Feeds:
Posts
Comments

Posts Tagged ‘Health Information Technology’

Role of Informatics in Precision Medicine: Notes from Boston Healthcare Webinar: Can It Drive the Next Cost Efficiencies in Oncology Care? Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Role of Informatics in Precision Medicine: Notes from Boston Healthcare Webinar: Can It Drive the Next Cost Efficiencies in Oncology Care?

Reporter: Stephen J. Williams, Ph.D.

 

Boston Healthcare sponsored a Webinar recently entitled ” Role of Informatics in Precision Medicine: Implications for Innovators”.  The webinar focused on the different informatic needs along the Oncology Care value chain from drug discovery through clinicians, C-suite executives and payers. The presentation, by Joseph Ferrara and Mark Girardi, discussed the specific informatics needs and deficiencies experienced by all players in oncology care and how innovators in this space could create value. The final part of the webinar discussed artificial intelligence and the role in cancer informatics.

 

Below is the mp4 video and audio for this webinar.  Notes on each of the slides with a few representative slides are also given below:

Please click below for the mp4 of the webinar:

 

 


  • worldwide oncology related care to increase by 40% in 2020
  • big movement to participatory care: moving decision making to the patient. Need for information
  • cost components focused on clinical action
  • use informatics before clinical stage might add value to cost chain

 

 

 

 

Key unmet needs from perspectives of different players in oncology care where informatics may help in decision making

 

 

 

  1.   Needs of Clinicians

– informatic needs for clinical enrollment

– informatic needs for obtaining drug access/newer therapies

2.  Needs of C-suite/health system executives

– informatic needs to help focus of quality of care

– informatic needs to determine health outcomes/metrics

3.  Needs of Payers

– informatic needs to determine quality metrics and managing costs

– informatics needs to form guidelines

– informatics needs to determine if biomarkers are used consistently and properly

– population level data analytics

 

 

 

 

 

 

 

 

 

 

 

 

What are the kind of value innovations that tech entrepreneurs need to create in this space? Two areas/problems need to be solved.

  • innovations in data depth and breadth
  • need to aggregate information to inform intervention

Different players in value chains have different data needs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Depth: Cumulative Understanding of disease

Data Depth: Cumulative number of oncology transactions

  • technology innovators rely on LEGACY businesses (those that already have technology) and these LEGACY businesses either have data breath or data depth BUT NOT BOTH; (IS THIS WHERE THE GREATEST VALUE CAN BE INNOVATED?)
  • NEED to provide ACTIONABLE as well as PHENOTYPIC/GENOTYPIC DATA
  • data depth more important in clinical setting as it drives solutions and cost effective interventions.  For example Foundation Medicine, who supplies genotypic/phenotypic data for patient samples supplies high data depth
  • technologies are moving to data support
  • evidence will need to be tied to umbrella value propositions
  • Informatic solutions will have to prove outcome benefit

 

 

 

 

 

How will Machine Learning be involved in the healthcare value chain?

  • increased emphasis on real time datasets – CONSTANT UPDATES NEED TO OCCUR. THIS IS NOT HAPPENING BUT VALUED BY MANY PLAYERS IN THIS SPACE
  • Interoperability of DATABASES Important!  Many Players in this space don’t understand the complexities integrating these datasets

Other Articles on this topic of healthcare informatics, value based oncology, and healthcare IT on this OPEN ACCESS JOURNAL include:

Centers for Medicare & Medicaid Services announced that the federal healthcare program will cover the costs of cancer gene tests that have been approved by the Food and Drug Administration

Broad Institute launches Merkin Institute for Transformative Technologies in Healthcare

HealthCare focused AI Startups from the 100 Companies Leading the Way in A.I. Globally

Paradoxical Findings in HealthCare Delivery and Outcomes: Economics in MEDICINE – Original Research by Anupam “Bapu” Jena, the Ruth L. Newhouse Associate Professor of Health Care Policy at HMS

Google & Digital Healthcare Technology

Can Blockchain Technology and Artificial Intelligence Cure What Ails Biomedical Research and Healthcare

The Future of Precision Cancer Medicine, Inaugural Symposium, MIT Center for Precision Cancer Medicine, December 13, 2018, 8AM-6PM, 50 Memorial Drive, Cambridge, MA

Live Conference Coverage @Medcity Converge 2018 Philadelphia: Oncology Value Based Care and Patient Management

2016 BioIT World: Track 5 – April 5 – 7, 2016 Bioinformatics Computational Resources and Tools to Turn Big Data into Smart Data

The Need for an Informatics Solution in Translational Medicine

 

 

 

 

Read Full Post »

  • Oracle Industry Connect Presents Their 2015 Life Sciences and Healthcare Program

 

Reporter: Stephen J. Williams, Ph.D. and Aviva Lev-Ari, Ph.D., R.N.

oraclehealthcare

Copyright photo Oracle Inc. (TM)

 

Transforming Clinical Research and Clinical Care with Data-Driven Intelligence

March 25-26 Washington, DC

For more information click on the following LINK:

https://www.oracle.com/oracleindustryconnect/life-sciences-healthcare.html

oracle-healthcare-solutions-br-1526409

https://www.oracle.com/industries/health-sciences/index.html  

Oracle Health Sciences: Life Sciences & HealthCare — the Solutions for Big Data

Healthcare and life sciences organizations are facing unprecedented challenges to improve drug development and efficacy while driving toward more targeted and personalized drugs, devices, therapies, and care. Organizations are facing an urgent need to meet the unique demands of patients, regulators, and payers, necessitating a move toward a more patient-centric, value-driven, and personalized healthcare ecosystem.

Meeting these challenges requires redesigning clinical R&D processes, drug therapies, and care delivery through innovative software solutions, IT systems, data analysis, and bench-to-bedside knowledge. The core mission is to improve the health, well-being, and lives of people globally by:

  • Optimizing clinical research and development, speeding time to market, reducing costs, and mitigating risk
  • Accelerating efficiency by using business analytics, costing, and performance management technologies

 

  • Establishing a global infrastructure for collaborative clinical discovery and care delivery models
  • Scaling innovations with world-class, transformative technology solutions
  • Harnessing the power of big data to improve patient experience and outcomes

The Oracle Industry Connect health sciences program features 15 sessions showcasing innovation and transformation of clinical R&D, value-based healthcare, and personalized medicine.

The health sciences program is an invitation-only event for senior-level life sciences and healthcare business and IT executives.

Complete your registration and book your hotel reservation prior to February 27, 2015 in order to secure the Oracle discounted hotel rate.

Learn more about Oracle Healthcare.

General Welcome and Joint Program Agenda

Wednesday, March 25

10:30 a.m.–12:00 p.m.

Oracle Industry Connect Opening Keynote

Mark Hurd, Chief Executive Officer, Oracle

Bob Weiler, Executive Vice President, Global Business Units, Oracle

Warren Berger, Author of “A More Beautiful Question: The Power of Inquiry to Spark Breakthrough Ideas.”

12:00 p.m.–1:45 p.m.

Networking Lunch

1:45 p.m.–2:45 p.m.

Oracle Industry Connect Keynote

Bob Weiler, Executive Vice President, Global Business Units, Oracle

2:45 p.m.–3:45 p.m.

Networking Break

3:45 p.m.–5:45 p.m.

