Feeds:
Posts
Comments

Archive for the ‘Autoimmune Inflammatory DIseases’ Category

LIVE 9/21 3:20PM to 6:40PM KINASE INHIBITORS FOR CANCER IMMUNOTHERAPY COMBINATIONS & KINASE INHIBITORS FOR AUTOIMMUNE AND INFLAMMATORY DISEASES at CHI’s 14th  Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

http://www.discoveryontarget.com/

http://www.discoveryontarget.com/crispr-therapies/

Leaders in Pharmaceutical Business Intelligence (LPBI) Group is a

Media Partner of CHI for CHI’s 14th Annual Discovery on Target taking place September 19 – 22, 2016 in Boston.

In Attendance, streaming LIVE using Social Media

Aviva Lev-Ari, PhD, RN

Editor-in-Chief

http://pharmaceuticalintelligence.com

#BostonDOT16

@BostonDOT

 

KINASE INHIBITORS FOR CANCER IMMUNOTHERAPY COMBINATIONS

3:20 Chairperson’s Opening Remarks

Guido J.R. Zaman, Ph.D., Managing Director & Head of Biology, Netherlands Translational Research Center B.V. (NTRC)

3:25 FEATURED PRESENTATION: Inhibition of PI3K and Tubulin

Doriano_Fabbro

Doriano Fabbro, Ph.D., CSO, PIQUR Therapeutics

The PI3K signaling pathway is frequently activated in tumors. PQR309 is a selective dual inhibitor of PI3K and mTOR (currently in Phase I) in cancer patients. The preclinical pharmacology and toxicology of PQR309 is presented, including its activity in lymphoma preclinical models. In addition, we elucidate structural factors defining the PI3K inhibitory activity and tubulin-binding of PQR309 derivatives.

  • PQR309 & GDC0941 arrest cells i G1/S (typical for PI3K/mTOR Inhibitor)
  • What drives Antiproliferative Activity of BKM120: PI3K or MT or both?
  • BKM120 Binds to beta-Tubulin/alpha -Tubulin Interfere
  • T2R-TTL complex
  • Orientation of BKM120 in PI3K
  • PQR309 – is a brain penetrating, PK and BAV by PO, good metabolic stability
  • PQR309 ANti-proliferative in Lymphoma
  • Clinical efficacy – Now in Phase II

4:05 Design and Development of a Novel PI3K-p110β/δ Inhibitor, KA2237 with Combined Tumor Immunotherapeutic, Growth Inhibition and Anti-Metastatic Activity

Stephen_Shuttleworth

Stephen Shuttleworth, Ph.D., FRSC, CChem, CSO, Karus Therapeutics Ltd.

The design and development of KA2237, a novel and selective inhibitor of PI3K-p110β/δ, will be described. This molecule has clinical potential in the treatment of solid and hematological malignancies, through its direct inhibition of tumor growth and metastatic spread, and through immunotherapeutic mechanisms. Phase I studies for KA2237 are scheduled to commence in Q2 2016 at the MD Anderson Cancer Center.

  • Design & Development of Novel, Oral, selective PI3K enzyme family: CLass I,II, III, IV based upon:
  • Class I IA IB
  • KA2237: DUal PI3K – p110beta/delta-selective inhibitor: CTL, Treg, p1 106 T sell response
  • Molecular signature in the tumor
  • WT p110delta, WT 1 10beta+, Mutant p1 10Beta+, PTEN-null, Ibrutinib-resistance, Growth inhibition; suppression of metastesis (p110beta
  • small molecule combination agents: potential aided by selectivity over p110
  • KA2237: clinical Pi3K-p110beta/delta Inhibitor- ATP -comtetitive
  • Doxorubicin -cytotoxic control
  • KA2237 superior activity to Idelasib
  • KA2237 – suppression of micro-metastasis in 4T1 synergenic model
  • Tumor Growth inhibition Pre-Surgery
  • Tumor Re-Growth Inhibition Post-Surgery
  • metastasis post surgery
  • Tumor-free mice post-surgery
  • CHemistry: IHC -pAKT; IHC – FOxp3+
  • KA2237 inhibits HGF-stimulated 4T1 tumor
  • 2004 – Preclinical develpemnt PI3K is reported
  • 2006 First PI#K is enter Clinical Trials
  • Targeting p1110Beta (PIKeCB) mutations in cancer with KA2237
  • DIscovery of the mutations lead drug discovery
  • KA@@#&: Potential in treatment of B-Cell Lymphom AS IN TARGETING IBRUTINIB RESISTENCE
  • GROWTH INHIBITION IN HEMATOLOGICAL CANCERS TUMOE CELL LINE PANEL
  • KA2237 – differentiated from competing Pi3K is Superior efficacy cf. p110delta
  • Combination: Not histone deacetylase but a tubulin deacetylase – Hsp90 ans Hsp70
  • T cell exhausion: Tumor growth inhibition vs Suppression of lung metastasis
  • Tumor BiologyRationale vs Clinical Agents
  • Oncogenic mutants, solid tumor supression magrophage, combination PD-1, CTLA$
  • FDA -approved kinase inhibitors

Summary

  1. phase I clinical study commenced in pathients with B cell Lymphoma
  2. Potential for treatment of solid and hematological malignancies

4:35 InCELL Pulse: A Novel Cellular Target Engagement Assay Platform for Drug Discovery

Treiber_Daniel

Daniel Treiber, Ph.D., Vice President, KINOMEscan, DiscoverX Corporation

InCELL Pulse is a quantitative and rapid method for measuring cellular target engagement potencies for small molecule inhibitors. InCELL Pulse capitalizes on two novel DiscoverX technologies, Enzyme Fragment Complementation (EFC) and Pulse Denaturation, which overcome the limitations of related target engagement methods. Examples across multiple target classes will be described.

  • InCELL Pulse – cellular Target ENgagement Assays
  • cellular thermal stabilization-based approach
  • simple, rapid and generig cellular alternative to CETSa
  • Thermal melting Curves vs Isothermal Inhibitor EC50 curves
  • Pulse Denaturation compound binding, or not binding
  • ABL1 Tyrosine Kinase – dose response curve – allosteric Inhibitor
  • MTH1 Hydrolase: InCELL Pulseassay validated for multiple substrate-competitive inhibitors
  • Validated InCELL Pulse Assays for Diverse Kinases
  • Kinase targets; BRAF, MEC1

Summary

  1. validation across proteins

TTP Labtech4:50 Potential Application of Fluorescence Lifetime Assays to Enable Robust, Rapid Protein Binding Assays

Wylie_Paul

Paul Wylie, Ph.D., Head, Applications, TTP Labtech

Current methods to screen protein binding interactions often have limitations due to the reliance on antibodies, but also interference from fluorescent molecules. Fluorescence lifetime has the potential to overcome these problems through directly labelled proteins and lifetime measurements that are independent of total fluorescence intensity.

  • Protein binding as a target class
  • protein-protein interactions (PPIs)
  1. FRET/HTRF
  2. FP
  3. AlphaScreen

What new in FLT?

  • long lifetime fluorophores, economical reagent platform
  • directly labelled reagents – no antibodies
  • independent of total intensity – reduced interference
  • robustness screen vs nuisance screen – caspase-3
  • productive; reduction false positives: FRET
  • protein-binding assays & FLT formats:
  1. protein – small molecule binding – CECR2
  2. protein – peptide binding: long and sholt lifetime
  3. Site-specific labelling vs Non-selective labelling
  4. Toolbox for PoC
  5. Detection reagents
  6. Further develop technology

5:05 Refreshment Break in the Exhibit Hall with Poster Viewing

 

6:40 End of Day

 

Read Full Post »

Milestones in Physiology & Discoveries in Medicine and Genomics: Request for Book Review Writing on Amazon.com

physiology-cover-seriese-vol-3individualsaddlebrown-page2

Milestones in Physiology

Discoveries in Medicine, Genomics and Therapeutics

Patient-centric Perspective 

http://www.amazon.com/dp/B019VH97LU 

2015

 

 

Author, Curator and Editor

Larry H Bernstein, MD, FCAP

Chief Scientific Officer

Leaders in Pharmaceutical Business Intelligence

Larry.bernstein@gmail.com

Preface

Introduction 

Chapter 1: Evolution of the Foundation for Diagnostics and Pharmaceuticals Industries

1.1  Outline of Medical Discoveries between 1880 and 1980

1.2 The History of Infectious Diseases and Epidemiology in the late 19th and 20th Century

1.3 The Classification of Microbiota

1.4 Selected Contributions to Chemistry from 1880 to 1980

1.5 The Evolution of Clinical Chemistry in the 20th Century

1.6 Milestones in the Evolution of Diagnostics in the US HealthCare System: 1920s to Pre-Genomics

 

Chapter 2. The search for the evolution of function of proteins, enzymes and metal catalysts in life processes

2.1 The life and work of Allan Wilson
2.2  The  evolution of myoglobin and hemoglobin
2.3  More complexity in proteins evolution
2.4  Life on earth is traced to oxygen binding
2.5  The colors of life function
2.6  The colors of respiration and electron transport
2.7  Highlights of a green evolution

 

Chapter 3. Evolution of New Relationships in Neuroendocrine States
3.1 Pituitary endocrine axis
3.2 Thyroid function
3.3 Sex hormones
3.4 Adrenal Cortex
3.5 Pancreatic Islets
3.6 Parathyroids
3.7 Gastointestinal hormones
3.8 Endocrine action on midbrain
3.9 Neural activity regulating endocrine response

3.10 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

 

