Feeds:
Posts
Comments

Posts Tagged ‘personalised medicine’


Medcity Converge 2018 Philadelphia: Live Coverage @pharma_BI

Stephen J. Williams: Reporter

 

MedCity CONVERGE is a two-day executive summit that gathers innovative thought leaders from across all healthcare sectors to provide actionable insight on where oncology innovation is heading.

On July 11-12, 2018 in Philadelphia, MedCity CONVERGE will gather technology disruptors, payers, providers, life science companies, venture capitalists and more to discuss how AI, Big Data and Precision Medicine are changing the game in cancer. See agenda.

The conference highlights innovation and best practices across the continuum—from research to technological innovation to transformations of treatment and care delivery, and most importantly, patient empowerment—from some of the country’s most innovative healthcare organizations managing the disease.

Meaningful networking opportunities abound, with executives driving the innovation from diverse entities: leading hospital systems, medical device firms, biotech, pharma, emerging technology startups and health IT, as well as the investment community.

Day 1: Wednesday, July 11, 2018

7:30 AM

2nd Floor – Paris Foyer

Registration + Breakfast

8:15 AM–8:30 AM

Paris Ballroom

Welcome Remarks: Arundhati Parmar, VP and Editor-in-Chief, MedCity News

8:30 AM–9:15 AM

Paris Ballroom

Practical Applications of AI in Cancer

We are far from machine learning dictating clinical decision making, but AI has important niche applications in oncology. Hear from a panel of innovative startups and established life science players about how machine learning and AI can transform different aspects in healthcare, be it in patient recruitment, data analysis, drug discovery or care delivery.

Moderator: Ayan Bhattacharya, Advanced Analytics Specialist Leader, Deloitte Consulting LLP
Speakers:
Wout Brusselaers, CEO and Co-Founder, Deep 6 AI @woutbrusselaers ‏
Tufia Haddad, M.D., Chair of Breast Medical Oncology and Department of Oncology Chair of IT, Mayo Clinic
Carla Leibowitz, Head of Corporate Development, Arterys @carlaleibowitz
John Quackenbush, Ph.D., Professor and Director of the Center for Cancer Computational Biology, Dana-Farber Cancer Institute

9:15 AM–9:45 AM

Paris Ballroom

Opening Keynote: Dr. Joshua Brody, Medical Oncologist, Mount Sinai Health System

The Promise and Hype of Immunotherapy

Immunotherapy is revolutionizing oncology care across various types of cancers, but it is also necessary to sort the hype from the reality. In his keynote, Dr. Brody will delve into the history of this new therapy mode and how it has transformed the treatment of lymphoma and other diseases. He will address the hype surrounding it, why so many still don’t respond to the treatment regimen and chart the way forward—one that can lead to more elegant immunotherapy combination paths and better outcomes for patients.

Speaker:
Joshua Brody, M.D., Assistant Professor, Mount Sinai School of Medicine @joshuabrodyMD

9:45 AM–10:00 AM

Paris Foyer

Networking Break + Showcase

10:00 AM–10:45 AM

Paris Ballroom

The Davids vs. the Cancer Goliath Part 1

Startups from diagnostics, biopharma, medtech, digital health and emerging tech will have 8 minutes to articulate their visions on how they aim to tame the beast.

Start Time End Time Company
10:00 10:08 Belong.Life
10:09 10:17 Care+Wear
10:18 10:26 OncoPower
10:27 10:35 PolyAurum LLC
10:36 10:44 Seeker Health

Speakers:
Karthik Koduru, MD, Co-Founder and Chief Oncologist, OncoPower
Eliran Malki, Co-Founder and CEO, Belong.Life
Chaitenya Razdan, Co-founder and CEO, Care+Wear @_crazdan
Debra Shipley Travers, President & CEO, PolyAurum LLC @polyaurum
Sandra Shpilberg, Founder and CEO, Seeker Health @sandrashpilberg

10:45 AM–11:00 AM

Paris Foyer

Networking Break + Showcase

11:00 AM–11:45 AM

Montpellier – 3rd Floor

Breakout: Biopharma Gets Its Feet Wet in Digital Health

In the last few years, biotech and pharma companies have been leveraging digital health tools in everything from oncology trials, medication adherence to patient engagement. What are the lessons learned?

Moderator: Anthony Green, Ph.D., Vice President, Technology Commercialization Group, Ben Franklin Technology Partners
Speakers:
Derek Bowen, VP of Business Development & Strategy, Blackfynn, Inc.
Gyan Kapur, Vice President, Activate Venture Partners
Tom Kottler, Co-Founder & CEO, HealthPrize Technologies @HealthPrize

11:00 AM–11:45 AM

Paris Ballroom

Breakout: How to Scale Precision Medicine

The potential for precision medicine is real, but is limited by access to patient datasets. How are government entities, hospitals and startups bringing the promise of precision medicine to the masses of oncology patients

Moderator: Sandeep Burugupalli, Senior Manager, Real World Data Innovation, Pfizer @sandeepburug
Speakers:
Ingo ​Chakravarty, President and CEO, Navican @IngoChakravarty
Eugean Jiwanmall, Senior Research Analyst for Medical Policy & Technology Evaluation , Independence Blue Cross @IBX
Andrew Norden, M.D., Chief Medical Officer, Cota @ANordenMD
Ankur Parikh M.D, Medical Director of Precision Medicine, Cancer Treatment Centers of America @CancerCenter

11:50 AM–12:30 PM

Paris Ballroom

Fireside Chat with Michael Pellini, M.D.

Building a Precision Medicine Business from the Ground Up: An Operating and Venture Perspective

Dr. Pellini has spent more than 20 years working on the operating side of four companies, each of which has pushed the boundaries of the standard of care. He will describe his most recent experience at Foundation Medicine, at the forefront of precision medicine, and how that experience can be leveraged on the venture side, where he now evaluates new healthcare technologies.

