Feeds:
Posts
Comments

Posts Tagged ‘magnetic resonance imaging mri’

New development in measuring mechanical properties of tissue

Author – Writer: Dror Nir, PhD

Measuring the effects induced onto imaging by the mechanical properties of tissue is a common approach to differentiate tissue abnormalities. In previous posts I discussed the applicability of imaging applications that visualize variations in tissue stiffness; e.g. ultrasound-elastography and MRI-elastography as aid in the diagnosis workflow of cancer. Today, I would like to report on a recent publication made in SPIE Newsroom describing an optical-imaging system to measure tissue stiffness at high resolution. I think that such emerging technologies should be followed up as they bear promise to bridge deficiencies of the traditional modalities currently in use.

Reporting on: Optical elastography probes mechanical properties of tissue at high resolution

By: David Sampson, Kelsey Kennedy, Robert McLaughlin and Brendan Kennedy

Information published at: SPIE Newsroom – Biomedical Optics & Medical Imaging

Probing the micro-mechanical properties of tissue using optical imaging might offer new surgical tools that enable improved differentiation of tissue pathologies, such as cancer or atherosclerosis.

11 January 2013, SPIE Newsroom. DOI: 10.1117/2.1201212.004605

Elastography is an emerging branch of medical imaging that uses mechanical contrast to better characterize tissue pathology than can be achieved with structural imaging alone. It achieves this by imaging a tissue’s response to mechanical loading. Although commercial products based on ultrasonography and magnetic resonance imaging (MRI) have been available for several years, these new modalities offer superior tissue differentiation deep in the human body. However, elastography is limited by its low resolution compared with the length scales relevant to many diseases. Increasing the resolution with optical techniques might offer new opportunities for elastography in medical imaging and surgical guidance.

An elastography system requires a means of loading the tissue to cause deformation and an imaging system with sufficient sensitivity and range to capture this deformation. Implicit in these requirements is access to the tissue of interest. Optical elastography has previously been largely based on schemes that suit small tissue samples rather than intact tissue in living humans. Additionally, such schemes have not had the sensitivity or range to produce high-fidelity images of mechanical properties. We have addressed both these issues in our recent work, developing the means to access tissues in vivo and improve the sensitivity and range of optical elastography using phase-sensitive optical coherence tomography as the underlying modality. The use of optical coherence tomography to perform elastography has come to be referred to as optical coherence elastography.1

To make optical coherence elastography on human subjects feasible, we designed an annular piezoelectric loading transducer (see Figure 1), through which we could simultaneously image, enabling the first in vivo dynamic optical coherence elastography on human subjects.2 We were subsequently able to extend this to three dimensions (see Figure 2), in collaboration with Stephen Boppart’s group at the University of Illinois at Urbana-Champaign.3 This extension took advantage of the high speed of spectral-domain optical coherence tomography, and the maturity of phase-sensitive detection techniques originally developed for Doppler flowmetry and microangiography.

Figure 1. Schematic (left) and photograph (right) of the annular load transducer and imaging optics for in vivo optical coherence elastography.

 

Figure 2. 2D images of in vivo human skin selected from 3D stacks. (a) Optical coherence tomography image and (b) the same image overlaid by the 2D dynamic elastogram recorded at 125Hz load frequency, highlighting the greater strain in the epidermis. Reprinted in modified form with permission.3

For general access to tissues in the body, optical coherence elastography faces two basic limitations. The free-space probe requires miniaturization for versatile access to tissue in confined or convoluted geometries. We addressed this in studies of the elastic properties of human airways using catheter-based anatomical optical coherence tomography.4

 

Figure 3. (a) Schematic diagram of needle optical coherence elastography. The phase difference Δφ=φ1– φ2 determines the displacement, d, when scaled by the wavelength, λ, and refractive index, n. (b) Needle and pig trachea. (c) Local displacement versus distance, with tissue boundaries indicated by red stars. (d) Representative histology. Reprinted in modified form with permission.6

More fundamentally, optical coherence tomography can only penetrate, at best, 1–2mm into most tissues, limiting it to superficial applications. To address this issue, we combined optical coherence elastography with needle probes, an active research area in our group (see Figure 3).5 We conveniently use the needle probe itself to deform the tissue during insertion.6 The deformation ahead of the needle tip depends on the mechanical properties of the tissue encountered, as well as on the nearby tissue environment, particularly on any interfaces ahead of it. We measure the local sub-micrometer displacement of the tissue between two positions of the moving needle probe. We plot this displacement versus distance ahead of the probe: see Figure 3(c). The slope of the displacement at location z is a measure of the local strain. A change in slope signifies a change in tissue stiffness; the steeper the slope, the softer the tissue (other things being equal). Figure 3 highlights this effect in a layered sample of pig trachea. The positions of the changes in slope correlate well with the tissue interfaces shown in the accompanying histology: see Figure 3(d).