Chapter 4.  Problems of the Circulation, Altitude, and Immunity

4.1 Innervation of Heart and Heart Rate
4.2 Action of hormones on the circulation
4.3 Allogeneic Transfusion Reactions
4.4 Graft-versus Host reaction
4.5 Unique problems of perinatal period
4.6. High altitude sickness
4.7 Deep water adaptation
4.8 Heart-Lung-and Kidney
4.9 Acute Lung Injury

4.10 Reconstruction of Life Processes requires both Genomics and Metabolomics to explain Phenotypes and Phylogenetics

 

Chapter 5. Problems of Diets and Lifestyle Changes

5.1 Anorexia nervosa
5.2 Voluntary and Involuntary S-insufficiency
5.3 Diarrheas – bacterial and nonbacterial
5.4 Gluten-free diets
5.5 Diet and cholesterol
5.6 Diet and Type 2 diabetes mellitus
5.7 Diet and exercise
5.8 Anxiety and quality of Life
5.9 Nutritional Supplements

 

Chapter 6. Advances in Genomics, Therapeutics and Pharmacogenomics

6.1 Natural Products Chemistry

6.2 The Challenge of Antimicrobial Resistance

6.3 Viruses, Vaccines and immunotherapy

6.4 Genomics and Metabolomics Advances in Cancer

6.5 Proteomics – Protein Interaction

6.6 Pharmacogenomics

6.7 Biomarker Guided Therapy

6.8 The Emergence of a Pharmaceutical Industry in the 20th Century: Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present

6.09 The Union of Biomarkers and Drug Development

6.10 Proteomics and Biomarker Discovery

6.11 Epigenomics and Companion Diagnostics

 

Chapter  7

Integration of Physiology, Genomics and Pharmacotherapy

7.1 Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

7.2 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

7.3 Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs

7.4 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

7.5 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

7.6 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

7.7 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic drugs and Cholinesterase Inhibitors

7.8 Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

7.9 Preserved vs Reduced Ejection Fraction: Available and Needed Therapies

7.10 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by

7.11 Demonstrate Biosimilarity: New FDA Biosimilar Guidelines

 

Chapter 7.  Biopharma Today

8.1 A Great University engaged in Drug Discovery: University of Pittsburgh

8.2 Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

8.3 Predicting Tumor Response, Progression, and Time to Recurrence

8.4 Targeting Untargetable Proto-Oncogenes

8.5 Innovation: Drug Discovery, Medical Devices and Digital Health

8.6 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

8.7 Nanotechnology and Ocular Drug Delivery: Part I

8.8 Transdermal drug delivery (TDD) system and nanotechnology: Part II

8.9 The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

8.10 Natural Drug Target Discovery and Translational Medicine in Human Microbiome

8.11 From Genomics of Microorganisms to Translational Medicine

8.12 Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Homeostasis of Immune Responses for Good and Bad

 

Chapter 9. BioPharma – Future Trends

9.1 Artificial Intelligence Versus the Scientist: Who Will Win?

9.2 The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy

9.3 The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC

9.4 Heroes in Medical Research: The Postdoctoral Fellow

9.5 NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

9.6 1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

9.7 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

9.8 Heroes in Medical Research: Green Fluorescent Protein and the Rough Road in Science

9.9 Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

9.10 The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research

Epilogue

Read Full Post »

Signaling through the T Cell Receptor (TCR) Complex and the Co-stimulatory Receptor CD28

Curator: Larry H. Bernstein, MD, FCAP

 

 

New connections: T cell actin dynamics

Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems.

RELATED CONTENT

 

Triple-Color FRET Analysis Reveals Conformational Changes in the WIP-WASp Actin-Regulating Complex

 

RELATED CONTENT

T cell activation by antigens involves the formation of a complex, highly dynamic, yet organized signaling complex at the site of the T cell receptors (TCRs). Srikanth et al. found that the lymphocyte-specific large guanosine triphosphatase of the Rab family CRACR2A-a associated with vesicles near the Golgi in unstimulated mouse and human CD4+ T cells. Upon TCR activation, these vesicles moved to the immunological synapse (the contact region between a T cell and an antigen-presenting cell). The guanine nucleotide exchange factor Vav1 at the TCR complex recruited CRACR2A-a to the complex. Without CRACR2A-a, T cell activation was compromised because of defective calcium and kinase signaling.

More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed that CRACR2A (Ca2+ release–activated Ca2+ channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca2+ and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells.

 

Read Full Post »

Consuming Risk Free Food & Beverages

Author: Debashree Chakrabarti, MSc., Biological Sciences, UMass Lowell (Expected May 2016)

Leading researchers and medical health professionals have raised their concern about the over all declining status of health and well being world wide. A rising trend in childhood obesity, cardiovascular diseases, clinical depression syndrome in young adults is reason enough to try and broaden the scope of plausible agents which result in people making bad health decisions.  As a witness to the emerging dietary trends adopted by children and young adults, it is natural to question the ethics of processed food and beverages industry. Does it seem reasonable the 2L bottles of soda cost $2 USD? There are more people claiming to not like water since it is flavorless. 100% fresh juices are subject to scrutiny for their lack of adequate fiber content and excess presence of sugars. Products with high fructose corn syrups, added preservatives in processed meat, ‘read to eat’ meals are agreeably cost effective and saves a lot of time, however the over riding damage is in the long run with deficient immune system and gain of unnatural toxins which the body finds hard to eliminate. Another marketing frenzy is visible in the neutraceuticals range of instant energy drinks, protein shakes and over the counter pills. The focus is towards having the visibly attractive, muscular body regardless of the compromised health. The companies do their bit of limiting the usage by adding a precaution statement and dosage remarks on the product labels. This is however not translated as useful information to the young consumers who do not foresee the detrimental outcomes in advance.

As the prices of insurance packages and medical aid is negotiated, the same effort needs invested in the regulation of consumer dietary products. We do not want a ban on Colas however, we do not also need them to be sold at prices cheaper than water. Fresh fruits and vegetables need not be price tagged astronomically driving population to adopt a risk driven lifestyle. Taking initiatives to promote urban farming and local gardens, reaching out to the people about their choices and how it impacts the global financial predicament is a need of the hour. We are ok with the attitude of “Don’t tell me how to live my life” in a world relying heavily on subsidized medicines. This has to change. Subsidized medicine is a privilege and should be benefited to those responsible. Researchers and big pharma companies are not the only stake holders in this fight against an exponentially growing illness of misinformed decisions. People need to be brought in and educated. This includes strong arming anyone who feels they have a right to abuse their health or the health of the world.

92ab5dd0-9921-4c26-9a7c-cdf20397cb42.jpg

Another paradigm to this discussion is the need for more extensive research hubs world wide and making the accessibility of advanced medicines available to the dense population regions in Asia, Africa and Middle East Arab countries which host the majority of the population and have the least of the resources. We need 100 Massachusetts world wide with cutting edge researchers deep diving and venture capitalists backing them up. A vision for 2050 must encompass every individual being aware of what it takes to damage a human body which is a very robust machine. Eating right and being able to afford health must not be difficult. Choices available in the stores must be rational to the level where the most ignorant of the lot is still consuming risk free substances. Given the fantastic evolutionary armaments we have, it takes a lot to be unwell and yet we seem to making it fairly easy to catch cold. Healthy people translate to healthy economy.

Read Full Post »

7th Annual – CHI’s Inflammation Inhibitors  Small Molecule and Macrocyclic Approaches, April 19-20, 2016, Hilton San Diego Resort and Spa

Inflammation Inhibitors icon

 

Reporter: Aviva Lev-Ari, PhD, RN

 

April 19-20

April 20-21

April 22

Inflammation Inhibitors

Kinase Inhibitor Chemistry

Brain Penetrant Inhibitors

Protein-Protein Interactions

Macrocyclics & Constrained Peptides

Biophysical Approaches

Epigenetic Inhibitor Discovery

Fragment-Based Drug Discovery

Antivirals

For Sponsorship & Exhibit Opportunities please contact Carolyn Benton at 781-972-5412

For more information visit

DrugDiscoveryChemistry.com/Protein-Protein-Interactions

This meeting features medicinal chemistry-focused case studies of small molecule drug candidates that are being tested in preclinical and early-phase clinical trials for inflammation-related conditions. Because the most recent ‘market’ successes for oral, anti-inflammatories have been against the intracellular janus kinases (JAKs), updates on progress of new and 2nd generation intra-cellular kinase inhibitor candidates will be covered. But drug leads directed against non-kinase targets such as nuclear receptors involved in innate immunity, will also be a part of the meeting.

Final Agenda

Day 1 | Day 2 | Download Brochure

Tuesday, April 19

7:00 am Registration and Morning Coffee

 

INHIBITING PRO-INFLAMMATORY PATHWAYS: RORγ AND OTHER TARGETS

8:00 Chairperson’s Opening Remarks

Eric Schwartz, Ph.D., Executive Director, Medicinal Chemistry, Celgene

 

8:10 FEATURED PRESENTATION: Small Molecule Modulators of RORgamma

Robert HughesRobert Hughes, Ph.D., Senior Associate Director, Small Molecule Discovery Research, Boehringer-Ingelheim

RORγt is a nuclear hormone receptor expressed in Th17 cells and distinct subsets of lymphoid cells, including innate lymphoid cells (ILC), and γδ T-cells. RORγt is required for Th17 cell and innate lymphocyte differentiation and regulates the transcription of the effector cytokines genes such as IL17A. We describe our approach, including screening, structure-based design and optimization, which led to the discovery of potent, selective ROR g modulators with favorable ADME properties.