Speaker:
Michael Pellini, M.D., Managing Partner, Section 32 and Chairman, Foundation Medicine @MichaelPellini

12:30 PM–1:30 PM

Chez Colette Restaurant – Lobby

Lunch Reception

1:30 PM–2:15 PM

Paris Ballroom

Clinical Trials 2.0

The randomized, controlled clinical trial is the gold standard, but it may be time for a new model. How can patient networks and new technology be leveraged to boost clinical trial recruitment and manage clinical trials more efficiently?

Moderator: John Reites, Chief Product Officer, Thread @johnreites
Speakers:
Andrew Chapman M.D., Chief of Cancer Services , Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital
Michelle Longmire, M.D., Founder, Medable @LongmireMD
Sameek Roychowdhury MD, PhD, Medical Oncologist and Researcher, Ohio State University Comprehensive Cancer Center @OSUCCC_James

2:20 PM–3:00 PM

Paris Ballroom

CONVERGEnce on Steroids: Why Comcast and Independence Blue Cross?

This year has seen a great deal of convergence in health care.  One of the most innovative collaborations announced was that of Cable and Media giant Comcast Corporation and health plan Independence Blue Cross.  This fireside chat will explore what the joint venture is all about, the backstory of how this unlikely partnership came to be, and what it might mean for our industry.

sponsored by Independence Blue Cross

Moderator: Tom Olenzak, Managing Director Strategic Innovation Portfolio, Independence Blue Cross @IBX
Speakers:
Marc Siry, VP, Strategic Development, Comcast
Michael Vennera, SVP, Chief Information Officer, Independence Blue Cross

3:00 PM–3:15 PM

Paris Foyer

Networking Break + Showcase

3:15 PM–4:00 PM

Montpellier – 3rd Floor

Breakout: Charting the Way Forward in Gene and Cell Therapy

There is a boom underway in cell and gene therapies that are being wielded to tackle cancer and other diseases at the cellular level. FDA has approved a few drugs in the space. These innovations raise important questions about patient access, patient safety, and personalized medicine. Hear from interesting startups and experts about the future of gene therapy.

Moderator: Alaric DeArment, Senior Reporter, MedCity News
Speakers:
Amy DuRoss, CEO, Vineti
Andre Goy, M.D., Chairman and Director of John Theurer Cancer Center , Hackensack University Medical Center

3:15 PM–4:00 PM

Paris Ballroom

Breakout: What’s A Good Model for Value-Based Care in Oncology?

How do you implement a value-based care model in oncology? Medicare has created a bundled payment model in oncology and there are lessons to be learned from that and other programs. Listen to two presentations from experts in the field.

Moderator: Mahek Shah, M.D., Senior Researcher, Harvard Business School @Mahek_MD
Speakers:
Charles Saunders M.D., CEO, Integra Connect
Mari Vandenburgh, Director of Value-Based Reimbursement Operations, Highmark @Highmark

4:00 PM–4:10 PM

Paris Foyer

Networking Break + Showcase

4:10 PM–4:55 PM

Montpellier – 3rd Floor

Breakout: Trends in Oncology Investing

A panel of investors interested in therapeutics, diagnostics, digital health and emerging technology will discuss what is hot in cancer investing.

Moderator: Stephanie Baum, Director of Special Projects, MedCity News @StephLBaum
Speakers:
Karen Griffith Gryga, Chief Investment Officer, Dreamit Ventures @karengg 
Stacey Seltzer, Partner, Aisling Capital
David Shaywitz, M.D., Ph.D., Senior Partner, Takeda Ventures

4:10 PM–4:55 PM

Paris Ballroom

Breakout: What Patients Want and Need On Their Journey

Cancer patients are living with an existential threat every day. A panel of patients and experts in oncology care management will discuss what’s needed to make the journey for oncology patients a bit more bearable.

sponsored by CEO Council for Growth

Moderator: Amanda Woodworth, M.D., Director of Breast Health, Drexel University College of Medicine
Speakers:
Kezia Fitzgerald, Chief Innovation Officer & Co-Founder, CareAline® Products, LLC
Sara Hayes, Senior Director of Community Development, Health Union @SaraHayes_HU
Katrece Nolen, Cancer Survivor and Founder, Find Cancer Help @KatreceNolen
John Simpkins, Administrative DirectorService Line Director of the Cancer Center, Children’s Hospital of Philadelphia

5:00 PM–5:45 PM

Paris Ballroom

Early Diagnosis Through Predictive Biomarkers, NonInvasive Testing

Diagnosing cancer early is often the difference between survival and death. Hear from experts regarding the new and emerging technologies that form the next generation of cancer diagnostics.

Moderator: Heather Rose, Director of Licensing, Thomas Jefferson University
Speakers:
Bonnie Anderson, Chairman and CEO, Veracyte @BonnieAndDx
Kevin Hrusovsky, Founder and Chairman, Powering Precision Health @KevinHrusovsky

5:45 PM–7:00 PM

Paris Foyer

Networking Reception

Day 2: Thursday, July 12, 2018

7:30 AM

Paris Foyer

Breakfast + Registration

8:30 AM–8:40 AM

Paris Ballroom

Opening Remarks: Arundhati Parmar, VP and Editor-in-Chief, MedCity News

8:40 AM–9:25 AM

Paris Ballroom

The Davids vs. the Cancer Goliath Part 2

Startups from diagnostics, biopharma, medtech, digital health and emerging tech will have 8 minutes to articulate their visions on how they aim to tame the beast.

Start Time End Time Company
8:40 8:48 3Derm
8:49 8:57 CNS Pharmaceuticals
8:58 9:06 Cubismi
9:07 9:15 CytoSavvy
9:16 9:24 PotentiaMetrics

Speakers:
Liz Asai, CEO & Co-Founder, 3Derm Systems, Inc. @liz_asai
John M. Climaco, CEO, CNS Pharmaceuticals @cns_pharma 
John Freyhof, CEO, CytoSavvy
Robert Palmer, President & CEO, PotentiaMetrics @robertdpalmer 
Moira Schieke M.D., Founder, Cubismi, Adjunct Assistant Prof UW Madison @cubismi_inc

9:30 AM–10:15 AM

Paris Ballroom

Liquid Biopsy and Gene Testing vs. Reimbursement Hurdles

Genetic testing, whether broad-scale or single gene-testing, is being ordered by an increasing number of oncologists, but in many cases, patients are left to pay for these expensive tests themselves. How can this dynamic be shifted? What can be learned from the success stories?

