Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘mobile applications’


Twitter is Becoming a Powerful Tool in Science and Medicine

 Curator: Stephen J. Williams, Ph.D.

Updated 4/2016

Life-cycle of Science 2

A recent Science article (Who are the science stars of Twitter?; Sept. 19, 2014) reported the top 50 scientists followed on Twitter. However, the article tended to focus on the use of Twitter as a means to develop popularity, a sort of “Science Kardashian” as they coined it. So the writers at Science developed a “Kardashian Index (K-Index) to determine scientists following and popularity on Twitter.

Now as much buzz Kim Kardashian or a Perez Hilton get on social media, their purpose is solely for entertainment and publicity purposes, the Science sort of fell flat in that it focused mainly on the use of Twitter as a metric for either promotional or public outreach purposes. A notable scientist was mentioned in the article, using Twitter feed to gauge the receptiveness of his presentation. In addition, relying on Twitter for effective public discourse of science is problematic as:

  • Twitter feeds are rapidly updated and older feeds quickly get buried within the “Twittersphere” = LIMITED EXPOSURE TIMEFRAME
  • Short feeds may not provide the access to appropriate and understandable scientific information (The Science Communication Trap) which is explained in The Art of Communicating Science: traps, tips and tasks for the modern-day scientist. “The challenge of clearly communicating the intended scientific message to the public is not insurmountable but requires an understanding of what works and what does not work.” – from Heidi Roop, G.-Martinez-Mendez and K. Mills

However, as highlighted below, Twitter, and other social media platforms are being used in creative ways to enhance the research, medical, and bio investment collaborative, beyond a simple news-feed.  And the power of Twitter can be attributed to two simple features

  1. Ability to organize – through use of the hashtag (#) and handle (@), Twitter assists in the very important task of organizing, indexing, and ANNOTATING content and conversations. A very great article on Why the Hashtag in Probably the Most Powerful Tool on Twitter by Vanessa Doctor explains how hashtags and # search may be as popular as standard web-based browser search. Thorough annotation is crucial for any curation process, which are usually in the form of database tags or keywords. The use of # and @ allows curators to quickly find, index and relate disparate databases to link annotated information together. The discipline of scientific curation requires annotation to assist in the digital preservation, organization, indexing, and access of data and scientific & medical literature. For a description of scientific curation methodologies please see the following links:

Please read the following articles on CURATION

The Methodology of Curation for Scientific Research Findings

Power of Analogy: Curation in Music, Music Critique as a Curation and Curation of Medical Research Findings – A Comparison

Science and Curation: The New Practice of Web 2.0

  1. Information Analytics

Multiple analytic software packages have been made available to analyze information surrounding Twitter feeds, including Twitter feeds from #chat channels one can set up to cover a meeting, product launch etc.. Some of these tools include:

Twitter Analytics – measures metrics surrounding Tweets including retweets, impressions, engagement, follow rate, …

Twitter Analytics – Hashtags.org – determine most impactful # for your Tweets For example, meeting coverage of bioinvestment conferences or startup presentations using #startup generates automatic retweeting by Startup tweetbot @StartupTweetSF.

 

  1. Tweet Sentiment Analytics

Examples of Twitter Use

A. Scientific Meeting Coverage

In a paper entitled Twitter Use at a Family Medicine Conference: Analyzing #STFM13 authors Ranit Mishori, MD, Frendan Levy, MD, and Benjamin Donvan analyzed the public tweets from the 2013 Society of Teachers of Family Medicine (STFM) conference bearing the meeting-specific hashtag #STFM13. Thirteen percent of conference attendees (181 users) used the #STFM13 to share their thoughts on the meeting (1,818 total tweets) showing a desire for social media interaction at conferences but suggesting growth potential in this area. As we have also seen, the heaviest volume of conference-tweets originated from a small number of Twitter users however most tweets were related to session content.

However, as the authors note, although it is easy to measure common metrics such as number of tweets and retweets, determining quality of engagement from tweets would be important for gauging the value of Twitter-based social-media coverage of medical conferences.

Thea authors compared their results with similar analytics generated by the HealthCare Hashtag Project, a project and database of medically-related hashtag use, coordinated and maintained by the company Symplur.  Symplur’s database includes medical and scientific conference Twitter coverage but also Twitter usuage related to patient care. In this case the database was used to compare meeting tweets and hashtag use with the 2012 STFM conference.

These are some of the published journal articles that have employed Symplur (www.symplur.com) data in their research of Twitter usage in medical conferences.