 

8:40 Quinoline Tertiary Alcohols as Modulators of Retinoic Acid Receptor-Related Orphan Receptor gamma t (RORγt)

Hari_VenkatesanHari Venkatesan, Ph.D., Principal Scientist, Discovery Chemistry, Immunology, Janssen Research & Development

Differentiation of naïve T-cells into IL-17 producing Th17 cells is regulated by the nuclear receptor transcription factor retinoic acid receptor-related orphan receptor gt (RORgt). Blocking the production of pro-inflammatory cytokines by RORgt modulation has the potential to be a first-in-class treatment of autoimmune diseases. High-throughput screening identified a promising series of quinoline tertiary alcohols. The subsequent optimization efforts that resulted in the identification of compounds for in vivo profiling will be discussed.

9:10 Sponsored Presentation (Opportunity Available)

9:40 Coffee Break

10:05 Inducing RORgamma-Specific Inverse Agonism Using a Synthetic Benzoxazinone Ligand

Doug_MarcotteDoug Marcotte, Associate Scientist, Physical Biochemistry, Biogen

RORγ regulates transcriptional genes involved in production of pro-inflammatory interleukin IL-17 which is linked to autoimmune diseases. We have discovered a series of synthetic benzoxazinone ligands having either an agonist (BIO592) or inverse agonist (BIO399) mode of action. We demonstrate that upon binding of BIO399 the AF2 helix of RORγ become destabilized. The X-ray structures of RORγ with BIO592 and BIO399 demonstrates how small modifications modulate the mode of action for achieving RORγ-specific inverse agonism.

10:35 Small Molecule Inhibitors of RORgamma and IRAK4 for the Treatment of Autoimmune Disorders

Susanta_SamajdarSusanta Samajdar, Ph.D., Director, Medicinal Chemistry, Aurigene Discovery Technologies Limited

Although biologics such as anti-TNFα antibody are fairly successful in the treatment of autoimmune disorders, there is significant unmet need due to heterogeneity in diseases and lack of response to established therapies in some patients. While biologics typically target one cytokine signaling pathway, small molecule therapeutics directed towards intracellular target(s) can interfere in the signaling from multiple cytokines potentially leading to improved response. Development of small molecule oral inhibitors of IRAK4 and RORgamma to target TLR/IL-R and Th17 pathway respectively will be discussed.

11:05 Structure-Based Design of Macrocyclic IL-17A Antagonists

Shenping_LiuShenping Liu, Ph.D., Associate Research Fellow, Structural Biology and Biophysics, Pfizer Global Research and DevelopmentI

IL-17A is a pro-inflammatory cytokine that has been implicated in many autoimmune and inflammatory diseases. Monoclonal antibodies targeting the IL-17A pathway have shown significant efficacies in treating psoriasis and Psoriatic arthritis in late stage clinical trials, and one of them was approved recently. We are interested in developing small molecule IL-17A antagonists for oral medication. We have determined several IL-17A/antagonists complex structures. These structures enabled us to design macrocyclic IL-17A antagonists with much improved potencies.

11:35 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

12:05 pm Session Break

 

INTRACELLULAR KINASE INHIBITORS FOR INFLAMMATION

1:15 Chairperson’s Remarks

Jennifer Venable, Ph.D., Associate Scientific Director, Medicinal Chemistry, J&J

1:20 Discovery of Potent, Selective, and Non-Covalent BTK Inhibitors for Clinical Development

Wendy_YoungWendy B. Young, Ph.D., Vice President, Discovery Chemistry, Genentech

We developed a series of highly potent, selective, non-covalent Btk inhibitors that are efficacious in several rodent models of RA and lupus. Compounds in this chemical series remain highly active against the C481S Btk mutant identified in patients that have relapsed on Imbruvica®. We describe the SAR, preclinical DMPK and toxicology investigations leading up to the discovery and selection of our lead clinical candidate, GDC-0853. Results from our Phase 1 clinical trials will be shared.

1:50 A Covalent BTK Inhibitor for Inflammation

Eric_SchwartzEric Schwartz, Ph.D., Executive Director, Medicinal Chemistry, Celgene

This presentation will discuss the identification and characterization of a covalent BTK inhibitor with in vitro, in vivo and preliminary toxicity data presented.

 

2:20 BTK and other Case Studies: Fragment Hit Prioritization and Optimization for Immunology Targets

Jason_PickensJason Pickens, Ph.D., Senior Scientist, Medicinal Chemistry, Takeda

As cutting-edge methods for fragment screening evolve into a series of best practices, the question of how to prioritize fragment hit sets to select the “best” fragments for initial chemistry follow-up elicits wide-ranging levels of analysis and opinion among FBDD practitioners. Through select case studies of immunology targets including BTK, this presentation will illuminate some specific strategies employed recently by medicinal chemistry teams at Takeda California in the pursuit of high-quality drug candidates derived from fragment starting points.

2:50 Structure-Activity-Relationships around Lead Series of Selective Jak1 Inhibitors for Inflammation

Michael_VazquezMichael L. Vazquez, Ph.D., Associate Fellow, Medicinal Chemistry, Pfizer, Inc.

Our research efforts have identified a series of potent and selective JAK1 inhibitors. Our lead, PF-04965842, is currently in clinical trials for the treatment of autoimmune diseases. This talk will discuss learnings from our clinical experience with tofacitinib a pan-JAK inhibitor with respect to potency and selectivity, SAR, the preclinical evaluation of our lead, and crystallographic data which has enabled us to build a structural hypothesis for the JAK1 selectivity.

3:20 Sponsored Presentation (Opportunity Available)

3:35 Refreshment Break in the Exhibit Hall with Poster Viewing

 

4:30 PLENARY KEYNOTE PRESENTATION

A New Model for Academic Translational Research

Peter SchultzPeter G. Schultz, Ph.D., Professor, Department of Chemistry, The Scripps Research Institute and Director, California Institute for Biomedical Research

Our research program combines the tools and principles of chemistry with the molecules and processes of living cells to synthesize new molecules and molecular assemblies with novel physical, chemical and biological functions. By studying the structure and function of the resulting molecules, new insights can be gained into the mechanisms of complex biological and chemical systems.

 

5:30 Welcome Reception in the Exhibit Hall with Poster Viewing

6:30 Close of Day

Day 1 | Day 2 | Download Brochure

Wednesday, April 20

7:30 am Continental Breakfast Breakout Discussions

In this session, attendees choose a specific roundtable discussion to join. Each group has a moderator to ensure focused conversations around key issues within the topic. The small group format allows participants to informally meet potential collaborators, share examples from their work and discuss ideas with peers. Check our website in February to see the full listing of breakout topics and moderators.

Topic: Developing Kinase Inhibitors for Chronic Indications

Moderator: Kamal Puri, Ph.D., Senior Principal Scientist, Immunology & Inflammation, Celgene Corp.

  • Utility of kinase selectivity profiling data
  • Safety assessment as an experiment rather than a progression gateway
  • Integrating PK/PD to predict safety margins

Topic: What can medicinal chemists do better to discover safe and effective anti-inflammatory therapeutics?

Moderator: Jennifer Venable, Ph.D., Associate Scientific Director, Medicinal Chemistry, J&J

  • Next generation kinase inhibitors – opportunities and challenges
  • Irreversible versus reversible inhibitors. Will irreversible inhibitors drive a boost in approvals?
  • Phenotypic screening

Topic: Targeting Innate Immunity

Moderator: Robert Hughes, Ph.D., Senior Associate Director, Small Molecule Discovery Research, Boehringer-Ingelheim

  • RORg challenges
  • Promising targets in pathway
  • Downstream development issues
  • Animal models

 

TREATING DISEASE-SPECIFIC INFLAMMATION

8:30 Chairperson’s Remarks

Kamal Puri, Ph.D., Senior Principal Scientist, Immunology & Inflammation, Celgene Corp.

8:35 PTG-100: An Oral Peptide Antagonist of α4β7 Integrin for Ulcerative Colitis

Larry_MattheakisLarry Mattheakis, Ph.D., Senior Director, Biology, Protagonist Therapeutics

PTG-100 is an oral peptide antagonist of the gut homing integrin α4β7. Its potency and selectivity are similar to that of the FDA-approved antibody vedolizumab. PTG-100 was chemically engineered to be orally stable within the harsh proteolytic and reducing environment of the human gastrointestinal tract. In preclinical animal models, PTG-100 exposure is largely restricted to GI tissues, whereby it alters the trafficking of gut homing T cells to reduce local inflammation. Together, these results provide the rational for investigating PTG-100 in human trials, specifically ulcerative colitis.

9:05 ATPase Modulators for Treating Inflammatory Bowel Disease

Alexander_HurdAlexander (Sandy) Hurd, Ph.D., Associate Director of Chemistry, Chemistry, Lycera Corp

Autoimmune diseases occur in part as a result of dysregulation of the natural immune response. Autoimmune disease is characterized by chronic activation of lymphocytes that recognize and attack naturally occurring, endogenous targets. These chronically activated lymphocytes exhibit a distinct bioenergetic profile in comparison to acutely activated immune cells, which provide a target for therapeutic intervention. Lycera is developing modulators of the mitochondrial ATPase to treat autoimmune conditions such as inflammatory bowel disease (IBD). The talk will include a description of the identification and characterization of Lycera’s current lead candidate for treating IBD.

9:35 Coffee Break in the Exhibit Hall with Poster Viewing

10:30 AKB-4924: Targeting Hypoxia Inducible Factor 1 for Therapy of Inflammatory Bowel Disease

Kevin_PetersKevin Peters, M.D., CSO and Senior Vice President, R&D, Aerpio Therapeutics, Inc.