Moderator: Shoshannah Roth, Assistant Director of Health Technology Assessment and Information Services , ECRI Institute @Ecri_Institute
Speakers:
Rob Dumanois, Manager – reimbursement strategy, Thermo Fisher Scientific
Eugean Jiwanmall, Senior Research Analyst for Medical Policy & Technology Evaluation , Independence Blue Cross @IBX
Michael Nall, President and Chief Executive Officer, Biocept

10:15 AM–10:25 AM

Paris Foyer

Networking Break + Showcase

10:25 AM–11:10 AM

Paris Ballroom

Promising Drugs, Pricing and Access

The drug pricing debate rages on. What are the solutions to continuing to foster research and innovation, while ensuring access and affordability for patients? Can biosimilars and generics be able to expand market access in the U.S.?

Moderator: Bunny Ellerin, Director, Healthcare and Pharmaceutical Management Program, Columbia Business School
Speakers:
Patrick Davish, AVP, Global & US Pricing/Market Access, Merck
Robert Dubois M.D., Chief Science Officer and Executive Vice President, National Pharmaceutical Council
Gary Kurzman, M.D., Senior Vice President and Managing Director, Healthcare, Safeguard Scientifics
Steven Lucio, Associate Vice President, Pharmacy Services, Vizient

11:10 AM–11:20 AM

Networking Break + Showcase

11:20 AM–12:05 PM

Paris Ballroom

Breaking Down Silos in Research

“Silo” is healthcare’s four-letter word. How are researchers, life science companies and others sharing information that can benefit patients more quickly? Hear from experts at institutions that are striving to tear down the walls that prevent data from flowing.

Moderator: Vini Jolly, Executive Director, Woodside Capital Partners
Speakers:
Ardy Arianpour, CEO & Co-Founder, Seqster @seqster
Lauren Becnel, Ph.D., Real World Data Lead for Oncology, Pfizer
Rakesh Mathew, Innovation, Research, & Development Lead, HealthShareExchange
David Nace M.D., Chief Medical Officer, Innovaccer

12:10 PM–12:40 PM

Paris Ballroom

Closing Keynote: Anne Stockwell, Cancer Survivor, Founder, Well Again

Finding Your Well Again
Anne Stockwell discusses her mission to help cancer survivors heal their emotional trauma and regain their balance after treatment. A multi-skilled artist as well as a three-time cancer survivor, Anne learned through experience that the emotional impact of cancer often strikes after treatment, isolating a survivor rather than lighting the way forward. Anne realized that her well-trained imagination as an artist was key to her successful reentry after cancer. Now she helps other survivors develop their own creative tools to help them find their way forward with joy.

Speaker:
Anne Stockwell, Founder and President, Well Again @annewellagain

12:40 PM–12:45 PM

Closing Remarks

 

Please follow on Twitter using the following #hashtags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

 

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

https://pharmaceuticalintelligence.com/press-coverage/

 

 

Read Full Post »


Brain Surgeons Use 3D printing to Practice

Reporter: Irina Robu, PhD

Mechanical thrombectomy is a hopeful new modality of interventional stroke treatment. The countless devices on the market differ with regard to where they apply force on the thrombus, taking a proximal approach such as aspiration devices or a distal approach such as basket-like devices. In 2012, the Food and Drug Administration (FDA) approved mechanical thrombectomy – using a wire to pull clots out of the brains of stroke victims. At the end of the wire a trap exists which is like a noose that that captures the clot. Considering that the mechanical thrombectomy is a very risky procedure, interventional radiologists and neurosurgeons need to train extensively before they work on a real person.

Because of the procedure is very risky, a UConn Health radiologist and medical physicist made it easier for surgeons to practice first before the actual procedure. The team made a life size model of the arteries that the wire must pass through using brain scans and a 3D printer. The life size model will allow the surgeon to be more confident when guiding the wire and will give them the basic techniques on how to move the catheter. Holding the life size model of arteries, brings home how small they are even in an adult man. According to Dr. Ketan Bulsara, this life size model will be used a training model to learn mechanical thrombectomy and being able to model the tumor in advance could personalize and advance patient care.

SOURCE

https://www.mdtmag.com/news/2017/09/uconn-healths-new-3-d-printed-model-allows-brain-surgeons-practice

 

Read Full Post »


AACR and Philly New Media Present a Town Hall Discussion on Precision Medicine

Cancer Precision Medicine: Big Ideas in Research, Treatment, and Prevention

A Town Hall Forum will discuss the latest findings with regard to precision medicine, its impact currently in cancer treatment, and future directions, discussed by some of the preeminent cancer researchers and oncologists in the country. This unprecedented event is being hosted by the American Association for Cancer Research (AACR) and Philadelphia Media Network – publisher of The Philadelphia Inquirer, Daily News, and Philly.com.

Given the following speakers, this event will have a large focus on use of cancer immunotherapy as well as new targets in the precision medicine arena.

Register today: Philly.com/CancerEvent – Use the promo code “AACR” for discounted $45 tickets.

When: Thursday, January 21, 2016 • Program: 2 pm • Networking reception: 5:30 pm.

Where:  The College of Physicians of Philadelphia • 19 South 22nd Street, Philadelphia, Pa.

The event will be held in Philadelphia at the College of Physicians of Philadelphia, home of the famous Mutter Museum.

Please follow the meeting coverage on @pharma_BI and using the following @ handle and # hastags of Twitter:

@AACR

@pharma_BI

@PhillyInquirer

#cbi16

#precisionmedicine

#endcancer

 

From Penn Medicine News Blog: Archives (please click on link below)

Penn’s Center for Personalized Diagnostics (CPD), which recently named Kojo S.J. Elenitoba-Johnson, MD, as its founding director, is diving deeper into cancer patients’ tumors with next generation DNA sequencing.