The other key area of improvement we have focused on is lowering the optical coherence elastography noise floor by increasing the detection sensitivity, which is vital to make clinical imaging practical. We firstly showed that Gaussian-smoothed, weighted-least squares strain estimation improved the sensitivity of estimates by up to 12dB over conventional finite-difference methods.7 Next, we showed that performance could be further improved at low optical coherence tomo- graphy signal-to-noise ratios (and, therefore, at greater depths in tissue) by employing a 2D Fourier transform technique.8Combined with other system refinements, these improvements have enabled us to reach a displacement sensitivity of 300pm for typical optical coherence tomography signal-to-noise ratios in tissue, with room for improvement.

The Young’s modulus of soft tissue varies from kPa to tens of MPa, whereas the scattering coefficient of such tissues—which is largely responsible for determining the contrast of optical coherence tomography—is typically in the range 2–20mm−1. This apparent native advantage in mechanical over optical contrast (see the example in Figure 4), combined with the maturation of optical coherence elastography methods, bodes well for the future. In our group, we are pursuing tumor-margin identification using elastography; others have begun to consider corneal elastography,9, 10 and still others are examining shear wave schemes with the aim of probing Young’s modulus much deeper in tissues.11,12

 

Figure 4. Optical coherence tomography (a) and optical coherence elastography (b) images of the same phantom with two inclusions visible, showing enhanced mechanical over scattering contrast.

Optical elastography currently sits at a similar stage of development as ultrasound elastography did in 1999. Based on a similar trajectory, this field will rapidly expand over the next decade. Our recent results point to the first convincing applications of optical elastography being just around the corner.

We acknowledge funding for this work from Perpetual Trustees, the Raine Medical Research Foundation, the Cancer Council of Western Australia, the Australian Research Council, the National Health and Medical Research Council (Australia), and the National Breast Cancer Foundation (Australia).


David Sampson

Optical+Biomedical Engineering Laboratory
School of Electrical, Electronic and Computer Engineering

and
Centre for Microscopy, Characterisation and Analysis
The University of Western Australia

 

Perth, Australia
Kelsey Kennedy, Robert McLaughlin, Brendan Kennedy

Optical+Biomedical Engineering Laboratory
School of Electrical, Electronic and Computer Engineering
The University of Western Australia

Perth, Australia

References:
1. J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue, Opt. Express 3(6), p. 199-211, 1998.doi:10.1364/OE.3.000199
2. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, D. D. Sampson, In vivo dynamic optical coherence elastography using a ring actuator, Opt. Express 17(24), p. 21762-21772, 2009.doi:10.1364/OE.17.021762
3. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, D. D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express 19(7), p. 6623-6634, 2011.doi:10.1364/OE.19.006623
4. J. P. Williamson, R. A. McLaughlin, W. J. Noffsingerl, A. L. James, V. A. Baker, A. Curatolo, J. J. Armstrong, Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography, Am. J. Resp. Crit. Care 183(5), p. 612-619, 2011.doi:10.1164/rccm.201002-0178OC
5. R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, D. D. Sampson, Imaging of breast cancer with optical coherence tomography needle probes: Feasibility and initial results, IEEE J. Sel. Topics Quantum Electron. 18(3), p. 1184-1191, 2012. doi:10.1109/JSTQE.2011.2166757
6. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, D. D. Sampson, Needle optical coherence elastography for tissue boundary detection, Opt. Lett. 37(12), p. 2310-2312, 2012. doi:10.1364/OL.37.002310
7. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, D. D. Sampson, Strain estimation in phase-sensitive optical coherence elastography, Biomed. Opt. Express 3(8), p. 1865-1879, 2012.doi:10.1364/BOE.3.001865
8. B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, D. D. Sampson, Improved measurement of vibration amplitude in dynamic optical coherence elastography, Biomed. Opt. Express 3(12), p. 3138-3152, 2012. doi:10.1364/BOE.3.003138
9. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, K. V. Larin, In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography, J. Biomed. Opt. 17(10), p. 100501, 2012.doi:10.1117/1.JBO.17.10.100501
10. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, Z. Chen, Phase-resolved acoustic radiation force optical coherence elastography, J. Biomed. Opt. 17(11), p. 110505, 2012. doi:10.1117/1.JBO.17.11.110505
11. C. Li, G. Guan, S. Li, Z. Huang, R. K. Wang, Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography, J. Biomed. Opt. 17(5), p. 057002, 2012. doi:10.1117/1.JBO.17.5.057002
12. M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, M. C. Kolios, Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,Biomed. Opt. Express 3(5), p. 972-980, 2012. doi:10.1364/BOE.3.00097