Emerging evidence shows that hypoxia inducible factor 1 (HIF-1) is an important regulator of the immune response. AKB-4924 is a novel small molecule inhibitor of HIF prolylhydroxylases (PHDs), a family of enzymes that promotes HIF degradation. AKB-4924 preferentially stabilizes HIF-1 over HIF-2 and has profound beneficial effects in multiple models of inflammatory bowel disease by either parenteral or oral administration without concomitant increases in erythropoiesis. These data support advancement of AKB-4924 into the clinic.

11:00 CHDI-00340246: A Potent and Selective Kynurenine Monooxygenase Inhibitor as a Potential Therapeutic Agent for the Treatment of Huntington’s Disease

Leticia Toledo-Sherman, Ph.D., Director of Medicinal Chemistry, CHDI Foundation

Deregulation of the kynurenine pathway, has been implicated in the pathophysiology of Huntington’s Disease (HD). This talk will describe CHDI’s medicinal chemistry efforts that lead to the identification of CHDI-00340246, a highly potent and selective KMO inhibitor that has been nominated as clinical candidate for the treatment of HD. We will describe the pharmacokinetic/pharmacodynamics effects of CHDI-00340246 in several species, as well as its biological effects in various disease models.

11:30 Towards Third Generation Antihistamines as Potent Inflammation Inhibitors

iwan_de_EschIwan de Esch, Ph.D., Professor, Medicinal Chemistry, VU University Amsterdam & Griffin Discoveries BV

The histamine receptor consists of four subtype GPCRs. The histamine H1 receptor has been successfully targeted by two generations of blockbuster drugs. With the emerging insights into the role of the other histamine receptor subtypes in the different mechanisms of inflammatory responses, there is now a growing interest in poly-pharmacological approaches. We will disclose how fragment-based approaches and computer-aided drug design have resulted in series of compounds with well defined activity profiles for histamine receptor subtypes. These compounds proof potent anti-inflammatory compounds in various preclinical studies.

12:00 pm Close of Track

April 19-20

April 20-21

April 22

Inflammation Inhibitors

Kinase Inhibitor Chemistry

Brain Penetrant Inhibitors

Protein-Protein Interactions

Macrocyclics & Constrained Peptides

Biophysical Approaches

Epigenetic Inhibitor Discovery

Fragment-Based Drug Discovery

Antivirals

For Sponsorship & Exhibit Opportunities please contact Carolyn Benton at 781-972-5412

For more information visit

DrugDiscoveryChemistry.com/Protein-Protein-Interactions

SOURCE

From: Anjani Shah <pete@healthtech.com>

Date: Wednesday, March 23, 2016 at 10:44 AM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: A First-in-Class Validated Chemical Probe for KEAP1-NRF2 oxidative stress PPI Target

Read Full Post »

Inflammatory Disorders: Articles published @ pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

This is a compilation of articles on Inflammatory Disorders that were published 

@ pharmaceuticalintelligence.com, since 4/2012 to date

There are published works that have not been included.  However, there is a substantial amount of material in the following categories:

  1. The systemic inflammatory response
    http://pharmaceuticalintelligence.com/2014/11/08/introduction-to-impairments-in-pathological-states-endocrine-disorders-stress-hypermetabolism-cancer/

    Summary and Perspectives: Impairments in Pathological States: Endocrine Disorders, Stress Hypermetabolism and Cancer

    Neutrophil Serine Proteases in Disease and Therapeutic Considerations

    What is the key method to harness Inflammation to close the doors for many complex diseases?

    Therapeutic Targets for Diabetes and Related Metabolic Disorders

    A Second Look at the Transthyretin Nutrition Inflammatory Conundrum

    Zebrafish Provide Insights Into Causes and Treatment of Human Diseases

    IBD: Immunomodulatory Effect of Retinoic Acid – IL-23/IL-17A axis correlates with the Nitric Oxide Pathway

    Role of Inflammation in Disease


    http://pharmaceuticalintelligence.com/2013/03/06/can-resolvins-suppress-acute-lung-injury/
    http://pharmaceuticalintelligence.com/2015/02/26/acute-lung-injury/

  2. sepsis
    http://pharmaceuticalintelligence.com/2012/10/20/nitric-oxide-and-sepsis-hemodynamic-collapse-and-the-search-for-therapeutic-options/
  3. vasculitis
    http://pharmaceuticalintelligence.com/2015/02/26/acute-lung-injury/

    The Molecular Biology of Renal Disorders: Nitric Oxide – Part III


    http://pharmaceuticalintelligence.com/2012/11/20/the-potential-for-nitric-oxide-donors-in-renal-function-disorders/

  4. neurodegenerative disease
    http://pharmaceuticalintelligence.com/2013/02/27/ustekinumab-new-drug-therapy-for-cognitive-decline-resulting-from-neuroinflammatory-cytokine-signaling-and-alzheimers-disease/

    Amyloid and Alzheimer’s Disease

    Alzheimer’s Disease – tau art thou, or amyloid

    Beyond tau and amyloid

    Remyelination of axon requires Gli1 inhibition

    Neurovascular pathways to neurodegeneration

    New Alzheimer’s Protein – AICD

    impairment of cognitive function and neurogenesis


    http://pharmaceuticalintelligence.com/2014/05/06/bwh-researchers-genetic-variations-can-influence-immune-cell-function-risk-factors-for-alzheimers-diseasedm-and-ms-later-in-life/

  5. cancer immunology
    http://pharmaceuticalintelligence.com/2013/04/12/innovations-in-tumor-immunology/

    Signaling of Immune Response in Colon Cancer

    Vaccines, Small Peptides, aptamers and Immunotherapy [9]

    Viruses, Vaccines and Immunotherapy

    Gene Expression and Adaptive Immune Resistance Mechanisms in Lymphoma

    The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology


  6. autoimmune diseases: rheumatoid arthritis, colitis, ileitis, …
    http://pharmaceuticalintelligence.com/2016/02/11/intestinal-inflammatory-pharmaceutics/
    http://pharmaceuticalintelligence.com/2016/01/07/two-new-drugs-for-inflammatory-bowel-syndrome-are-giving-patients-hope/
    http://pharmaceuticalintelligence.com/2015/12/16/contribution-to-inflammatory-bowel-disease-ibd-of-bacterial-overgrowth-in-gut-on-a-chip/

    Cytokines in IBD

    Autoimmune Inflammtory Bowel Diseases: Crohn’s Disease & Ulcerative Colitis: Potential Roles for Modulation of Interleukins 17 and 23 Signaling for Therapeutics

    Autoimmune Disease: Single Gene eliminates the Immune protein ISG15 resulting in inability to resolve Inflammation and fight Infections – Discovery @Rockefeller University

    Diarrheas – Bacterial and Nonbacterial

    Intestinal inflammatory pharmaceutics

    Biologics for Autoimmune Diseases – Cambridge Healthtech Institute’s Inaugural, May 5-6, 2014 | Seaport World Trade Center| Boston, MA

    Rheumatoid arthritis update


    http://pharmaceuticalintelligence.com/2013/08/04/the-delicate-connection-ido-indolamine-2-3-dehydrogenase-and-immunology/

    Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Hemeostasis of Immune Responses for Good and Bad

    Tofacitinib, an Oral Janus Kinase Inhibitor, in Active Ulcerative Colitis

    Approach to Controlling Pathogenic Inflammation in Arthritis

    Rheumatoid Arthritis Risk


    http://pharmaceuticalintelligence.com/2012/07/08/the-mechanism-of-action-of-the-drug-acthar-for-systemic-lupus-erythematosus-sle/

  7. T cells in immunity
    http://pharmaceuticalintelligence.com/2015/09/07/t-cell-mediated-immune-responses-signaling-pathways-activated-by-tlrs/

    Allogeneic Stem Cell Transplantation [9.3]

    Graft-versus-Host Disease

    Autoimmune Disease: Single Gene eliminates the Immune protein ISG15 resulting in inability to resolve Inflammation and fight Infections – Discovery @Rockefeller University

    Immunity and Host Defense – A Bibliography of Research @Technion

    The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

    Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Hemeostasis of Immune Responses for Good and Bad


    http://pharmaceuticalintelligence.com/2013/04/14/immune-regulation-news/

Proteomics, metabolomics and diabetes

http://pharmaceuticalintelligence.com/2015/11/16/reducing-obesity-related-inflammation/

http://pharmaceuticalintelligence.com/2015/10/25/the-relationship-of-stress-hypermetabolism-to-essential-protein-needs/

http://pharmaceuticalintelligence.com/2015/10/24/the-relationship-of-s-amino-acids-to-marasmic-and-kwashiorkor-pem/

http://pharmaceuticalintelligence.com/2015/10/24/the-significant-burden-of-childhood-malnutrition-and-stunting/

http://pharmaceuticalintelligence.com/2015/04/14/protein-binding-protein-protein-interactions-therapeutic-implications-7-3/

http://pharmaceuticalintelligence.com/2015/03/07/transthyretin-and-the-stressful-condition/

http://pharmaceuticalintelligence.com/2015/02/13/neural-activity-regulating-endocrine-response/

http://pharmaceuticalintelligence.com/2015/01/31/proteomics/

http://pharmaceuticalintelligence.com/2015/01/17/proteins-an-evolutionary-record-of-diversity-and-adaptation/

http://pharmaceuticalintelligence.com/2014/11/01/summary-of-signaling-and-signaling-pathways/

http://pharmaceuticalintelligence.com/2014/10/31/complex-models-of-signaling-therapeutic-implications/

http://pharmaceuticalintelligence.com/2014/10/24/diabetes-mellitus/

http://pharmaceuticalintelligence.com/2014/10/16/metabolomics-summary-and-perspective/

http://pharmaceuticalintelligence.com/2014/10/14/metabolic-reactions-need-just-enough/

http://pharmaceuticalintelligence.com/2014/11/03/introduction-to-protein-synthesis-and-degradation/

http://pharmaceuticalintelligence.com/2015/09/25/proceedings-of-the-nyas/

http://pharmaceuticalintelligence.com/2014/10/31/complex-models-of-signaling-therapeutic-implications/

http://pharmaceuticalintelligence.com/2014/03/21/what-is-the-key-method-to-harness-inflammation-to-close-the-doors-for-many-complex-diseases/

http://pharmaceuticalintelligence.com/2013/03/05/irf-1-deficiency-skews-the-differentiation-of-dendritic-cells/

http://pharmaceuticalintelligence.com/2012/11/26/new-insights-on-no-donors/

http://pharmaceuticalintelligence.com/2012/11/20/the-potential-for-nitric-oxide-donors-in-renal-function-disorders/