Life Sciences and Healthcare General Session

Robert Robbins, President, Chief Executive Officer, Texas Medical Center

Steve Rosenberg, Senior Vice President and General Manager Health Sciences Global Business Unit, Oracle

7:00 p.m.–10:00 p.m.

Life Sciences and Healthcare Networking Reception

National Museum of American History
14th Street and Constitution Avenue, NW
Washington DC 20001

Life Sciences Agenda

Thursday, March 26

7:00 a.m.–8:00 a.m.

Networking Breakfast

8:00 a.m.–9:15 a.m.

Digital Trials and Research Models of the Future 

Markus Christen, Senior Vice President and Head of Global Development, Proteus

Praveen Raja, Senior Director of Medical Affairs, Proteus Digital Health

Michael Stapleton, Vice President and Chief Information Officer, R&D IT, Merck

9:15 a.m.–10:30 a.m.

Driving Patient Engagement and the Internet of Things 

Howard Golub, Vice President of Clinical Research, Walgreens

Jean-Remy Behaeghel, Senior Director, Client Account Management, Product Development Solutions, Vertex Pharmaceuticals

10:30 a.m.–10:45 a.m.

Break

10:45 a.m.–12:00 p.m.

Leveraging Data and Advanced Analytics to Enable True Pharmacovigilance and Risk Management 

Leonard Reyno, Senior Vice President, Chief Medical Officer, Agensys

 

Accelerating Therapeutic Development Through New Technologies 

Andrew Rut, Chief Executive Officer, Co-Founder and Director, MyMeds&Me

12:45 a.m.–1:45 p.m.

Networking Lunch

1:45 p.m.–2:30 p.m.

Oracle Industry Connect Keynote

2:30 p.m.–2:45 p.m.

Break

2:45 p.m.–3:15 p.m.

Harnessing Big Data to Increase R&D Innovation, Efficiency, and Collaboration 

Sandy Tremps, Executive Director, Global Clinical Development IT, Merck

3:15 p.m.–3:30 p.m.

Break

3:30 p.m.–4:45 p.m.

Transforming Clinical Research from Planning to Postmarketing 

Kenneth Getz, Director of Sponsored Research Programs and Research Associate Professor, Tufts University

Jason Raines, Head, Global Data Operations, Alcon Laboratories

4:45 p.m.–6:00 p.m.

Increasing Efficiency and Pipeline Performance Through Sponsor/CRO Data Transparency and Cloud Collaboration 

Thomas Grundstrom, Vice President, ICONIK, Cross Functional IT Strategies and Innovation, ICON

Margaret Keegan, Senior Vice President, Global Head Data Sciences and Strategy, Quintiles

6:00 p.m.–9:00 p.m.

Oracle Customer Networking Event

Healthcare Agenda

Thursday, March 26

7:00 a.m.–8:15 a.m.

Networking Breakfast

8:30 a.m.–9:15 a.m.

Population Health: A Core Competency for Providers in a Post Fee-for-Service Model 

Margaret Anderson, Executive Director, FasterCures

Balaji Apparsamy, Director, Business Intellegence, Baycare

Leslie Kelly Hall, Senior Vice President, Policy, Healthwise

Peter Pronovost, Senior Vice President, Patient Safety & Quality, Johns Hopkins

Sanjay Udoshi, Healthcare Product Strategy, Oracle

9:15 a.m.–9:30 a.m.

Break

9:30 a.m.–10:15 a.m.

Population Health: A Core Competency for Providers in a Post Fee-for-Service Model (Continued)

10:15 a.m.–10:45 a.m.

Networking Break

10:45 a.m.–11:30 a.m.

Managing Cost of Care in the Era of Healthcare Reform 

Chris Bruerton, Director, Budgeting, Intermountain Healthcare

Tony Byram, Vice President Business Integration, Ascension

Kerri-Lynn Morris, Executive Director, Finance Operations and Strategic Projects, Kaiser Permanente

Kavita Patel, Managing Director, Clinical Transformation, Brookings Institute

Christine Santos, Chief of Strategic Business Analytics, Providence Health & Services

Prashanth Kini, Senior Director, Healthcare Product Strategy, Oracle

11:30 a.m.–11:45 a.m.

Break

11:45 a.m.–12:45 p.m.

Managing Cost of Care in the Era of Healthcare Reform (Continued)

12:45 p.m.–1:45 p.m.

Networking Lunch

1:45 p.m.–2:30 p.m.

Oracle Industry Connect Keynote

2:30 p.m.–2:45 p.m.

Break

2:45 p.m.–3:30 p.m.

Precision Medicine 

Annerose Berndt, Vice President, Analytics and Information, UPMC

James Buntrock, Vice Chair, Information Management and Analytics, Mayo Clinic

Dan Ford, Vice Dean for Clinical Investigation, Johns Hopkins Medicine

Jan Hazelzet, Chief Medical Information Officer, Erasmus MC

Stan Huff, Chief Medical Information Officer, Intermountain Healthcare

Vineesh Khanna, Director, Biomedical Informatics, SIDRA

Brian Wells, Vice President, Health Technology, Penn Medicine

Wanmei Ou, Senior Product Strategist, Healthcare, Oracle

3:30 p.m.–3:45 p.m.

Networking Break

3:45 p.m.–4:30 p.m.

Precision Medicine (Continued)

4:30 p.m.–4:45 p.m.

Break

6:00 p.m.–9:00 p.m.

Oracle Customer Networking Event

Additional Links to Oracle Pharma, Life Sciences and HealthCare

 
Life Sciences | Industry | Oracle <http://www.oracle.com/us/industries/life-sciences/overview/>

http://www.oracle.com/us/industries/life-sciences/overview/

 
Oracle Corporation

 
Oracle Applications for Life Sciences deliver a powerful combination of technology and preintegrated applications.

  • Clinical

<http://www.oracle.com/us/industries/life-sciences/clinical/overview/index.html>

  • Medical Devices

<http://www.oracle.com/us/industries/life-sciences/medical/overview/index.html>

  • Pharmaceuticals

<http://www.oracle.com/us/industries/life-sciences/pharmaceuticals/overview/index.html>

 
Life Sciences Solutions | Pharmaceuticals and … – Oracle <http://www.oracle.com/us/industries/life-sciences/solutions/index.html>

http://www.oracle.com  Industries  Life Sciences

 
Oracle Corporation

 
Life Sciences Pharmaceuticals and Biotechnology.

 
Oracle Life Sciences Data Hub – Overview | Oracle <http://www.oracle.com/us/products/applications/health-sciences/e-clinical/data-hub/index.html>

http://www.oracle.com  …  E-Clinical Solutions

 
Oracle Corporation

 
Oracle Life Sciences Data Hub. Better Insights, More Informed Decision-Making. Provides an integrated environment for clinical data, improving regulatory …

 
Pharmaceuticals and Biotechnology | Oracle Life Sciences <http://www.oracle.com/us/industries/life-sciences/pharmaceuticals/overview/index.html>

http://www.oracle.com/us/…/life-sciences/…/index.html

 
Oracle Corporation

 
Oracle Applications for Pharmaceuticals and Biotechnology deliver a powerful combination of technology and preintegrated applications.

 
Oracle Health Sciences – Healthcare and Life Sciences … <https://www.oracle.com/industries/health-sciences/>

https://www.oracle.com/industries/health-sciences/

 
Oracle Corporation

 
Oracle Health Sciences leverages industry-shaping technologies that optimize clinical R&D, mitigate risk, advance healthcare, and improve patient outcomes.