Read Full Post »

A corner in the medical imaging’s ECO system

Author and Curator: Dror Nir, PhD

Availability of imaging devices in medical procedures requires more than science. It depends on meeting a complicated set of conditions that is constantly changing. Recently, a threat on the availability of MRI to patients needing diagnosis and treatment of life-threatening diseases was removed.

Quoted from the Alliance for MRI web-site:

The Alliance for MRI welcomes the Commission’s proposal to exempt Magnetic Resonance Imaging (MRI) from the limit values set in Directive 2004/40/EC to protect workers from electromagnetic fields (EMF Directive).

  • This derogation is necessary to ensure the unimpeded use of MRI so that patients have access to the highest standard of care across Europe.
  • The safe use of this technology is highly regulated. Criteria have been set to eliminate any danger to workers and patients.
  • MRI has been used for over 25 years, imaging up to 500 million patients without evidence of harm to workers due to exposure to electromagnetic fields.
  • The Alliance supports the adoption of guidelines to ensure that working practices are in line with the latest technological developments.

On 14 June 2011 the European Commission adopted a proposal to revise the directive on protecting workers from electromagnetic fields. The European Commission’s proposal includes a derogation for the medical and research use of MRI from the exposure limit values, which will ensure that this vital technology will continue to be available for all patients.

This revision is a result of the concerns raised by the Alliance for MRI and a recognition by the European Commission that the current Directive severely curtailed the use of MRI to the detriment of patients in Europe.

End of quote.

About Alliance for MRI

The ‘Alliance for MRI’ is a coalition of European Parliamentarians, patient groups, leading European scientists and the medical community, who together are seeking to avert the serious threat posed by EU health and safety legislation to the clinical and research use of Magnetic Resonance Imaging (MRI).

Gabriel Krestin, president of the European Society for Radiology said: “Today’s vote is an important step that reverses an earlier detrimental decision. Without this change patients could not have benefited from MRI in the diagnosis and treatment of life-threatening diseases,”

The parliamentary committee’s action corrects problems with the original Directive and endorses an updated proposal by the European Commission on Protecting Workers. By subjecting MRI to overly restrictive limits the original version would have curtailed MRI-guided brain surgery and made MRI difficult to use in situations where close patient contact is required, including imaging of vulnerable patients and children. The exemption is also necessary for research and development and for routine cleaning and maintenance of MRI equipment.

The committee-approved draft will be used as the basis of informal negotiations with Council. If agreement is reached, it will be voted on next year by the full Parliament.

Patient Group Representative Mary Baker (European Brain Council) said: “The derogation for Magnetic Resonance Imaging that was endorsed today will ensure that serious medical conditions such as cancer will be diagnosed and treated to the benefit of patients in Europe. I am calling on all Members of the European Parliament to follow the example of their colleagues and to support the MRI derogation in the plenary vote in early 2013”.

Interested to learn more about the cancer management ECO system? Visit the European Partnership for Action Against Cancer site.

Writen by: Dror Nir, PhD

Read Full Post »

The unfortunate ending of the Tower of Babel construction project and its effect on modern imaging-based cancer patients’ management

The unfortunate ending of the Tower of Babel construction project and its effect on modern imaging-based cancer patients’ management

Curator: Dror Nir, PhD

 

The story of the city of Babel is recorded in the book of Genesis 11 1-9. At that time, everyone on earth spoke the same language.