The genetic tests help refine diagnoses with greater precision than standard imaging tests and blood work by spotting known mutations that can inform the treatment plan. Since it launched in February 2013, the CPD has performed more than 4,000 advanced diagnostics, representing a wide range of cancers.  It’s also producing actionable findings: Of those tests, 75 percent found disease-associated mutations, revealing possible new treatment pathways.

This new CPD video helps breakdown how the process works, but a patient story can really help connect the dots. We’ve written about several people who benefited from the CPD, including one acute myeloid leukemia patient with an FLT3 mutation that made her a candidate for a targeted therapy, and another whose cholangiocarcinoma was successfully treated with a BRAF-targeted therapy after the mutation—typically associated with melanoma—was spotted.

ACC’s role as a national leader in personalized cancer care was also reinforced with the opening of the Center for Rare Cancers and Personalized Therapy in 2015.

Directed by Marcia Brose, MD, PhD, this virtual center enrolls patients into clinical trials based on genetic markers rather than tumor origin.  Patients with the same mutation, BRAF for instance, but different cancers, are part of the same clinical study investigating a targeted therapy.  A story, set to air on TV news affiliates across the country in the upcoming weeks, will feature a patient with a rare salivary tumor who ran out of treatment options, until a HRAS mutation identified through the CPD put him back on track, after switching to the drug tipifarnib. The patient responded well, and a recent scan revealed that his disease has stabilized.

“Philadelphia is a hotbed for healthcare innovation and groundbreaking scientific research—which becomes even more apparent as the ACC continues to move the needle in the precision medicine world,”Abramson Cancer Center (ACC) director Chi Van Dang, MD, PhD, said.  “Quickly evolving diagnostics and genetic tests, cancer vaccines, and powerful personalized therapies that use the body’s own immune system to fight off cancer: These are just a few of the medical advances being utilized today that are giving patients the greatest chance.”

For Media Inquiries see the following AACR contact information:

Julia Gunther
Assistant Director, Media and Public Relations
215-446-6896
Cell: 267-250-5441
Fax: 215-861-5937
julia.gunther@aacr.org
Gunther promotes the AACR’s meetings, journals, and initiatives to the media and the public.

Lauren Walens
Senior Manager, Media and Public Relations
215-446-7163
Fax: 267-765-1050
lauren.walens@aacr.org
Walens promotes the AACR’s meetings, journals, and initiatives to the media and the public. She also manages the AACR’s blog, Cancer Research Catalyst.

Lauren Riley
Senior Coordinator, Media and Public Relations
215-446-7155
Fax: 215-446-7291
lauren.riley@aacr.org
Riley is responsible for media relations promotion and support, conference newsroom logistics, writing and proofreading, website and news release copy, as well as office support for the Communications and Public Relations Department staff.

 

 

 

Read Full Post »


Role of Nanobiotechnology in Developing Personalized Medicine for Cancer

Writer and Curator:  Larry H Bernstein, MD, FCAP

3.2 Role of Nanobiotechnology in Developing Personalized Medicine for Cancer

K. K. Jain
Technol Cancer Res Treat Dec 2005; 4(6): 645-650

http://dx.doi.org:/10.1177/153303460500400608

Personalized medicine simply means the prescription of specific therapeutics best suited for an individual. Personalization of cancer therapies is based on a better understanding of the disease at the molecular level. Nanotechnology will play an important role in this area. Nanobiotechnology is being used to refine discovery of biomarkers, molecular diagnostics, drug discovery and drug delivery, which are important basic components of personalized medicine and are applicable to management of cancer as well. Examples are given of the application of quantum dots, gold nanoparticles, and molecular imaging in diagnostics and combination with therapeutics – another important feature of personalized medicine. Personalized medicine is beginning to be recognized and is expected to become a part of medical practice within the next decade. Personalized management of cancer, facilitated by nanobiotechnology, is expected to enable early detection of cancer, more effective and less toxic treatment increasing the chances of cure.

Read Full Post »

Cancer Biology and Genomics for Disease Diagnosis (Vol. I) Now Available for Amazon Kindle


Cancer Biology and Genomics for Disease Diagnosis (Vol. I) Now Available for Amazon Kindle

Reporter: Stephen J Williams, PhD

Leaders in Pharmaceutical Business Intelligence would like to announce the First volume of their BioMedical E-Book Series C: e-Books on Cancer & Oncology

Volume One: Cancer Biology and Genomics for Disease Diagnosis

CancerandOncologyseriesCcoverwhich is now available on Amazon Kindle at                          http://www.amazon.com/dp/B013RVYR2K.

This e-Book is a comprehensive review of recent Original Research on Cancer & Genomics including related opportunities for Targeted Therapy written by Experts, Authors, Writers. This ebook highlights some of the recent trends and discoveries in cancer research and cancer treatment, with particular attention how new technological and informatics advancements have ushered in paradigm shifts in how we think about, diagnose, and treat cancer. The results of Original Research are gaining value added for the e-Reader by the Methodology of Curation. The e-Book’s articles have been published on the Open Access Online Scientific Journal, since April 2012.  All new articles on this subject, will continue to be incorporated, as published with periodical updates.

We invite e-Readers to write an Article Reviews on Amazon for this e-Book on Amazon. All forthcoming BioMed e-Book Titles can be viewed at:

https://pharmaceuticalintelligence.com/biomed-e-books/

Leaders in Pharmaceutical Business Intelligence, launched in April 2012 an Open Access Online Scientific Journal is a scientific, medical and business multi expert authoring environment in several domains of  life sciences, pharmaceutical, healthcare & medicine industries. The venture operates as an online scientific intellectual exchange at their website http://pharmaceuticalintelligence.com and for curation and reporting on frontiers in biomedical, biological sciences, healthcare economics, pharmacology, pharmaceuticals & medicine. In addition the venture publishes a Medical E-book Series available on Amazon’s Kindle platform.

