Feeds:
Posts
Comments

Posts Tagged ‘immunomodulatory’


Issues Need to be Resolved With Immuno-Modulatory Therapies: NK cells, mAbs, and adoptive T cells

Curator: Stephen J. Williams, PhD

nihms-618191-f0001NKvaciines

 

 

 

 

 

 

 

 

 

 

 

Immunotherapy. 2014;6(3):309-20. doi: 10.2217/imt.13.175.

Optimizing NKT cell ligands as vaccine adjuvants.

Carreño LJ1Kharkwal SSPorcelli SA.

Author information

Abstract

NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.

 

 

Cancer Res. 2013 Jul 1;73(13):3842-51. doi: 10.1158/0008-5472.CAN-12-1974. Epub 2013 May 23.

Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment.

Baird JR1Fox BASanders KLLizotte PHCubillos-Ruiz JRScarlett UKRutkowski MRConejo-Garcia JRFiering SBzik DJ.

Author information

Abstract

Reversing tumor-associated immunosuppression seems necessary to stimulate effective therapeutic immunity against lethal epithelial tumors. Here, we show this goal can be addressed using cps, an avirulent, nonreplicating uracil auxotroph strain of the parasite Toxoplasma gondii (T. gondii), which preferentially invades immunosuppressive CD11c(+) antigen-presenting cells in the ovarian carcinoma microenvironment. Tumor-associated CD11c(+) cells invaded by cps were converted to immunostimulatory phenotypes, which expressed increased levels of the T-cell receptor costimulatory molecules CD80 and CD86. In response to cps treatment of the immunosuppressive ovarian tumor environment, CD11c(+) cellsregained the ability to efficiently cross-present antigen and prime CD8(+) T-cell responses. Correspondingly, cps treatment markedly increased tumor antigen-specific responses by CD8(+) T cells. Adoptive transfer experiments showed that these antitumor T-cell responses were effective in suppressing solid tumor development. Indeed, intraperitoneal cps treatment triggered rejection of established ID8-VegfA tumors, an aggressive xenograft model of ovarian carcinoma, also conferring a survival benefit in a related aggressive model (ID8-Defb29/Vegf-A). The therapeutic benefit of cps treatment relied on expression of IL-12, but it was unexpectedly independent of MyD88 signaling as well as immune experience with T. gondii. Taken together, our results establish that cps preferentially invades tumor-associated antigen-presenting cells and restores their ability to trigger potent antitumor CD8(+) T-cell responses. Immunochemotherapeutic applications of cps might be broadly useful to reawaken natural immunity in the highly immunosuppressive microenvironment of most solid tumors.

 

Oncoimmunology. 2013 Jun 1;2(6):e24677. Epub 2013 Apr 29.

TLR3 agonists improve the immunostimulatory potential of cetuximab against EGFR+ head and neck cancer cells.

Ming Lim C1Stephenson RSalazar AMFerris RL.

Author information

Abstract

Toll-like receptor 3 (TLR3) agonists have been extensively used as adjuvants for anticancer vaccines. However, their immunostimulatory effects and precise mechanisms of action in the presence of antineoplastic monoclonal antibodies (mAbs) have not yet been evaluated. We investigated the effect of TLR3 agonists on cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) against head and neck cancer (HNC) cells, as well as on dendritic cell (DC) maturation and cross-priming of epidermal growth factor receptor (EGFR)-specific CD8+ T cells. The cytotoxic activity of peripheral blood mononuclear cells (PBMCs) or isolated natural killer (NK) cells expressing polymorphic variants (at codon 158) of the Fcγ receptor IIIa (FcγIIIa) was determined in 51Cr release assays upon incubation with the TLR3 agonist poly-ICLC. NK cell stimulation was measured based on activation and degranulation markers, while DC maturation in the presence of poly-ICLC was assessed using flow cytometry. The DC-mediated cross priming of EGFR-specific CD8+ T cells was monitored upon in vitro stimulation with tetramer-based flow cytometry. TLR3-stimulated, unfractionated PBMCs from HNC patients mediated robust cetuximab-dependent ADCC, which was abrogated by NK-cell depletion. The cytolytic activity of TLR3-stimulated NK cells differed among cells expressing different polymorphic variants of FcγRIIIa, and NK cells exposed to both poly-ICLC and cetuximab expressed higher levels of CD107a and granzyme B than their counterparts exposed to either stimulus alone. Poly-ICLC plus cetuximab also induced a robust upregulation of CD80, CD83 and CD86 on the surface of DCs, a process that was partially NK-cell dependent. Furthermore, DCs matured in these conditions exhibited improved cross-priming abilities, resulting in higher numbers of EGFR-specific CD8+ T cells. These findings suggest that TLR3 agonists may provide a convenient means to improve the efficacy of mAb-based anticancer regimens.

Ann Oncol. 2012 Sep; 23(Suppl 8): viii6–viii9.

doi:  10.1093/annonc/mds256

PMCID: PMC4085883

Immuno-oncology: understanding the function and dysfunction of the immune system in cancer

  1. J. Finn*

Interactions between the Immune System and Cancer

Evidence has been accumulating since the middle of the last century, first from animal models and later from studies in cancer patients, that the immune system can recognise and reject tumours. The goal of tumour immunology has been to understand the components of the immune system that are important for tumour immunosurveillance and tumour rejection to understand how, when, and why they fail in cases of clinical disease. Immunotherapy, which involves strengthening the cancer patient’s immune system by improving its ability to recognise the tumour or providing a missing immune effector function, is one treatment approach that holds promise of a life-long cure [4].