Picture: Pieter Bruegel the Elder: The Tower of Babel_(Vienna)

It is probably safe to assume that medical practitioners at that time were reporting the status of their patients in a standard manner. Although not mentioned, one might imagine that, at that time, ultrasound or MRI scans were also reported in a standard and transferrable manner. The people of Babel noticed the potential in uniform communication and tried to build a tower so high that it would  reach the gods. Unfortunately, God did not like that, so he went down (in person) and confounded people’s speech, so that they could not understand each another. Genesis 11:7–8.

This must be the explanation for our inability to come to a consensus on reporting of patients’ imaging-outcome. Progress in development of efficient imaging protocols and in clinical management of patients is withheld due to high variability and subjectivity of clinicians’ approach to this issue.

Clearly, a justification could be found for not reaching a consensus on imaging protocols: since the way imaging is performed affects the outcome, (i.e. the image and its interpretation) it takes a long process of trial-and-error to come up with the best protocol.  But, one might wonder, wouldn’t the search for the ultimate protocol converge faster if all practitioners around the world, who are conducting hundreds of clinical studies related to imaging-based management of cancer patients, report their results in a standardized and comparable manner?

Is there a reason for not reaching a consensus on imaging reporting? And I’m not referring only to intra-modality consensus, e.g. standardizing all MRI reports. I’m referring also to inter-modality consensus to enable comparison and matching of reports generated from scans of the same organ by different modalities, e.g. MRI, CT and ultrasound.

As developer of new imaging-based technologies, my personal contribution to promoting standardized and objective reporting was the implementation of preset reporting as part of the prostate-HistoScanning product design. For use-cases, as demonstrated below, in which prostate cancer patients were also scanned by MRI a dedicated reporting scheme enabled matching of the HistoScanning scan results with the prostate’s MRI results.

The MRI reporting scheme used as a reference is one of the schemes offered in a report by Miss Louise Dickinson on the following European consensus meeting : Magnetic Resonance Imaging for the Detection, Localisation, and Characterisation of Prostate Cancer: Recommendations from a European Consensus Meeting, Louise Dickinson a,b,c,*, Hashim U. Ahmed a,b, Clare Allen d, Jelle O. Barentsz e, Brendan Careyf, Jurgen J. Futterer e, Stijn W. Heijmink e, Peter J. Hoskin g, Alex Kirkham d, Anwar R. Padhani h, Raj Persad i, Philippe Puech j, Shonit Punwani d, Aslam S. Sohaib k, Bertrand Tomball,Arnauld Villers m, Jan van der Meulen c,n, Mark Emberton a,b,c,

http://www.europeanurology.com/article/S0302-2838(10)01187-5

Image of MRI reporting scheme taken from the report by Miss Louise Dickinson

The corresponding HistoScanning report is following the same prostate segmentation and the same analysis plans:


Preset reporting enabling matching of HistoScanning and MRI reporting of the same case.

It is my wish that already in the near-future, the main radiology societies (RSNA, ESR, etc..) will join together to build the clinical Imaging’s “Tower of Babel” to effectively address the issue of standardizing reporting of imaging procedures. This time it will not be destroyed…:-)

Read Full Post »

Knowing the tumor’s size and location, could we target treatment to THE ROI by applying imaging-guided intervention?

Knowing the tumor’s size and location, could we target treatment to THE ROI by applying imaging-guided intervention?

Author: Dror Nir, PhD

Advances in techniques for cancer lesions’ detection and localisation [1-6] opened the road to methods of localised (“focused”) cancer treatment [7-10].  An obvious challenge on the road is reassuring that the imaging-guided treatment device indeed treats the region of interest and preferably, only it.

A step in that direction was taken by a group of investigators from Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada who evaluate the feasibility and safety of magnetic resonance (MR) imaging–controlled transurethral ultrasound therapy for prostate cancer in humans [7]. Their study’s objective was to prove that using real-time MRI guidance of HIFU treatment is possible and it guarantees that the location of ablated tissue indeed corresponds to the locations planned for treatment. Eight eligible patients were recruited.