 

 

 

Read Full Post »

Cytokines in IBD

Curators: Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Revised 2/14/2016

 

The following presentation explores the application of antisense oligonucleotide agents that modulate the activity of Il17 and Il23 signaling activity in the cell.

IL 17 & 23

United States Patent 9,238,042
Schnell ,   et al. January 19, 2016

Antisense modulation of interleukins 17 and 23 signaling
Provided are antisense oligonucleotides and other agents that target and modulate IL-17 and/or IL-23 signaling activity in a cell, compositions that comprise the same, and methods of use thereof. Also provided are animal models for identifying agents that modulate 17 and/or IL-23 signaling activity.

Abes et al., “Arginine-rich cell penetrating peptides: Design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides,” J Pept Sci 14: 455-460, 2008. cited by applicant .
Abes et al., “Delivery of steric block morpholino oligomers by (R-X-R).sub.4 peptides: structure-activity studies,” Nucleic Acids Research 36(20): 6343-6354, Sep. 16, 2008. cited by applicant .
Abes et al., “Vectorization of morpholino oligomers by the (R-Ahx-R).sub.4 peptide allows efficient splicing correction in the absence of endosomolytic agents,” Journal of Controlled Release 116: 304-313, 2006. cited by applicant .
Lebleu et al., “Cell penetrating peptide conjugates of steric block oligonucleotides,” Advanced Drug Delivery Reviews 60: 517-529, 2008. cited by applicant .
Marshall et al., “Arginine-rich cell-penetrating peptides facilitate delivery of antisense oligomers into murine leukocytes and alter pre-mRNA splicing,” Journal of Immunological Methods 325: 114-126, 2007. cited by applicant .
Moulton et al., “Cellular Uptake of Antisense Morpholino Oligomers Conjugated to Arginine-Rich Peptides,” Bioconjugate Chem 15: 290-299, 2004. cited by applicant .
Summerton et al., “Morpholino Antisense Oligomers: Design, Preparation, and Properties,” Antisense & Nucleic Acid Drug Development 7: 187-195, 1997. cited by applicant .
Wright et al., “The Human IL-17F/IL-17A Heterodimeric Cytokine Signals through the IL-17RA/IL-17RC Receptor Complex,” The Journal of Immunology 181: 2799-2805, 2008. cited by applicant .

 

Immunity. 2015 Oct 20;43(4):739-50. doi: 10.1016/j.immuni.2015.08.019. Epub 2015 Sep 29.

Differential Roles for Interleukin-23 and Interleukin-17 in Intestinal Immunoregulation.

Maxwell JR1Zhang Y1Brown WA1Smith CL1Byrne FR2Fiorino M2Stevens E3Bigler J4Davis JA5Rottman JB6Budelsky AL1Symons A1Towne JE7.

 

Interleukin-23 (IL-23) and IL-17 are cytokines currently being targeted in clinical trials. Although inhibition of both of these cytokines is effective for treating psoriasis, IL-12 and IL-23 p40 inhibition attenuates Crohn’s disease, whereas IL-17A or IL-17 receptor A (IL-17RA) inhibition exacerbates Crohn’s disease. This dichotomy between IL-23 and IL-17 was effectively modeled in the multidrug resistance-1a-ablated (Abcb1a(-/-)) mouse model of colitis. IL-23 inhibition attenuated disease by decreasing colonic inflammation while enhancing regulatory T (Treg) cell accumulation. Exacerbation of colitis by IL-17A or IL-17RA inhibition was associated with severe weakening of the intestinal epithelial barrier, culminating in increased colonic inflammation and accelerated mortality. These data show that IL-17A acts on intestinal epithelium to promote barrier function and provide insight into mechanisms underlying exacerbation of Crohn’s disease when IL-17A or IL-17RA is inhibited.

 

Immunity. 2015 Oct 20;43(4):727-38. doi: 10.1016/j.immuni.2015.09.003. Epub 2015 Sep 29.

Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability.

Lee JS1Tato CM1Joyce-Shaikh B1Gulan F2Cayatte C1Chen Y1Blumenschein WM1Judo M1Ayanoglu G1McClanahan TK1Li X2Cua DJ3.

Whether interleukin-17A (IL-17A) has pathogenic and/or protective roles in the gut mucosa is controversial and few studies have analyzed specific cell populations for protective functions within the inflamed colonic tissue. Here we have provided evidence for IL-17A-dependent regulation of the tight junction protein occludin during epithelial injury that limits excessive permeability and maintains barrier integrity. Analysis of epithelial cells showed that in the absence of signaling via the IL-17 receptor adaptor protein Act-1, the protective effect of IL-17A was abrogated and inflammation was enhanced. We have demonstrated that after acute intestinal injury, IL-23R(+) γδ T cells in the colonic lamina propria were the primary producers of early, gut-protective IL-17A, and this production of IL-17A was IL-23 independent, leaving protective IL-17 intact in the absence of IL-23. These results suggest that IL-17-producing γδ T cells are important for the maintenance and protection of epithelial barriers in the intestinal mucosa.

 

Gastroenterology. 2008 Apr;134(4):1038-48. doi: 10.1053/j.gastro.2008.01.041. Epub 2008 Jan 17.

Regulation of gut inflammation and th17 cell response by interleukin-21.

Fina D1Sarra MFantini MCRizzo ACaruso RCaprioli FStolfi CCardolini IDottori MBoirivant MPallone FMacdonald TT,Monteleone G.

Interleukin (IL)-21, a T-cell-derived cytokine, is overproduced in inflammatory bowel diseases (IBD), but its role in the pathogenesis of gut inflammation remains unknown. We here examined whether IL-21 is necessary for the initiation and progress of experimental colitis and whether it regulates specific pathways of inflammation.

Both dextran sulfate sodium colitis and trinitrobenzene sulfonic acid-relapsing colitis were induced in wild-type and IL-21-deficient mice. CD4(+)CD25(-) T cells from wild-type and IL-21-deficient mice were differentiated in T helper cell (Th)17-polarizing conditions, with or without IL-21 or an antagonistic IL-21R/Fc. We also examined whether blockade of IL-21 by anti-IL-21 antibody reduced IL-17 in cultures of IBD lamina propria CD3(+) T lymphocytes. Cytokines were evaluated by real-time polymerase chain reaction and/or enzyme-linked immunosorbent assay.

High IL-21 was seen in wild-type mice with dextran sulfate sodium- and trinitrobenzene sulfonic acid-relapsing colitis. IL-21-deficient mice were largely protected against both colitides and were unable to up-regulate Th17-associated molecules during gut inflammation, thus suggesting a role for IL-21 in controlling Th17 cell responses. Indeed, naïve T cells from IL-21-deficient mice failed to differentiate into Th17 cells. Treatment of developing Th17 cells from wild-type mice with IL-21R/Fc reduced IL-17 production. Moreover, in the presence of transforming growth factor-beta1, exogenous IL-21 substituted for IL-6 in driving IL-17 induction. Neutralization of IL-21 reduced IL-17 secretion by IBD lamina propria lymphocytes.

These results indicate that IL-21 is a critical regulator of inflammation and Th17 cell responses in the gut.

 

Neurochem Res. 2010 Jun;35(6):940-6. doi: 10.1007/s11064-009-0091-9. Epub 2009 Nov 14.

Synergy of IL-23 and Th17 cytokines: new light on inflammatory bowel disease.

Shen W1Durum SK.

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, involve an interplay between host genetics and environmental factors including intestinal microbiota. Animal models of IBD have indicated that chronic inflammation can result from over-production of inflammatory responses or deficiencies in key negative regulatory pathways. Recent research advances in both T-helper 1 (Th1) and T-helper 17 (Th17) effect responses have offered new insights on the induction and regulation of mucosal immunity which is linked to the development of IBD. Th17 cytokines, such as IL-17 and IL-22, in combination with IL-23, play crucial roles in intestinal protection and homeostasis. IL-23 is expressed in gut mucosa and tends to orchestrate T-cell-independent pathways of intestinal inflammation as well as T cell dependent pathways mediated by cytokines produced by Th1 and Th17 cells. Th17 cells, generally found to be proinflammatory, have specific functions in host defense against infection by recruiting neutrophils and macrophages to infected tissues. Here we will review emerging data on those cytokines and their related regulatory networks that appear to govern the complex development of chronic intestinal inflammation; we will focus on how IL-23 and Th17 cytokines act coordinately to influence the balance between tolerance and immunity in the intestine.