Studies of cancer–immune system interactions have revealed that every known innate and adaptive immune effector mechanism participates in tumour recognition and control [5]. The first few transformed cells are detected by NK cells through their encounter with specific ligands on tumour cells. This leads to the destruction of some transformed cells and the uptake and processing of their fragments by macrophages and dendritic cells. In turn, these macrophages and dendritic cells are activated to secrete many inflammatory cytokines and present tumour cell-derived molecules to T- and B cells. Activation of T- and B cells leads to the production of additional cytokines that further promote activation of innate immunity and support the expansion and production of tumour-specific T cells and antibodies, respectively. The full power of the adaptive immune system leads to the elimination of remaining tumour cells and, importantly, to the generation of immune memory to specific tumour components that will serve to prevent tumour recurrence.

Effectors of adaptive immunity, such as CD4+ helper T cells, CD8+ cytotoxic T cells, and antibodies, specifically target tumour antigens; i.e. molecules expressed in tumour cells, but not in normal cells. Tumour antigens are normal cellular proteins that are abnormally expressed as a result of genetic mutations, quantitative differences in expression, or differences in posttranslational modifications [5]. In tumour types that have a well-documented viral origin, such as cervical cancer, caused by the human papillomavirus [5], or hepatocellular carcinoma caused by the hepatitis B virus [6], viral proteins can also serve as tumour antigens and targets for antitumour immune response [7].

The first indication that tumours carried molecules distinct from those on the normal cell of origin was derived from immunising mice with human tumours and selecting antibodies that recognised human tumour cells but not their normal counterparts. The major question was whether some, or all, of these molecules would also be recognised by the human immune system. 2011 was an important anniversary for human tumour immunology, marking 20 years since the publication by van der Bruggen et al. [8] that described the cloning of MAGE-1, a gene that encodes a human melanoma antigen recognised by patient’s antitumour T cells. This was not a mutant protein; its recognition by the immune system was due to the fact that it was only expressed by transformed, malignant cells and, with the exception of testicular germ cells, was not expressed in normal adult tissue. Many similar discoveries followed, with each new molecule providing a better understanding of what might be good targets for different forms of cancer immunotherapy. Tumour antigens have been tested as vaccines, as targets for monoclonal antibodies, and as targets for adoptively transferred cytotoxic T cells. There is a wealth of publications from preclinical studies targeting these antigens and results from phase I/II clinical trials. Recently, these studies were critically reviewed and a list of tumour antigens with the largest body of available data compiled [9]. The goal was to encourage faster progress in the design, testing, and approval of immunotherapeutic reagents that incorporate or target the most promising antigens.

 

As highlighted in the article two scenarios which present problems emerged:

  1. In the past, immunotherapy was referred to as ‘passive’ (e.g. the infusion of preformed immune effectors, such as antibodies, cytokines, or activated T cells, NK cells, or lymphokine-activated killer cells), presumably acting directly on the tumour and independent of the immune system or ‘active’ (e.g. vaccines), designed to activate and therefore be dependent on the patient’s immune system. it has since become clear that both passive and active immunotherapies depend on the patient’s immune system for long-term tumour control or complete tumour elimination. anticancer monoclonal antibodies are a well-established class of immunotherapeutic agent. HOWEVER, The potential of these antibodies is drastically undermined by their administration relatively late in the disease course, when the patient’s immune system is largely compromised. Under more optimal conditions, antibody treatment might result not only in the direct cytostatic or cytotoxic effect on the tumour cell, but also in the loading of antibody-bound tumour antigens onto antigen presenting cells (APC) in the tumour microenvironment. The resultant cross-presentation to antitumour T- and B cells could result in additional antibodies to these antigens being produced, and propagation of the immune response at the tumour site would maintain tumour elimination long after the infused monoclonal antibody is gone.
  2. The same scenario could be predicted for adoptively transferred T cells. Unlike antibodies, transferred T cells persist longer and may provide a memory response [14]; however, as long as the memory response is restricted to one clone, or a limited number of clones, then antigen-negative tumours will be able to escape. In addition, cancer vaccines encounter large numbers of immunosuppressive Tregand MDSC in circulation, as well as immunosuppressive cell-derived soluble products that flood the lymph nodes, preventing maturation of APCs and activation of T cells. Even when vaccines are delivered in the context of ex vivo matured and activated dendritic cells, their ability to activate T cells is compromised by the high-level expression of various molecules on T cells that block this process.

The scenarios proposed above present a rather bleak picture of the potential of immunotherapy to achieve the cure for cancer that has eluded standard therapy [15]. Interestingly, failures of some standard therapies are beginning to be ascribed to their inability to activate the patient’s immune system [16]. However, rather than seeing the picture as a deterrent, it should be considered as a road map, providing at least two major directions for new developments in immunotherapy.

The first direction is to continue using the old classes of immunotherapy that target the cancer directly, but to use them in combination with therapies that target the immune system in the tumour microenvironment, such as cytokines, suppressors of Treg or MDSC activity, or antibodies that modulate T-cell activity. The recently approved antibody, ipilimumab, which acts to sustain cytotoxic T-cell activity by augmenting T-cell activation and proliferation, is one example of such an immunomodulatory agent [17].