 

The setup

 

Treatment protocol

 

The result

 

“There was excellent agreement between the zone targeted for treatment and the zone of thermal injury, with a targeting accuracy of ±2.6 mm. In addition, the temporal evolution of heating was very consistent across all patients, in part because of the ability of the system to adapt to changes in perfusion or absorption properties according to the temperature measurements along the target boundary.”

 

Technological problems to be resolved in the future:

“Future device designs could incorporate urinary drainage during the procedure, given the accumulation of urine in the bladder during treatment.”

“Sufficient temperature resolution could be achieved only by using 10-mm-thick sections. Our numeric studies suggest that 5-mm-thick sections are necessary for optimal three-dimensional conformal heating and are achievable by using endorectal imaging coils or by performing the treatment with a 3.0-T platform.”

Major limitation: “One of the limitations of the study was the inability to evaluate the efficacy of this treatment; however, because this represents, to our knowledge, the first use of this technology in human prostate, feasibility and safety were emphasized. In addition, the ability to target the entire prostate gland was not assessed, again for safety considerations. We have not attempted to evaluate the effectiveness of this treatment for eradicating cancer or achieving durable biochemical non-evidence of disease status.”

References

  1. SIMMONS (L.A.M.), AUTIER (P.), ZATURA (F.), BRAECKMAN (J.G.), PELTIER (A.), ROMICS (I.), STENZL (A.), TREURNICHT (K.), WALKER (T.), NIR (D.), MOORE (C.M.), EMBERTON (M.). Detection, localisation and characterisation of prostate cancer by Prostate HistoScanning.. British Journal of Urology International (BJUI). Issue 1 (July). Vol. 110, Page(s): 28-35
  2. WILKINSON (L.S.), COLEMAN (C.), SKIPPAGE (P.), GIVEN-WILSON (R.), THOMAS (V.). Breast HistoScanning: The development of a novel technique to improve tissue characterization during breast ultrasound. European Congress of Radiology (ECR), A.4030, C-0596, 03-07/03/2011.
  3. Hebert Alberto Vargas, MD, Tobias Franiel, MD,Yousef Mazaheri, PhD, Junting Zheng, MS, Chaya Moskowitz, PhD, Kazuma Udo, MD, James Eastham, MD and Hedvig Hricak, MD, PhD, Dr(hc) Diffusion-weighted Endorectal MR Imaging at 3 T for Prostate Cancer: Tumor Detection and Assessment of Aggressiveness. June 2011 Radiology, 259,775-784.
  4. Wendie A. Berg, Kathleen S. Madsen, Kathy Schilling, Marie Tartar, Etta D. Pisano, Linda Hovanessian Larsen, Deepa Narayanan, Al Ozonoff, Joel P. Miller, and Judith E. Kalinyak Breast Cancer: Comparative Effectiveness of Positron Emission Mammography and MR Imaging in Presurgical Planning for the Ipsilateral Breast Radiology January 2011 258:1 59-72.
  5. Anwar R. Padhani, Dow-Mu Koh, and David J. Collins Reviews and Commentary – State of the Art: Whole-Body Diffusion-weighted MR Imaging in Cancer: Current Status and Research Directions Radiology December 2011 261:3 700-718
  6. Eggener S, Salomon G, Scardino PT, De la Rosette J, Polascik TJ, Brewster S. Focal therapy for prostate cancer: possibilities and limitations. Eur Urol 2010;58(1):57–64).
  7. Rajiv Chopra, PhD, Alexandra Colquhoun, MD, Mathieu Burtnyk, PhD, William A. N’djin, PhD, Ilya Kobelevskiy, MSc, Aaron Boyes, BSc, Kashif Siddiqui, MD, Harry Foster, MD, Linda Sugar, MD, Masoom A. Haider, MD, Michael Bronskill, PhD and Laurence Klotz, MD. MR Imaging–controlled Transurethral Ultrasound Therapy for Conformal Treatment of Prostate Tissue: Initial Feasibility in Humans. October 2012 Radiology, 265,303-313.
  8. Black, Peter McL. M.D., Ph.D.; Alexander, Eben III M.D.; Martin, Claudia M.D.; Moriarty, Thomas M.D., Ph.D.; Nabavi, Arya M.D.; Wong, Terence Z. M.D., Ph.D.; Schwartz, Richard B. M.D., Ph.D.; Jolesz, Ferenc M.D.  Craniotomy for Tumor Treatment in an Intraoperative Magnetic Resonance Imaging Unit. Neurosurgery: September 1999 – Volume 45 – Issue 3 – p 423
  9. Medel, Ricky MD,  Monteith, Stephen J. MD, Elias, W. Jeffrey MD, Eames, Matthew PhD, Snell, John PhD, Sheehan, Jason P. MD, PhD, Wintermark, Max MD, MAS, Jolesz, Ferenc A. MD, Kassell, Neal F. MD. Neurosurgery: Magnetic Resonance–Guided Focused Ultrasound Surgery: Part 2: A Review of Current and Future Applications. October 2012 – Volume 71 – Issue 4 – p 755–763
  10. Bruno Quesson PhD, Jacco A. de Zwart PhD, Chrit T.W. Moonen PhD. Magnetic resonance temperature imaging for guidance of thermotherapy. Journal of Magnetic Resonance Imaging, Special Issue: Interventional MRI, Part 1, Volume 12, Issue 4, pages 525–533, October 2000