 

Eur J Immunol. 2007 Oct;37(10):2680-2.

IL-23 and IL-17 have a multi-faceted largely negative role in fungal infection.

Cooper AM1.

The role of IL-23 and IL-17 in the response to fungal infection has been the focus of recent reports. In this issue of the European Journal of Immunology there is an article that reports an important role for IL-23 and IL-17 in limiting fungal control, promoting neutrophillic inflammation and regulating the killing activity of neutrophils. In the fungal model it appears that IL-23 and IL-17 are counter-productive for protection.

 

IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases

MWL TengEP BowmanJJ McElwee,…, AM Cooper & DJ Cua
Nature Med July 2016; 21(7):719–729
http://www.nature.com/nm/journal/v21/n7/full/nm.3895.html

The cytokine interleukin-12 (IL-12) was thought to have a central role in T cell–mediated responses in inflammation for more than a decade after it was first identified. Discovery of the cytokine IL-23, which shares a common p40 subunit with IL-12, prompted efforts to clarify the relative contribution of these two cytokines in immune regulation. Ustekinumab, a therapeutic agent targeting both cytokines, was recently approved to treat psoriasis and psoriatic arthritis, and related agents are in clinical testing for a variety of inflammatory disorders. Here we discuss the therapeutic rationale for targeting these cytokines, the unintended consequences for host defense and tumor surveillance and potential ways in which these therapies can be applied to treat additional immune disorders.

IL-12 and IL-23 are produced by inflammatory myeloid cells and influence the development of TH1 cell and IL-17–producing T helper (TH17) cell responses, respectively. The rationale for developing IL-12 antagonists was prompted by observations that mice deficient in IL-12p40 are resistant to experimentally induced autoimmune conditions, including paralysis induction after immunization with brain-derived antigens, arthritis inflammation after immunization with a joint antigen, ocular disease after immunization with a retinal antigen and multiple gut disease models. This suggested that IL-12 could be an effective therapeutic target1, 2, 3, 4, 5. Studies of neutralizing antibodies to IL-12p40 in multiple mouse strains seemed to confirm the importance of therapeutically targeting IL-12 to decrease immune pathology6, 7. However, mice deficient in the other IL-12 subunit, IL-12p35, showed no protection or showed exacerbated disease in some models1, 2. Following the recognition, in 2000, that IL-12 and IL-23 share the IL-12p40 subunit but only IL-23 uses the p19 subunit8, it was determined that mice deficient in IL-23 but not IL-12 are resistant to experimental immune-mediated disease1, 2, 3, 4, 5. By 2000, the first anti–IL-12p40 therapy targeting IL-12—subsequently recognized to target IL-23 as well—was under evaluation in patients with Crohn’s disease9. Currently, at least 10 therapeutic agents targeting IL-12, IL-23 or IL-17A are being tested in the clinic for more than 17 immune-mediated diseases (Table 1). Here we discuss the preclinical and clinical data validating these therapeutic strategies and the potential consequences of targeting these immune pathways.

Figure 1: Schematic representation of IL-12 and IL-23, and their receptors and downstream signaling pathways

Schematic representation of IL-12 and IL-23, and their receptors and downstream signaling pathways.

IL-12 is made up of the IL-12/23p40 and IL-12p35 subunits, and IL-23 comprises IL-23p19 and IL-12/23p40. IL-12 signals through the IL-12Rβ1 and IL-12Rβ2 subunits, and IL-23 signals through IL-12Rβ1 and IL-23R. IL-12 stimulation of JAK2…

Figure 4: Schematic representation of the mechanisms by which IL-23 indirectly or directly promotes tumorigenesis, growth and metastasis.

 

Schematic representation of the mechanisms by which IL-23 indirectly or directly promotes tumorigenesis, growth and metastasis.

IL-23 is produced by myeloid cells in response to exogenous or endogenous signals such as damage-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs) or tumor-secreted factors such as prostaglandin E2 (PGE2). IL-23 can act directly on tumor cells to promote their transformation, proliferation and/or metastasis. In mice, IL-23R is expressed on several innate and adaptive immune cell types, which are found in various proportions in tumors. Stimulation of IL-23R on these immune cells leads to production of cytokines such as IL-17 and/or IL-22, which can have direct proliferative effects on stromal or tumor cells. IL-17 and/or IL-22 also elicit a range of factors from various hematopoietic and nonhematopoietic cells, which can have direct effects on tumor proliferation and metastasis or induce the production of additional inflammatory cytokines, chemokines and mediators such as IL-6, IL-8, matrix metallopeptidases (MMPs) and vascular endothelial growth factor (VEGF), all of which can contribute to the generation of a tumor microenvironment in which CD8 and NK cell effector functions are suppressed. DC, dendritic cell; Mφ, macrophage.

IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases

Michele W L TengEdward P Bowman,…., & Daniel J Cua

Nature Medicine 21, 719–729 (2015) doi:10.1038/nm.3895

Familial genetic studies, large-scale genome-wide association studies (GWAS) and next-generation sequencing approaches have highlighted therapeutic indications where IL-23 may contribute to inflammatory disease risk. For example, a psoriasis GWAS reported a protective association for the single-nucleotide polymorphism (SNP) rs11209026 (c.1142G>A; p.Arg381Gln) residing in the IL-23R protein-coding sequence with a modest odds ratio (OR) of 0.67 (P = 7 × 10−7)25. A GWAS in ileal Crohn’s disease also showed an association with rs11209026 (ref. 26), with the minor glutamine variant protective for Crohn’s disease risk with an OR of 0.26–0.45. The protective association of this variant (and other SNPs in linkage disequilibrium with it) in Crohn’s disease was also shown in ulcerative colitis27, 28, 29, 30, 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41. The largest meta-analysis of all inflammatory bowel disease GWAS to date (~40,000 cases and ~40,000 controls) indicates that carriage of the glutamine variant gives a modest reduction for disease risk (OR = 0.43, P = 8 × 10−161) (ref. 36). The rs11209026 allele is also associated with protection from ankylosing spondylitis42, 43, psoriatic arthritis44, 45, 46, 47 and graft-versus-host disease48, 49, 50, 51. Notably, this IL-23R variant has not been reliably associated with other common inflammatory diseases such as rheumatoid arthritis, type 1 diabetes or multiple sclerosis in GWAS powered to detect protective effects similar to those seen in Crohn’s disease and psoriasis52, 53, 54. Although these GWAS findings are compelling, it is important to keep in mind the limitations of such studies; these common loci tend to additively explain only a small proportion of the narrow-sense heritability of disease risk55.

Treatment of inflammatory disease with any immunosuppressive agent carries the theoretical risk of impaired host defense responses to pathogens and/or decreased tumor surveillance. Emerging data from human loss-of-function variants and mouse preclinical studies have informed the relative risks of targeting IL-12 and/or IL-23.

The theoretical risk of compromised immunity are of particular concern owing to immune defects discovered in patients with autosomal recessive deficiencies in IL-12/23p40 and IL-12Rβ1 (refs.105,106,107) (Fig. 3). Both deficiencies are genetic etiologies of Mendelian susceptibility to mycobacterial disease (MSMD) (genes involved in MSMD are listed at http://www.biobase-international.com), a rare condition in otherwise healthy patients who have a selective infection predisposition to weakly virulent mycobacteria such as Bacillus Calmette-Guerin (BCG) vaccines, nontuberculous environmental mycobacteria and virulent Mycobacterium tuberculosis (OMIM209950)108, 109, 110, 111, 112, 113. Half of patients with MSMD also have nontyphoidal and, to a lesser extent, typhoidal Salmonella infection.

Owing to the roles of IL-12 and/or IL-23 in host defense and tumor surveillance, particular attention has been focused on infectious disease–related adverse events after anti–IL-12/23p40 treatment in humans. Meta-analysis of briakinumab’s phase 2, phase 3 and open-label extension (OLE) psoriasis databases in 2010 identified 14 cases of candidiasis (including mucocutaneous esophageal and oral candidiasis); no reports of mycobacteria or Salmonella were noted. With regard to the roles of IL-12 and/or IL-23 in tumorigenesis, malignancies were observed at a rate of 1.7 events per 100 patient years (PY), and were cancers commonly seen in the general population.

Concluding remarks

Clinical testing of IL-23 and IL-17A inhibitors have confirmed the initial hypotheses that IL-23–TH17 pathways are indispensable in promoting immune-mediated diseases, and agents targeting these pathways work particularly well in specific disease settings. However, it is not clear why IL-17A and IL-17RA antagonists work well for psoriasis but exacerbate Crohn’s disease95, 96. It appears that different classes of inhibitor targeting IL-23 and IL-17 pathways may have unique nonoverlapping attributes in different clinical settings. Investigators are still learning where the overlap occurs and what the differences are between targeting IL-23 and targeting other related pathway cytokines. For example, mouse innate lymphoid cells constitutively produce gut protective IL-17A and IL-22 in an IL-23–independent manner. The constitutive IL-17A and IL-22 expression levels generated in response to commensal gut organisms seem to be crucial for maintenance of epithelial barrier function185 and tight junction formation (D.J.C., unpublished observation). However, high levels of IL-17A and IL-22 induced by IL-23 can be pathogenic during tissue injury responses in the presence of additional inflammatory cytokines such as IL-1, IL-6, GM-CSF and TNF. Therefore, targeting IL-23 via anti–IL-23p19 will partially suppress IL-17A and reduce inflammation, whereas anti–IL-17A therapy will neutralize all protective IL-17A.