 
Clinical | Oracle Life Sciences | Oracle <http://www.oracle.com/us/industries/life-sciences/clinical/overview/index.html>

http://www.oracle.com  Industries  Life Sciences  Clinical

 
Oracle Corporation

 
Oracle for Clinical Applications provides an integrated remote data collection facility for site-based entry.

 
Oracle Life Sciences | Knowledge Zone | Oracle … <http://www.oracle.com/partners/en/products/industries/life-sciences/get-started/index.html>

http://www.oracle.com/partners/…/life-sciences/…/index.ht&#8230;

 
Oracle Corporation

 
This Knowledge Zone was specifically developed for partners interested in reselling or specializing in Oracle Life Sciences solutions. To become a specialized …

 
[PDF]Brochure: Oracle Health Sciences Suite of Life Sciences … <http://www.oracle.com/us/industries/life-sciences/oracle-life-sciences-solutions-br-414127.pdf>

http://www.oracle.com/…/life-sciences/oracle-life-sciences-s&#8230;

 
Oracle Corporation

 
Oracle Health Sciences Suite of. Life Sciences Solutions. Integrated Solutions for Global Clinical Trials. Oracle Health Sciences provides the world’s broadest set …

 

 

Read Full Post »

10:15AM 11/13/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

Reporter: Aviva Lev-Ari, PhD, RN

 

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

10:15 a.m. Panel Discussion — IT/Big Data

IT/Big Data

The human genome is composed of 6 billion nucleotides (using the genetic alphabet of T, C, G and A). As the cost of sequencing the human genome is decreasing at a rapid rate, it might not be too far into the future that every human being will be sequenced at least once in their lifetime. The sequence data together with the clinical data are going to be used more and more frequently to make clinical decisions. If that is true, we need to have secure methods of storing, retrieving and analyzing all of these data.  Some people argue that this is a tsunami of data that we are not ready to handle. The panel will discuss the types and volumes of data that are being generated and how to deal with it.

IT/Big Data

   Moderator:

Amy Abernethy, M.D.
Chief Medical Officer, Flatiron

Role of Informatics, SW and HW in PM. Big data and Healthcare

How Lab and Clinics can be connected. Oncologist, Hematologist use labs in clinical setting, Role of IT and Technology in the environment of the Clinicians

Compare Stanford Medical Center and Harvard Medical Center and Duke Medical Center — THREE different models in Healthcare data management

Create novel solutions: Capture the voice of the patient for integration of component: Volume, Veracity, Value

Decisions need to be made in short time frame, documentation added after the fact

No system can be perfect in all aspects

Understanding clinical record for conversion into data bases – keeping quality of data collected

Key Topics

Panelists:

Stephen Eck, M.D., Ph.D.
Vice President, Global Head of Oncology Medical Sciences,
Astellas, Inc.

Small data expert, great advantage to small data. Populations data allows for longitudinal studies,

Big Mac Big Data – Big is Good — Is data been collected suitable for what is it used, is it robust, limitations, of what the data analysis mean

Data analysis in Chemical Libraries – now annotated

Diversity data in NOTED by MDs, nuances are very great, Using Medical Records for building Billing Systems

Cases when the data needed is not known or not available — use data that is available — limits the scope of what Valuable solution can be arrived at

In Clinical Trial: needs of researchers, billing clinicians — in one system

Translation of data on disease to data object

Signal to Noise Problem — Thus Big data provided validity and power

 

J. Michael Gaziano, M.D., M.P.H., F.R.C.P.
Scientific Director, Massachusetts Veterans Epidemiology Research
and Information Center (MAVERIC), VA Boston Healthcare System;
Chief Division of Aging, Brigham and Women’s Hospital;
Professor of Medicine, Harvard Medical School

at BWH since 1987 at 75% – push forward the Genomics Agenda, VA system 25% – VA is horizontally data integrated embed research and knowledge — baseline questionnaire 200,000 phenotypes – questionnaire and Genomics data to be integrated, Data hierarchical way to be curated, Simple phenotypes, validate phenotypes, Probability to have susceptibility for actual disease, Genomics Medicine will benefit Clinicians

Data must be of visible quality, collect data via Telephone VA – on Med compliance study, on Ability to tolerate medication

–>>Annotation assisted in building a tool for Neurologist on Alzheimer’s Disease (AlzSWAN knowledge base) (see also Genotator , a Disease-Agnostic Tool for Annotation)

–>>Curation of data is very different than statistical analysis of Clinical Trial Data

–>>Integration of data at VA and at BWH are tow different models of SUCCESSFUL data integration models, accessing the data is also using a different model

–>>Data extraction from the Big data — an issue

–>>Where the answers are in the data, build algorithms that will pick up causes of disease: Alzheimer’s – very difficult to do

–>>system around all stakeholders: investment in connectivity, moving data, individual silo, HR, FIN, Clinical Research

–>>Biobank data and data quality

 

Krishna Yeshwant, M.D.
General Partner, Google Ventures;
Physician, Brigham and Women’s Hospital

Computer Scientist and Medical Student. Were the technology is going?

Messy situation, interaction IT and HC, Boston and Silicon Valley are focusing on Consumers, Google Engineers interested in developing Medical and HC applications — HUGE interest. Application or Wearable – new companies in this space, from Computer Science world to Medicine – Enterprise level – EMR or Consumer level – Wearable — both areas are very active in Silicon Valley

IT stuff in the hospital HARDER that IT in any other environment, great progress in last 5 years, security of data, privacy. Sequencing data cost of big data management with highest security

Constrained data vs non-constrained data

Opportunities for Government cooperation as a Lead needed for standardization of data objects

 

Questions from the Podium:

  • Where is the Truth: do we have all the tools or we don’t for Genomic data usage
  • Question on Interoperability
  • Big Valuable data — vs Big data
  • quality, uniform, large cohort, comprehensive Cancer Centers
  • Volume of data can compensate quality of data
  • Data from Imaging – Quality and interpretation – THREE radiologist will read cancer screening

 

 

 

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

 

@HarvardPMConf

#PMConf

@SachsAssociates

@Duke_Medicine

@AstellasUS

@GoogleVentures

@harvardmed

@BrighamWomens

@kyeshwant

Read Full Post »

8:00AM 11/13/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

8:00 A.M. Welcome from Gary Gottlieb, M.D.

Opening Remarks:

Partners HealthCare is the largest healthcare organization in Massachusetts and whose founding members are Brigham and Women’s Hospital and Massachusetts General Hospital. Dr. Gottlieb has long been a supporter of personalized medicine and he will provide his vision on the role of genetics and genomics in healthcare across the many hospitals that are part of Partners HealthCare.

Opening Remarks and Introduction

Scott Weiss, M.D., M.S. @PartnersNews
Scientific Director, Partners HealthCare Personalized Medicine;
Associate Director, Channing Laboratory/
Professor of Medicine, Harvard Medical School 
@harvardmed

Welcome

Engine of innovations

  • lower cost – Accountable care
  • robust IT infrastructure on the Unified Medical Records
  • Lab Molecular Medicine and Biobanks
  • 1. Lab Molecular medicine
  • 2. Biobank
  • 3. Translations Genomics: RNA Sequencing
  • 4. Medical Records integration of coded diagnosis linked to Genomics

BIOBANKS – Samples and contact patients, return actionable procedures

LIFE STYLE SURVEY – supplements the medical record

GENOTYPING and SEQUENCING – less $50 per sequence available to researcher / investigators

RECRUITMENT – subject to biobank, own Consents – e-mail patient – consent online consenting — collects 16,000 patients per month – very successful Online Consent

LAB Molecular Medicine – CLIA — genomics test and clinical care – EGFR identified as a bio-marker to cancer in 3 month a test was available. Best curated medical exon databases Emory Genetics Lab (EMVClass) and CHOP (BioCreative and MitoMAP and MitoMASTER). Labs are renowned in pharmacogenomics and interpretability.