Analyzing and sharing the vast and rapidly expanding volume of scientific knowledge has never been so crucial to innovation in the medical field. WE are addressing need of overcoming this scientific information overload by:

  • delivering curation and summary interpretations of latest findings and innovations
  • on an open-access, Web 2.0 platform with future goals of providing primarily concept-driven search in the near future
  • providing a social platform for scientists and clinicians to enter into discussion using social media
  • compiling recent discoveries and issues in yearly-updated Medical E-book Series on Amazon’s mobile Kindle platform

This curation offers better organization and visibility to the critical information useful for the next innovations in academic, clinical, and industrial research by providing these hybrid networks.

Table of Contents for Cancer Biology and Genomics for Disease Diagnosis

Preface

Introduction  The evolution of cancer therapy and cancer research: How we got here?

Part I. Historical Perspective of Cancer Demographics, Etiology, and Progress in Research

Chapter 1:  The Occurrence of Cancer in World Populations

Chapter 2.  Rapid Scientific Advances Changes Our View on How Cancer Forms

Chapter 3:  A Genetic Basis and Genetic Complexity of Cancer Emerge

Chapter 4: How Epigenetic and Metabolic Factors Affect Tumor Growth

Chapter 5: Advances in Breast and Gastrointestinal Cancer Research Supports Hope for Cure

Part II. Advent of Translational Medicine, “omics”, and Personalized Medicine Ushers in New Paradigms in Cancer Treatment and Advances in Drug Development

Chapter 6:  Treatment Strategies

Chapter 7:  Personalized Medicine and Targeted Therapy

Part III.Translational Medicine, Genomics, and New Technologies Converge to Improve Early Detection

Chapter 8:  Diagnosis                                     

Chapter 9:  Detection

Chapter 10:  Biomarkers

Chapter 11:  Imaging In Cancer

Chapter 12: Nanotechnology Imparts New Advances in Cancer Treatment, Detection, &  Imaging                                 

Epilogue by Larry H. Bernstein, MD, FACP: Envisioning New Insights in Cancer Translational Biology

 

Read Full Post »


8:00AM 11/13/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

8:00 A.M. Welcome from Gary Gottlieb, M.D.

Opening Remarks:

Partners HealthCare is the largest healthcare organization in Massachusetts and whose founding members are Brigham and Women’s Hospital and Massachusetts General Hospital. Dr. Gottlieb has long been a supporter of personalized medicine and he will provide his vision on the role of genetics and genomics in healthcare across the many hospitals that are part of Partners HealthCare.

Opening Remarks and Introduction

Scott Weiss, M.D., M.S. @PartnersNews
Scientific Director, Partners HealthCare Personalized Medicine;
Associate Director, Channing Laboratory/
Professor of Medicine, Harvard Medical School 
@harvardmed

Welcome

Engine of innovations

  • lower cost – Accountable care
  • robust IT infrastructure on the Unified Medical Records
  • Lab Molecular Medicine and Biobanks
  • 1. Lab Molecular medicine
  • 2. Biobank
  • 3. Translations Genomics: RNA Sequencing
  • 4. Medical Records integration of coded diagnosis linked to Genomics

BIOBANKS – Samples and contact patients, return actionable procedures

LIFE STYLE SURVEY – supplements the medical record

GENOTYPING and SEQUENCING – less $50 per sequence available to researcher / investigators

RECRUITMENT – subject to biobank, own Consents – e-mail patient – consent online consenting — collects 16,000 patients per month – very successful Online Consent

LAB Molecular Medicine – CLIA — genomics test and clinical care – EGFR identified as a bio-marker to cancer in 3 month a test was available. Best curated medical exon databases Emory Genetics Lab (EMVClass) and CHOP (BioCreative and MitoMAP and MitoMASTER). Labs are renowned in pharmacogenomics and interpretability.

IT – GeneInsight – IT goal Clinicians empowered by a workflow geneticist assign cases, data entered into knowledge base, case history, GENEINSIGHT Lab — geneticists enter info in a codified way will trigger a report for the Geneticist – adding specific knowledge standardized report enters Medical Record. Available in many Clinics of Partners members.

Example: Management of Patient genetic profiles – Relationships built between the lab and the Clinician

Variety of Tools are in development

GenInsight Team –>> Pathology –>> Sunquest Relationship

The Future

Genetic testing –>> other info (Pathology, Exams, Life Style Survey, Meds, Imaging) — Integrated Medical Record

Clinic of the Future-– >> Diagnostics – Genomics data and Variants integrated at the Clinician desk

Gary Gottlieb, M.D. @PartnersNews
President and CEO, Partners HealthCare

Translational Science
Partners 6,000 MDs, MGH – 200 years as Teaching Hospital of HMS, BWH – magnets in HealthCare

2001  – Center for Genomics was started at Partners, 2008 Genomics and Other Omis, Population Health, PM – Innovations at Partners.

Please Click on Link  Video on 20 years of PartnersHealthcare

Video of Dr. Gottlieb at ECRI conference 2012

Why is personalized medicine  important to Partners?

From Healthcare system to the Specific Human Conditions

  • Lab translate results to therapy
  • Biobank +50,000 specimens links to Medical Records of patients – relevant to Clinician, Genomics to Clinical Applications

Questions from the Podium

  • test results are not yet available online for patients
  • clinicians and liability – delays from Lab to decide a variant needs to be reclassified – alert is triggered. Lab needs time to accumulated knowledge before reporting a change in state.
  • Training Clinicians in above type of IT infrastructure: Labs around the Nations deal with VARIANT RECLASSIFICATION- physician education is a must, Clinicians have access to REFERENCE links.
  • All clinicians accessing this IT infrastructure — are trained. Most are not yet trained
  • Coordination within Countries and Across Nations — Platforms are Group specific – PARTNERS vs the US IT Infrastructure — Genomics access to EMR — from 20% to 70% Nationwide during the Years of the Obama Adm.
  • Shakeout in SW linking Genetic Labs to reach Gold Standard

Click to see Advanced Medical Education Partners Offers

 

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

@HarvardPMConf

#PMConf

@SachsAssociates

@PartnersNews

@MassGeneral

@HarvardHealth

@harvardmed

@BrighamWomens

Read Full Post »


9:20AM 11/12/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

9:20 a.m. Panel Discussion – Genomic Technologies

Genomic Technologies

The greatest impetus for personalized medicine is the initial sequencing of the human genome at the beginning of this Century. As we began to recognize the importance of genetic factors in human health and disease, efforts to understand genetic variation and its impact on health have accelerated. It was estimated that it cost more than two billion dollars to sequence the first human genome and reduction in the cost of sequence became an imperative to apply this technology to many facets of risk assessment, diagnosis, prognosis and therapeutic intervention. This panel will take a brief historical look back at how the technologies have evolved over the last 15 years and what the future holds and how these technologies are being applied to patient care.