The immune system’s function is to maintain balance in the face of insult from external pathogens and accumulation of genetic errors leading to cancer. Disruption of this balance toward immune-exuberance can lead to autoimmunity and immunopathology after infection, whereas inadequate immunity can allow pathogen evasion and breakdown in tumor surveillance. The common thread that connects autoimmunity, infection and cancer is inflammation, and the drivers of inflammation are intercellular messengers that enable cross-talk between immune cells and surrounding stromal tissues. We have underscored the importance of innate cell-produced IL-12 and IL-23 as intermediaries that act on T cells and NK cells to promote inflammation and highlighted that IL-12 and IL-23 have overlapping cellular immune functions. Whereas IL-12 is important in driving STAT1- and STAT4-mediated immune surveillance against specific intracellular pathogens and immunity against neoplasm, IL-23 promotes STAT3-dependent antifungal immunity and drives ‘sterile’ wound-healing responses in psoriatic lesions, which have a gene signature similar to that of many autoinflammatory conditions186, 187. Strikingly, this signature of uncontrolled wound-healing response is also observed in many cancers188. Although there is insufficient clinical data to determine the long-term safety of IL-23 inhibitors, preclinical models suggest that IL-23 paradoxically promotes tumorigenesis by enhancing skin and mucosal tissue inflammation associated with immune evasion mechanisms.

As the roles of IL-12 and IL-23 were elucidated in preclinical models, there was concern that inhibiting these factors could lead to profound immune suppression. Is it better to target factors capable of regulating a broad range of immune function and may leave patients unprotected against pathogens and cancers or to aim for a restricted pathway that may have limited efficacy for treatment of immune disorders? Although the efficacy and safety profiles of IL-12/23p40, IL-23p19 and IL-17A and IL-17RA therapies become clearer with each clinical trial, the decisions to progress these targets were made many years in advance, on the basis of limited data. Animal studies are important for elucidating the cellular and molecular mechanisms, but clinical testing is required to determine whether a specific disease mechanism also operates in humans. Immunological research is at an inflection point, where the basic concepts of molecular and cellular immunology are being translated into effective therapies for diseases that were considered intractable only a few years ago. Despite the challenges, efforts to translate basic disease mechanisms to the clinic are finally paying off. Although much work remains to be done, the fundamental question of which immune target will benefit which patient population is now being clarified. We optimistically await the answers that will change the lives of patients with serious immune-mediate conditions.

 

Cytokines in Crohn’s colitis.

Sher ME1D’Angelo AJStein TABailey BBurns GWise L.
Am J Surg. 1995 Jan; 169(1):133-6.

Increasing evidence points to a pathologic role for cytokines in Crohn’s colitis. Levels of cytokines are increased in diseased segments of colon in Crohn’s colitis, but no one has studied the concentration of cytokines in clinically and histologically nondiseased segments.

Mucosal biopsies were obtained from 7 patients with active segmental Crohn’s colitis and from 7 controls without inflammatory bowel disease. The concentration of Interleukin (IL)-1 beta, IL-2, IL-6, and IL-8 in patients and controls were determined using enzyme linked immunosorbent assay and compared. Histologic sections were also performed to confirm diseased and nondiseased segments of colon.

The concentrations of IL-1 beta, IL-6, and IL-8 were significantly higher in the involved segments of colon (10.3 +/- 4.1, 3.7 +/- 1.0, 34.4 +/- 6.9 picograms [pg] per mg) when compared to controls (1.8 +/- 0.5, 1.1 +/- 0.5, 5.3 +/- 1.0 pg/mg). The concentrations of IL-1 beta, IL-2, and IL-8 (8.5 +/- 2.9, 5.3 +/- 1.2, 26.3 +/- 8.8 pg/mg) in normal appearing segments of colon of patients with Crohn’s colitis were also significantly higher than in controls, whose IL-2 level was 2.0 +/- 0.5 pg/mg. IL-1 beta and IL-8 were significantly more concentrated in both the involved and uninvolved colonic segments of patients with Crohn’s colitis compared to controls. IL-2 and IL-6 were also more concentrated in Crohn’s patients than in controls, but not significantly. The differences in interleukin concentrations between involved and uninvolved segments of colon in patients with segmental Crohn’s colitis were not significant.

Although Crohn’s colitis is often a segmental disease, concentrations of IL-1 beta and IL-8 are increased throughout the entire colon. These observations reinforce the hypothesis that Crohn’s colitis involves the whole colon even when this is not apparent clinically or histologically.

 

Clin Exp Immunol. 2000 May;120(2):241-6.

Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by inflamed mucosa in inflammatory bowel disease.

Louis E1Ribbens CGodon AFranchimont DDe Groote DHardy NBoniver JBelaiche JMalaise M.

Inflammatory bowel diseases (IBD) are characterized by a sustained inflammatory cascade that gives rise to the release of mediators capable of degrading and modifying bowel wall structure. Our aims were (i) to measure the production of matrix metalloproteinase-3 (MMP-3), and its tissue inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), by inflamed and uninflamed colonic mucosa in IBD, and (ii) to correlate their production with that of proinflammatory cytokines and the anti-inflammatory cytokine, IL-10. Thirty-eight patients with IBD, including 25 with Crohn’s disease and 13 with ulcerative colitis, were included. Ten controls were also studied. Biopsies were taken from inflamed and uninflamed regions and inflammation was graded both macroscopically and histologically. Organ cultures were performed for 18 h. Tumour necrosis factor-alpha (TNF-alpha), IL-6, IL-1beta, IL-10, MMP-3 and TIMP-1 concentrations were measured using specific immunoassays. The production of both MMP-3 and the TIMP-1 were either undetectable or below the sensitivity of our immunoassay in the vast majority of uninflamed samples either from controls or from those with Crohn’s disease or ulcerative colitis. In inflamed mucosa, the production of these mediators increased significantly both in Crohn’s disease (P < 0.01 and 0.001, respectively) and ulcerative colitis (P < 0.001 and 0.001, respectively). Mediator production in both cases was significantly correlated with the production of proinflammatory cytokines and IL-10, as well as with the degree of macroscopic and microscopic inflammation. Inflamed mucosa of both Crohn’s disease and ulcerative colitis show increased production of both MMP-3 and its tissue inhibitor, which correlates very well with production of IL-1beta, IL-6, TNF-alpha and IL-10.

 

Gut. 1997 Apr;40(4):475-80.

In vitro effects of oxpentifylline on inflammatory cytokine release in patients with inflammatory bowel disease.

Reimund JM1Dumont SMuller CDKenney JSKedinger MBaumann RPoindron PDuclos B.

Inflammatory cytokines, including tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 beta, have been implicated as primary mediators of intestinal inflammation in inflammatory bowel disease.

To investigate the in vitro effects of oxpentifylline (pentoxifylline; PTX; a phosphodiesterase inhibitor) on inflammatory cytokine production (1) by peripheral mononuclear cells (PBMCs) and (2) by inflamed intestinal mucosa cultures from patients with Crohn’s disease and patients with ulcerative colitis.

PBMCs and mucosal biopsy specimens were cultured for 24 hours in the absence or presence of PTX (up to 100 micrograms/ml), and the secretion of TNF-alpha, IL-1 beta, IL-6, and IL-8 determined by enzyme linked immunosorbent assays (ELISAs).

PTX inhibited the release of TNF-alpha by PBMCs from patients with inflammatory bowel disease and the secretion of TNF-alpha and IL-1 beta by organ cultures of inflamed mucosa from the same patients. Secretion of TNF-alpha by PBMCs was inhibited by about 50% at a PTX concentration of 25 micrograms/ml (IC50). PTX was equally potent in cultures from controls, patients with Crohn’s disease, and those with ulcerative colitis. The concentrations of IL-6 and IL-8 were not significantly modified in PBMCs, but IL-6 increased slightly in organ culture supernatants.

PTX or more potent related compounds may represent a new family of cytokine inhibitors, potentially interesting for treatment of inflammatory bowel disease.

 

Inflamm Bowel Dis. 2015 May;21(5):973-84. doi: 10.1097/MIB.0000000000000353.

Neutralizing IL-23 is superior to blocking IL-17 in suppressing intestinal inflammation in a spontaneous murine colitis model.

Wang R1Hasnain SZTong HDas IChe-Hao Chen AOancea IProctor MFlorin THEri RDMcGuckin MA.

IL-23/T(H)17 inflammatory responses are regarded as central to the pathogenesis of inflammatory bowel disease, but clinically IL-17A antibodies have shown low efficacy and increased infections in Crohn’s disease. Hence, we decided to closely examine the role of the IL-23/T(H)17 axis in 3 models of colitis.

IL-17A(-/-) and IL-17Ra(-/-) T cells were transferred into Rag1 and RaW mice to assess the role of IL-17A-IL-17Ra signaling in T cells during colitis. In Winnie mice with spontaneous colitis due to an epithelial defect, we studied the progression of colitis in the absence of IL-17A and the efficacy of neutralizing antibodies against the IL-17A or IL-23p19 cytokines.

In transfer colitis models, IL-17A-deficient T cells failed to ameliorate disease, and IL-17Ra-deficient T cells were more colitogenic than wild-type T cells. In Winnie mice with an epithelial defect and spontaneous T(H)17-dominated inflammation, genetic deficiency of IL-17A did not suppress initiation of colitis but limited colitis progression. Furthermore, inhibition of IL-17A by monoclonal antibodies did not reduce colitis severity. In contrast, neutralizing IL-23 using an anti-p19 antibody significantly alleviated both emerging and established colitis, downregulating T(H)17 proinflammatory cytokine expression and diminishing neutrophil infiltration.