The other direction is to use immunotherapies, both old and new, for preventing cancer in individuals at high risk [18]. Studies of the tumour microenvironment are providing information about immunosurveillance of tumours from early premalignant lesions to more advanced dysplastic lesions to cancer. At each step, tumour-derived and immune system-derived components have a unique composition that will have distinct effects on immunotherapy. Because these premalignant microenvironments are less developed and immunosuppression is less entrenched, it should be easier to modulate towards the elimination of abnormal cells.

 

Cancer Immunol Immunother. 2011 Sep;60(9):1309-17. doi: 10.1007/s00262-011-1038-y. Epub 2011 May 28.

Tumor immunotherapy using adenovirus vaccines in combination with intratumoral doses of CpG ODN.

Geary SM1Lemke CDLubaroff DMSalem AK.

Author information

Abstract

The combination of viral vaccination with intratumoral (IT) administration of CpG ODNs is yet to be investigated as an immunotherapeutic treatment for solid tumors. Here, we show that such a treatment regime can benefit survival of tumor-challenged mice. C57BL/6 mice bearing ovalbumin (OVA)-expressing EG.7 thymoma tumors were therapeutically vaccinated with adenovirus type 5 encoding OVA (Ad5-OVA), and the tumors subsequently injected with the immunostimulatory TLR9 agonist, CpG-B ODN 1826 (CpG), 4, 7, 10, and 13 days later. This therapeutic combination resulted in enhanced mean survival times that were more than 3.5× longer than naïve mice, and greater than 40% of mice were cured and capable of resisting subsequent tumor challenge. This suggests that an adaptive immune response was generated. Both Ad5-OVA and Ad5-OVA + CpG IT treatments led to significantly increased levels of H-2 K(b)-OVA-specific CD8+ lymphocytes in the peripheral blood and intratumorally. Lymphocyte depletion studies performed in vivo implicated both NK cells and CD8+ lymphocytes as co-contributors to the therapeutic effect. Analysis of tumor infiltrating lymphocytes (TILs) on day 12 post-tumor challenge revealed that mice treated with Ad5-OVA + CpG IT possessed a significantly reduced percentage of regulatory T lymphocytes (Tregs) within the CD4+ lymphocyte population, compared with TILs isolated from mice treated with Ad5-OVA only. In addition, the proportion of CD8+ TILs that were OVA-specific was reproducibly higher in the mice treated with Ad5-OVA + CpG IT compared with other treatment groups. These findings highlight the therapeutic potential of combining intratumoral CpG and vaccination with virus encoding tumor antigen.

 

Adv Drug Deliv Rev. 2009 Mar 28;61(3):268-74. doi: 10.1016/j.addr.2008.12.005. Epub 2009 Jan 7.

CpG oligonucleotide as an adjuvant for the treatment of prostate cancer.

Lubaroff DM1Karan D.

Author information

Abstract

The use of an adenovirus transduced to express a prostate cancer antigen (PSA) as a vaccine for the treatment of prostate cancer has been shown to be active in the destruction of antigen-expressing prostate tumor cells in a pre-clinical model, using Balb/C or PSA transgenic mice. The destruction of PSA-secreting mouse prostate tumors was observed in Ad/PSA immunized mice in a prophylaxis study with 70% of the mice surviving long term tumor free. This successful immunotherapy was not observed in therapeutic studies in which tumors were established before vaccination and the development of anti-PSA immune response was not as easily generated in PSA transgenic mice. Immunization of conventional and transgenic animals was enhanced by incorporating a collagen matrix into the immunizing injection. Therefore the need to strengthen anti-PSA and anti-prostate cancer immunity was an obvious next step in developing a successful prostate cancer immunotherapy. Because the use ofimmunostimulatory CpG motifs was shown to enhance immune responses to a wide variety of antigens, our studies incorporated CpG into the Ad/PSA vaccine experimental plans. The results of the subsequent studies demonstrated a dichotomy where Ad/PSA plus CpG enhanced the in vivo destruction of PSA-secreting tumors and the survival of experimental animals, but revealed that the number and in vitro activities of antigen specific CD8+ T cells was decreased as compared to the values observed when the vaccine alone was used for immunization. The dichotomous observations were confirmed using another antigen system, OVA also incorporated into a replication defective adenovirus. Despite the reduction in antigen-specific CD8+ cells after vaccine plus CpG immunization the enhanced destruction of sc and systemic tumors was shown to be mediated entirely by CD8+ T cells. Finally, the reduction of the CD8+ T cells was the result of an observed decrease in the proliferation of the antigen specific cell population.

J Invest Dermatol. 2004 Aug;123(2):371-9.

 

CpG motifs are efficient adjuvants for DNA cancer vaccines.

Schneeberger A1Wagner CZemann ALührs PKutil RGoos MStingl GWagner SN.