Genomic Technologies

Opening Speaker and Moderator:

George Church, Ph.D.
Professor of Genetics, Harvard Medical School; Director, Personal Genomics

Genomic Technologies and Sequencing

  • highly predictive, preventative
  • non predictive

Shareable Human Genomes Omics Standards

$800 Human Genome Sequence – Moore’s Law does not account for the rapid decrease in cost of Genome Sequencing

Genome Technologies and Applications

  • Genia nanopore – battery operated device
  • RNA & protein traffic
  • Molecular Stratification Methods – more than one read, sequence ties
  • Brain Atlas  – transcriptome of mouse brains
  • Multigenics – 700 genes: hGH therapies

Therapies

  • vaccine
  • hygiene
  • age

~1970 Gene Therapy in Clinical Trials

Is Omic technologies — a Commodity?

  • Some practices will have protocols
  • other will never become a commodity

 

Panelists:

Sam Hanash, M.D., Ph.D. @MDAndersonNews

Director, Red & Charline McCombs Institute for Early Detection & Treatment of Cancer MD Anderson Cancer Center

Heterogeneity among Cancer cells. Data analysis and interpretation is very difficult, back up technology

Proteins and Peptides before analysis with spectrometry:

  • PM  – Immunotherapy approaches need be combined with other techniques
  • How modification in protein type affects disease
  • amplification of an aberrant protein – when that happens cancer developed. Modeling on a CHip of peptide synthesizer

Mark Stevenson @servingscience

Executive Vice President and President, Life Sciences Solutions
Thermo Fisher Scientific

Issues of a Diagnostics Developer:

  • FDA regulation, need to test on several tissues
  • computational environment
  • PCR, qPCR – cost effective
  • BGI – competitiveness

Robert Green, MD @BrighamWomens

Partners, Health Care Personalized Medicine — >>Disclosure: Illumina and three Pharmas

Innovative Clinical Trial: Alzheimer’s Disease, integration of sequencing with drug development

  • Population based screening with diagnosis
  • Cancer predisposition: Cost, Value, BRCA
  • epigenomics technologies to be integrated
  • Real-time diagnostics
  • Screening makes assumption on Predisposition
  • Public Health view: Phenotypes in the Framingham Studies: 64% pathogenic genes were prevalent – complication based in sequencing.

Questions from the Podium:

  • Variants analysis
  • Metastasis different than solid tumor itself – Genomics will not answer issues related to tumor in special tissues variability

 

 

 

 

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

@HarvardPMConf

#PMConf

@SachsAssociates

 

Read Full Post »

The unfortunate ending of the Tower of Babel construction project and its effect on modern imaging-based cancer patients’ management


The story of the city of Babel is recorded in the book of Genesis 11 1-9. At that time, everyone on earth spoke the same language.

Picture: Pieter Bruegel the Elder: The Tower of Babel_(Vienna)

It is probably safe to assume that medical practitioners at that time were reporting the status of their patients in a standard manner. Although not mentioned, one might imagine that, at that time, ultrasound or MRI scans were also reported in a standard and transferrable manner. The people of Babel noticed the potential in uniform communication and tried to build a tower so high that it would  reach the gods. Unfortunately, God did not like that, so he went down (in person) and confounded people’s speech, so that they could not understand each another. Genesis 11:7–8.

This must be the explanation for our inability to come to a consensus on reporting of patients’ imaging-outcome. Progress in development of efficient imaging protocols and in clinical management of patients is withheld due to high variability and subjectivity of clinicians’ approach to this issue.

Clearly, a justification could be found for not reaching a consensus on imaging protocols: since the way imaging is performed affects the outcome, (i.e. the image and its interpretation) it takes a long process of trial-and-error to come up with the best protocol.  But, one might wonder, wouldn’t the search for the ultimate protocol converge faster if all practitioners around the world, who are conducting hundreds of clinical studies related to imaging-based management of cancer patients, report their results in a standardized and comparable manner?

Is there a reason for not reaching a consensus on imaging reporting? And I’m not referring only to intra-modality consensus, e.g. standardizing all MRI reports. I’m referring also to inter-modality consensus to enable comparison and matching of reports generated from scans of the same organ by different modalities, e.g. MRI, CT and ultrasound.

As developer of new imaging-based technologies, my personal contribution to promoting standardized and objective reporting was the implementation of preset reporting as part of the prostate-HistoScanning product design. For use-cases, as demonstrated below, in which prostate cancer patients were also scanned by MRI a dedicated reporting scheme enabled matching of the HistoScanning scan results with the prostate’s MRI results.

The MRI reporting scheme used as a reference is one of the schemes offered in a report by Miss Louise Dickinson on the following European consensus meeting : Magnetic Resonance Imaging for the Detection, Localisation, and Characterisation of Prostate Cancer: Recommendations from a European Consensus Meeting, Louise Dickinson a,b,c,*, Hashim U. Ahmed a,b, Clare Allen d, Jelle O. Barentsz e, Brendan Careyf, Jurgen J. Futterer e, Stijn W. Heijmink e, Peter J. Hoskin g, Alex Kirkham d, Anwar R. Padhani h, Raj Persad i, Philippe Puech j, Shonit Punwani d, Aslam S. Sohaib k, Bertrand Tomball,Arnauld Villers m, Jan van der Meulen c,n, Mark Emberton a,b,c,

http://www.europeanurology.com/article/S0302-2838(10)01187-5

Image of MRI reporting scheme taken from the report by Miss Louise Dickinson

The corresponding HistoScanning report is following the same prostate segmentation and the same analysis plans:


Preset reporting enabling matching of HistoScanning and MRI reporting of the same case.

