Feeds:
Posts
Comments

Posts Tagged ‘CDK6’


Are Cyclin D and cdk Inhibitors A Good Target for Chemotherapy?

 

Curator: Stephen J. Williams, Ph.D.

The U.S. Food and Drug Administration today granted accelerated approval to Ibrance (palbociclib) to treat advanced (metastatic) breast cancer inr postmenopausal women with estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer who have not yet received an endocrine-based therapy. It is to be used in combination with letrozole, another FDA-approved product used to treat certain kinds of breast cancer in postmenopausal women.

See Dr. Melvin Crasto’s blog posts on the announcement of approval of Ibrance (palbociclib) at

http://newdrugapprovals.org/2015/02/05/fda-approves-ibrance-for-postmenopausal-women-with-advanced-breast-cancer/

and about the structure and mechanism of action of palbociclib

http://newdrugapprovals.org/2014/01/05/palbociclib/

 

From the CancerNetwork at http://www.cancernetwork.com/aacr-2014/cdk-inhibitors-show-impressive-activity-advanced-breast-cancer

CDK Inhibitors Show Impressive Activity in Advanced Breast Cancer

News | April 08, 2014 | AACR 2014, Breast Cancer

By Anna Azvolinsky, PhD

Ibrance structure

 

Chemical structure of palbociclib

 

 

Palbociclib and LY2835219 are both cyclin-dependent kinase (CDK) 4/6 inhibitors. CDK4 and CDK6 are kinases that, together with cyclin D1, facilitate the transition of dividing cells from the G1 to the S (synthesis) phase of the cell cycle. Preclinical studies have shown that breast cancer cells rely on CDK4 and CDK6 for division and growth, and that selective CDK4/6 inhibitors can arrest the cells at this G1/S phase checkpoint.

The results of the phase II trial of palbociclib and phase I trial of LY2835219 both indicated that hormone receptor (HR)-positive disease appears to be the best marker to predict patient response.

LY2835219 Phase I Trial Demonstrates Early Activity

The CDK4/6 inhibitor LY2835219 has demonstrated early activity in heavily pretreated women with metastatic breast cancer. Nineteen percent of these women (9 out of 47) had a partial response and 51% (24 out of 47) had stable disease following monotherapy with the oral CDK4/6 inhibitor. Patients had received a median of seven prior therapies, and 75% had metastatic disease in the lung, liver, or brain. The median age of patients was 55 years.

All of the partial responses were in patients with HR-positive disease. The overall response rate for this patient subset was 25% (9 of 36 patients). Twenty of the patients with stable disease had HR-positive disease, with 13 patients having stable disease lasting 24 weeks or more.

Despite treatment, disease progression occurred in 23% of the patients.

These results were presented at a press briefing by Amita Patnaik, MD, associate director of clinical research at South Texas Accelerated Research Therapeutics in San Antonio, Texas, at the 2014 American Association for Cancer Research (AACR) Annual Meeting, held April 5–9, in San Diego.

The phase I trial of LY2835219 enrolled 132 patients with five different tumor types, including metastatic breast cancer. Patients received 150-mg to 200-mg doses of the oral drug every 12 hours.

The overall disease control rate was 70% for all patients and 81% among the 36 HR-positive patients.

The median progression-free survival (PFS) was 5.8 months for all patients and 9.1 months for HR-positive patients. Patnaik noted that the median PFS is still a moving target, as 18 patients, all with HR-positive disease, remain on therapy.

“The data are rather encouraging for a very heavily pretreated patient population,” said Patnaik during the press briefing.

Even though the trial was not designed to compare efficacy based on breast cancer subpopulations, the results in HR-positive tumors are particularly encouraging, according to Patnaik.

Common adverse events thought to be treatment-related were diarrhea, nausea, fatigue, vomiting, and neutropenia. These adverse events occurred in 5% or less of patients at grade 3 or 4 toxicity, except neutropenia, which occurred as a grade 3 or 4 toxicity in 11% of patients. Patnaik noted during the press briefing that the neutropenia was uncomplicated and did not result in discontinuation of therapy by any of the patients.

Palbociclib Phase II Data “Impressive”

The addition of the oral CDK4/6 inhibitor palbociclib resulted in an almost doubling of PFS in first-line treatment of postmenopausal metastatic breast cancer patients with HR-positive disease compared with a control population. The patients in this trial were not previously treated for their metastatic breast cancer, unlike the patient population in the phase I LY2835219 trial.

Patients receiving the combination of palbociclib at 125 mg once daily plus letrozole at 2.5 mg once daily had a median PFS of 20.2 months compared with a median of 10.2 months for patients treated with letrozole alone (hazard ratio = 0.488; P = .0004).