IT – GeneInsight – IT goal Clinicians empowered by a workflow geneticist assign cases, data entered into knowledge base, case history, GENEINSIGHT Lab — geneticists enter info in a codified way will trigger a report for the Geneticist – adding specific knowledge standardized report enters Medical Record. Available in many Clinics of Partners members.

Example: Management of Patient genetic profiles – Relationships built between the lab and the Clinician

Variety of Tools are in development

GenInsight Team –>> Pathology –>> Sunquest Relationship

The Future

Genetic testing –>> other info (Pathology, Exams, Life Style Survey, Meds, Imaging) — Integrated Medical Record

Clinic of the Future-– >> Diagnostics – Genomics data and Variants integrated at the Clinician desk

Gary Gottlieb, M.D. @PartnersNews
President and CEO, Partners HealthCare

Translational Science
Partners 6,000 MDs, MGH – 200 years as Teaching Hospital of HMS, BWH – magnets in HealthCare

2001  – Center for Genomics was started at Partners, 2008 Genomics and Other Omis, Population Health, PM – Innovations at Partners.

Please Click on Link  Video on 20 years of PartnersHealthcare

Video of Dr. Gottlieb at ECRI conference 2012

Why is personalized medicine  important to Partners?

From Healthcare system to the Specific Human Conditions

  • Lab translate results to therapy
  • Biobank +50,000 specimens links to Medical Records of patients – relevant to Clinician, Genomics to Clinical Applications

Questions from the Podium

  • test results are not yet available online for patients
  • clinicians and liability – delays from Lab to decide a variant needs to be reclassified – alert is triggered. Lab needs time to accumulated knowledge before reporting a change in state.
  • Training Clinicians in above type of IT infrastructure: Labs around the Nations deal with VARIANT RECLASSIFICATION- physician education is a must, Clinicians have access to REFERENCE links.
  • All clinicians accessing this IT infrastructure — are trained. Most are not yet trained
  • Coordination within Countries and Across Nations — Platforms are Group specific – PARTNERS vs the US IT Infrastructure — Genomics access to EMR — from 20% to 70% Nationwide during the Years of the Obama Adm.
  • Shakeout in SW linking Genetic Labs to reach Gold Standard

Click to see Advanced Medical Education Partners Offers

 

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

@HarvardPMConf

#PMConf

@SachsAssociates

@PartnersNews

@MassGeneral

@HarvardHealth

@harvardmed

@BrighamWomens

Read Full Post »

Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification.

Reporter: Stephen J. Williams, PhD

Article ID #144: Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification. Published on 6/17/2014

WordCloud Image Produced by Adam Tubman

A report on how gamification mobile applications, like CyberDoctor’s PatientPartner, may improve patient adherence to oral chemotherapy.

(includes interviews with CyberDoctor’s CEO Akhila Satish and various oncologists)

 

Writer/Curator: Stephen J. Williams, Ph.D.

UPDATE 5/15/2019

Please see below for an UPDATE on this post including results from the poll conducted here on the value of a gamification strategy for oral chemotherapy patient adherence as well as a paper describing a well designed development of an application specifically to address this clinical problem.

Studies have pointed to a growing need to monitor and improve medical adherence, especially with outpatient prescription drugs across many diseases, including cancer.

The trend to develop oral chemotherapies, so patients can take their medications in the convenience of their home, has introduced produced a unique problem concerning cancer patient-medication adherence. Traditionally, chemotherapies were administered by a parental (for example intravenous) route by clinic staff, however, as noted by Jennifer M Gangloff in her article Troubling Trend: Medication Adherence:

 

with the trend of cancer patients taking their oral medication at home, the burden of adherence has shifted from clinicians to the patients and their families.

 

A few highlights from Jennifer Gangloff’s article highlight the degree and scope of the problem:

 

  1. There is a wide range of adherence for oral chemo– as low as 16% up to 100% adherence rates have been seen in multiple studies
  2. High cost in lives and money: estimates in US of 125,000 deaths and $300 billion in healthcare costs due to nonadherence to oral anticancer medications
  3. Factors not related to the patient can contribute to nonadherence including lack of information provided by the healthcare system and socioeconomic factors
  4. Numerous methods to improve adherence issues (hospital informative seminars, talking pill bottles, reminder phone calls etc.) have met with mixed results.

 

A review by Steve D`Amato of published literature also highlights the extent of problems with highly variable adherence rates including

  • 17-27% for hematologic malignancies
  • 53-98% for breast cancer
  • 97% for ovarian cancer

More strikingly, patient adherence rates can drastically decline over treatment, with one study showing an adherence rate drop from 87% to 50% over 4 years of adjuvant tamoxifen therapy.

 

Tackling The Oral Chemotherapy-Patient Adherence Problem

 

Documented factors leading to non-adherence to oral oncology medications include

  1. Patient feels better so stop taking the drug
  2. Patient feels worse so stops taking the drug
  3. Confusing and complicated dosing regimen
  4. Inability to afford medications
  5. Poor provider-patient relationships
  6. Adverse effects of medication
  7. Cognitive impairment (“chemo fog”; mental impairment due to chemotherapy
  8. Inadequate education/instruction of discharge

There are many examples of each reason why a patient stopped taking medication. One patient was prescribed capecitabine for her metastatic breast cancer and, upon feeling nausea, started to use antacids, which precipitated toxicities as a result of increased plasma levels of capecitabine.

In a white paper entitled Oral Oncology Treatment Regimens and the Role of Medication Therapy Management on Patient Adherence and Compliance, David Reese, Vice President Oncology at Tx Care Advantage discus how Medication Therapy Management (MTM) programs could intervene to improve medical adherence in both the oncology and non-oncology setting.

This review also documented the difficulties in accurately measuring patient adherence including:

  • Inaccuracy of self-reporting
  • Lack of applicability of external measurements such as pill counts
  • Hawthorne effect: i.e. patient pill documentation reminds them to take next dose

The group suggests that using MTM programs, especially telephony systems involving oncology nurses and pharmacists and utilizing:

  • Therapy support (dosing reminders)
  • Education
  • Side effect management

 

may be a cost-efficient methodology to improve medical adherence.

 

Although nurses are important intermediary educating patients about their oral chemotherapies, it does not appear that solely relying on nurses to monitor patient adherence will be sufficient, as indicated in a survey-based Japanese study.

As reported in May 12, 2014 | Oncology Nursing By Leah Lawrence

 

Systematic Nurse Involvement Key as Oral Chemotherapy Use Grows– at: http://www.cancernetwork.com/oncology-nursing/systematic-nurse-involvement-key-oral-chemotherapy-use-grows

 

Survey results indicated that 90% of nurses reported asking patients on oral chemotherapy about emergency contacts, side effects, and family/friend support. Nurses also provided patients with education materials on their assigned medication.