B. Twitter Usage for Patient Care and Engagement

Although the desire of patients to use and interact with their physicians over social media is increasing, along with increasing health-related social media platforms and applications, there are certain obstacles to patient-health provider social media interaction, including lack of regulatory framework as well as database and security issues. Some of the successes and issues of social media and healthcare are discussed in the post Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification.

However there is also a concern if social media truly engages the patient and improves patient education. In a study of Twitter communications by breast cancer patients Tweeting about breast cancer, authors noticed Tweeting was a singular event. The majority of tweets did not promote any specific preventive behavior. The authors concluded “Twitter is being used mostly as a one-way communication tool.” (Using Twitter for breast cancer prevention: an analysis of breast cancer awareness month. Thackeray R1, Burton SH, Giraud-Carrier C, Rollins S, Draper CR. BMC Cancer. 2013;13:508).

In addition a new poll by Harris Interactive and HealthDay shows one third of patients want some mobile interaction with their physicians.

Some papers cited in Symplur’s HealthCare Hashtag Project database on patient use of Twitter include:

C. Twitter Use in Pharmacovigilance to Monitor Adverse Events

Pharmacovigilance is the systematic detection, reporting, collecting, and monitoring of adverse events pre- and post-market of a therapeutic intervention (drug, device, modality e.g.). In a Cutting Edge Information Study, 56% of pharma companies databases are an adverse event channel and more companies are turning to social media to track adverse events (in Pharmacovigilance Teams Turn to Technology for Adverse Event Reporting Needs). In addition there have been many reports (see Digital Drug Safety Surveillance: Monitoring Pharmaceutical Products in Twitter) that show patients are frequently tweeting about their adverse events.

There have been concerns with using Twitter and social media to monitor for adverse events. For example FDA funded a study where a team of researchers from Harvard Medical School and other academic centers examined more than 60,000 tweets, of which 4,401 were manually categorized as resembling adverse events and compared with the FDA pharmacovigilance databases. Problems associated with such social media strategy were inability to obtain extra, needed information from patients and difficulty in separating the relevant Tweets from irrelevant chatter.  The UK has launched a similar program called WEB-RADR to determine if monitoring #drug_reaction could be useful for monitoring adverse events. Many researchers have found the adverse-event related tweets “noisy” due to varied language but had noticed many people do understand some principles of causation including when adverse event subsides after discontinuing the drug.

However Dr. Clark Freifeld, Ph.D., from Boston University and founder of the startup Epidemico, feels his company has the algorithms that can separate out the true adverse events from the junk. According to their web site, their algorithm has high accuracy when compared to the FDA database. Dr. Freifeld admits that Twitter use for pharmacovigilance purposes is probably a starting point for further follow-up, as each patient needs to fill out the four-page forms required for data entry into the FDA database.

D. Use of Twitter in Big Data Analytics

Published on Aug 28, 2012

http://blogs.ischool.berkeley.edu/i29…

Course: Information 290. Analyzing Big Data with Twitter
School of Information
UC Berkeley

Lecture 1: August 23, 2012

Course description:
How to store, process, analyze and make sense of Big Data is of increasing interest and importance to technology companies, a wide range of industries, and academic institutions. In this course, UC Berkeley professors and Twitter engineers will lecture on the most cutting-edge algorithms and software tools for data analytics as applied to Twitter microblog data. Topics will include applied natural language processing algorithms such as sentiment analysis, large scale anomaly detection, real-time search, information diffusion and outbreak detection, trend detection in social streams, recommendation algorithms, and advanced frameworks for distributed computing. Social science perspectives on analyzing social media will also be covered.

This is a hands-on project course in which students are expected to form teams to complete intensive programming and analytics projects using the real-world example of Twitter data and code bases. Engineers from Twitter will help advise student projects, and students will have the option of presenting their final project presentations to an audience of engineers at the headquarters of Twitter in San Francisco (in addition to on campus). Project topics include building on existing infrastructure tools, building Twitter apps, and analyzing Twitter data. Access to data will be provided.