It is my wish that already in the near-future, the main radiology societies (RSNA, ESR, etc..) will join together to build the clinical Imaging’s “Tower of Babel” to effectively address the issue of standardizing reporting of imaging procedures. This time it will not be destroyed…:-)

Read Full Post »

Knowing the tumor’s size and location, could we target treatment to THE ROI by applying imaging-guided intervention?


Knowing the tumor’s size and location, could we target treatment to THE ROI by applying imaging-guided intervention?

Author: Dror Nir, PhD

 

Advances in techniques for cancer lesions’ detection and localisation [1-6] opened the road to methods of localised (“focused”) cancer treatment [7-10].  An obvious challenge on the road is reassuring that the imaging-guided treatment device indeed treats the region of interest and preferably, only it.

A step in that direction was taken by a group of investigators from Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada who evaluate the feasibility and safety of magnetic resonance (MR) imaging–controlled transurethral ultrasound therapy for prostate cancer in humans [7]. Their study’s objective was to prove that using real-time MRI guidance of HIFU treatment is possible and it guarantees that the location of ablated tissue indeed corresponds to the locations planned for treatment. Eight eligible patients were recruited.

 

The setup

 

Treatment protocol

 

The result

 

“There was excellent agreement between the zone targeted for treatment and the zone of thermal injury, with a targeting accuracy of ±2.6 mm. In addition, the temporal evolution of heating was very consistent across all patients, in part because of the ability of the system to adapt to changes in perfusion or absorption properties according to the temperature measurements along the target boundary.”

 

Technological problems to be resolved in the future:

“Future device designs could incorporate urinary drainage during the procedure, given the accumulation of urine in the bladder during treatment.”

“Sufficient temperature resolution could be achieved only by using 10-mm-thick sections. Our numeric studies suggest that 5-mm-thick sections are necessary for optimal three-dimensional conformal heating and are achievable by using endorectal imaging coils or by performing the treatment with a 3.0-T platform.”

Major limitation: “One of the limitations of the study was the inability to evaluate the efficacy of this treatment; however, because this represents, to our knowledge, the first use of this technology in human prostate, feasibility and safety were emphasized. In addition, the ability to target the entire prostate gland was not assessed, again for safety considerations. We have not attempted to evaluate the effectiveness of this treatment for eradicating cancer or achieving durable biochemical non-evidence of disease status.”

References

  1. SIMMONS (L.A.M.), AUTIER (P.), ZATURA (F.), BRAECKMAN (J.G.), PELTIER (A.), ROMICS (I.), STENZL (A.), TREURNICHT (K.), WALKER (T.), NIR (D.), MOORE (C.M.), EMBERTON (M.). Detection, localisation and characterisation of prostate cancer by Prostate HistoScanning.. British Journal of Urology International (BJUI). Issue 1 (July). Vol. 110, Page(s): 28-35
  2. WILKINSON (L.S.), COLEMAN (C.), SKIPPAGE (P.), GIVEN-WILSON (R.), THOMAS (V.). Breast HistoScanning: The development of a novel technique to improve tissue characterization during breast ultrasound. European Congress of Radiology (ECR), A.4030, C-0596, 03-07/03/2011.
  3. Hebert Alberto Vargas, MD, Tobias Franiel, MD,Yousef Mazaheri, PhD, Junting Zheng, MS, Chaya Moskowitz, PhD, Kazuma Udo, MD, James Eastham, MD and Hedvig Hricak, MD, PhD, Dr(hc) Diffusion-weighted Endorectal MR Imaging at 3 T for Prostate Cancer: Tumor Detection and Assessment of Aggressiveness. June 2011 Radiology, 259,775-784.
  4. Wendie A. Berg, Kathleen S. Madsen, Kathy Schilling, Marie Tartar, Etta D. Pisano, Linda Hovanessian Larsen, Deepa Narayanan, Al Ozonoff, Joel P. Miller, and Judith E. Kalinyak Breast Cancer: Comparative Effectiveness of Positron Emission Mammography and MR Imaging in Presurgical Planning for the Ipsilateral Breast Radiology January 2011 258:1 59-72.
  5. Anwar R. Padhani, Dow-Mu Koh, and David J. Collins Reviews and Commentary – State of the Art: Whole-Body Diffusion-weighted MR Imaging in Cancer: Current Status and Research Directions Radiology December 2011 261:3 700-718
  6. Eggener S, Salomon G, Scardino PT, De la Rosette J, Polascik TJ, Brewster S. Focal therapy for prostate cancer: possibilities and limitations. Eur Urol 2010;58(1):57–64).
  7. Rajiv Chopra, PhD, Alexandra Colquhoun, MD, Mathieu Burtnyk, PhD, William A. N’djin, PhD, Ilya Kobelevskiy, MSc, Aaron Boyes, BSc, Kashif Siddiqui, MD, Harry Foster, MD, Linda Sugar, MD, Masoom A. Haider, MD, Michael Bronskill, PhD and Laurence Klotz, MD. MR Imaging–controlled Transurethral Ultrasound Therapy for Conformal Treatment of Prostate Tissue: Initial Feasibility in Humans. October 2012 Radiology, 265,303-313.
  8. Black, Peter McL. M.D., Ph.D.; Alexander, Eben III M.D.; Martin, Claudia M.D.; Moriarty, Thomas M.D., Ph.D.; Nabavi, Arya M.D.; Wong, Terence Z. M.D., Ph.D.; Schwartz, Richard B. M.D., Ph.D.; Jolesz, Ferenc M.D.  Craniotomy for Tumor Treatment in an Intraoperative Magnetic Resonance Imaging Unit. Neurosurgery: September 1999 – Volume 45 – Issue 3 – p 423
  9. Medel, Ricky MD,  Monteith, Stephen J. MD, Elias, W. Jeffrey MD, Eames, Matthew PhD, Snell, John PhD, Sheehan, Jason P. MD, PhD, Wintermark, Max MD, MAS, Jolesz, Ferenc A. MD, Kassell, Neal F. MD. Neurosurgery: Magnetic Resonance–Guided Focused Ultrasound Surgery: Part 2: A Review of Current and Future Applications. October 2012 – Volume 71 – Issue 4 – p 755–763
  10. Bruno Quesson PhD, Jacco A. de Zwart PhD, Chrit T.W. Moonen PhD. Magnetic resonance temperature imaging for guidance of thermotherapy. Journal of Magnetic Resonance Imaging, Special Issue: Interventional MRI, Part 1, Volume 12, Issue 4, pages 525–533, October 2000