Author information

Abstract

DNA vaccines can induce impressive specific cellular immune response (IR) when taking advantage of their recognition as pathogen-associated molecular patterns (PAMP) through Toll-like receptors (TLR) expressed on/in cells of the innate immune system. Among the many types of PAMP,immunostimulatory DNA, so-called CpG motifs, was shown to interact specifically with TLR9, which is expressed in plasmacytoid dendritic cells(pDC), a key regulatory cell for the activation of innate and adaptive IR. We now report that CpG motifs, when introduced into the backbone, are a useful adjuvant for plasmid-based DNA (pDNA) vaccines to induce melanoma antigen-specific protective T cell responses in the Cloudman M3/DBA/2 model. The CpG-enriched pDNA vaccine induced protection against subsequent challenge with melanoma cells at significantly higher levels than its parental unmodified vector. Preferential induction of an antigen-specific, protective T cell response could be demonstrated by (i) induction of antigen-dependent tumor cell protection, (ii) complete loss of protection by in vivo CD4+/CD8+T cell- but not NK cell-depletion, and (iii) the detection of antigen-specific T cell responses but not of relevant NK cell activity in vitro. These results demonstrate that employing PAMP in pDNA vaccines improves the induction of protective, antigen-specific, T cell-mediated IR.

 

J Biomed Sci. 2016 Jan 25;23(1):16. doi: 10.1186/s12929-016-0238-3.

Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine.

Gableh F1Saeidi M2Hemati S3Hamdi K4Soleimanjahi H5Gorji A6,7,8Ghaemi A9,10,11.

Author information

Abstract

BACKGROUND:

DNA vaccines have emerged as an attractive approach for the generation of cytotoxic T lymphocytes (CTL). In our previous study, we found That Toll like receptor (TLR) ligands are promising candidates for the development of novel adjuvants for DNA vaccine. To improve the efficacy of DNA vaccine directed against human papillomavirus (HPV) tumors, we evaluated whether co-administration of a TLR4 ligand, monophosphoryl lipid A (MPL), and Natural Killer T Cell Ligand α-Galactosylceramide(α-GalCer) adjuvants with DNA vaccine would influence the anti-tumor efficacy of DNA vaccinations.

METHODS:

We investigated the effectiveness of α-GalCer and MPL combination as an adjuvant with an HPV-16 E7 DNA vaccine to enhance antitumor immune responses.

RESULTS:

By using adjuvant combination for a DNA vaccine, we found that the levels of lymphocyte proliferation, CTL activity, IFN- γ, IL-4 and IL-12 responses, and tumor protection against TC-1 cells were significantly increased compared to the DNA vaccine with individual adjuvants. In addition, inhibition of IL-18 signaling during vaccination decreased IFN-γ responses and tumor protection, and that this inhibition suggested stimulatory role of IL-18 in adjuvant effects of α-GalCer and MPL combination.

CONCLUSION:

The strong adjuvanticity associated with α-GalCer/MPL combination may to be an important tool in the development of novel and strong cancer immunotherapy.

Cancer Sci. 2015 Dec;106(12):1659-68. doi: 10.1111/cas.12824. Epub 2015 Nov 18.

Adjuvant for vaccine immunotherapy of cancer – focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity.

Seya T1Shime H1Takeda Y1Tatematsu M1Takashima K1Matsumoto M1.

Author information

Abstract

Immune-enhancing adjuvants usually targets antigen (Ag)-presenting cells to tune up cellular and humoral immunity. CD141(+) dendritic cells (DC) represent the professional Ag-presenting cells in humans. In response to microbial pattern molecules, these DCs upgrade the maturation stage sufficient to improve cross-presentation of exogenous Ag, and upregulation of MHC and costimulators, allowing CD4/CD8 T cells to proliferate and liberating cytokines/chemokines that support lymphocyte attraction and survival. These DCs also facilitate natural killer-mediated cell damage. Toll-like receptors (TLRs) and their signaling pathways in DCs play a pivotal role in DC maturation. Therefore, providing adjuvants in addition to Ag is indispensable for successful vaccine immunotherapy for cancer, which has been approved in comparison with antimicrobial vaccines. Mouse CD8α(+) DCs express TLR7 and TLR9 in addition to the TLR2 family (TLR1, 2, and 6) and TLR3, whereas human CD141(+) DCs exclusively express the TLR2 family and TLR3. Although human and mouse plasmacytoid DCs commonly express TLR7/9 to respond to their agonists, the results on mouse adjuvant studies using TLR7/9 agonists cannot be simply extrapolated to human adjuvant immunotherapy. In contrast, TLR2 and TLR3 are similarly expressed in both human and mouse Ag-presenting DCs. Bacillus Calmette-Guerin peptidoglycan and polyinosinic-polycytidylic acid are representative agonists for TLR2 and TLR3, respectively, although they additionally stimulate cytoplasmic sensors: their functional specificities may not be limited to the relevant TLRs. These adjuvants have been posted up to a certain achievement in immunotherapy in some cancers. We herein summarize the history and perspectives of TLR2 and TLR3 agonists in vaccine-adjuvant immunotherapy for cancer.

Adv Exp Med Biol. 2015;850:81-91. doi: 10.1007/978-3-319-15774-0_7.

Molecular Programming of Immunological Memory in Natural Killer Cells.

Beaulieu AM1Madera SSun JC.

