Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘MIT Stem Cell Initiative’


The Puzzle of Stem Cells and Cancer Stem Cells: The MIT Stem Cell Initiative

Reporter: Irina Robu, PhD

The MIT Stem Cell Initiative is looking to research fundamental biological questions about normal adult stem cells and their malignant counterparts, cancer stem cells. The MIT Stem Cell Initiative is applying new technologies and approaches in pursuit of this goal. In particular, the MIT Stem Cell Initiative has focused on the breast and colon, as these tissues are quite different from each other, yet each constitutes a major portion of cancer occurrence. The program purposes are to

(a) identify the stem cells and cancer stem cells in various tissues and tumor types,

(b) control how these cells change during aging or with disease progression and

(c) determine the similarities and differences between

  • normal cells, and
  • cancer stem cells,

with the goal of finding weaknesses in cancer stem cells that can be feasible and exact targets for treatment.

In due course, the ability to identify, purify, and establish several populations of stem cells and cancer stem cells could aid researchers to understand the biology of these cells, and learn how to exploit them more efficiently in regenerative medicine applications and target them in cancer.

Normal adult stem cells are undifferentiated cells within a tissue that divide to produce two daughter cells and divide periodically to replenish or repair the tissue. One of the two daughter cells remain in the stem cell state and the other adopts a partially differentiated state, then goes on to divide and differentiate further to harvest multiple cell types that form that tissue. The division process is through a precise process to ensure that tissues are restricted to the appropriate size and cell content.

Cancer stem cells perform the same division but, rather than differentiating, the additional cells produced by the second daughter cell amass to form the bulk of the tumor.

  • Cancer stem cells can regrow the tumor, and
  • are frequently resistant to chemotherapy.

This exclusive ability of normal and cancer stem cells to both self-renew and form a tissue or tumor is referred to by researchers as “stemness,” and has important implications for biomedical applications.

As a result, cancer stem cells are thought to be responsible for

  • tumor recurrence after remission, and also for the
  • formation of metastases, which account for the majority of cancer-associated deaths.

Accordingly, an anti-cancer stem cell therapy that can target and kill cancer stem cells is one of the holy grail of cancer treatment as means to suppress both tumor recurrence and metastatic disease. One of the important tasks to studying normal and cancer stem cells, and to ultimately harnessing that knowledge is developing the ability to identify, purify, and propagate these cells. Accordingly, the main goal in stem cell and cancer stem cell research is discovering ways to distinguish them, preferably by identifying unique surface markers that can be used to cleanse stem cell and cancer stem cell populations and enable their study.

New technologies are permitting the researchers to make significant headway in these investigations, progress that was not possible just a few years ago. Explicitly, they are using

  • a mixture of specially cultured cells,
  • highly controllable mouse models of cancer, and s
  • ingle-cell RNA sequencing and
  • computational analysis techniques that are extremely matched to extracting an excessive deal of information from the moderately small number of stem cells.

SOURCE

http://news.mit.edu/2018/mit-initiative-delves-into-stem-cell-biology-1015

Advertisements

Read Full Post »