Writer: Dror Nir, PhD

 

Read Full Post »


Author and Curator: Dror Nir, PhD

Radiology congresses are all about imaging in medicine. Interestingly, radiology originates from radiation. It was the discovery of X-ray radiation at the beginning of the 20th century that opened the road to “seeing” the inside of the human body without harming it (at that time that meant cutting into the body).

Radiology meetings are about sharing experience and knowhow on imaging-based management patients. The main topic is always image-interpretation: the bottom line of clinical radiology! This year’s European Congress of Radiology (ECR) dedicated few of its sessions to recent developments in image-interpretation tools. I chose to discuss the one that I consider contributing the most to the future of cancer patients’ management.

In the refresher course dedicated to computer application the discussion was aimed at understanding the question “How do image processing and CAD impact radiological daily practice?” Experts’ reviews gave the audience some background information on the following subjects:

  1. A.     The link between image reconstruction and image analysis.
  2. B.     Semantic web technologies for sharing and reusing imaging-related information
  3. C.     Image processing and CAD: workflow in clinical practice.

I find item A to be a fundamental education item. Not once did I hear a radiologist saying: “I know this is the lesion because it’s different on the image”.  Being aware of the computational concepts behind image rendering, even if it is at a very high level and lacking deep understanding of the computational processes,  will contribute to more balanced interpretations.

Item B is addressing the dream of investigators worldwide. Imagine that we could perform a web search and find educating, curated materials linking visuals and related clinical information, including standardized pathology reporting. We would only need to remember that search engines used certain search methods and agree, worldwide, on the method and language to be used when describing things. Having such tools is a pre-requisite to successful pharmaceutical and bio-tech development.

I find item C strongly linked to A, as all methods for better image interpretation must fit into a workflow. This is a design goal that is not trivial to achieve. To understand what I mean by that, try to think about how you could integrate the following examples in your daily workflow: i.e. what kind of expertise is needed for execution, how much time it will take, do you have the infrastructure?

In the rest of this post, I would like to highlight, through examples that were discussed during ECR 2012, the aspect of improving cancer patients’ clinical assessment by using information fusion to support better image interpretation.

  • Adding up quantitative information from MR spectroscopy (quantifies biochemical property of a target lesion) and Dynamic Contrast Enhanced MR imaging (highlights lesion vasculature).

Image provided by: Dr. Pascal Baltzer, director of mammography at the centre for radiology at Friedrich Schiller University in Jena, Germany

  • Registration of images generated by different imaging modalities (Multi-modal imaging registration).

The following examples: Fig 2 demonstrates registration of a mammography image of a breast lesion to an MRI image of this lesion. Fig3 demonstrates registration of an ultrasound image of a breast lesion scanned by an Automatic Breast Ultrasound (ABUS) system and an MRI image of the same lesion.

Images provided by members of the HAMAM project (an EU, FP7 funded research project: Highly Accurate Breast Cancer Diagnosis through Integration of Biological Knowledge, Novel Imaging Modalities, and Modelling): http://www.hamam-project.org

 

 Multi-modality image registration is usually based on the alignment of image-features apparent in the scanned regions. For ABUS-MRI matching these were: the location of the nipple and the breast thickness; the posterior of the nipple in both modalities; the medial-lateral distance of the nipple to the breast edge on ultrasound; and an approximation of the rib­cage using a cylinder on the MRI. A mean accuracy of 14mm was achieved.

Also from the HAMAM project, registration of ABUS image to a mammography image:

registration of ABUS image to a mammography image, Image provided by members of the HAMAM project (an EU, FP7 funded research project: Highly Accurate Breast Cancer Diagnosis through Integration of Biological Knowledge, Novel Imaging Modalities, and Modelling): http://www.hamam-project.org

  • Automatic segmentation of suspicious regions of interest seen in breast MRI images

Segmentation of suspicious the lesions on the image is the preliminary step in tumor evaluation; e.g. finding its size and location. Since lesions have different signal/image character­istics to the rest of the breast tissue, it gives hope for the development of computerized segmentation techniques. If successful, such techniques bear the promise of enhancing standardization in the reporting of lesions size and location: Very important information for the success of the treatment step.

Roberta Fusco of the National Cancer Institute of Naples Pascal Foundation, Naples/IT suggested the following automatic method for suspi­cious ROI selection within the breast using dynamic-derived information from DCE-MRI data.

 

Automatic segmentation of suspicious ROI in breast MRI images, image provided by Roberta Fusco of the National Cancer Institute of Naples Pascal Foundation, Naples/IT

 

 Her algorithm includes three steps (Figure 2): (i) breast mask extraction by means of automatic intensity threshold estimation (Otsu Thresh-holding) on the par­ametric map obtained through the sum of intensity differences (SOD) calculated pixel by pixel; (ii) hole-filling and leakage repair by means of morphological operators: closing is required to fill the holes on the boundaries of breast mask, filling is required to fill the holes within the breasts, erosion is required to reduce the dilation obtained by the closing operation; (iii) suspicious ROIs extraction: a pixel is assigned to a suspicious ROI if it satisfies two conditions: the maximum of its normalized time-intensity curve should be greater than 0.3 and the maximum signal intensity should be reached before the end of the scan time. The first condition assures that the pixels within the ROI have a significant contrast agent uptake (thus excluding type I and type II curves) and the second condition is required for the time-intensity pattern to be of type IV or V (thus excluding type III curves).

Written by: Dror Nir, PhD

Read Full Post »