Author information

Abstract

Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells have traditionally been classified as a component of the innate immune system, they have recently been shown in mice and humans to exhibit certain features of immunological memory, including an ability to undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e. memory cells), and mediate recall responses against previously encountered pathogens–all characteristics previously ascribed only to adaptive immune responses by B and T cells in mammals. To date, the molecular events that govern the generation of NK cell memory are not completely understood. Using a mouse model of cytomegalovirus infection, we demonstrate that individual pro-inflammatory IL-12, IL-18, and type I-IFN signaling pathways are indispensible and play non-redundant roles in the generation of virus-specific NK cell memory. Furthermore, we discovered that antigen-specific proliferation and protection by NK cells is mediated by the transcription factor Zbtb32, which is induced by pro-inflammatory cytokines and promotes a cell cycle program in activated NK cells. A greater understanding of the molecular mechanisms controlling NK cell responses will provide novel strategies for tailoring vaccines to target infectious disease.

 

Read Full Post »


Humanized Mice May Revolutionize Cancer Drug Discovery

 

Curator: Stephen J. Williams, Ph.D.

Decades ago cancer research and the process of oncology drug discovery was revolutionized by the development of mice deficient in their immune system, allowing for the successful implantation of human-derived tumors. The ability to implant human tumors without rejection allowed researchers to study how the kinetics of human tumor growth in its three-dimensional environment, evaluate potential human oncogenes and drivers of oncogenesis, and evaluate potential chemotherapeutic therapies. Indeed, the standard preclinical test for antitumor activity has involved the subcutaneous xenograft model in immunocompromised (SCID or nude athymic) mice. More detail is given in the follow posts in which I describe some early pioneers in this work as well as the development of large animal SCID models:

Heroes in Medical Research: Developing Models for Cancer Research

The SCID Pig: How Pigs are becoming a Great Alternate Model for Cancer Research

The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research

This strategy (putting human tumor cells into immunocompromised mice and testing therapeutic genes and /or compounds) has worked extremely well for most cytotoxic chemotherapeutics (those chemotherapeutic drugs with mechanisms of action related to cell kill, vital cell functions, and cell cycle). For example the NCI 60 panel of human tumor cell lines has proved predictive for the chemosensitivity of a wide range of compounds.

Even though the immunocompromised model has contributed greatly to the chemotherapeutic drug discovery process. using these models to develop the new line of immuno-oncology products has been met with challenges three which I highlight below with curated database of references and examples.

From a practical standpoint development of a mouse which can act as a recipient for human tumors yet have a humanized immune system allows for the preclinical evaluation of antitumoral effect of therapeutic antibodies without the need to use neutralizing antibodies to the comparable mouse epitope,   thereby reducing the complexity of the study and preventing complications related to pharmacokinetics.

Champions Oncology Files Patents for Use of PDX Platform in Immune-Oncology

Hackensack, NJ – August 17, 2015 – Champions Oncology, Inc. (OTC: CSBR), engaged in the development of advanced technology solutions and services to personalize the development and use of oncology drugs, today announced that it has filed two patent applications with the United States Patent and Trademark Office (USPTO) relating to the development and use of mice with humanized immune systems to test immune-oncology drugs and therapeutic cancer vaccines.

Dr. David Sidransky, the founder and Chairman of Champions Oncology commented, “Drug development ‎in the immune-oncology space is fundamentally changing our approach to cancer treatment. These patents represent potentially invaluable tools for developing and personalizing immune therapy based on cutting edge sequence analysis, bioinformatics and our unique in vivo models.”

Joel Ackerman, Chief Executive Officer of Champions Oncology stated, “Developing intellectual property related to our Champions TumorGraft® platform has been an important component of strategy. The filing of these patents is an important milestone in leveraging our research and development investment to expand our platform and create proprietary tools for use by our pharmaceutical partners. We continue to look for additional revenue streams to supplement our fee-for-service business and we believe these patents will help us capture more of the value we create for our customers in the future.”

The first patent filing covers the methodology used by the Company to create a mouse model, containing a humanized immune system and a human tumor xenograft, which is capable of testing the efficacy of immune-oncology agents, both as single agents and in combination with anti-neoplastic drugs. The second patent filing relates to the detection of neoantigens and their role in the development of anti-cancer vaccines.

Keren Pez, Chief Scientific Officer, explained, “In the last few years, there has been a significant increase in cancer research that focuses on exploring the power of the human immune system to attack tumors. However, it’s challenging to test immune-oncology agents in traditional animal models due to the major differences between human and murine immune systems. The Champions ImmunoGraft™ platform has the unique ability of mimicking a human adaptive immune response in the mice, which allows us to specifically evaluate a variety of cancer therapeutics that modulate human immunity.

“Therapeutic vaccines that trigger the immune system to mount a response against a growing tumor are another area of intense interest. The development of an effective vaccine remains challenging but has an outstanding curative potential. Tumors harbor mutations in DNA that result in the translation of aberrant proteins. While these proteins have the potential to provoke an immune response that destructs early-stage cancer development, often the immune response becomes insufficient. Vaccines can trigger it by proactively challenging the system with these specific mutated peptides. Nevertheless, developing anti-cancer vaccines that effectively inhibit tumor growth has been complicated, partially due to challenges in finding the critical mutations, among others difficulties. With the more recent advances in genome sequencing, it’s now possible to identify tumor-specific antigens, or neoantigens, that naturally develop as an individual’s tumor grows and mutates,” she continued.

Traumatic spinal cord injury in mice with human immune systems.

Carpenter RS, Kigerl KA, Marbourg JM, Gaudet AD, Huey D, Niewiesk S, Popovich PG.

Exp Neurol. 2015 Jul 17;271:432-444. doi: 10.1016/j.expneurol.2015.07.011. [Epub ahead of print]

Inflamm Bowel Dis. 2015 Jul;21(7):1652-73. doi: 10.1097/MIB.0000000000000446.

Use of Humanized Mice to Study the Pathogenesis of Autoimmune and Inflammatory Diseases.

Koboziev I1, Jones-Hall Y, Valentine JF, Webb CR, Furr KL, Grisham MB.

Author information

Abstract

Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases and assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient’s bedside, it is becoming increasingly apparent that the mouse immune system is substantially different from the human. Indeed, it is well known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation, and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system to address important human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hematolymphoid cells in mice would provide investigators with a relatively inexpensive small animal model to study clinically relevant mechanisms and facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic inflammatory diseases. In addition, we discuss the use of these unique mouse models to define the human-specific immunopathological mechanisms responsible for the induction and perpetuation of chronic gut inflammation.

J Immunother Cancer. 2015 Apr 21;3:12. doi: 10.1186/s40425-015-0056-2. eCollection 2015.

Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model.

Roth MD1, Harui A1.

Author information

Abstract

BACKGROUND:

The complex interactions that occur between human tumors, tumor infiltrating lymphocytes (TIL) and the systemic immune system are likely to define critical factors in the host response to cancer. While conventional animal models have identified an array of potential anti-tumor therapies, mouse models often fail to translate into effective human treatments. Our goal is to establish a humanized tumor model as a more effective pre-clinical platform for understanding and manipulating TIL.

METHODS:

The immune system in NOD/SCID/IL-2Rγnull (NSG) mice was reconstituted by the co-administration of human peripheral blood lymphocytes (PBL) or subsets (CD4+ or CD8+) and autologous human dendritic cells (DC), and animals simultaneously challenged by implanting human prostate cancer cells (PC3 line). Tumor growth was evaluated over time and the phenotype of recovered splenocytes and TIL characterized by flow cytometry and immunohistochemistry (IHC). Serum levels of circulating cytokines and chemokines were also assessed.

RESULTS:

A tumor-bearing huPBL-NSG model was established in which human leukocytes reconstituted secondary lymphoid organs and promoted the accumulation of TIL. These TIL exhibited a unique phenotype when compared to splenocytes with a predominance of CD8+ T cells that exhibited increased expression of CD69, CD56, and an effector memory phenotype. TIL from huPBL-NSG animals closely matched the features of TIL recovered from primary human prostate cancers. Human cytokines were readily detectible in the serum and exhibited a different profile in animals implanted with PBL alone, tumor alone, and those reconstituted with both. Immune reconstitution slowed but could not eliminate tumor growth and this effect required the presence of CD4+ T cell help.

CONCLUSIONS:

Simultaneous implantation of human PBL, DC and tumor results in a huPBL-NSG model that recapitulates the development of human TIL and allows an assessment of tumor and immune system interaction that cannot be carried out in humans. Furthermore, the capacity to manipulate individual features and cell populations provides an opportunity for hypothesis testing and outcome monitoring in a humanized system that may be more relevant than conventional mouse models.

Methods Mol Biol. 2014;1213:379-88. doi: 10.1007/978-1-4939-1453-1_31.

A chimeric mouse model to study immunopathogenesis of HCV infection.

Bility MT1, Curtis A, Su L.

Author information

Abstract

Several human hepatotropic pathogens including chronic hepatitis C virus (HCV) have narrow species restriction, thus hindering research and therapeutics development against these pathogens. Developing a rodent model that accurately recapitulates hepatotropic pathogens infection, human immune response, chronic hepatitis, and associated immunopathogenesis is essential for research and therapeutics development. Here, we describe the recently developed AFC8 humanized liver- and immune system-mouse model for studying chronic hepatitis C virus and associated human immune response, chronic hepatitis, and liver fibrosis.

PMID:

25173399

[PubMed – indexed for MEDLINE]

PMCID:

PMC4329723

Free PMC Article

Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients.

Werner-Klein M, Proske J, Werno C, Schneider K, Hofmann HS, Rack B, Buchholz S, Ganzer R, Blana A, Seelbach-Göbel B, Nitsche U, Männel DN, Klein CA.

PLoS One. 2014 May 15;9(5):e97860. doi: 10.1371/journal.pone.0097860. eCollection 2014.

From 2015 AACR National Meeting in Philadelphia

LB-050: Patient-derived tumor xenografts in humanized NSG mice: a model to study immune responses in cancer therapy
Sunday, Apr 19, 2015, 3:20 PM – 3:35 PM
Minan Wang1, James G. Keck1, Mingshan Cheng1, Danying Cai1, Leonard Shultz2, Karolina Palucka2, Jacques Banchereau2, Carol Bult2, Rick Huntress2. 1The Jackson Laboratory, Sacramento, CA; 2The Jackson Laboratory, Bar Harbor, ME

 

References

  1. Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR. J Natl Cancer Inst. 1989;81:1088–1092. [PubMed]
  2. Shi LM, Fan Y, Lee JK, Waltham M, Andrews DT, Scherf U, Paull KD, Weinstein JN. J Chem Inf Comput Sci. 2000;40:367–379. [PubMed]
  3. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, et al. J Natl Cancer Inst. 1991;83:757–766. [PubMed]
  4. Potti A, Dressman HK, Bild A, et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med. 2006;12:1294–1300. [PubMed]
  5. Baggerly KA, Coombes KR. Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology. Ann Appl Stat. 2009;3:1309–1334.
  6. Carlson, B. Putting Oncology Patients at Risk Biotechnol Healthc. 2012 Fall; 9(3): 17–21.
  7. Salter KH, Acharya CR, Walters KS, et al. An Integrated Approach to the Prediction of Chemotherapeutic Response in Patients with Breast Cancer. Ouchi T, ed. PLoS ONE. 2008;3(4):e1908. NOTE RETRACTED PAPER

 

Other posts on this site on Animal Models, Disease and Cancer Include:

 

Heroes in Medical Research: Developing Models for Cancer Research

Guidelines for the welfare and use of animals in cancer research

Model mimicking clinical profile of patients with ovarian cancer @ Yale School of Medicine

Vaccines, Small Peptides, aptamers and Immunotherapy [9]

Immunotherapy in Cancer: A Series of Twelve Articles in the Frontier of Oncology by Larry H Bernstein, MD, FCAP

Mouse With ‘Humanized Version’ Of Human Language Gene Provides Clues To Language Development

The SCID Pig: How Pigs are becoming a Great Alternate Model for Cancer Research

The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research

 

 

 

Read Full Post »


Author, Editor: Tilda Barliya, PhD

Although melanoma accounts for only 4 percent of all dermatologic cancers, it is responsible for 80 percent of deaths from skin cancer; only 14 percent of patients with metastatic melanoma survive for five years (1). The incidence of melanoma is increasing worldwide, with a growing fraction of patients with advanced disease for which prognosis remains poor despite advances in the field (2). Treatment options are limited despite advances in immunotherapy and targeted therapy. For patients with surgically resected, thick (≥2 mm) primary melanoma with or without regional lymph node metastases, the only effective adjuvant therapy is interferon-α (IFN-α). However, because of the limited benefit upon disease-free survival and the smaller potential improvement of overall survival, the indication for IFN-α treatment remains controversial (2). A better understanding of melanoma immunosurveillance is therefore essential to enable the design of better, targeted melanoma therapies (4).

Risk factors (2):

  • Family history of melanoma, multiple benign or atypical nevi, and a previous melanoma
  • Immunosuppression
  • Sun sensitivity
  • Exposure to ultraviolet radiation

Each of these risk factors corresponds to a genetic predisposition or an environmental stressor that contributes to the genesis of melanoma and each factor is understood to various degrees at a molecular level. The Clark model of the progression of melanoma emphasizes the stepwise transformation of melanocytes to melanoma. The model depicts the proliferation of melanocytes in the process of forming nevi and the subsequent development of dysplasia, hyperplasia, invasion, and metastasis.

 

This Clark’s multi-step model, and predict that the acquisition of a BRAF mutation can be a founder event in melanocytic neoplasia. While mutations of the BRAF gene are frequent in melanomas on non-chronic sun damaged skin which are prevalent in Caucasians, acral and mucosal melanomas harbor mutations of the KIT gene as well as the amplifications of cyclin D1 or cyclin-dependent kinase 4 gene.

The choice of target antigens is key to the success of tumour vaccination or tumour immunotherapy. Melanoma candidate antigens include: (A) mutated or aberrantly expressed molecules (e.g. CDK4, MUM-1, beta-catenin) (B) cancer/testis antigens (e.g. MAGE, BAGE and GAGE) and (C) melanoma- associated antigens (MAA).

MAAs are self-antigens normally expressed during the differentiation of melanocytes and play a role in different enzymatic steps of melanogenesis. However, in transformed melanocytes (melanoma cells), MAAs are often overexpressed (4).

The main MAAs are tyrosinase, an enzyme that catalyses the production of melanin from tyrosine by oxidation, the tyrosinase-related proteins (TRP-1) and 2 (TRP-2), the glycoprotein (gp)100 (silver-gene) and MelanA/MART. It is thought that the specialized cell biology of melanin synthesis may favour the loading of MAA peptides into the antigen presentation pathway. 50% of melanoma patients have tumour-infiltrating lymphocytes (TILs) recognising tyrosinase and Melan A, indicating that these antigens are important in the natural melanoma immunosurveillance. Moreover, MAAs are well characterized in mice and humans, allowing the development of tetramers to detect antigen-specific immune responses.

Tα1 Mechanism of action

Tα1, a 28 amino acid peptide of ∼3.1 kDa, is endogenously produced by the thymus gland by the cleavage of its precursor pro-Ta1.  Although the fine immunologic mechanism(s) of action of T1 have not fully been elucidated, experimental evidence points to its strong immunomodulatory properties. In particular, it was reported that Ta1 enhances T cell–mediated immune responses by several mechanisms, including increased T cell production (i.e., CD4+, CD8+, and CD3+ cells), stimulation of T cell differentiation and/or maturation, reduction of T cell apoptosis, and restoration of T cell–mediated antibody production (5).