However, less than one-third of nurses asked if their patients felt confident about managing their oral chemotherapy.

“Nurses were less likely to ask adherence-related questions of patients with refilled prescriptions than of new patients,” the researchers wrote. “Regarding unused doses of anticancer agents, 35.5% of nurses reported that they did not confirm the number of unused doses when patients had refilled prescriptions.”

From the Roswell Park Cancer Institute blog post Making Mobile Health Work

https://www.roswellpark.org/partners-practice/white-papers/making-mobile-health-work

US physicians are recognizing the need for the adoption of mobile in their practice but choice of apps and mobile strategies must be carefully examined before implementation. In addition, most physicians are using mobile communications as a free-complementary service and these physicians are not being reimbursed for their time.

 

Some companies are providing their own oncology-related mobile app services:

CollabRx Announces Oncology-Specific Mobile App with Leading Site for Healthcare Professionals, MedPage Today

(http://www.collabrx.com/collabrx-announces-oncology-specific-mobile-app-with-leading-site-for-healthcare-professionals-medpage-today/)

San Francisco, August 13, 2013CollabRx, Inc. (NASDAQ: CLRX), a healthcare information technology company focused on informing clinical decision making in molecular medicine, today announced a multi-year agreement with Everyday Health’s MedPage Today. The forthcoming app, which will target oncologists and pathologists, will focus on the molecular aspects of laboratory testing and therapy development. Over time, the expectation is that this app will serve as a comprehensive point of care resource for physicians and patients to obtain highly credible, expert-vetted and dynamically updated information to guide cancer treatment planning.

The McKesson Foundation’s Mobilizing for Health initiative

has awarded a grant to Partners HealthCare’s Center for Connected Health to develop a mobile health program that uses a smartphone application to help patients with cancer adhere to oral chemotherapy treatments and monitor their symptoms, FierceMobileHealthcare reports.

 

CancerNet announces mobile application (from cancer.net)

http://www.cancer.net/navigating-cancer-care/managing-your-care/mobile-applications

 

However, there is little evidence that the plethora of cancer-based apps is providing any benefit with regard to patient outcome or adherence, as reported in to an article in the Journal of Medical Internet Research, reported at FierceMobileHealthcare (Read more: Cancer smartphone apps for consumers lack effectiveness – FierceMobileHealthcare http://www.fiercemobilehealthcare.com/story/cancer-smartphone-apps-consumers-lack-effectiveness/2013-12-26#ixzz34ucdxVcU )

The report suggests that there are too many apps either offering information, suggesting behavior/lifestyle changes, or measuring compliance data but little evidence to suggest any of these are working the way they intended. The article suggests the plethora of apps may just be adding to the confusion.

Johnson&Johnson’s Wellness & Prevention unit has launched a health-tracking app Track Your Health. Although the company considers it a “gamification“ app, Track Your Health© operates to either feed data from other health tracking apps or allow the user to manually input data.
Read more: J&J launches ‘quantified self’ app to game patients into better behavior – FiercePharmaMarketing http://www.fiercepharmamarketing.com/story/jj-launches-quantified-self-app-game-patients-better-behavior/2014-05-28#ixzz34uhFDJr2

Even ASCO has a list of some oncology-related apps (http://connection.asco.org/commentary/article/id/3123/favorite-hematology-oncology-apps.aspx) and

NIH is offering grants for oncology-related app development (https://www.linkedin.com/groupItem?view=&gid=72923&type=member&item=5870221695683424259&qid=dbf53031-dd21-443c-9152-fad87f85d200&trk=groups_most_popular-0-b-ttl&goback=.gmp_72923)
As reports and clinicians have stated, we need health outcome data and clinical trials to determine the effective of these apps.

MyCyberDoctor™, a True Gamification App, Shows Great Results in Improving Diabetics Medical Adherence and Health Outcome

 

Most of the mobile health apps discussed above, would be classified as tracking apps, because the applications simply record a patient’s actions, whether filling a prescription, interacting with a doctor, nurse, pharmacist, or going to a website to gain information. However, as discussed before, there is no hard evidence this is really impacting health outcomes.

 

Another type of application, termed gamification apps, rely on role-playing by the patient to affect patient learning and ultimately behavior.

An interested twist on this method was designed by Akhila Satish, CEO and developer of CyberDoctor and a complementary application PatientPartner.

Akhila Satish Picture

 

 

Ms. Akhila Satish, CEO CyberDoctor

 

 

 

 

 

 

 

Please watch video of interview with Akhila Satish, CEO of CyberDoctor at the Health 2.0 conference http://vimeo.com/51695558

 

And a video of the results of the PatientPartner clinical trial here: http://vimeo.com/79537738

 

As reported here, the PatientPartner application was used in the first IRB-approved mhealth clinical-trial to see if the gamification app could improve medical adherence and outcomes in diabetic patients. PatientPartner is a story-driven game in changing health behavior and biomarkers (blood glucose levels in this trial). In the clinical trial, 100 non-adherent patients with diabetes played the PatientPartner game for 15 minutes. Results were amazing, as the trial demonstrated an increase in patient adherence, with only 15 minutes of game playing.

Results from the study

Patients with diabetes who used PatientPartner showed significant improvement in three key areas – medication, diet, and exercise:

  • Medication adherence increased by 37%, from 58% to 95% – equivalent to three additional days of medication adherence per week.
  • Diet adherence increased by 24% – equivalent to two days of additional adherence a week.
  • Exercise adherence increased by 14% – equivalent to one additional day of adherence per week.
  • HbA1c (a blood sugar measure) decreased from 10.7% to 9.7%.

As mentioned in the article:

The unique, universal, non-disease specific approach allows PatientPartner to be effective in improving adherence in all patient populations.

PatientPartner is available in the iTunes store and works on the iPhone and iPod Touch. For information on PatientPartner, visit www.mypatientpartner.com.

Ms. Satish, who was named one of the top female CEO’s at the Health Conference, gratuitously offered to answer a few questions for Leaders in Pharmaceutical Business Intelligence (LPBI) on the feasibility of using such a game (role-playing) application to improve medical adherence in the oncology field.

LPBI: The results you had obtained with patient-compliance in the area of diabetes are compelling and the clinical trial well-designed.  In the oncology field, due to the increase in use of oral chemotherapeutics, patient-compliance has become a huge issue. Other than diabetes, are there plans for MyCyberDoctor and PatientPartner to be used in other therapeutic areas to assist with patient-compliance and patient-physician relations?

Ms. Satish: Absolutely! We tested the application in diabetes because we wanted to measure adherence from an objective blood marker (hbA1c). However, the method behind PatientPartner- teaching patients how to make healthy choices- is universal and applicable across therapeutic areas. 

LPBI: Recently, there have been a plethora of apps developed which claim to impact patient-compliance and provide information. Some of these apps have been niche (for example only providing prescription information but tied to pharmacy records and company databases). Your app seems to be the only one with robust clinical data behind it and approaches from a different angle, namely adjusting behavior using a gamefying experience and teaching the patient the importance of compliance. How do you feel this approach geared more toward patient education sets PatientPartner apart from other compliance-based apps?

Ms. Satish: PatientPartner really focuses on the how of patient decision making, rather than the specifics of each decision that is made. It’s a unique approach, and part of the reason PatientPartner works so effectively with such a short initial intervention! We are able to achieve more with less “app” time as a result of this method.  