Writer: Dror Nir, PhD

Read Full Post »

Introducing smart-imaging into radiologists’ daily practice.

Author and Curator: Dror Nir, PhD

Radiology congresses are all about imaging in medicine. Interestingly, radiology originates from radiation. It was the discovery of X-ray radiation at the beginning of the 20th century that opened the road to “seeing” the inside of the human body without harming it (at that time that meant cutting into the body).

Radiology meetings are about sharing experience and knowhow on imaging-based management patients. The main topic is always image-interpretation: the bottom line of clinical radiology! This year’s European Congress of Radiology (ECR) dedicated few of its sessions to recent developments in image-interpretation tools. I chose to discuss the one that I consider contributing the most to the future of cancer patients’ management.

In the refresher course dedicated to computer application the discussion was aimed at understanding the question “How do image processing and CAD impact radiological daily practice?” Experts’ reviews gave the audience some background information on the following subjects:

  1. A.     The link between image reconstruction and image analysis.
  2. B.     Semantic web technologies for sharing and reusing imaging-related information
  3. C.     Image processing and CAD: workflow in clinical practice.

I find item A to be a fundamental education item. Not once did I hear a radiologist saying: “I know this is the lesion because it’s different on the image”.  Being aware of the computational concepts behind image rendering, even if it is at a very high level and lacking deep understanding of the computational processes,  will contribute to more balanced interpretations.

Item B is addressing the dream of investigators worldwide. Imagine that we could perform a web search and find educating, curated materials linking visuals and related clinical information, including standardized pathology reporting. We would only need to remember that search engines used certain search methods and agree, worldwide, on the method and language to be used when describing things. Having such tools is a pre-requisite to successful pharmaceutical and bio-tech development.

I find item C strongly linked to A, as all methods for better image interpretation must fit into a workflow. This is a design goal that is not trivial to achieve. To understand what I mean by that, try to think about how you could integrate the following examples in your daily workflow: i.e. what kind of expertise is needed for execution, how much time it will take, do you have the infrastructure?

In the rest of this post, I would like to highlight, through examples that were discussed during ECR 2012, the aspect of improving cancer patients’ clinical assessment by using information fusion to support better image interpretation.

  • Adding up quantitative information from MR spectroscopy (quantifies biochemical property of a target lesion) and Dynamic Contrast Enhanced MR imaging (highlights lesion vasculature).

Image provided by: Dr. Pascal Baltzer, director of mammography at the centre for radiology at Friedrich Schiller University in Jena, Germany

 
  • Registration of images generated by different imaging modalities (Multi-modal imaging registration).

The following examples: Fig 2 demonstrates registration of a mammography image of a breast lesion to an MRI image of this lesion. Fig3 demonstrates registration of an ultrasound image of a breast lesion scanned by an Automatic Breast Ultrasound (ABUS) system and an MRI image of the same lesion.

Images provided by members of the HAMAM project (an EU, FP7 funded research project: Highly Accurate Breast Cancer Diagnosis through Integration of Biological Knowledge, Novel Imaging Modalities, and Modelling): http://www.hamam-project.org

 

 Multi-modality image registration is usually based on the alignment of image-features apparent in the scanned regions. For ABUS-MRI matching these were: the location of the nipple and the breast thickness; the posterior of the nipple in both modalities; the medial-lateral distance of the nipple to the breast edge on ultrasound; and an approximation of the rib­cage using a cylinder on the MRI. A mean accuracy of 14mm was achieved.