Other posts on this site on USE OF SOCIAL MEDIA AND TWITTER IN HEALTHCARE and Conference Coverage include:

Methodology for Conference Coverage using Social Media: 2014 MassBio Annual Meeting 4/3 – 4/4 2014, Royal Sonesta Hotel, Cambridge, MA

Strategy for Event Joint Promotion: 14th ANNUAL BIOTECH IN EUROPE FORUM For Global Partnering & Investment 9/30 – 10/1/2014 • Congress Center Basel – SACHS Associates, London

REAL TIME Cancer Conference Coverage: A Novel Methodology for Authentic Reporting on Presentations and Discussions launched via Twitter.com @ The 2nd ANNUAL Sachs Cancer Bio Partnering & Investment Forum in Drug Development, 19th March 2014 • New York Academy of Sciences • USA

PCCI’s 7th Annual Roundtable “Crowdfunding for Life Sciences: A Bridge Over Troubled Waters?” May 12 2014 Embassy Suites Hotel, Chesterbrook PA 6:00-9:30 PM

CRISPR-Cas9 Discovery and Development of Programmable Genome Engineering – Gabbay Award Lectures in Biotechnology and Medicine – Hosted by Rosenstiel Basic Medical Sciences Research Center, 10/27/14 3:30PM Brandeis University, Gerstenzang 121

Tweeting on 14th ANNUAL BIOTECH IN EUROPE FORUM For Global Partnering & Investment 9/30 – 10/1/2014 • Congress Center Basel – SACHS Associates, London

https://pharmaceuticalintelligence.com/press-coverage/

Statistical Analysis of Tweet Feeds from the 14th ANNUAL BIOTECH IN EUROPE FORUM For Global Partnering & Investment 9/30 – 10/1/2014 • Congress Center Basel – SACHS Associates, London

1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

What VCs Think about Your Pitch? Panel Summary of 1st Pitch Life Science Philly

How Social Media, Mobile Are Playing a Bigger Part in Healthcare

Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification.

Medical Applications and FDA regulation of Sensor-enabled Mobile Devices: Apple and the Digital Health Devices Market

E-Medical Records Get A Mobile, Open-Sourced Overhaul By White House Health Design Challenge Winners

Advertisements

Read Full Post »


Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification.

 

A report on how gamification mobile applications, like CyberDoctor’s PatientPartner, may improve patient adherence to oral chemotherapy.

(includes interviews with CyberDoctor’s CEO Akhila Satish and various oncologists)

 

Writer/Curator: Stephen J. Williams, Ph.D.

UPDATE 5/15/2019

Please see below for an UPDATE on this post including results from the poll conducted here on the value of a gamification strategy for oral chemotherapy patient adherence as well as a paper describing a well designed development of an application specifically to address this clinical problem.

Studies have pointed to a growing need to monitor and improve medical adherence, especially with outpatient prescription drugs across many diseases, including cancer.

The trend to develop oral chemotherapies, so patients can take their medications in the convenience of their home, has introduced produced a unique problem concerning cancer patient-medication adherence. Traditionally, chemotherapies were administered by a parental (for example intravenous) route by clinic staff, however, as noted by Jennifer M Gangloff in her article Troubling Trend: Medication Adherence:

 

with the trend of cancer patients taking their oral medication at home, the burden of adherence has shifted from clinicians to the patients and their families.

 

A few highlights from Jennifer Gangloff’s article highlight the degree and scope of the problem:

 

  1. There is a wide range of adherence for oral chemo– as low as 16% up to 100% adherence rates have been seen in multiple studies
  2. High cost in lives and money: estimates in US of 125,000 deaths and $300 billion in healthcare costs due to nonadherence to oral anticancer medications
  3. Factors not related to the patient can contribute to nonadherence including lack of information provided by the healthcare system and socioeconomic factors
  4. Numerous methods to improve adherence issues (hospital informative seminars, talking pill bottles, reminder phone calls etc.) have met with mixed results.

 

A review by Steve D`Amato of published literature also highlights the extent of problems with highly variable adherence rates including

  • 17-27% for hematologic malignancies
  • 53-98% for breast cancer
  • 97% for ovarian cancer

More strikingly, patient adherence rates can drastically decline over treatment, with one study showing an adherence rate drop from 87% to 50% over 4 years of adjuvant tamoxifen therapy.

 

Tackling The Oral Chemotherapy-Patient Adherence Problem

 

Documented factors leading to non-adherence to oral oncology medications include

  1. Patient feels better so stop taking the drug
  2. Patient feels worse so stops taking the drug
  3. Confusing and complicated dosing regimen
  4. Inability to afford medications
  5. Poor provider-patient relationships
  6. Adverse effects of medication
  7. Cognitive impairment (“chemo fog”; mental impairment due to chemotherapy
  8. Inadequate education/instruction of discharge

There are many examples of each reason why a patient stopped taking medication. One patient was prescribed capecitabine for her metastatic breast cancer and, upon feeling nausea, started to use antacids, which precipitated toxicities as a result of increased plasma levels of capecitabine.

In a white paper entitled Oral Oncology Treatment Regimens and the Role of Medication Therapy Management on Patient Adherence and Compliance, David Reese, Vice President Oncology at Tx Care Advantage discus how Medication Therapy Management (MTM) programs could intervene to improve medical adherence in both the oncology and non-oncology setting.

This review also documented the difficulties in accurately measuring patient adherence including:

  • Inaccuracy of self-reporting
  • Lack of applicability of external measurements such as pill counts
  • Hawthorne effect: i.e. patient pill documentation reminds them to take next dose

The group suggests that using MTM programs, especially telephony systems involving oncology nurses and pharmacists and utilizing:

  • Therapy support (dosing reminders)
  • Education
  • Side effect management

 

may be a cost-efficient methodology to improve medical adherence.

 

Although nurses are important intermediary educating patients about their oral chemotherapies, it does not appear that solely relying on nurses to monitor patient adherence will be sufficient, as indicated in a survey-based Japanese study.

As reported in May 12, 2014 | Oncology Nursing By Leah Lawrence

 

Systematic Nurse Involvement Key as Oral Chemotherapy Use Grows– at: http://www.cancernetwork.com/oncology-nursing/systematic-nurse-involvement-key-oral-chemotherapy-use-grows

 

Survey results indicated that 90% of nurses reported asking patients on oral chemotherapy about emergency contacts, side effects, and family/friend support. Nurses also provided patients with education materials on their assigned medication.

However, less than one-third of nurses asked if their patients felt confident about managing their oral chemotherapy.

“Nurses were less likely to ask adherence-related questions of patients with refilled prescriptions than of new patients,” the researchers wrote. “Regarding unused doses of anticancer agents, 35.5% of nurses reported that they did not confirm the number of unused doses when patients had refilled prescriptions.”

From the Roswell Park Cancer Institute blog post Making Mobile Health Work

https://www.roswellpark.org/partners-practice/white-papers/making-mobile-health-work

US physicians are recognizing the need for the adoption of mobile in their practice but choice of apps and mobile strategies must be carefully examined before implementation. In addition, most physicians are using mobile communications as a free-complementary service and these physicians are not being reimbursed for their time.

 

Some companies are providing their own oncology-related mobile app services:

CollabRx Announces Oncology-Specific Mobile App with Leading Site for Healthcare Professionals, MedPage Today

(http://www.collabrx.com/collabrx-announces-oncology-specific-mobile-app-with-leading-site-for-healthcare-professionals-medpage-today/)

San Francisco, August 13, 2013CollabRx, Inc. (NASDAQ: CLRX), a healthcare information technology company focused on informing clinical decision making in molecular medicine, today announced a multi-year agreement with Everyday Health’s MedPage Today. The forthcoming app, which will target oncologists and pathologists, will focus on the molecular aspects of laboratory testing and therapy development. Over time, the expectation is that this app will serve as a comprehensive point of care resource for physicians and patients to obtain highly credible, expert-vetted and dynamically updated information to guide cancer treatment planning.

The McKesson Foundation’s Mobilizing for Health initiative

has awarded a grant to Partners HealthCare’s Center for Connected Health to develop a mobile health program that uses a smartphone application to help patients with cancer adhere to oral chemotherapy treatments and monitor their symptoms, FierceMobileHealthcare reports.

 

CancerNet announces mobile application (from cancer.net)

http://www.cancer.net/navigating-cancer-care/managing-your-care/mobile-applications

 

However, there is little evidence that the plethora of cancer-based apps is providing any benefit with regard to patient outcome or adherence, as reported in to an article in the Journal of Medical Internet Research, reported at FierceMobileHealthcare (Read more: Cancer smartphone apps for consumers lack effectiveness – FierceMobileHealthcare http://www.fiercemobilehealthcare.com/story/cancer-smartphone-apps-consumers-lack-effectiveness/2013-12-26#ixzz34ucdxVcU )

The report suggests that there are too many apps either offering information, suggesting behavior/lifestyle changes, or measuring compliance data but little evidence to suggest any of these are working the way they intended. The article suggests the plethora of apps may just be adding to the confusion.

Johnson&Johnson’s Wellness & Prevention unit has launched a health-tracking app Track Your Health. Although the company considers it a “gamification“ app, Track Your Health© operates to either feed data from other health tracking apps or allow the user to manually input data.
Read more: J&J launches ‘quantified self’ app to game patients into better behavior – FiercePharmaMarketing http://www.fiercepharmamarketing.com/story/jj-launches-quantified-self-app-game-patients-better-behavior/2014-05-28#ixzz34uhFDJr2

Even ASCO has a list of some oncology-related apps (http://connection.asco.org/commentary/article/id/3123/favorite-hematology-oncology-apps.aspx) and

NIH is offering grants for oncology-related app development (https://www.linkedin.com/groupItem?view=&gid=72923&type=member&item=5870221695683424259&qid=dbf53031-dd21-443c-9152-fad87f85d200&trk=groups_most_popular-0-b-ttl&goback=.gmp_72923)
As reports and clinicians have stated, we need health outcome data and clinical trials to determine the effective of these apps.

MyCyberDoctor™, a True Gamification App, Shows Great Results in Improving Diabetics Medical Adherence and Health Outcome

 

Most of the mobile health apps discussed above, would be classified as tracking apps, because the applications simply record a patient’s actions, whether filling a prescription, interacting with a doctor, nurse, pharmacist, or going to a website to gain information. However, as discussed before, there is no hard evidence this is really impacting health outcomes.

 

Another type of application, termed gamification apps, rely on role-playing by the patient to affect patient learning and ultimately behavior.

An interested twist on this method was designed by Akhila Satish, CEO and developer of CyberDoctor and a complementary application PatientPartner.

Akhila Satish Picture

 

 

Ms. Akhila Satish, CEO CyberDoctor

 

 

 

 

 

 

 

Please watch video of interview with Akhila Satish, CEO of CyberDoctor at the Health 2.0 conference http://vimeo.com/51695558

 

And a video of the results of the PatientPartner clinical trial here: http://vimeo.com/79537738

 

As reported here, the PatientPartner application was used in the first IRB-approved mhealth clinical-trial to see if the gamification app could improve medical adherence and outcomes in diabetic patients. PatientPartner is a story-driven game in changing health behavior and biomarkers (blood glucose levels in this trial). In the clinical trial, 100 non-adherent patients with diabetes played the PatientPartner game for 15 minutes. Results were amazing, as the trial demonstrated an increase in patient adherence, with only 15 minutes of game playing.

Results from the study

Patients with diabetes who used PatientPartner showed significant improvement in three key areas – medication, diet, and exercise:

  • Medication adherence increased by 37%, from 58% to 95% – equivalent to three additional days of medication adherence per week.
  • Diet adherence increased by 24% – equivalent to two days of additional adherence a week.
  • Exercise adherence increased by 14% – equivalent to one additional day of adherence per week.
  • HbA1c (a blood sugar measure) decreased from 10.7% to 9.7%.

As mentioned in the article:

The unique, universal, non-disease specific approach allows PatientPartner to be effective in improving adherence in all patient populations.

PatientPartner is available in the iTunes store and works on the iPhone and iPod Touch. For information on PatientPartner, visit www.mypatientpartner.com.

Ms. Satish, who was named one of the top female CEO’s at the Health Conference, gratuitously offered to answer a few questions for Leaders in Pharmaceutical Business Intelligence (LPBI) on the feasibility of using such a game (role-playing) application to improve medical adherence in the oncology field.

LPBI: The results you had obtained with patient-compliance in the area of diabetes are compelling and the clinical trial well-designed.  In the oncology field, due to the increase in use of oral chemotherapeutics, patient-compliance has become a huge issue. Other than diabetes, are there plans for MyCyberDoctor and PatientPartner to be used in other therapeutic areas to assist with patient-compliance and patient-physician relations?

Ms. Satish: Absolutely! We tested the application in diabetes because we wanted to measure adherence from an objective blood marker (hbA1c). However, the method behind PatientPartner- teaching patients how to make healthy choices- is universal and applicable across therapeutic areas. 

LPBI: Recently, there have been a plethora of apps developed which claim to impact patient-compliance and provide information. Some of these apps have been niche (for example only providing prescription information but tied to pharmacy records and company databases). Your app seems to be the only one with robust clinical data behind it and approaches from a different angle, namely adjusting behavior using a gamefying experience and teaching the patient the importance of compliance. How do you feel this approach geared more toward patient education sets PatientPartner apart from other compliance-based apps?

Ms. Satish: PatientPartner really focuses on the how of patient decision making, rather than the specifics of each decision that is made. It’s a unique approach, and part of the reason PatientPartner works so effectively with such a short initial intervention! We are able to achieve more with less “app” time as a result of this method.  

LPBI: There have been multiple studies attempting to correlate patient adherence, decision-making, and health outcome to socioeconomic status. In some circumstances there is a socioeconomic correlation while other cases such as patient-decision to undergo genetic testing or compliance to breast cancer treatment in rural areas, level of patient education may play a bigger role. Do you have data from your diabetes trial which would suggest any differences in patient adherence, outcome to any socioeconomic status? Do you feel use of PatientPartner would break any socioeconomic barriers to full patient adherence?

Ms. Satish: Within our trial, we had several different clinical sites. This helped us test the product out in a broad, socioeconomically diverse population. It is our hope that with a tool as easy to scale and use as PatientPartner we have the opportunity to see the product used widely, even in populations that are traditionally harder to reach.  

LPBI: There has been a big push for the development of individual, personalized physician networks which use the internet as the primary point of contact between a primary physician and the patient. Individuals may sign up to these networks bypassing the traditional insurance-based networks. How would your application assist in these types of personalized networks?

Ms. Satish: PatientPartner can easily be plugged into any existing framework of communication between patient and provider. We facilitate patient awareness, engagement and accountability- all of which are important regardless of the network structure.

LBPI: Thank you Akhila!

A debate has begun about regulating mobile health applications, and although will be another post, I would just like to summarize a nice article in May, 2014 Oncology Times by Sarah Digiulo “Mobile Health Apps: Should They be Regulated?

In general, in the US there are HIPAA regulations about the dissemination of health related information between a patient and physician. Most of the concerns are related to personal health information made public in an open-access platform such as Twitter or Facebook.

In addition, according to Dr. Don Dizon M.D., Director of the Oncology Sexual Health Clinic at Massachusetts General Hospital, it may be more difficult to design applications directed against a vast, complex disease like cancer with its multiple subtypes than for diabetes.

 

Mobile Health Applications on Rise in Developing World: Worldwide Opportunity

 

According to International Telecommunication Union (ITU) statistics, world-wide mobile phone use has expanded tremendously in the past 5 years, reaching almost 6 billion subscriptions. By the end of this year it is estimated that over 95% of the world’s population will have access to mobile phones/devices, including smartphones.

This presents a tremendous and cost-effective opportunity in developing countries, and especially rural areas, for physicians to reach patients using mHealth platforms.

Drs. Clara Aranda-Jan Neo Mohutsiwa and Svetla Loukanova had conducted a systematic review of the literature on mHealth projects conducted in Africa[1] to assess the reliability of mobile phone and applications to assist in patient-physician relationships and health outcomes. The authors reviewed forty four studies on mHealth projects in Africa, determining their:

  • strengths
  • weaknesses
  • opportunities
  • threats

to patient outcomes using these mHealth projects. In general, the authors found that mHealth projects were beneficial for health-related outcomes and their success related to

  • accessibility
  • acceptance and low-cost
  • adaptation to local culture
  • government involvement

while threats to such projects could include

  • lack of funding
  • unreliable infrastructure
  • unclear healthcare system responsibilities

Dr.Sreedhar Tirunagari, an oncologist in India, agrees that mHealth, especially gamification applications could greatly foster better patient education and adherencealthough he notes that mHealth applications are not really used in India and may not be of much use for those oncology patients living in rural areas, as  cell phone use is not as prevalent as in the bigger inner cities such as Delhi and Calcutta.

 

Dr. Louis Bretes, an oncologist from Portugal, when asked

1) do you see a use for such apps which either track drug compliance or use gamification systems to teach patients the importance of continuing their full schedule of drug therapy

2) do you feel patient- drug compliance issues in the oncology practice is due to lack of information available to the patient or issues related to drug side effects?

“I think that Apps could help in this setting, we are in
Informatics era but..
The main question is that chronic patients are special ones.
Cancer patients have to deal with prognosis, even in therapies
with curative intent such as aromatase inhibitors are potent
Drugs that can cure; only in the future the patients know.
But meanwhile he or she has to deal with side-effects every day. A PC can help but suffer this symptoms…it. Is a real problem believe me!”

“The main app is his/her doctor”

I would like to invite all oncologists to answer the poll question ABOVE about the use of such gamification apps, like PatientPartner, for improving medical adherence to oral chemotherapy.

UPDATE 5/15/2019

The results of the above poll, although limited, revealed some interesting insights.  Although only five oncologists answered the poll whether they felt gamification applications could help with oral chemotherapy patient adherence, all agreed it would be worthwhile to develop apps based on gamification to assist in the outpatient setting.  In addition, one oncologist felt that the success of mobile patient adherence application would depend on the type of cancer.  None of the oncologist who answered the survey thought that gamification apps would have no positive effect on patient adherence to their chemotherapy.  With this in light, a recent paper by Joel Fishbein of University of Colorado and Joseph Greer from Massachusetts General Hospital, describes the development of a mobile application, in clinical trial, to promote patient adherence to their oral chemotherapy. 

 

Mobile Applications to Promote Adherence to Oral Chemotherapy and Symptom Management: A Protocol for Design and Development 

 

Mobile Application to Promote Adherence to Oral Chemotherapy and Symptom Management: A Protocol for Design and Development. Fishbein JNNisotel LEMacDonald JJAmoyal Pensak NJacobs JMFlanagan CJethwani K Greer JA. JMIR Res Protoc. 2017 Apr 20;6(4):e62. doi: 10.2196/resprot.6198. 

 

Abstract 

BACKGROUND: 

Oral chemotherapy is increasingly used in place of traditional intravenous chemotherapy to treat patients with cancer. While oral chemotherapy includes benefits such as ease of administration, convenience, and minimization of invasive infusions, patients receive less oversight, support, and symptom monitoring from clinicians. Additionally, adherence is a well-documented challenge for patients with cancer prescribed oral chemotherapy regimens. With the ever-growing presence of smartphones and potential for efficacious behavioral intervention technology, we created a mobile health intervention for medication and symptom management. 

OBJECTIVE: 

The objective of this study was to develop and evaluate the usability and acceptability of a smartphone app to support adherence to oral chemotherapy and symptom management in patients with cancer. 

METHODS: 

We used a 5-step development model to create a comprehensive mobile app with theoretically informed content. The research and technical development team worked together to develop and iteratively test the app. In addition to the research team, key stakeholders including patients and family members, oncology clinicians, health care representatives, and practice administrators contributed to the content refinement of the intervention. Patient and family members also participated in alpha and beta testing of the final prototype to assess usability and acceptability before we began the randomized controlled trial. 

RESULTS: 

We incorporated app components based on the stakeholder feedback we received in focus groups and alpha and beta testing. App components included medication reminders, self-reporting of medication adherence and symptoms, an education library including nutritional information, Fitbit integration, social networking resources, and individually tailored symptom management feedback. We are conducting a randomized controlled trial to determine the effectiveness of the app in improving adherence to oral chemotherapy, quality of life, and burden of symptoms and side effects. At every stage in this trial, we are engaging stakeholders to solicit feedback on our progress and next steps. 

CONCLUSIONS: 

To our knowledge, we are the first to describe the development of an app designed for people taking oral chemotherapy. The app addresses many concerns with oral chemotherapy, such as medication adherence and symptom management. Soliciting feedback from stakeholders with broad perspectives and expertise ensured that the app was acceptable and potentially beneficial for patients, caregivers, and clinicians. In our development process, we instantiated 7 of the 8 best practices proposed in a recent review of mobile health app development. Our process demonstrated the importance of effective communication between research groups and technical teams, as well as meticulous planning of technical specifications before development begins. Future efforts should consider incorporating other proven strategies in software, such as gamification, to bolster the impact of mobile health apps. Forthcoming results from our randomized controlled trial will provide key data on the effectiveness of this app in improving medication adherence and symptom management. 

TRIAL REGISTRATION: 

ClinicalTrials.gov NCT02157519; https://clinicaltrials.gov/ct2/show/NCT02157519 (Archived by WebCite at http://www.webcitation.org/6prj3xfKA). 

 In this paper, Fishbein et al. describe the  methodology of the developoment of a mobile application to promote oral chemotherapy adherence.   This mobile app intervention was named CORA or ChemOtheRapy Assistant. 

 

 Of the approximately 325,000 health related apps on the market (as of 2017), the US Food and Drug Administration (FDA) have only reviewed approximately 20 per year and as of 2016 cleared only about 36 health related apps. 

According to industry estimates, 500 million smartphone users worldwide will be using a health care application by 2015, and by 2018, 50 percent of the more than 3.4 billion smartphone and tablet users will have downloaded mobile health applications.  However, there is not much scientific literature providing a framework for design and creation of quality health related mobile applications. 

Methods 

The investigators separated the app development into two phases: Phase 1 consisted of the mobile application development process and initial results of alpha and beta testing to determine acceptability among the major stakeholders including patients, caregivers, oncologists, nurses, pharmacists, pharmacologists, health payers, and patient advocates.  Phase 1 methodology and results were the main focus of this paper.  Phase 2 consists of an ongoing clinical trial to determine efficacy and reliability of the application in a larger number of patients at different treatment sites and among differing tumor types. 

The 5 step development process in phase 1 consisted of identifying features, content, and functionality of a mobile app in an iterative process, including expert collaboration and theoretical framework to guide initial development.   

There were two distinct teams: a research team and a technical team. The multidisciplinary research team consisted of the principal investigator, co-investigators (experts in oncology, psychology and psychiatry), a project director, and 3 research assistants. 

The technical team consisted of programmers and project managers at Partners HealthCare Connected Health.  Stakeholders served as expert consultants including oncologists, health care representatives, practice administrators, patients, and family members (care givers).  All were given questionaires (HIPAA compliant) and all involved in alpha and beta testing of the product. 

There were 5 steps in the development process 

  1. Implementing a theoretical framework: Patients and their family caregivers now bear the primary responsibility for their medical adherence especially to oral chemotherapy which is now more frequently administered in the home setting not in the clinical setting.  Four factors were identified as the most important barriers to oral chemotherapy adherence: complexity of medication regimessymptom burdenpoor self-management of side effects, and low clinical support.  These four factors were integral in the design of the mobile app and made up a conceptual framework in its design. 
  1. Conducting Initial Focus Group Interviews with key stakeholders: Stakeholders were taken from within and outside the local community.  In all 32 stakeholders served as study collaborators including 8 patient/families, 8 oncologists/clinicians, 8 cancer practice administrators, and 8 representatives of the health system, community, and overall society.   The goal of these focus groups were to obtain feedback on the proposed study and design included perceived importance of monitoring of adherence to oral chemotherapy, barriers to communication between patients and oncology teams regarding side effects and medication adherence, potential role of mobile apps to address barriers of quality of cancer care, potential feasibility, acceptability, and usage and feedback on the overall study design. 
  1. Creation of Wireframes (like storyboards or page designs) and Collecting Initial Feedback:  The research and design team, in conjunction with stakeholder input, created content wireframes, or screen blueprints) to provide a visual guide as to what the app would look like.  These wireframes also served as basis for what the patient interviews would look like on the application.  A total of 10 MGH (Massachusetts General Hospital) patients (6 female, 4 male) and most with higher education (BS or higher) participated in the interviews and design of wireframes.  Eight MGH clinicians participated in this phase of wireframe design. 
  1. Developing, Programming, and Refining the App:  CORA was designed to be supported by PHP/MySQL databases and run on LAMP hosts (Linux, Apache, MySQL, Perl/PHP/Python) and fully HIPAA compliant.  Alpha testing was conducted with various stakeholders and the app refined by the development team (technical team) after feedback. 
  1. Final beta testing and App prototype for clinical trial: The research team considered the first 5 participants enrolled in the subsequent clinical trial for finalization of the app prototype. 

There were 7 updated versions of the app during the initial clinical trial phase and 4 updates addressed technical issues related to smartphone operating system upgrades. 

Finally, the investigators list a few limitations in their design and study of this application.  First the patient population was homogenous as all were from an academic hospital setting.   Second most of the patients were of Caucasian ethnic background and most were highly educated, all of which may introduce study bias.  In addition, CORA was available on smartphone and tablet only, so a larger patient population who either have no access to these devices or are not technically savvy may experience issues related to this limitation. 

In addition other articles on this site related to Mobile Health applications and Health Outcomes include

Medical Applications and FDA regulation of Sensor-enabled Mobile Devices: Apple and the Digital Health Devices Market

How Social Media, Mobile Are Playing a Bigger Part in Healthcare

E-Medical Records Get A Mobile, Open-Sourced Overhaul By White House Health Design Challenge Winners

Qualcomm Ventures Qprize Regional Competition: MediSafe, an Israeli start-up in the personal health field, is the 2014 Winner of a $100,000 Prize

Friday, April 4 8:30 am- 9:30 am Science Track: Mobile Technology and 3D Printing: Technologies Gaining Traction in Biotech and Pharma – MassBio Annual Meeting 2014, Royal Sonesta Hotel, Cambridge, MA

Information Security and Privacy in Healthcare is part of the 2nd Annual Medical Informatics World, April 28-29, 2014, World Trade Center, Boston, MA

Post Acute Care – Driver of Variation in Healthcare Costs

Kaiser data network aims to improve cancer, heart disease outcomes

 

Additional references

  1. Aranda-Jan CB, Mohutsiwa-Dibe N, Loukanova S: Systematic review on what works, what does not work and why of implementation of mobile health (mHealth) projects in Africa. BMC public health 2014, 14:188.

 

 

Read Full Post »