LPBI: There have been multiple studies attempting to correlate patient adherence, decision-making, and health outcome to socioeconomic status. In some circumstances there is a socioeconomic correlation while other cases such as patient-decision to undergo genetic testing or compliance to breast cancer treatment in rural areas, level of patient education may play a bigger role. Do you have data from your diabetes trial which would suggest any differences in patient adherence, outcome to any socioeconomic status? Do you feel use of PatientPartner would break any socioeconomic barriers to full patient adherence?

Ms. Satish: Within our trial, we had several different clinical sites. This helped us test the product out in a broad, socioeconomically diverse population. It is our hope that with a tool as easy to scale and use as PatientPartner we have the opportunity to see the product used widely, even in populations that are traditionally harder to reach.  

LPBI: There has been a big push for the development of individual, personalized physician networks which use the internet as the primary point of contact between a primary physician and the patient. Individuals may sign up to these networks bypassing the traditional insurance-based networks. How would your application assist in these types of personalized networks?

Ms. Satish: PatientPartner can easily be plugged into any existing framework of communication between patient and provider. We facilitate patient awareness, engagement and accountability- all of which are important regardless of the network structure.

LBPI: Thank you Akhila!

A debate has begun about regulating mobile health applications, and although will be another post, I would just like to summarize a nice article in May, 2014 Oncology Times by Sarah Digiulo “Mobile Health Apps: Should They be Regulated?

In general, in the US there are HIPAA regulations about the dissemination of health related information between a patient and physician. Most of the concerns are related to personal health information made public in an open-access platform such as Twitter or Facebook.

In addition, according to Dr. Don Dizon M.D., Director of the Oncology Sexual Health Clinic at Massachusetts General Hospital, it may be more difficult to design applications directed against a vast, complex disease like cancer with its multiple subtypes than for diabetes.

 

Mobile Health Applications on Rise in Developing World: Worldwide Opportunity

 

According to International Telecommunication Union (ITU) statistics, world-wide mobile phone use has expanded tremendously in the past 5 years, reaching almost 6 billion subscriptions. By the end of this year it is estimated that over 95% of the world’s population will have access to mobile phones/devices, including smartphones.

This presents a tremendous and cost-effective opportunity in developing countries, and especially rural areas, for physicians to reach patients using mHealth platforms.

Drs. Clara Aranda-Jan Neo Mohutsiwa and Svetla Loukanova had conducted a systematic review of the literature on mHealth projects conducted in Africa[1] to assess the reliability of mobile phone and applications to assist in patient-physician relationships and health outcomes. The authors reviewed forty four studies on mHealth projects in Africa, determining their:

  • strengths
  • weaknesses
  • opportunities
  • threats

to patient outcomes using these mHealth projects. In general, the authors found that mHealth projects were beneficial for health-related outcomes and their success related to

  • accessibility
  • acceptance and low-cost
  • adaptation to local culture
  • government involvement

while threats to such projects could include

  • lack of funding
  • unreliable infrastructure
  • unclear healthcare system responsibilities

Dr.Sreedhar Tirunagari, an oncologist in India, agrees that mHealth, especially gamification applications could greatly foster better patient education and adherencealthough he notes that mHealth applications are not really used in India and may not be of much use for those oncology patients living in rural areas, as  cell phone use is not as prevalent as in the bigger inner cities such as Delhi and Calcutta.

 

Dr. Louis Bretes, an oncologist from Portugal, when asked

1) do you see a use for such apps which either track drug compliance or use gamification systems to teach patients the importance of continuing their full schedule of drug therapy

2) do you feel patient- drug compliance issues in the oncology practice is due to lack of information available to the patient or issues related to drug side effects?

“I think that Apps could help in this setting, we are in
Informatics era but..
The main question is that chronic patients are special ones.
Cancer patients have to deal with prognosis, even in therapies
with curative intent such as aromatase inhibitors are potent
Drugs that can cure; only in the future the patients know.
But meanwhile he or she has to deal with side-effects every day. A PC can help but suffer this symptoms…it. Is a real problem believe me!”

“The main app is his/her doctor”

I would like to invite all oncologists to answer the poll question ABOVE about the use of such gamification apps, like PatientPartner, for improving medical adherence to oral chemotherapy.

UPDATE 5/15/2019

The results of the above poll, although limited, revealed some interesting insights.  Although only five oncologists answered the poll whether they felt gamification applications could help with oral chemotherapy patient adherence, all agreed it would be worthwhile to develop apps based on gamification to assist in the outpatient setting.  In addition, one oncologist felt that the success of mobile patient adherence application would depend on the type of cancer.  None of the oncologist who answered the survey thought that gamification apps would have no positive effect on patient adherence to their chemotherapy.  With this in light, a recent paper by Joel Fishbein of University of Colorado and Joseph Greer from Massachusetts General Hospital, describes the development of a mobile application, in clinical trial, to promote patient adherence to their oral chemotherapy.

 

Mobile Applications to Promote Adherence to Oral Chemotherapy and Symptom Management: A Protocol for Design and Development

 

Mobile Application to Promote Adherence to Oral Chemotherapy and Symptom Management: A Protocol for Design and Development. Fishbein JNNisotel LEMacDonald JJAmoyal Pensak NJacobs JMFlanagan CJethwani K Greer JAJMIR Res Protoc. 2017 Apr 20;6(4):e62. doi: 10.2196/resprot.6198. 

 

Abstract 

BACKGROUND:

Oral chemotherapy is increasingly used in place of traditional intravenous chemotherapy to treat patients with cancer. While oral chemotherapy includes benefits such as ease of administration, convenience, and minimization of invasive infusions, patients receive less oversight, support, and symptom monitoring from clinicians. Additionally, adherence is a well-documented challenge for patients with cancer prescribed oral chemotherapy regimens. With the ever-growing presence of smartphones and potential for efficacious behavioral intervention technology, we created a mobile health intervention for medication and symptom management.

OBJECTIVE:

The objective of this study was to develop and evaluate the usability and acceptability of a smartphone app to support adherence to oral chemotherapy and symptom management in patients with cancer.

METHODS:

We used a 5-step development model to create a comprehensive mobile app with theoretically informed content. The research and technical development team worked together to develop and iteratively test the app. In addition to the research team, key stakeholders including patients and family members, oncology clinicians, health care representatives, and practice administrators contributed to the content refinement of the intervention. Patient and family members also participated in alpha and beta testing of the final prototype to assess usability and acceptability before we began the randomized controlled trial.

RESULTS:

We incorporated app components based on the stakeholder feedback we received in focus groups and alpha and beta testing. App components included medication reminders, self-reporting of medication adherence and symptoms, an education library including nutritional information, Fitbit integration, social networking resources, and individually tailored symptom management feedback. We are conducting a randomized controlled trial to determine the effectiveness of the app in improving adherence to oral chemotherapy, quality of life, and burden of symptoms and side effects. At every stage in this trial, we are engaging stakeholders to solicit feedback on our progress and next steps.

CONCLUSIONS:

To our knowledge, we are the first to describe the development of an app designed for people taking oral chemotherapy. The app addresses many concerns with oral chemotherapy, such as medication adherence and symptom management. Soliciting feedback from stakeholders with broad perspectives and expertise ensured that the app was acceptable and potentially beneficial for patients, caregivers, and clinicians. In our development process, we instantiated 7 of the 8 best practices proposed in a recent review of mobile health app development. Our process demonstrated the importance of effective communication between research groups and technical teams, as well as meticulous planning of technical specifications before development begins. Future efforts should consider incorporating other proven strategies in software, such as gamification, to bolster the impact of mobile health apps. Forthcoming results from our randomized controlled trial will provide key data on the effectiveness of this app in improving medication adherence and symptom management.