Also from the HAMAM project, registration of ABUS image to a mammography image:

registration of ABUS image to a mammography image, Image provided by members of the HAMAM project (an EU, FP7 funded research project: Highly Accurate Breast Cancer Diagnosis through Integration of Biological Knowledge, Novel Imaging Modalities, and Modelling): http://www.hamam-project.org

  • Automatic segmentation of suspicious regions of interest seen in breast MRI images

Segmentation of suspicious the lesions on the image is the preliminary step in tumor evaluation; e.g. finding its size and location. Since lesions have different signal/image character­istics to the rest of the breast tissue, it gives hope for the development of computerized segmentation techniques. If successful, such techniques bear the promise of enhancing standardization in the reporting of lesions size and location: Very important information for the success of the treatment step.

Roberta Fusco of the National Cancer Institute of Naples Pascal Foundation, Naples/IT suggested the following automatic method for suspi­cious ROI selection within the breast using dynamic-derived information from DCE-MRI data.

 

Automatic segmentation of suspicious ROI in breast MRI images, image provided by Roberta Fusco of the National Cancer Institute of Naples Pascal Foundation, Naples/IT

 

 Her algorithm includes three steps (Figure 2): (i) breast mask extraction by means of automatic intensity threshold estimation (Otsu Thresh-holding) on the par­ametric map obtained through the sum of intensity differences (SOD) calculated pixel by pixel; (ii) hole-filling and leakage repair by means of morphological operators: closing is required to fill the holes on the boundaries of breast mask, filling is required to fill the holes within the breasts, erosion is required to reduce the dilation obtained by the closing operation; (iii) suspicious ROIs extraction: a pixel is assigned to a suspicious ROI if it satisfies two conditions: the maximum of its normalized time-intensity curve should be greater than 0.3 and the maximum signal intensity should be reached before the end of the scan time. The first condition assures that the pixels within the ROI have a significant contrast agent uptake (thus excluding type I and type II curves) and the second condition is required for the time-intensity pattern to be of type IV or V (thus excluding type III curves).

Written by: Dror Nir, PhD

Read Full Post »

Imaging: seeing or imagining? (Part 2)

Author and Curator: Dror Nir, PhD

This post is a continuation of

Imaging: seeing or imagining? (Part 1)

http://pharmaceuticalintelligence.com/2012/09/10/imaging-seeing-or-imagining-part-1/

That is the question…

Anyone who follows healthcare news, as I do , cannot help being impressed with the number of scientific and non-scientific items that mention the applicability of Magnetic Resonance Imaging (‘MRI’) to medical procedures.

A very important aspect that is worthwhile noting is that the promise MRI bears to improve patients’ screening – pre-clinical diagnosis, better treatment choice, treatment guidance and outcome follow-up – is based on new techniques that enables MRI-based tissue characterisation.

Magnetic resonance imaging (MRI) is an imaging device that relies on the well-known physical phenomena named “Nuclear Magnetic Resonance”. It so happens that, due to its short relaxation time, the 1H isotope (spin ½ nucleus) has a very distinctive response to changes in the surrounding magnetic field. This serves MRI imaging of the human body well as, basically, we are 90% water. The MRI device makes use of strong magnetic fields changing at radio frequency to produce cross-sectional images of organs and internal structures in the body. Because the signal detected by an MRI machine varies depending on the water content and local magnetic properties of a particular area of the body, different tissues or substances can be distinguished from one another in the scan’s resulting image.

MRI scan of a breast lesion (Source Radiology.com)

The main advantages of MRI in comparison to X-ray-based devices such as CT scanners and mammography systems are that the energy it uses is non-ionizing and it can differentiate soft tissues very well based on differences in their water content.

In the last decade, the basic imaging capabilities of MRI have been augmented for the purpose of cancer patient management, by using magnetically active materials (called contrast agents) and adding functional measurements such as tissue temperature to show internal structures or abnormalities more clearly.