Richard S. Finn, MD, assistant professor of medicine at the University of California, Los Angeles, presented the data from the phase II PALOMA-1 trial at a press briefing at the AACR Annual Meeting.

A total of 165 patients were randomized 1:1 to either the experimental arm or control arm.

Forty-three percent of patients in the combination arm had an objective response compared with 33% of patients in the control arm.

Overall survival (OS), a secondary endpoint in this trial, was encouraging but the results are still preliminary, said Finn during the press briefing. The median OS was 37.5 months in the palbociclib arm compared with 33.3 months in the letrozole alone arm (P = .21). Finn noted that long-term follow-up is necessary to establish the median OS. “This first look of the survival data is encouraging. This is a front-line study, and it is encouraging that there is early [separation] of the curves,” he said.

No new toxicities were reported since the interim trial results. Common adverse events included leukopenia, neutropenia, and fatigue. The neutropenia could be quickly resolved and was uncomplicated and not accompanied by fever, said Finn.

Palbociclib is currently being tested in two phase III clinical trials: The PALOMA-3 trial is testing the combination of palbociclib with letrozole and fulvestrant in late-stage metastatic breast cancer patients who have failed endocrine therapy. The PENELOPE-B trial is testing palbociclib in combination with standard endocrine therapy in HR-positive breast cancer patients with residual disease after neoadjuvant chemotherapy and surgery.

References

  1. Patnaik A, Rosen LS, Tolaney SM, et al. Clinical activity of LY2835219, a novel cell cycle inhibitor selective for CDK4 and CDK6, in patients with metastatic breast cancer. American Association for Cancer Research Annual Meeting 2014; April 5–9, 2014; San Diego. Abstr CT232.
  2. Finn RS, Crown JP, Lang I, et al. Final results of a randomized phase II study of PD 0332991, a cyclin-dependent kinase (CDK)-4/6 inhibitor, in combination with letrozole vs letrozole alone for first-line treatment of ER+/HER2-advanced breast cancer (PALOMA-1; TRIO-18). American Association for Cancer Research Annual Meeting 2014; April 5–9, 2014; San Diego. Abstr CT101.

– See more at: http://www.cancernetwork.com/aacr-2014/cdk-inhibitors-show-impressive-activity-advanced-breast-cancer#sthash.f29smjxi.dpuf

 

The Cell Cycle and Anti-Cancer Targets

 

graph_cell_cycle

 

From Cell Cycle in Cancer: Cyclacel Pharmaceuticals™ (note dotted arrows show inhibition of steps e.g. p21, p53)

For a nice video slideshow explaining a bit more on cyclins and the cell cycle please see video below:

 

Cell Cycle. 2012 Nov 1; 11(21): 3913.

doi:  10.4161/cc.22390

PMCID: PMC3507481

Cyclin-dependent kinase 4/6 inhibition in cancer therapy

Neil Johnson and Geoffrey I. Shapiro*

See the article “Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors” in volume 11 on page 2756.

See the article “CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy” in volume 11 on page 2747.

This article has been cited by other articles in PMC.

Cyclin-dependent kinases (CDKs) drive cell cycle progression and control transcriptional processes. The dysregulation of multiple CDK family members occurs commonly in human cancer; in particular, the cyclin D-CDK4/6-retinoblastoma protein (RB)-INK4 axis is universally disrupted, facilitating cancer cell proliferation and prompting long-standing interest in targeting CDK4/6 as an anticancer strategy. Most agents that have been tested inhibit multiple cell cycle and transcriptional CDKs and have carried toxicity. However, several selective and potent inhibitors of CDK4/6 have recently entered clinical trial. PD0332991, the first to be developed, resulted from the introduction of a 2-aminopyridyl substituent at the C2-position of a pyrido(2,3-d)pyrimidin-7-one backbone, affording exquisite selectivity toward CDK4/6.1 PD0332991 arrests cells in G1 phase by blocking RB phosphorylation at CDK4/6-specfic sites and does not inhibit the growth of RB-deficient cells.2 Phase I studies conducted in patients with advanced RB-expressing cancers demonstrated mild side effects and dose-limiting toxicities of neutropenia and thrombocytopenia, with prolonged stable disease in 25% of patients.3,4 In cyclin D1-translocated mantle cell lymphoma, PD0332991 extinguished CDK4/6 activity in patients’ tumors, resulting in markedly reduced proliferation, and translating to more than 1 year of stability or response in 5 of 17 cases.5

Two recent papers from the Knudsen laboratory make several important observations that will help guide the continued clinical development of CDK4/6 inhibitors. In the study by Dean et al., surgically resected patient breast tumors were grown on a tissue culture matrix in the presence or absence of PD0332991. Crucially, these cultures retained associated stromal components known to play important roles in cancer pathogenesis and therapeutic sensitivities, as well as key histological and molecular features of the primary tumor, including expression of ER, HER2 and Ki-67. Similar to results in breast cancer cell lines,6 the authors demonstrate that only RB-positive tumors have growth inhibition in response to PD0332991, irrespective of ER or HER2 status, while tumors lacking RB were completely resistant. This result underscores RB as the predominant target of CDK4/6 in breast cancer cells and the primary marker of drug response in primary patient-derived tumors. As expected, RB-negative tumors routinely demonstrated robust expression of p16INK4A; however, p16INK4A expression was not always a surrogate marker for RB loss, supporting the importance of direct screening of tumors for RB expression to select patients appropriate for CDK4/6 inhibitor clinical trials.

In the second study, McClendon et al. investigated the efficacy of PD0332991 in combination with doxorubicin in triple-negative breast cancer cell lines. Again, RB functionality was paramount in determining response to either PD0332991 monotherapy or combination treatment. In RB-deficient cancer cells, CDK4/6 inhibition had no effect in either instance. However, in RB-expressing cancer cells, CDK4/6 inhibition and doxorubicin provided a cooperative cytostatic effect, although doxorubicin-induced cytotoxicity was substantially reduced, assessed by markers for mitotic catastrophe and apoptosis. Additionally, despite cytostatic cooperativity, CDK4/6 inhibition maintained the viability of RB-proficient cells in the presence of doxorubicin, which repopulated the culture after removal of drug. These results reflect previous data demonstrating that ectopic expression of p16INK4A can protect cells from the lethal effects of DNA damaging and anti-mitotic chemotherapies.7 Similar results have been reported in MMTV-c-neu mice bearing RB-proficient HER2-driven tumors, where PD0332991 compromised carboplatin-induced regressions,8 suggesting that DNA-damaging treatments should not be combined concomitantly with CDK4/6 inhibition in RB-proficient tumors.

To combine CDK4/6 inhibition with cytotoxics, sequential treatment may be considered, in which CDK4/6 inhibition is followed by DNA damaging chemotherapy; cells relieved of G1 arrest may synchronously enter S phase, where they may be most susceptible to agents disrupting DNA synthesis. Release of myeloma cells from a prolonged PD0332991-mediated G1 block leads to S phase synchronization; interestingly, all scheduled gene expression is not completely restored (including factors critical to myeloma survival such as IRF4), further favoring apoptotic responses to cytotoxic agents.9 Furthermore, in RB-deficient tumors, CDK4/6 inhibitors may be used to maximize the therapeutic window between transformed and non-transformed cells treated with chemotherapy. In contrast to RB-deficient cancer cells, RB-proficient non-transformed cells arrested in G1 in response to PD0332991 are afforded protection from DNA damaging agents, thereby reducing associated toxicities, including bone marrow suppression.8

In summary, the current work provides evidence for RB expression as a determinant of response to CDK4/6 inhibition in primary tumors and highlights the complexity of combining agents targeting the cell cycle machinery with DNA damaging treatments.

Go to:

Notes

Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, Knudsen ES. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors Cell Cycle 2012 11 2756 61 doi: 10.4161/cc.21195.

McClendon AK, Dean JL, Rivadeneira DB, Yu JE, Reed CA, Gao E, Farber JL, Force T, Koch WJ, Knudsen ES. CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy Cell Cycle 2012 11 2747 55 doi: 10.4161/cc.21127.

Go to:

Footnotes

Previously published online: www.landesbioscience.com/journals/cc/article/22390

Go to:

References

  1. Toogood PL, et al. J Med Chem. 2005;48:2388–406. doi: 10.1021/jm049354h. [PubMed] [Cross Ref]
  2. Fry DW, et al. Mol Cancer Ther. 2004;3:1427–38. [PubMed]
  3. Flaherty KT, et al. Clin Cancer Res. 2012;18:568–76. doi: 10.1158/1078-0432.CCR-11-0509. [PubMed] [Cross Ref]
  4. Schwartz GK, et al. Br J Cancer. 2011;104:1862–8. doi: 10.1038/bjc.2011.177. [PMC free article] [PubMed] [Cross Ref]
  5. Leonard JP, et al. Blood. 2012;119:4597–607. doi: 10.1182/blood-2011-10-388298. [PubMed] [Cross Ref]
  6. Dean JL, et al. Oncogene. 2010;29:4018–32. doi: 10.1038/onc.2010.154. [PubMed] [Cross Ref]
  7. Stone S, et al. Cancer Res. 1996;56:3199–202. [PubMed]
  8. Roberts PJ, et al. J Natl Cancer Inst. 2012;104:476–87. doi: 10.1093/jnci/djs002. [PMC free article] [PubMed] [Cross Ref]
  9. Huang X, et al. Blood. 2012;120:1095–106. doi: 10.1182/blood-2012-03-415984. [PMC free article] [PubMed] [Cross Ref]

Cell Cycle. 2012 Jul 15; 11(14): 2756–2761.

doi:  10.4161/cc.21195

PMCID: PMC3409015

Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors

Jeffry L. Dean, 1 , 2 A. Kathleen McClendon, 1 , 2 Theresa E. Hickey, 3 Lisa M. Butler, 3 Wayne D. Tilley, 3 Agnieszka K. Witkiewicz, 4 , 2 ,* and Erik S. Knudsen 1 , 2 ,*

Author information ► Copyright and License information ►

See commentary “Cyclin-dependent kinase 4/6 inhibition in cancer therapy” in volume 11 on page 3913.

This article has been cited by other articles in PMC.

Go to:

Abstract

To model the heterogeneity of breast cancer as observed in the clinic, we employed an ex vivo model of breast tumor tissue. This methodology maintained the histological integrity of the tumor tissue in unselected breast cancers, and importantly, the explants retained key molecular markers that are currently used to guide breast cancer treatment (e.g., ER and Her2 status). The primary tumors displayed the expected wide range of positivity for the proliferation marker Ki67, and a strong positive correlation between the Ki67 indices of the primary and corresponding explanted tumor tissues was observed. Collectively, these findings indicate that multiple facets of tumor pathophysiology are recapitulated in this ex vivo model. To interrogate the potential of this preclinical model to inform determinants of therapeutic response, we investigated the cytostatic response to the CDK4/6 inhibitor, PD-0332991. This inhibitor was highly effective at suppressing proliferation in approximately 85% of cases, irrespective of ER or HER2 status. However, 15% of cases were completely resistant to PD-0332991. Marker analyses in both the primary tumor tissue and the corresponding explant revealed that cases resistant to CDK4/6 inhibition lacked the RB-tumor suppressor. These studies provide important insights into the spectrum of breast tumors that could be treated with CDK4/6 inhibitors, and defines functional determinants of response analogous to those identified through neoadjuvant studies.

Keywords: ER, PD0332991, breast cancer, cell cycle, ex vivo

Go to:

Introduction

Breast cancer is a highly heterogeneous disease.14 Such heterogeneity is known to influence patient response to both standard of care and experimental therapeutics. In regards to biomarker-driven treatment of breast cancers, it was initially recognized that the presence of the estrogen receptor α (ER) in a fraction of breast cancer cells was associated with the response to tamoxifen and similar anti-estrogenic therapies.5,6 Since this discovery, subsequent marker analyses and gene expression profiling studies have further divided breast cancer into a series of distinct subtypes that harbor differing and often divergent therapeutic sensitivities.13 While clearly important in considering the use of several current standard of care therapies, these markers, or molecular sub-types, do not necessarily predict the response to new therapeutic approaches that are currently undergoing clinical development. Thus, there is the continued need for functional analyses of drug response and the definition of new markers that can be used to direct treatment strategies.

Currently, all preclinical cancer models are associated with specific limitations. It is well known that cell culture models lack the tumor microenvironment known to have a significant impact on tumor biology and therapeutic response.79 Xenograft models are dependent on the host response for the engraftment of tumor cells in non-native tissues, which do not necessarily recapitulate the nuances of complex tumor milieu.10 In addition, genetically engineered mouse models, while enabling the tumor to develop in the context of the host, can develop tumors that do not mirror aspects of human disease.10 Furthermore, it remains unclear whether any preclinical model truly represents the panoply of breast cancer subtypes that are observed in the clinic. Herein, we utilized a primary human tumor explant culture approach to interrogate drug response, as well as specific determinants of therapeutic response, in an unselected series of breast cancer cases.

Cell Cycle. 2012 Jul 15; 11(14): 2747–2755.

doi:  10.4161/cc.21127

PMCID: PMC3409014

CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy

  1. Kathleen McClendon, 1 , † Jeffry L. Dean, 1 , † Dayana B. Rivadeneira, 1 Justine E. Yu, 1 Christopher A. Reed, 1 Erhe Gao, 2 John L. Farber, 3 Thomas Force, 2 Walter J. Koch, 2 and Erik S. Knudsen 1 ,*

Author information ► Copyright and License information ►

See commentary “Cyclin-dependent kinase 4/6 inhibition in cancer therapy” in volume 11 on page 3913.

This article has been cited by other articles in PMC.

Go to:

Abstract

Triple-negative breast cancer (TNBC) is an aggressive disease that lacks established markers to direct therapeutic intervention. Thus, these tumors are routinely treated with cytotoxic chemotherapies (e.g., anthracyclines), which can cause severe side effects that impact quality of life. Recent studies indicate that the retinoblastoma tumor suppressor (RB) pathway is an important determinant in TNBC disease progression and therapeutic outcome. Furthermore, new therapeutic agents have been developed that specifically target the RB pathway, potentially positioning RB as a novel molecular marker for directing treatment. The current study evaluates the efficacy of pharmacological CDK4/6 inhibition in combination with the widely used genotoxic agent doxorubicin in the treatment of TNBC. Results demonstrate that in RB-proficient TNBC models, pharmacological CDK4/6 inhibition yields a cooperative cytostatic effect with doxorubicin but ultimately protects RB-proficient cells from doxorubicin-mediated cytotoxicity. In contrast, CDK4/6 inhibition does not alter the therapeutic response of RB-deficient TNBC cells to doxorubicin-mediated cytotoxicity, indicating that the effects of doxorubicin are indeed dependent on RB-mediated cell cycle control. Finally, the ability of CDK4/6 inhibition to protect TNBC cells from doxorubicin-mediated cytotoxicity resulted in recurrent populations of cells specifically in RB-proficient cell models, indicating that CDK4/6 inhibition can preserve cell viability in the presence of genotoxic agents. Combined, these studies suggest that while targeting the RB pathway represents a novel means of treatment in aggressive diseases such as TNBC, there should be a certain degree of caution when considering combination regimens of CDK4/6 inhibitors with genotoxic compounds that rely heavily on cell proliferation for their cytotoxic effects.

 

 

Click on Video Link for Dr. Tolaney slidepresentation of recent data with CDK4/6 inhibitor trial results https://youtu.be/NzJ_fvSxwGk

Audio and slides for this presentation are available on YouTube: http://youtu.be/NzJ_fvSxwGk

Sara Tolaney, MD, MPH, a breast oncologist with the Susan F. Smith Center for Women’s Cancers at Dana-Farber Cancer Institute, gives an overview of phase I clinical trials and some of the new drugs being tested to treat breast cancer. This talk was originally given at the Metastatic Breast Cancer Forum at Dana-Farber on Oct. 5, 2013.

A great article on current clinical trials and explanation of cdk inhibitors by Sneha Phadke, DO; Alexandra Thomas, MD at the site OncoLive

 

http://www.onclive.com/publications/contemporary-oncology/2014/november-2014/targeting-cell-cycle-progression-cdk46-inhibition-in-breast-cancer/1

 

cdk4/6 inhibitor Ibrance Has Favorable Toxicity and Adverse Event Profile

 

As discussed in earlier posts and the Introduction to this chapter on Cytotoxic Chemotherapeutics, most anti-cancer drugs developed either to target DNA, DNA replication, or the cell cycle usually have similar toxicity profile which can limit their therapeutic use. These toxicities and adverse events usually involve cell types which normally exhibit turnover in the body, such as myeloid and lymphoid and granulocytic series of blood cells, epithelial cells lining the mucosa of the GI tract, as well as follicular cells found at hair follicles. This understandably manifests itself as common toxicities seen with these types of agents such as the various cytopenias in the blood, nausea vomiting diarrhea (although there are effects on the chemoreceptor trigger zone), and alopecia.

It was felt that the cdk4/6 inhibitors would show serious side effects similar to other cytotoxic agents and this definitely may be the case as outlined below:

(Side effects of palbociclib) From navigatingcancer.com

Palbociclib may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away:

  • nausea
  • diarrhea
  • vomiting
  • decreased appetite
  • tiredness
  • numbness or tingling in your arms, hands, legs, and feet
  • sore mouth or throat
  • unusual hair thinning or hair loss

Some side effects can be serious. If you experience any of these symptoms, call your doctor immediately or get emergency medical treatment:

  • fever, chills, or signs of infection
  • shortness of breath
  • sudden, sharp chest pain that may become worse with deep breathing
  • fast, irregular, or pounding heartbeat
  • rapid breathing
  • weakness
  • unusual bleeding or bruising
  • nosebleeds

The following is from FDA Drug Trials Snapshot of Ibrance™:

 

See PDF on original submission and CDER review

original FDA Ibrance submission

original FDA Ibrance submission

CDER Review Ibrance

CDER Review Ibrance

 

4.3 Preclinical Pharmacology/Toxicology

 

For full details, please see Pharmacology/Toxicology review by Dr. Wei Chen The nonclinical studies adequately support the safety of oral administration of palbociclib for the proposed indication and the recommendation from the team is for approval. Non-clinical studies of palbociclib included safety pharmacology studies, genotoxicity

studies, reproductive toxicity studies, pharmacokinetic studies, toxicokinetic studies and repeat-dose general toxicity studies which were conducted in rats and dogs. The pivotal toxicology studies were conducted in compliance with Good Laboratory Practice regulation.

 

Pharmacology:

As described above, palbociclib is an inhibitor of CDK4 and CDK6. Palbociclib modulates downstream targets of CDK4 and CDK6 in vitro and induces G1 phase cell cycle arrest and therefore acts to inhibit DNA synthesis and cell proliferation. Combination of palbociclib with anti-estrogen agents demonstrated synergistic inhibition

of cell proliferation in ER+ breast cancer cells. Palbociclib showed anti-tumor efficacy in animal tumor model studies. Safety pharmacology studies with palbociclib demonstrated adverse effects on both the respiratory and cardiovascular function of dogs at a dose of 125mg/day (four times and 50-times the human clinical exposure

respectively) based on mean unbound Cmax.

 

General toxicology:

Palbociclib was studied in single dose toxicity studies and repeated dose studies in rats and dogs. Adverse effects in the bone marrow, lymphoid tissues, and male reproductive organs were observed at clinically relevant exposures. Partial to complete reversibility of toxicities to the hematolymphopoietic and male reproductive systems was demonstrated following a recovery period (4-12 weeks), with the exception of the male reproductive organ findings in dogs. Gastrointestinal, liver, kidney, endocrine/metabolic (altered glucose metabolism), respiratory, ocular, and adrenal effects were also seen.

 

Genetic toxicology:

Palbociclib was evaluated for potential genetic toxicity in in vitro and in vivo studies. The Ames bacterial mutagenicity assay in the presence or absence of metabolic activation demonstrated non-mutagenicity. In addition, palbociclib did not induce chromosomal aberrations in cultured human peripheral blood lymphocytes in the presence or absence of metabolic activation. Palbociclib was identified as aneugenic based on kinetochore analysis of micronuclei formation in an In vitro assay in CHO-WBL cells. In addition, palbociclib was shown to induce micronucleus formation in male rats at doses 100

mg/kg/day (10x human exposure at the therapeutic dose) in an in vivo rat micronucleus assay.

 

Reproductive toxicology: No effects on estrous cycle and no reproductive toxicities were noticed in standard assays.

 

Pharmacovigilance (note please see PDF for more information)

Deaths Associated With Trials: Although a few deaths occurred during some trials no deaths were attributed to the drug.

Non-Serious Adverse Events:

(note a reviewers comment below concerning incidence of pulmonary embolism is a combination trial with letrazole)

 

fda ibrance reviewers SAE comment

 

Other article in this Open Access Journal on Cell Cycle and Cancer Include:

 

Tumor Suppressor Pathway, Hippo pathway, is responsible for Sensing Abnormal Chromosome Numbers in Cells and Triggering Cell Cycle Arrest, thus preventing Progression into Cancer

Nonhematologic Cancer Stem Cells [11.2.3]

New methods for Study of Cellular Replication, Growth, and Regulation

Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

Proteomics, Metabolomics, Signaling Pathways, and Cell Regulation: a Compilation of Articles in the Journal http://pharmaceuticalintelligence.com

In Focus: Targeting of Cancer Stem Cells

 

 

 

 

 

 

 

 

Read Full Post »


Curator: Ritu Saxena, Ph.D.

Melanoma

Melanoma represents approximately 4% of human skin cancers, yet accounts for approximately 80% of deaths from cutaneous neoplasms. It remains one of the most common types of cancer among young adults. Melanoma is recognized as the most common fatal skin cancer with its incidence rising to 15 fold in the past 40 years in the United States. Melanoma develops from the malignant transformation of melanocytes, the pigment-producing cells that reside in the basal epidermal layer in human skin. (Greenlee RT, et al, Cancer J Clin. Jan-Feb 2001;51(1):15-36 ; Weinstock MA, et al, Med Health R I. Jul 2001;84(7):234-6).  Classic clinical signs of melanoma include change in color, recent enlargement, nodularity, irregular borders, and bleeding. Cardinal signs of melanoma are sometimes referred to by the mnemonic ABCDEs (asymmetry, border irregularity, color, diameter, elevation) (Chudnovsky Y, et al. J Clin Invest, 1 April 2005; 115(4): 813–824).

Clinical characteristics

Melanoma primarily affects fair-haired and fair-skinned individuals, and those who burn easily or have a history of severe sunburn are at higher risk than their darkly pigmented, age-matched controls. The exact mechanism and wavelengths of UV light that are the most critical remain controversial, but both UV-A (wavelength 320–400 nm) and UV-B (290–320 nm) have been implicated (Jhappan C, et al, Oncogene, 19 May 2003;22(20):3099-112). Case-control studies have identified several risk factors in populations susceptible to developing melanoma. MacKie RM et al (1989) stated that the relative risk of cutaneous melanoma is estimated from the four strongest risk factors identified by conditional logistic regression. These factors are

  • total number of benign pigmented naevi above 2 mm diameter;
  • freckling tendency;
  • number of clinically atypical naevi (over 5 mm diameter and having an irregular edge, irregular pigmentation, or inflammation); and
  • a history of severe sunburn at any time in life.

Use of this risk-factor chart should enable preventive advice for and surveillance of those at greatest risk (MacKie RM, et al, Lancet 26 Aug1989;2(8661):487-90).

Cutaneous melanoma can be subdivided into several subtypes, primarily based on anatomic location and patterns of growth (Table 1).

Image

Table 1: Clinical Classification of Melanoma (Chudnovsky Y, et al, 2005)

The genetics of melanoma

As in many cancers, both genetic predisposition and exposure to environmental agents are risk factors for melanoma development. Many studies conducted over several decades on benign and malignant melanocytic lesions as well as melanoma cell lines have implicated numerous genes in melanoma development and progression.

Image

Table 2: Genes involved in Melanoma (Chudnovsky Y, et al, 2005)

Apart from the risk factors such as skin pigmentation, freckling, and so on, another significant risk factor is ‘strong family history of melanoma’. Older case-control studies of patients with familial atypical mole-melanoma (FAMM) syndrome suggested an elevated risk of ∼434-to 1000-fold over the general population (Greene MH, et al, Ann Intern Med, Apr 1985;102(4):458-65). A more recent meta-analysis of family history found that the presence of at least one first-degree relative with melanoma increases the risk by 2.24-fold (Gandini S, et al, Eur J Cancer, Sep 2005;41(14):2040-59). Genetic studies of melanoma-prone families have given important clues regarding melanoma susceptibility loci.

CDKN2A, the familial melanoma locus

CDKN2A is located at chromosome 9p21 and is composed of 4 exons (E) – 1α, 1β, 2, and 3. LOH or mutations at this locus cosegregated with melanoma susceptibility in familial melanoma kindred and 9p21 mutations have been observed in different cancer cell lines. The locus encodes two tumor suppressors via alternate reading frames, INK4 (p16INK4a) and ARF (p14ARF). INK4A and ARF encode alternative first exons, 1α and 1β respectively and different promoters. INK4A is translated from the splice product of E1α, E2, and E3, while ARF is translated from the splice product of E1β, E2, and E3. Second exons of the two proteins are shared and two translated proteins share no amino acid homology.

INK4A is the founding member of the INK4 (Inhibitor of cyclin-dependent kinase 4) family of proteins and inhibits the G1 cyclin-dependent kinases (CDKs) 4/6, which phosphorylate and inactivate the retinoblastoma protein (RB), thereby allowing for S-phase entry. Thus, loss of INK4K function promotes RB inactivation through hyperphosphorylation, resulting in unconstrained cell cycle progression.

ARF (Alternative Reading Frame) protein of the locus inhibits HDM2-mediated ubiquitination and subsequent degradation of p53. Thus, loss of ARF inactivates another tumor suppressor, p53. The loss of p53 impairs mechanisms that normally target genetically damaged cells for cell cycle arrest and/or apoptosis, which leads to proliferation of damaged cells. Loss of CDKN2A therefore contributes to tumorigenesis by disruption of both the pRB and p53 pathways.

figure 1

Figure 1:  Genetic encoding and mechanism of action of INK4A and ARF.

(Chudnovsky Y, et al, 2005)

RAF and RAS pathways

A genetic hallmark of melanoma is the presence of activating mutations in the oncogenes BRAF and NRAS, which are present in 70% and 15% of melanomas, respectively, and lead to constitutive activation of mitogen-activated protein kinase (MAPK) pathway signaling. However, molecules that inhibit MAPK pathway–associated kinases, like BRAF and MEK, have shown only limited efficacy in the treatment of metastatic melanoma. Thus, a deeper understanding of the cross talk between signaling networks and the complexity of melanoma progression should lead to more effective therapy.

NRAS mutations activate both effector pathways, Raf-MEK-ERK and PI3K-Akt in melanoma. The Raf-MEK-ERK pathway may also be activated via mutations in the BRAF gene. In a subset of melanomas, the ERK kinases have been shown to be constitutively active even in the absence of NRAS or BRAF mutations. The PI3K-Akt pathway may be activated through loss or mutation of the tumor suppressor gene PTEN, occurring in 30–50% of melanomas, or through gene amplification of the AKT3 isoform. Activation of ERK and/or Akt3 promotes the development of melanoma by various mechanisms, including stimulation of cell proliferation and enhanced resistance to apoptosis.

JCI0524808.f3

Figure 2: Schematic of the canonical Ras effector pathways Raf-MEK-ERK and PI3K-Akt in melanoma.

Curtin et al (2005) compared genome-wide alterations in the number of copies of DNA and mutational status of BRAF and NRAS in 126 melanomas from four groups in which the degree of exposure to ultraviolet light differs: 30 melanomas from skin with chronic sun-induced damage and 40 melanomas from skin without such damage; 36 melanomas from palms, soles, and subungual (acral) sites; and 20 mucosal melanomas. Significant differences were observed in number of copies of DNA and mutation frequencies in BRAF among the four groups of melanomas. Eighty-one percent of the melanomas on skin without sun-induced damaged had mutations in BRAF or NRAS. Melanomas with wild-type BRAF or NRAS frequently had increases in the number of copies of the genes for cyclin-dependent kinase 4 (CDK4) and cyclin D1 (CCND1), downstream components of the RAS-BRAF pathway. Thus, the genetic alterations identified in melanomas at different sites and with different levels of sun exposure indicate that there are distinct genetic pathways in the development of melanoma and implicate CDK4 and CCND1 as independent oncogenes in melanomas without mutations in BRAF or NRAS. (Curtin JA, et al, N Engl J Med, 17 Nov 2005;353(20):2135-47).

Genetic Heterogeneity of Melanoma

Melanoma exhibits molecular heterogeneity with markedly distinct biological and clinical behaviors. Lentigo maligna melanomas, for example, are indolent tumors that develop over decades on chronically sun-exposed area such as the face. Acral lentigenous melanoma, or the other hand, develops on sun-protected regions, tend to be more aggressive. Also, transcription profiling has provided distinct molecular subclasses of melanoma. It is also speculated that alterations at the DNA and RNA and the non-random nature of chromosomal aberrations may segregate melanoma tumors into subtypes with distinct clinical behaviors.

The melanoma gene atlas

Whole-genome screening technologies such as spectral karyotype analysis and array-CGH have identified many recurrent nonrandom chromosomal structural alterations, particularly in chromosomes 1, 6, 7, 9, 10, and 11 (Curtin JA, et al, N Engl J Med, 17 Nov 2005;353(20):2135-47); however, in most cases, no known or validated targets have been linked to these alterations.

In A systematic high-resolution genomic analysis of melanocytic genomes, array-CGH profiles of 120 melanocytic lesions, including 32 melanoma cell lines, 10 benign melanocytic nevi, and 78 melanomas (primary and metastatic) by Chin et al (2006) revealed a level of genomic complexity not previously appreciated. In total, 435 distinct copy number aberrations (CNAs) were defined among the metastatic lesions, including 163 recurrent, high-amplitude events. These include all previously described large and focal events (e.g., 1q gain, 6p gain/6q loss, 7 gain, 9p loss, and 10 loss). Genomic complexity observed in primary and benign nevi melanoma is significantly less than that observed in metastatic melanoma (Figure 3)  (Chin L, et al, Genes Dev. 15 Aug 2006;20 (16):2149-2182).

Genetic heterogeneity Melanoma

Figure 3: Genome comparisons of melanocyte lesions (Chin L, et al, 2006)

Thus, genomic profiling of various melanoma progression types could reveal important information regarding genetic events those likely drive as metastasis and possibly, reveal provide cues regarding therapy targeted against melanoma.

Reference:

  1. Greenlee RT, et al, Cancer J Clin. Jan-Feb 2001;51(1):15-36
  2. Weinstock MA, et al, Med Health R I. Jul 2001;84(7):234-6
  3. Chudnovsky Y, et al. J Clin Invest, 1 April 2005; 115(4): 813–824
  4. Jhappan C, et al, Oncogene, 19 May 2003;22(20):3099-112
  5. MacKie RM, et al, Lancet 26 Aug1989;2(8661):487-90)
  6. Gandini S, et al, Eur J Cancer, Sep 2005;41(14):2040-59)
  7. Curtin JA, et al, N Engl J Med, 17 Nov 2005;353(20):2135-47
  8. Chin L, et al, Genes Dev. 15 Aug 2006;20 (16):2149-2182

Related articles on Melanoma on this Open Access Online Scientific Journal, include the following: 

Thymosin alpha1 and melanoma Author/Editor- Tilda Barliya, Ph.D.

A New Therapy for Melanoma Reporter- Larry H Bernstein, M.D.

Melanoma: Molecule in Immune System Could Help Treat Dangerous Skin Cancer Reporter: Prabodh Kandala, Ph.D.

Why Braf inhibitors fail to treat melanoma. Reporter: Prabodh Kandala, Ph.D.

Read Full Post »