TRIAL REGISTRATION:

ClinicalTrials.gov NCT02157519; https://clinicaltrials.gov/ct2/show/NCT02157519 (Archived by WebCite at http://www.webcitation.org/6prj3xfKA).

In this paper, Fishbein et al. describe the  methodology of the developoment of a mobile application to promote oral chemotherapy adherence.   This mobile app intervention was named CORA or ChemOtheRapy Assistant.

Of the approximately 325,000 health related apps on the market (as of 2017), the US Food and Drug Administration (FDA) have only reviewed approximately 20 per year and as of 2016 cleared only about 36 health related apps.

According to industry estimates, 500 million smartphone users worldwide will be using a health care application by 2015, and by 2018, 50 percent of the more than 3.4 billion smartphone and tablet users will have downloaded mobile health applications.  However, there is not much scientific literature providing a framework for design and creation of quality health related mobile applications.

Methods

The investigators separated the app development into two phases: Phase 1 consisted of the mobile application development process and initial results of alpha and beta testing to determine acceptability among the major stakeholders including patients, caregivers, oncologists, nurses, pharmacists, pharmacologists, health payers, and patient advocates.  Phase 1 methodology and results were the main focus of this paper.  Phase 2 consists of an ongoing clinical trial to determine efficacy and reliability of the application in a larger number of patients at different treatment sites and among differing tumor types.

The 5 step development process in phase 1 consisted of identifying features, content, and functionality of a mobile app in an iterative process, including expert collaboration and theoretical framework to guide initial development.

There were two distinct teams: a research team and a technical team. The multidisciplinary research team consisted of the principal investigator, co-investigators (experts in oncology, psychology and psychiatry), a project director, and 3 research assistants.

The technical team consisted of programmers and project managers at Partners HealthCare Connected Health.  Stakeholders served as expert consultants including oncologists, health care representatives, practice administrators, patients, and family members (care givers).  All were given questionaires (HIPAA compliant) and all involved in alpha and beta testing of the product.

There were 5 steps in the development process

  1. Implementing a theoretical framework: Patients and their family caregivers now bear the primary responsibility for their medical adherence especially to oral chemotherapy which is now more frequently administered in the home setting not in the clinical setting.  Four factors were identified as the most important barriers to oral chemotherapy adherence: complexity of medication regimes, symptom burden, poor self-management of side effects, and low clinical support.  These four factors were integral in the design of the mobile app and made up a conceptual framework in its design.
  1. Conducting Initial Focus Group Interviews with key stakeholders: Stakeholders were taken from within and outside the local community.  In all 32 stakeholders served as study collaborators including 8 patient/families, 8 oncologists/clinicians, 8 cancer practice administrators, and 8 representatives of the health system, community, and overall society.   The goal of these focus groups were to obtain feedback on the proposed study and design included perceived importance of monitoring of adherence to oral chemotherapy, barriers to communication between patients and oncology teams regarding side effects and medication adherence, potential role of mobile apps to address barriers of quality of cancer care, potential feasibility, acceptability, and usage and feedback on the overall study design.
  1. Creation of Wireframes (like storyboards or page designs) and Collecting Initial Feedback:  The research and design team, in conjunction with stakeholder input, created content wireframes, or screen blueprints) to provide a visual guide as to what the app would look like.  These wireframes also served as basis for what the patient interviews would look like on the application.  A total of 10 MGH (Massachusetts General Hospital) patients (6 female, 4 male) and most with higher education (BS or higher) participated in the interviews and design of wireframes.  Eight MGH clinicians participated in this phase of wireframe design.
  1. Developing, Programming, and Refining the App:  CORA was designed to be supported by PHP/MySQL databases and run on LAMP hosts (Linux, Apache, MySQL, Perl/PHP/Python) and fully HIPAA compliant.  Alpha testing was conducted with various stakeholders and the app refined by the development team (technical team) after feedback.
  1. Final beta testing and App prototype for clinical trial: The research team considered the first 5 participants enrolled in the subsequent clinical trial for finalization of the app prototype.

There were 7 updated versions of the app during the initial clinical trial phase and 4 updates addressed technical issues related to smartphone operating system upgrades.

Finally, the investigators list a few limitations in their design and study of this application.  First the patient population was homogenous as all were from an academic hospital setting.   Second most of the patients were of Caucasian ethnic background and most were highly educated, all of which may introduce study bias.  In addition, CORA was available on smartphone and tablet only, so a larger patient population who either have no access to these devices or are not technically savvy may experience issues related to this limitation.

In addition other articles on this site related to Mobile Health applications and Health Outcomes include

Medical Applications and FDA regulation of Sensor-enabled Mobile Devices: Apple and the Digital Health Devices Market

How Social Media, Mobile Are Playing a Bigger Part in Healthcare

E-Medical Records Get A Mobile, Open-Sourced Overhaul By White House Health Design Challenge Winners

Qualcomm Ventures Qprize Regional Competition: MediSafe, an Israeli start-up in the personal health field, is the 2014 Winner of a $100,000 Prize

Friday, April 4 8:30 am- 9:30 am Science Track: Mobile Technology and 3D Printing: Technologies Gaining Traction in Biotech and Pharma – MassBio Annual Meeting 2014, Royal Sonesta Hotel, Cambridge, MA

Information Security and Privacy in Healthcare is part of the 2nd Annual Medical Informatics World, April 28-29, 2014, World Trade Center, Boston, MA

Post Acute Care – Driver of Variation in Healthcare Costs

Kaiser data network aims to improve cancer, heart disease outcomes

 

Additional references

  1. Aranda-Jan CB, Mohutsiwa-Dibe N, Loukanova S: Systematic review on what works, what does not work and why of implementation of mobile health (mHealth) projects in Africa. BMC public health 2014, 14:188.

 

 

Read Full Post »

Healthcare Startups Accelerator is Reaching Out: Deadline November 11, 2013

Reporter: Aviva Lev-Ari, PhD, RN

Applications for companies are due November 11, 2013.

We are also seeking exceptional individuals looking to join a team, particularly those with software development or data science skills. Individuals interested in working with one of the startups can also apply to the program and applications for individuals are due December 16, 2013. Individuals will be matched with companies throughout January.

DreamIt Health Baltimore 2014

baltimorebrought to you byAPPLY TODAY

Applications are due November 11, 2013

Apply as a company | Apply as an individual

Follow us on Twitter | DreamIt Ventures on Facebook

DreamIt Health Baltimore is designed to speed the growth and success of early-stage health IT companies through its program in Central Maryland. Powered by the Johns Hopkins UniversityBioHealth Innovation, and DreamIt Ventures – the program gives participants access and advantages typically out-of-reach to healthcare startups.

DreamIt works with extraordinary teams to create exceptional companies, accomplishing in 3-6 months what would otherwise take years. DreamIt accelerators are characterized by seed capital, intense 1-on-1 mentorship from dedicated, previously successful tech entrepreneurs, access to key people, expertise, and information typically beyond the reach of a startup, informal education from leading industry practitioners, a robust network of DreamIt alumni, and a wide range of free services.  Following a lean startup methodology, the selected teams focus on rapid, iterative interactions with their target markets to reduce risk and find product-market fit as quickly as possible.