In order to increase the specificity and sensitivity of MRI imaging in cancer detection, various imaging strategies have been developed. The most discussed in MRI related literature are:

  • T2 weighted imaging: The measured response of the 1H isotope in a resolution cell of a T2-weighted image is related to the extent of random tumbling and the rotational motion of the water molecules within that resolution cell. The faster the rotation of the water molecule, the higher the measured value of the T2 weighted response in that resolution cell. For example, prostate cancer is characterized by a low T2 response relative to the values typical to normal prostatic tissue [5].

T2 MRI pelvis with Endo Rectal Coil ( DATA of Dr. Lance Mynders, MAYO Clinic)

  • Dynamic Contrast Enhanced (DCE) MRI involves a series of rapid MRI scans in the presence of a contrast agent. In the case of scanning the prostate, the most commonly used material is gadolinium [4].

Axial MRI Lava DCE with Endo Rectal ( DATA of Dr. Lance Mynders, MAYO Clinic)

  • Diffusion weighted (DW) imaging: Provides an image intensity that is related to the microscopic motion of water molecules [5].

DW image of the left parietal glioblastoma multiforme (WHO grade IV) in a 59-year-old woman, Al-Okaili R N et al. Radiographics 2006;26:S173-S189

  • Multifunctional MRI: MRI image overlaid with combined information from T2-weighted scans, dynamic contrast-enhancement (DCE), and diffusion weighting (DW) [5].
  • Blood oxygen level-dependent (BOLD) MRI: Assessing tissue oxygenation. Tumors are characterized by a higher density of micro blood vessels. The images that are acquired follow changes in the concentration of paramagnetic deoxyhaemoglobin [5].

In the last couple of years, medical opinion leaders are offering to use MRI to solve almost every weakness of the cancer patients’ pathway. Such proposals are not always supported by any evidence of feasibility. For example, a couple of weeks ago, the British Medical Journal published a study [1] concluding that women carrying a mutation in the BRCA1 or BRCA2 genes who have undergone a mammogram or chest x-ray before the age of 30 are more likely to develop breast cancer than those who carry the gene mutation but who have not been exposed to mammography. What is published over the internet and media to patients and lay medical practitioners is: “The results of this study support the use of non-ionising radiation imaging techniques (such as magnetic resonance imaging) as the main tool for surveillance in young women with BRCA1/2 mutations.”.

Why is ultrasound not mentioned as a potential “non-ionising radiation imaging technique”?

Another illustration is the following advert:

Advert in favour of MRI termal imaging of breast

An MRI scan takes between 30 to 45 minutes to perform (not including the time of waiting for the interpretation by the radiologist). It requires the support of around 4 well-trained team members. It costs between $400 and $3500 (depending on the scan).

The important question, therefore, is: Are there, in the USA, enough MRI  systems to meet the demand of 40 million scans a year addressing women with radiographically dense  breasts? Toda there are approximately 10,000 MRI systems in the USA. Only a small percentage (~2%) of the examinations are related to breast cancer. A

A rough calculation reveals that around 10,000 additional MRI centers would need to be financed and operated to meet that demand alone.

References

  1. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK), BMJ 2012; 345 doi: 10.1136/bmj.e5660 (Published 6 September 2012), Cite this as: BMJ 2012;345:e5660 – http://www.bmj.com/content/345/bmj.e5660
  1. http://www.auntminnieeurope.com/index.aspx?sec=sup&sub=wom&pag=dis&itemId=607075
  1. Ahmed HU, Kirkham A, Arya M, Illing R, Freeman A, Allen C, Emberton M. Is it time to consider a role for MRI before prostate biopsy? Nat Rev Clin Oncol. 2009;6(4):197-206.
  1. Puech P, Potiron E, Lemaitre L, Leroy X, Haber GP, Crouzet S, Kamoi K, Villers A. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology. 2009;74(5):1094-9.
  1. Advanced MR Imaging Techniques in the Diagnosis of Intraaxial Brain Tumors in Adults, Al-Okaili R N et al. Radiographics 2006;26:S173-S189 ,

http://radiographics.rsna.org/content/26/suppl_1/S173.full

  1. Ahmed HU. The Index Lesion and the Origin of Prostate Cancer. N Engl J Med. 2009 Oct; 361(17): 1704-6

Writer: Dror Nir, PhD.

Read Full Post »