent hypercoagulability only in severe sepsis was withdrawn.

Anti TNF for sepsis

1.   In a group of patients with elevated interleukin-6 levels, the mortality rate was 243 of 510 (47.6%) in the placebo group and 213 of 488 (43.6%) in the afelimomab group. Using a logistic regression analysis, treatment with afelimomab was associated with an adjusted reduction in the risk of death of 5.8% (p = .041) and a corresponding reduction of relative risk of death of 11.9%. Mortality rates for the placebo and afelimomab groups in the interleukin-6 test negative population were 234 of 819 (28.6%) and 208 of 817 (25.5%), respectively. In the overall population of interleukin-6 test positive and negative patients, the placebo and afelimomab mortality rates were 477 of 1,329 (35.9%)and 421 of 1,305 (32.2%), respectively.

Panacek EAMarshall JCAlbertson TEJohnson DH, at al.  Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levelsCrit Care Med. 2004 Nov;32(11):2173-82.

2. No survival benefit was found for the total study population, but patients with increased circulating TNF concentrations at study entry appeared to benefit by the high dose anti-TNF antibody treatment. Increased interleukin (IL)-6 levels predicted a fatal outcome (p =.003), but TNF levels were not found to be a prognostic indicator. TNFlevels were higher (206.7 +/- 60.7 vs. 85.9 +/- 26.1 pg/mL; p <.001) and outcome was poor (41% vs. 71% survival; p =.007) in patients who were in shock at study entry when compared with septic patients not in shock.

Fisher CJ JrOpal SMDhainaut JFStephens S, et al. Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. The CB0006 Sepsis Syndrome Study Group.  Critical Care Medicine [1993, 21(3):318-327] (PMID:8440099)

3.  Large clinical trials involving anti-TNF-alpha MAb have proven to be less conclusive and less successful than clinicians had hoped. The International Sepsis Trial (INTERSEPT), reported by Cohen and Carlet,[14] was designed to assess the safety and efficacy of Bay x 1351, a murine MAb to recombinant human TNF-alpha in patients with sepsis. The INTERSEPT trial was an international, multicenter trial involving 564 patients, 420 of whom were in septic shock. The main study end point — 28-day survival — showed no significant benefit for the treatment group vs controls. Prospectively, the researchers identified 2 secondary variables: shock reversal and frequency of organ failure. Post-28-day survival, treatment groups showed a more rapid reversal of shock compared with placebo, as well as a significant delay in time to first organ failure. The researchers concluded that the anti-TNF-alpha antibody may have a role as adjunctive therapy, but that such a putative role requires more in the way of clinical trial confirmation.

In the TNF-alpha MAb Sepsis Study Group trial, also called the North American Sepsis Trial I (NORASEPT I), Abraham and associates[15] evaluated the efficacy and safety of an anti-TNF-alpha MAb in the treatment of patients with sepsis syndrome. A total of 994 patients in 31 hospitals were enrolled in a randomized, prospective, multicenter, double-blind, placebo-controlled clinical trial. Patients were stratified into shock/nonshock subgroups, then randomized to receive a single infusion of 15 mg/kg of anti-TNF-alpha MAb, 7.5 mg/kg of anti-TNF-alpha MAb, or placebo. The researchers found that among all infused patients, there was no difference in mortality among those receiving therapy and those on placebo. In septic shock patients (n = 478), however, there was a trend toward a reduction in all-cause mortality, which was most evident 3 days after infusion. At day 3, 25 of 162 patients treated with the 15 mg/kg dose died; 22 of 156 treated with 7.5 mg/kg died, but 44 of 160 placebo-treated patients died (15 mg/kg: 44% mortality reduction vs placebo, P = .01; 7.5 mg/kg: 48% reduction vs placebo, P = .004). However, at day 28, the reduction in mortality of shock patients was not significant for either dose of the anti-TNF-alpha MAb relative to placebo.

All studies of MAb against TNF in septic patients and found an absolute risk reduction of 3.5%. The most recently published clinical trial found an absolute reduction in mortality of 3.7%.

Of note, therapy with MAb against TNF has been proven efficacious for treatment of rheumatoid arthritis and is approved by the US Food and Drug Administration for this purpose.

New directions in research on severe sepsis. Human trials with TNF alpha.  Medscape.

4. Why the poor results with sepsis?

This would be sufficient for another discussion.  That can be left for another day.


Sepsis syndrome, or sepsis, is an adverse systemic response to infection that includes fever, rapid heartbeat and respiration, low blood pressure and organ dysfunction associated with compromised circulation.

LPS is a major constituent of Gram-negative bacterial cell walls (see section 3-0) and is essential for membrane integrity. The portion of LPS that causes shock is the innermost and most highly conserved phosphoglycolipid, lipid A. Lipid A is a phosphoglycolipid consisting of a core hexosamine disaccharide with ester- and amide-linked acylated fatty acid tails arranged in either asymmetric or symmetric arrays that anchor the structure in the membrane. It acts by potently inducing inflammatory responses that are life-threatening when systemic, and is known as bacterial endotoxin.  Mice deficient in any of the LPS receptor components are more
susceptible to Gram-negative bacterial infection but, at the same time, are less susceptible to the sepsis syndrome.

TLRs have a lethal function in the septic shock syndrome. The physiological function of signaling through phagocyte TLRs is to induce the release of the cytokines TNF, IL-1, IL-6, IL-8 and IL-12 and trigger the inflammatory response, which is critical to containing bacterial infection in the tissues. However, if infection disseminates in the blood, the widespread activation of phagocytes in the bloodstream is catastrophic. Increase in the numbers of circulating neutrophils, or neutrophilia, is driven by effects of colony stimulating factors, such as G-CSF.

Time course of sepsis. The clinical manifestations of sepsis are manifested by successive waves of the serum cytokine cascade. In humans injected with purified LPS, TNF rises almost immediately and peaks at 1.5 h; the sharp decline of TNF may be due to modulation by its soluble receptor sTNFR. A second wave of cytokines that peaks at 3 h activates the acute-phase response
in the liver, the systemic pituitary response (via IL-6 and IL-1), and the activation and chemotaxis of neutrophils (via IL-6, IL-8 and  G-CSF). Neutrophil activation results in the release of lactoferrin from neutrophil secondary granules; the activation of endothelial procoagulants with the rise of tissue plasminogen activator (t-PA). Pituitary-derived adrenocorticotropic hormone (ACTH)  and migration inhibition factor (MIF) peak at 5 h and coincide with peak levels of the regulatory cytokines IL-Ra and IL-10 that counteract the release or activity of inflammatory cytokines. Diffuse endothelial activation is shown by the appearance of soluble E-selectin that peaks at about 8 h and remains elevated for several days.

Susceptibility to LPS Toxicity in Gene Knockout Mice

High LPS; Low LPS/D-Gal



LPS recognition

phagocyte function

caspase 1
The proteins encoded by the deleted genes are listed. SR-A is scavenger receptor A; Hck and Fgr are Src-family kinases with an essential role in integrin-mediated migration of neutrophils out of the bloodstream.

The Immune Response to Bacterial InfectionSepsis Syndrome: Bacterial Endotoxin
Chapter 9-3.  2007. p 232-233. New Science Press Ltd

Related articles

Read Full Post »