DreamIt Health Baltimore 2014 will select up to ten companies from around the world to participate in a four-month accelerator program. In addition to receiving up to a $50,000 stipend and professional services, the startups will be paired with and work closely with exited entrepreneurs-turned-mentors with domain expertise specific to their needs; benefit from an intense startup and healthcare curriculum taught by accomplished practitioners; meet with subject matter experts and investors; and enjoy access to executives, information systems, and data from leading industry players including providers, payers, biopharma, device makers, and federal agencies. Participating teams will also benefit from DreamIt’s extensive network and expertise in guiding the growth of young technology companies.

DreamIt Health Baltimore is expected to take advantage of many of the strengths of the region, giving participating startups the opportunity to work closely with Johns Hopkins Medicine for potential pilots and also access to key individuals throughout the region’s wealth of federal health care institutions including the Center for Medicare and Medicaid Services, the Food and Drug Administration, the National Institutes of Health and the Agency for Healthcare Research and Quality.

The program will be led by Elliot Menschik, MD PhD, a Johns Hopkins alum and successfully-exited health IT entrepreneur.

Learn more about DreamIt Health Baltimore…
Apply to DreamIt Health Baltimore
Apply as an individual
Questions? Ask us.

Press Highlights DreamIt Health Philadelphia (Held April 8th 2013-August 8th 2013)
DreamIt Ventures Teams Up with Blue Cross, Penn Medicine to Launch and Accelerator for Health Startups

Improving outcomes, speeding up diagnoses among goals of Dreamit Venture’s first health IT accelerator

New incubator DreamIt Health launches first class

Next Big Thing In Health Care May Come From Philly Business Incubator

DreamIt ‘boot camp’ boosts health-care info start-ups

DreamIt Health startup accelerator are recruiting ten healthtech startups

Founder at UACTIFY

DreamIt Health startup accelerator is reaching out in the hopes that you might be open to getting the word out among Health 2.0 Israel members about the upcoming DreamIt Health startup accelerator in partnership with Johns Hopkins.

DreamIt Health startup accelerator are recruiting for (and applications are open for) up to ten healthtech startups from around the world to come to Baltimore for a four-month program to achieve significant business milestones in delivering products that solve real problems for key healthcare stakeholders. DreamIt Health startup accelerator do this by removing as many obstacles as possible from the team’s path and providing guidance and access to people and resources otherwise out of their reach. The capstone of the program, Demo Day, gives these teams the opportunity to unveil their products and progress before a few hundred early stage investors and key industry figures.

In addition to receiving up to a $50,000 stipend, free workspace and top-shelf legal services, the startups will be paired 1-on-1 with previously successful entrepreneurs customized to the needs of each team. These mentors will contribute considerable time and effort to guide and assist the founders. Participants will also benefit from an intense startup and healthcare curriculum taught by accomplished practitioners, meet regularly with subject matter experts and investors, and enjoy access to executives, systems, and data from leading industry players including providers, payers, biopharma, device makers, and federal agencies. Participating teams will also benefit from DreamIt’s extensive network and expertise in guiding the growth of young technology companies.

DreamIt Health startup accelerator were founded in 2008 and are run by a group of successful tech entrepreneurs. To date, DreamIt has worked closely with 127 companies from around the world through accelerators in Philadelphia, New York, Austin, and Tel Aviv. These programs are characterized by seed capital, intense 1-on-1 mentorship from dedicated, previously successful tech entrepreneurs, access to key people, expertise, and information typically beyond the reach of a startup, informal education from leading industry practitioners, a robust network of DreamIt alumni, and a wide range of free services. Following a lean startup methodology, the selected teams focus on rapid, iterative interactions with their target markets to reduce risk and find product-market fit as quickly as possible. Forbes has named DreamIt among the top three accelerators in the world and DreamIt companies have gone on to raise nearly $100M in follow-on capital with an aggregate value north of $400M.

DreamIt Health startup accelerator are looking for extraordinary people and teams developing IT-based products with the potential to solve significant problems faced by key stakeholders in the industry including providers, payers, public health, biopharma, device makers, employers and patients themselves. Interested teams can apply at http://www.dreamithealth.com. Applications for companies are due November 11, 2013. We are also seeking exceptional individuals looking to join a team, particularly those with software development or data science skills. Individuals interested in working with one of the startups can also apply to the program and applications for individuals are due December 16, 2013. Individuals will be matched with companies throughout January.

Read Full Post »

The Automated Second Opinion Generator

Author: Larry H. Bernstein, MD, FCAP

Gil David and Larry Bernstein have developed a first generation software agent under the supervision of Prof. Ronal Coifman, in the Yale University Applied Mathematics Program that is the equivalent of an intelligent EHR Dashboard that learns.  What is a Dashboard?   A Dashboard is a visual display of essential metrics. The primary purpose is to gather information and generate the metrics relatively quickly, and analyze it, meeting the highest standard of accuracy.  This invention is a leap across traditional boundaries of Health Information Technology in that it integrates and digests extractable information sources from the medical record using the laboratory, the extractable vital signs, EKG, for instance, and documented clinical descriptors to form one or more  provisional diagnoses describing the patient status by inference from a nonparametric network algorithm.  This is the first generation of a “convergence” of medicine and information science.  The diagnoses are complete only after review of thousands of records to which diagnoses are first provided, and then training the algorithm, and validating the software by applying to a second set of data, and reviewing the accuracy of the diagnoses.

The only limitation of the algorithm is sparsity of data in some subsets, which doesn’t permit a probability calculation until sufficient data is obtained.  The limitation is not so serious because it does not disable the system from recognizing at least 95 percent of the information used in medical decision-making, and adequately covers the top 15 medical diagnoses.  An example of this exception would be the diagnosis of alpha or beta thalassemia, with a microcytic picture (MCV low) and RBC high with a low Hgb).  The accuracy is very high because the anomaly detection used for classifying the data creates aggregates that have common features.  The aggregates themselves are consistent within separatory  rules that pertain to any class.  As the model grows, however, there is unknown potential for there to be prognostic, as well as diagnostic information within classes (subclasses), and a further potential to uncover therapeutic differences within classes – which will be made coherent with new classes of drugs (personalized medicine) that are emerging from the “convergence” of genomics, metabolomics, and translational biology.

The fact that such algorithms have already been used for limited data sets and unencumbered diagnoses in many cases using the approach of studies with inclusions and exclusions common for clinical trials, the approach has proved ever more costly when used outside the study environment.   The elephant in the room is age-related co-morbidities and co-existence of obesity, lipid derangements, renal function impairment, genetic and environmental factors that are hidden from view.  The approach envisioned is manageable, overcoming these obstacles, and handles both inputs and outputs with considerable ease.

We anticipate that the effect of implementing this artificial intelligence diagnostic amplifier would result in higher physician productivity at a time of great human resource limitation(s), safer prescribing practices, rapid identification of unusual patients, better assignment of patients to observation, inpatient beds, intemsive care, or referral to clinic, shortened length of patients ICU and bed days.  If the observation of systemic issues in “To err is human” is now 10 years old with marginal improvement at great cost, this should be a quantum leap forward for the patient, the physician, the caregiving team, and the society that adopts it.

 

Read Full Post »

%d bloggers like this: