Feeds:
Posts
Comments

Posts Tagged ‘3D printer’


3D Printing Used as New Tool for Radiologists

Reporter: Irina Robu, PhD

3D printing is a technique that has gained immense popularity for its ability to create 3D structures in art, jewelry, engineering, medicine. In this case, radiologists use 3D printing to transform a 2D scan into 3D visualization of a patient’s anatomy. Radiologists use their unique skills to visualize the anatomy of the organs of interest which give them a large advantage in communicating with patients as well as surgical teams.
The 3D printed anatomical models have proved valuable in providing a better understanding of complex anatomies and being used as a tangible aid for pre-surgical planning. It gives the patient a clear understanding of what is happening and it provides a great value when it comes to patient specific care. However, 3D modelling is essential at the beginning but it can also be a useful tool for surgeons. The list of medical 3D printing benefits is infinite. Just recently, a scientific team at University of Minnesota constructed their own patient specific 3D organ model based on MRI scans and prostate tissue samples of patients. The organs allow surgeons to plan and rehearse surgery.
In addition to researchers at University of Minnesota, Siemens Health engineers also created a platform to make medical apps that can be accessible throughout hospitals. In addition, Siemens Health partnered up with Materialise to make 3D printing software an integral part of the radiology workflow.
Hence, using 3D bioprinting is a desirable path to follow for radiologist. Not only they get to interpret anatomy, but now they can use 3D bioprinting as a state of the art tool that empower them to provide immense value to an audience that stretches from patient to practitioner.

SOURCE

https://www.bioportfolio.com/news/article/4177601/3D-Printing-Used-as-New-Tool-for-Radiologists.html

Read Full Post »


Print’s Technology Used to Help Produce 3D Printed Glass Molds for Droplet Microfluidic Chips

Reporter: Irina Robu, PhD

Scientists from Leibniz HKI, Friedrich Schiller University, the Ilmenau University of Technology, FEMTOprint  and the Fraunhofer Institute for Applied Optics and Precision Engineering fabricated 3D polydimethylsiloxane (PDMS) chips for droplet microfluidics by using FEMTOprint’s innovative glass technology to make 3D printed glass molds. The 3D printed glass mold can pack 192 nozzles into a design that’s 25 mm long and 4 mm wide, including all inlets and outlets, which produce monodisperse droplets of 70 µm. It’s also easy to scale this structure so it is capable of holding 1,000 nozzles in a 6.5 cm structure.

FEMTOprint’s direct writing process makes it possible to produce microfluidic designs with diverse levels, continuously changing heights, and complex 3D shapes, along with sub-micrometric resolution. 3D printed glass molds are used to combine the replication and ease of production that soft lithography is capable of with the advantages of high-resolution prototyping. Moreover, it can facilitate fabrication of multilevel structures even ones with gradients of confinement, which can make important droplet microfluidic operations better.

This technique, paired with simple polydimethylsiloxane replica molding, can offer users with a solution for non-specialized and specialized labs in order to customize and expand microfluidic experimentation. In order to leverage the immense potential of droplet microfluidics, the process of chip design and fabrication needs to be simplified. While the PDMS replica molding has significantly transformed the chip-production process, its dependence on 2D-limited photolithography has limited the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. The technique permits new possibilities in the university, meanwhile as of right now, no other methodology exists except this one that allows architectures with structures from 15 µm to hundreds of micrometers in all dimensions to be produced.

According to FEMTOprint, 3D printed glass structures characterize a negative part, and can be used as chips by bonding them to a PDMS slab or glass, which makes it possible to utilize structures, like mirrors, lenses, and filters, that replica molding cannot recreate. Chip fabrication doesn’t have to be the holdup for non-microfluidic labs adopting microfluidic approaches, instead it should be looked at as a way to device novel functionalities, like optical fiber incorporation for fluorescence detection.

 SOURCE

https://www.industrial-lasers.com/articles/2018/07/3d-printing-creates-molds-for-droplet-microfluidic-chips.html

Read Full Post »


Brain Surgeons Use 3D printing to Practice

Reporter: Irina Robu, PhD

Mechanical thrombectomy is a hopeful new modality of interventional stroke treatment. The countless devices on the market differ with regard to where they apply force on the thrombus, taking a proximal approach such as aspiration devices or a distal approach such as basket-like devices. In 2012, the Food and Drug Administration (FDA) approved mechanical thrombectomy – using a wire to pull clots out of the brains of stroke victims. At the end of the wire a trap exists which is like a noose that that captures the clot. Considering that the mechanical thrombectomy is a very risky procedure, interventional radiologists and neurosurgeons need to train extensively before they work on a real person.

Because of the procedure is very risky, a UConn Health radiologist and medical physicist made it easier for surgeons to practice first before the actual procedure. The team made a life size model of the arteries that the wire must pass through using brain scans and a 3D printer. The life size model will allow the surgeon to be more confident when guiding the wire and will give them the basic techniques on how to move the catheter. Holding the life size model of arteries, brings home how small they are even in an adult man. According to Dr. Ketan Bulsara, this life size model will be used a training model to learn mechanical thrombectomy and being able to model the tumor in advance could personalize and advance patient care.

SOURCE

https://www.mdtmag.com/news/2017/09/uconn-healths-new-3-d-printed-model-allows-brain-surgeons-practice

 

Read Full Post »


3D-printed body parts could replace cadavers for medical training

Reporter: Irina Robu, PhD

Even though, the 3-D printing based tissue modeling is still in early phases it is considered a promising approach for anatomy training. Models that are produced on a computer screen can be reproduced as tangible objects that students can examine and even dissect. According to a recent report in Medical Science Educator, the latest advancement in 3D printing can revolutionize how anatomy students learn.

For now, human cadavers have been the norm for studying human anatomy but they come with financial and logistical concerns both on storage and disposal. However, with the advancement of custom designed 3D organs, made possible by using 3D printing the need to keep large collection of physical models are reduced. With just a 3D printer, a digital model of the organ needed to study can be reproduced either with resin, thermoplastics, photopolymers and other material. Different materials can be used to allow construction of complex models with hard, soft, opaque and transparent conditions. The printed body parts will look exactly the same as the real thing because they are falsely colored to help students distinguish between the different parts of the anatomy including ligaments, muscles and blood vessels. Medical schools and hospitals around the world would be able to buy just an arm or a foot or the entire body depending on their training need.

Furthermore, to customizing anatomy lessons, 3D printed models can be used for teaching pathology/radiology by comparing CT images of the organs to their 3D-printed counterparts which students can examine and understand. Yet, the methods of 3D printing vary by materials used, resolution accuracy, long term stability, cost, speed and more. The printer cost is still a concern at this point partly because 3D bioprinters cost thousands of dollars nonetheless the cost is dropping due to the introduction of innovative printing materials.

Therefore, in order for 3-D printing to become more widely used, costs must be reduced while resolution must continue to improve. Instructors can potentially print one model per student in a material of their choosing that can be dissected. And no matter how much medical science moves with the times, there would always be the requisite skeleton model in the corner of most anatomy rooms.

SOURCE

http://www.abc.net.au/news/2014-07-22/an-3d-body-parts-could-replace-cadavers-for-medical-training/5615210

 

Additional Resources

Medical Science Educator, June 2015, Volume 25, Issue 2, pp 183–194| Cite as

Anatomical Models: a Digital Revolution

https://link.springer.com/article/10.1007/s40670-015-0115-9/fulltext.html

 

Goodbye to Cadavers?

https://consultqd.clevelandclinic.org/2015/09/goodbye-to-cadavers/

 

3-D Printing: Innovation Allows Customized Airway Stents

https://consultqd.clevelandclinic.org/2014/12/3-d-printing-innovation-allows-customized-airway-stents/

 

Exploring 3-D Printing’s Potential in Renal Surgery

https://consultqd.clevelandclinic.org/2015/06/exploring-3-d-printings-potential-in-renal-surgery/

 

How 3-D Printing Is Revolutionizing Medicine at Cleveland Clinic

https://consultqd.clevelandclinic.org/2015/11/how-3-d-printing-is-revolutionizing-medicine-at-cleveland-clinic/

Read Full Post »


Low-cost 3-D printer-based organ model production technique reveals complicated interior organ structure

Reported by: Irina Robu, PhD

A low cost human organ model production technique was developed by University of Tsukuba in conjunction with Dai Nippon Printing Co., Ltd. (DNP) for use with 3D printers that helps reveal intricate interior organ structure.

Professor Jun Mitani of the Faculty of Engineering, Information and Systems at the University of Tsukuba, Professor Nobuhiro Ohkohchi and Lecturer Yukio Oshiro of the Faculty of Medicine collaborated with DNP to produce human organ model that makes internal structures easier to see. The technique will cost as low as 1/3 compared to those for presently presented technology.

It is expected that the penetration of the new technique will lead to the promotion of clinical site applications.

Source
http://www.sciencedaily.com/releases/2016/01/160108083912.htm

Read Full Post »


3D Printer Breakthrough for Bone Grafts

Reported by: Irina Robu, PhD

Montana State University, Deparment of Mechanical and Industrial Engineering and Xtant Medical Holdings created a 3D printer capable of printing resorbable bone grafts.  The grafts produced can be broken down and absorbed into the body. The personalized bone grafts are custom made and the material used for MSU can minimize the material limitations.

The ability to bioprint usable bone and joint material has seen progress from all over the world  and now MSU has contributed their breakthrough research in the medical race to 3D print reconstructive parts for the human body.

Source

http://3dprintingindustry.com/2015/12/02/62909

Read Full Post »


3D BioPrinted Carbon Nanotubes used to Stimulate Bone Regrowth

Reporter: Irina Robu, PhD

Bone disorders are of significant concern due to increase in the median age of our population and at this present time bone grafts have are used to restore damaged bone. However, synthetic biomaterials are now being used as bone graft substitutes and they are selected for structural restoration based on their biomechanical properties. Lately, scaffolds are engineered to be bioactive to enhance tissue growth. These scaffolds are usually porous, made of biodegradable factors, drugs or stem cells.

The research group led by Dr. Maria Vallet-Regi at Faculty of Pharmacy-Universidad Complutense de Madrid showed that carbon nanotubes to the mix to create 3D electrical network within the bone tissue can stimulate bone cell regrowth. The polymer they used was polycarpolactone (PCL), which is rather easy to 3D print.
According to Mercedes Vila, the Principal Investigator in charge of the project, the carbon nanotubes were added to the bio-printable material mixture to create a three-dimensional electrical conducting network all through the volume of the scaffold, which would allow the application of this stimulation to the scaffold once implanted on the damaged bone site.
“In this sense, electrical stimulation has been explored since the discovery of the presence of electrical potentials in mechanically loaded bones,” Mercedes pointed out. “Certain types of cell behavior, such as adhesion and differentiation, can be affected by the application of electrical stimulation. Thus, the creation of a permanent charge on the material surface, positive or negative, as well as a direct electrical stimulation can promote the attraction of charged ions from the environment to the cells. This would modify their protein adsorption with the subsequent influence on the cells’ metabolic activity. Therefore, the use of electrical stimulation after biomaterial implantation to favor cell adhesion and differentiation and, consequently, induce bone healing seems a smart approach to accelerate the osteointegration process.”

Adding CNTs into the bio-printed polymer and mineral prosthetic bone can stimulate regrowth of the actual bone cells. However, bio-printing CNTs created no extra difficulties, as they are so thin that they can be extruded with ease through any pneumatic syringe. Most of the complications are related to finding the correct viscosity in the combination of CPL and hydroxypatite.

“Finding the right right viscosity to be extruded through the syringe while keeping enough robustness to get the 3D scaffold printed at room temperature, was complicated,” Mercedes admitted. “At the same time as the slurry was prepared in dichloromethane solution for diluting the PCL, achieving the right viscosity while evaporating the solvent was tricky. Moreover, once the PCL and the hydroxyapatite were mixed together, the addition of the CNTs was performed and reaching a proper dispersion took a bit of stirring time.”

Using EnvisionTEC’s 3D bioplotter, the researchers were able to create very complex 3D structures which would enhance the future for tissue replacements as it allows tailored solutions by capturing the anatomical information of the patient’s wound by computed tomography and magnetic resonance, for example, to obtain a personalized and unique implant.

As with many other 3D printing applications, it appears we are only starting to scratch the surface of the possibilities that are ahead for bioprinting.

Source

https://lockerdome.com/3dprintingindustry/8020474642838036

Other related articles published in this Open Access Online Scientific Journal include the following:

search for Bone related articles, please place here references

Read Full Post »

Older Posts »