Furthermore, it was demonstrated that T1 acts on the immune system by modulating the release of proinflammatory cytokines (i.e., interleukin-2 (IL-2), interferon-gamma (IFN-)),12–14 and through the activation of natural killer and dendritic cells.12 In addition, T1 was also demonstrated to have direct effects on cancer cells by increasing the levels of expression of different tumor antigens and of components of the major histocompatibility complex class I, as well as by reducing cancer cell growth.

Together, these experimental findings bear relevance for cancer immunotherapy and suggest that T1 can activate innate and adaptive immune responses and modulate the immunophenotype of cancer cells, improving their immunogenicity and their recognition by the immune system.

Danielli R and colleagues have very nicely outlined the use of the Thymosin a1 in the clinical setting for treating melanoma (5) titled :”Thymosin a1 in melanoma: from the clinical trial setting to the daily practice and beyond”.  A large body of available preclinical in vitro and in vivo evidence points to thymosin alpha 1 (Ta1) as a useful immunomodulatory peptide,with significant therapeutic potential in metastatic melanoma in the absence of clinically meaningful toxicity.  The results emerging frominitial trials provide support of the ability of T1 to improve the clinical outcome of advanced melanoma patients through the activation of the immune system.

Ta1 and Clinical Trials in Melanoma

A large scale, randomized, phase II study was conducted at 64 European centers between 2002 and 2006 to investigate the efficacy of Ta1 administered in combination with DTIC (Dacarbazine) or with DTIC + IFNa, versus only DTIC + IFNa, in 488 previously untreated patients with cutaneous metastatic melanoma. The study was designed to evaluate the ability of Ta1 to potentiate the therapeutic efficacy of DTIC.

Patients were randomly assigned to five treatment groups: DTIC + IFNa and 1.6 mg of Ta1; DTIC + IFNa and 3.2 mg of T1; DTIC + IFN-a and 6.4 mg of Ta1; DTIC + 3.2 mg of Ta1; and DTIC + IFNa

Results:

The clinical rate (CBR), defined as the proportion of patients with a complete response, partial response, or stable disease, was significantly higher in patients who received Ta1 + DTIC than in those who received control therapy. Results in patients who received T1 (all groups combined) compared with those who received the control treatment

  • Improved progression-free survival (hazard ratio (HR): 0.80;
  • 95%confidence interval (CI): 0.63–1.01; P = 0.06) and
  • OS (median: 9.4 vs. 6.6 months)

These outcomes suggested to addition of Thymosin a1 to the treatment resulted in the reduction in the risk of mortality and disease progression in patients with metastatic malignant melanoma, and pointed to a poor effect of IFN- in the combination. More so, the poor results of the IFN group is not surprising due to the limited therapeutic activity of IFN observed in phase III clinical trials.

This study however have some limitations as standard assessment criteria, such as RECIST and WHO indications,  conventionally applied to cytotoxic agents, do not adequately capture some patterns of response observed in the course of immunotherapy; stemming from these considerations, immune-related response criteria (irRC) were developed to measure primary and secondary endpoints in immunotherapy clinical trials.

Therefore the above study might underestimate the therapeutic efficacy of Thymosin a1 since irRC criteria were not used.

In Summary:

A large scale phase III clinical trial should be designed to further explore the therapeutic activity of Thymosine a1 in melanoma patients with defined endpoints and irRC criteria. Moreover, combination studies should explore the activity of T1 in association with other approved agents, such as ipilimumab and vemurafenib or as maintenance therapy in melanoma patients who experience clinical benefit after treatment with these agents.

Also, because of the pleiotropic immunemechanism(s) of action of T1, including the upregulation of T cell–driven immune responses against specific tumor antigens, priming of immune responses and potentiation of antitumor T cell–mediated immune responses through the activation of Toll-like receptor 9 on dendritic cells, coupling Ta1 to cancer vaccines should be an additional useful therapeutic strategy to pursue. T1 could, in fact, prove helpful in overcoming the limited immunogenicity and the short-lived persistency of adequate immunologic antitumor responses frequently reported as potential causes of failure of therapeutic vaccines.

Ref:

1. Arlo J. Miller, M.D.,., and Martin C. Mihm, Jr. Mechanisms of disease: Melanoma. N Engl J Med 2006 (6); 355:51-65.

http://www.nejm.org.rproxy.tau.ac.il/doi/pdf/10.1056/NEJMra052166

http://www.nejm.org/doi/full/10.1056/NEJMra052166

2. Garbe C., Eigentler TK., Keilholz U., Hauschild A and Kirkwood JM. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 2011;16(1):5-24.

http://theoncologist.alphamedpress.org/content/16/1/5.long

3. http://flipper.diff.org/app/items/info/1983

4.  Träger U, Sierro S, Djordjevic G, Bouzo B, Khandwala S, et al. (2012) The Immune Response to Melanoma Is Limited by Thymic Selection of Self-Antigens. PLoS ONE 7(4): e35005. doi:10.1371/journal.pone.0035005.

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0035005

5. Riccardo Danielli, Ester Fonsatti, Luana Calabr` o, Anna Maria Di Giacomo, and Michele Maio. Thymosin 1 in melanoma: from the clinical trial setting to the daily practice and beyond. Ann. N.Y. Acad. Sci. 1270 (2012) 8–12.

http://www.ncbi.nlm.nih.gov/pubmed/16822996

http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2012.06757.x/abstract

Read Full Post »