Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Amish’


Populations with Low Cancer Risk, Implications for Early Detection Research

Curator: Stephen J. Williams, Ph.D.

Amish Have Lower Rates Of Cancer, Ohio State Study Shows

Report from Ohio State University
COLUMBUS, Ohio – When Ohio State University cancer researchers first began studying a large sect of Amish living in Ohio, they theorized they would find higher incidence rates of cancer. That’s because Amish religious beliefs and traditions limit contact with mainstream society, and intermarriage within this relatively small population could increase the incidence of cancer-related gene mutations.

Instead, they found just the opposite, said Dr. Judith Westman, division director of Human Genetics at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James).

The study of Amish suggests that clean living can lead to healthier life. Overall cancer rates in this population were 60 percent of the age-adjusted rate for Ohio and 56 percent of the national rate. The incidence of tobacco-related cancers in the Amish adults was 37 percent of the rate for Ohio adults, and the incidence of non-tobacco-related cancer was 72 percent.

“The Amish are at an increased risk for a number of genetic disorders but they probably have protection against many types of cancer both through their lifestyle – there is very little tobacco or alcohol use and limited sexual partners – and through genes that may reduce their susceptibility to cancer,” said Westman, who co-authored the study with OSUCCC-James researcher Amy K. Ferketich, who specializes in epidemiology.

The findings were reported in a recent issue of the journal Cancer Causes & Control. The study, which spanned 1996-2003 and is the first of its kind, looked at the incidence of 24 types of cancer in the Amish population. Of the 24 types of cancer studied, the incidence of seven of them – cervical, laryngeal, lung, oral cavity/pharyngeal, melanoma, breast and prostate – was low enough compared with the Ohio rate to be statistically significant.

Westman and Ferketich chose to study the Amish to gain a better understanding of the contributions of environment and genetics to developing cancer. Ohio is home to the largest Amish population in the world, and of the approximately 26,000 Amish living in Holmes County, all descended from the same 100 people who immigrated here 200 years ago.

Researchers interviewed 92 Amish families as part of a cross-sectional household survey and charted their family cancer histories obtaining cancer information on all relatives back three generations and as far forward as possible. For example, researchers interviewing a set of grandparents could gather cancer information on both their ancestors and descendants, said Ferketich.

The study population consisted of 9,992 Amish adults residing in the Holmes County area. Researchers also collected death certificates and cross-checked cancer cases reported to the Ohio Cancer Incidence and Surveillance System. Between 1996 and 2003, there were 191 incident cancer cases identified.

“Because this is a small, relatively closed population, we needed to interview just 92 families to cover 90 percent of the population in Holmes County,” said Ferketich.

The low cancer incidence in the Ohio Amish may be partially explained by lifestyle factors such as limited tobacco consumption and lack of sexual promiscuity. The Amish, as a whole, consume very little tobacco and alcohol, and they lead active, labor-intensive lives as farmers, construction laborers and factory workers.

“One of the things we can learn from the Amish is that they don’t typically smoke or use tobacco products,” Westman said. “They have limited sexual partners and monogamous relationships, so they don’t have some of the cancers that are related to sexual promiscuity.”

Even skin cancer rates are lower for Amish, despite the fact though many Amish make their living working outdoors where they are exposed to sunlight and UV rays.

“They are typically covered and dress to work in the sun the way that is recommended by wearing wide-brimmed hats and generally wearing long sleeves to protect their arms,” Westman said.

Other Ohio State researchers involved in the study include Steven N. MacEachern, J.R. Wilkins III, Robert T. Pilarski, Rebecca Nagy, Stanley Lemeshow, Albert de la Chapelle and Clara D. Bloomfield.

The study was funded by the Ohio Division of the American Cancer Society, National Institutes of Health and the Leukemia Clinical Research Foundation.

Advertisements

Read Full Post »


1:00PM 11/13/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

1:00 p.m. Panel Discussion Genomics in Prenatal and Childhood Disorders

Genomics in Prenatal and Childhood Disorders

     Moderator:

David Sweetser, M.D., Ph.D.
Unit Chief, Division of Medical Genetics; Attending Physician in Pediatric Hematology/Oncology,
Massachusetts General Hospital for Children

Genomics revolutionized medicine and genetic variation in a larger scale

Cases one on Causing Autism – mutations in a gene of synapse formation, clinical trials

Treatment: IGF1

Genetics: embryo – implant only the healthy embryo – newborn comprehensive genetics testing in the medical record integrated – Standard language of GENE-DRUG interaction not only drug-drug interaction

Potential Harms: May or may not happen disease – stigma issues

Explaining to parents the conditions is very difficult for MDs

Panelists:

3. Diana Bianchi, M.D.
Executive Director, Mother Infant Research Institute;
Vice Chair for Research and Academic Affairs,
Department of Pediatrics; Attending Geneticists and Neonatologist;
Natalie V. Zucker Professor, Tufts University School of Medicine

Medical Geneticist – Pediatrics

  • Prenatal screening and diagnosis – chromosomal abnormality – Down Syndrome, testing is more precise 70% fewer procedures to correct defects due to screening prenatally.
  • Prenatal diagnostics — patient is not in front of us, ultrasound examination, options to terminate pregnancies, genetic counseling — changed due to Genomics
  • Prenatal treatment to down syndrome before the birth – Transcriptomic approach, treat the fetus prebirth
  • Standard of care – all pregnant women – must receive from MD the option for screening for down syndrome, it is a test positive or negative
  • NOW – DNA allows to test for  fetal sex, chromosome in maternal circulation fetal and maternal genetics — Mother may have chromosomal variation
  • high false positive – DNA for Down Syndrome, 97% effective Micro duplication only 5%
  • genetics information protection act – sue prospective employer using Genome, life insurance issues
  • most data available is on Down Syndrome, of all parents informed of a fetus with Down Syndrome – 40% continues the pregnancy
  • accuracy in testing, offering choice and treatment are LEADING principles NOT elimination of a disease (i.e. down syndromes)
  • in ten years — GENOME OF EVERY FETUS TO BE SEQUENCE

for reference see Prenatal Treatment of Down’s Syndrome: a Reality?

and ref list by Dr. Bianchi

2. Holmes Morton, M.D. @ClinicSpecChild
Medical Director, Clinic for Special Children

Small population in Lancaster, PA – risk for untreatable disease 52,000 screens 4.2 millions in US are screened Target mutation analysis, diagnosis very effectively. Harrisburg, PA – small scale natural history studies

Carrier testing offered in 70s. Discourages  from marriage, culture reaction is different. Working in the community, clinical practice using exon sequencing, combine population genetics and molecular biology.Translate Genomics to Clinical, small number of risk factors

History of genetics in population important to establish treatment

Upon birth, affected newborns get matching bone marrow transplant, thus, bypass stem cells – Gene therapy is another thing

1. Benjamin Solomon, Ph.D., M.D.
Chief, Division of Medical Genomics,
Inova Translational Medicine Institute

Longer term, statistical model in asthma research,  rigorous process on patient consent, life insurance, mutation that parents also have. Consequences: actionable findings are communicated
135 Genes – sequencing for some conditions
100,000 deliveries 10% ENTER THE STUDY, CASE BY CASE BASIS O PARTICIPATE, WHO SHOULD BE TESTED

Questions from the Podium

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

@HarvardPMConf

#PMConf

@SachsAssociates

@MGH

@MassGeneral

@TuftsMedicalCtr

@MedscapePeds

@ClinicSpecChild

@InovaHealth

Read Full Post »