Our results support clinical studies showing that IL-17 neutralization is not therapeutic but that targeting IL-23 suppresses intestinal inflammation. Effects of IL-23 distinct from its effects on maturation of IL-17A-producing lymphocytes may underlie the protection from inflammatory bowel disease conveyed by hypomorphic IL-23 receptor polymorphisms and contribute to the efficacy of IL-23 neutralizing antibodies in inflammatory bowel disease.

  1. Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 205, 799810 (2008).
  2. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 13101316 (2006).
  3. Uhlig, H.H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309318 (2006).

 

IL-17A signaling in colonic epithelial cells inhibits pro-inflammatory cytokine production by enhancing the activity of ERK and PI3K.

Guo X1Jiang X2Xiao Y3Zhou T2Guo Y4Wang R2Zhao Z2Xiao H2Hou C2Ma L3Lin Y2Lang X2Feng J2Chen G2Shen B2Han G2Li Y2.
PLoS One. 2014 Feb 25;9(2):e89714. doi: 10.1371/journal.pone.0089714. eCollection 2014.

Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs) increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-α-induced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn’s Disease (CD) led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD.

 

J Immunol. 2008 Aug 15;181(4):2799-805.

The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex.

Wright JF1Bennett FLi BBrooks JLuxenberg DPWhitters MJTomkinson KNFitz LJWolfman NMCollins MDunussi-Joannopoulos KChatterjee-Kishore MCarreno BM.

IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.

 

Am J Surg. 1995 Jan;169(1):133-6.

Cytokines in Crohn’s colitis.

Sher ME1D’Angelo AJStein TABailey BBurns GWise L.

Increasing evidence points to a pathologic role for cytokines in Crohn’s colitis. Levels of cytokines are increased in diseased segments of colon in Crohn’s colitis, but no one has studied the concentration of cytokines in clinically and histologically nondiseased segments.

Mucosal biopsies were obtained from 7 patients with active segmental Crohn’s colitis and from 7 controls without inflammatory bowel disease. The concentration of Interleukin (IL)-1 beta, IL-2, IL-6, and IL-8 in patients and controls were determined using enzyme linked immunosorbent assay and compared. Histologic sections were also performed to confirm diseased and nondiseased segments of colon.

The concentrations of IL-1 beta, IL-6, and IL-8 were significantly higher in the involved segments of colon (10.3 +/- 4.1, 3.7 +/- 1.0, 34.4 +/- 6.9 picograms [pg] per mg) when compared to controls (1.8 +/- 0.5, 1.1 +/- 0.5, 5.3 +/- 1.0 pg/mg). The concentrations of IL-1 beta, IL-2, and IL-8 (8.5 +/- 2.9, 5.3 +/- 1.2, 26.3 +/- 8.8 pg/mg) in normal appearing segments of colon of patients with Crohn’s colitis were also significantly higher than in controls, whose IL-2 level was 2.0 +/- 0.5 pg/mg. IL-1 beta and IL-8 were significantly more concentrated in both the involved and uninvolved colonic segments of patients with Crohn’s colitis compared to controls. IL-2 and IL-6 were also more concentrated in Crohn’s patients than in controls, but not significantly. The differences in interleukin concentrations between involved and uninvolved segments of colon in patients with segmental Crohn’s colitis were not significant.

Although Crohn’s colitis is often a segmental disease, concentrations of IL-1 beta and IL-8 are increased throughout the entire colon. These observations reinforce the hypothesis that Crohn’s colitis involves the whole colon even when this is not apparent clinically or histologically.

 

Protein Pept Lett. 2015;22(7):570-8.

An Overview of Interleukin-17A and Interleukin-17 Receptor A Structure, Interaction and Signaling.

Krstic JObradovic HKukolj TMojsilovic SOkic-Dordevic IBugarski DSantibanez JF1.

Interleukin-17A (IL-17A) and its receptor (IL-17RA) are prototype members of IL-17 ligand/receptor family firstly identified in CD4+ T cells, which comprises six ligands (IL-17A to IL- 17F) and five receptors (IL-17RA to IL-17RE). IL-17A is predominantly secreted by T helper 17 (Th17) cells, and plays important roles in the development of autoimmune and inflammatory diseases. IL-17RA is widely expressed, and forms a complex with IL-17RC. Binding of IL-17A to this receptor complex triggers the activation of several intracellular signaling pathways. In this review, we aimed to summarize literature data about molecular features of IL-17A and IL-17RA from gene to mature protein. We are also providing insight into regulatory mechanisms, protein structural conformation, including ligand-receptor interaction, and an overview of signaling pathways. Our aim was to compile the data on molecular characteristics of IL-17A and IL-17RA which may help in the understanding of their functions in health and disease.

 

Gut. 2014 Dec;63(12):1902-12. doi: 10.1136/gutjnl-2013-305632. Epub 2014 Feb 17.

Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn’s disease.

Honzawa Y1Nakase H1Shiokawa M1Yoshino T1Imaeda H2Matsuura M1Kodama Y1Ikeuchi H3Andoh A2Sakai Y4Nagata K5Chiba T1.

Intestinal fibrosis is a clinically important issue in Crohn’s disease (CD). Heat shock protein (HSP) 47 is a collagen-specific molecular chaperone involved in fibrotic diseases. The molecular mechanisms of HSP47 induction in intestinal fibrosis related to CD, however, remain unclear. Here we investigated the role of interleukin (IL)-17A-induced HSP47 expression in intestinal fibrosis in CD.

Expressions of HSP47 and IL-17A in the intestinal tissues of patients with IBD were determined. HSP47 and collagen I expressions were assessed in intestinal subepithelial myofibroblasts (ISEMFs) isolated from patients with IBD and CCD-18Co cells treated with IL-17A. We examined the role of HSP47 in IL-17A-induced collagen I expression by administration of short hairpin RNA (shRNA) to HSP47 and investigated signalling pathways of IL-17A-induced HSP47 expression using specific inhibitors in CCD-18Co cells.

Gene expressions of HSP47 and IL-17A were significantly elevated in the intestinal tissues of patients with active CD. Immunohistochemistry revealed HSP47 was expressed in α-smooth muscle actin (α-SMA)-positive cells and the number of HSP47-positive cells was significantly increased in the intestinal tissues of patients with active CD. IL-17A enhanced HSP47 and collagen I expressions in ISEMFs and CCD-18Co cells. Knockdown of HSP47 in these cells resulted in the inhibition of IL-17A-induced collagen I expression, and analysis of IL-17A signalling pathways revealed the involvement of c-Jun N-terminal kinase in IL-17A-induced HSP47 expression.

IL-17A-induced HSP47 expression is involved in collagen I expression in ISEMFs, which might contribute to intestinal fibrosis in CD.

 

 

Biochem Biophys Res Commun. 2011 Jan 14;404(2):599-604. doi: 10.1016/j.bbrc.2010.12.006. Epub 2010 Dec 6.

Role of heat shock protein 47 in intestinal fibrosis of experimental colitis.

Kitamura H1Yamamoto SNakase HMatsuura MHonzawa YMatsumura KTakeda YUza NNagata KChiba T.

Intestinal fibrosis is a clinically important issue of inflammatory bowel disease (IBD). It is unclear whether or not heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, plays a critical role in intestinal fibrosis. The aim of this study is to investigate the role of HSP47 in intestinal fibrosis of murine colitis.

HSP47 expression and localization were evaluated in interleukin-10 knockout (IL-10KO) and wild-type (WT, C57BL/6) mice by immunohistochemistry. Expression of HSP47 and transforming growth factor-β1 (TGF-β1) in colonic tissue was measured. In vitro studies were conducted in NIH/3T3 cells and primary culture of myofibroblasts separated from colonic tissue of IL-10KO (PMF KO) and WT mice (PMF WT) with stimulation of several cytokines. We evaluated the inhibitory effect of administration of small interfering RNA (siRNA) targeting HSP47 on intestinal fibrosis in IL-10KO mice in vivo.

Immunohistochemistry revealed HSP47 positive cells were observed in the mesenchymal and submucosal area of both WT and IL-10 KO mice. Gene expressions of HSP47 and TGF-β1 were significantly higher in IL-10KO mice than in WT mice and correlated with the severity of inflammation. In vitro experiments with NIH3T3 cells, TGF-β1 only induced HSP47 gene expression. There was a significant difference of HSP47 gene expression between PMF KO and PMF WT. Administration of siRNA targeting HSP47 remarkably reduced collagen deposition in colonic tissue of IL-10KO mice.

Our results indicate that HSP47 plays an essential role in intestinal fibrosis of IL-10KO mice, and may be a potential target for intestinal fibrosis associated with IBD.

 

Kidney Int. 2003 Sep;64(3):887-96.

Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats.

Nishino T1Miyazaki MAbe KFurusu AMishima YHarada TOzono YKoji TKohno S.

Peritoneal fibrosis is a serious complication in patients on continuous ambulatory peritoneal dialysis (CAPD), but the molecular mechanism of this process remains unclear. Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for biosynthesis and secretion of collagen molecules, and is expressed in the tissue of human peritoneal fibrosis. In the present study, we examined the effect of HSP47 antisense oligonucleotides (ODNs) on the development of experimental peritoneal fibrosis induced by daily intraperitoneal injections of chlorhexidine gluconate (CG).

HSP47 antisense or sense ODNs were injected simultaneously with CG from day 14, after injections of CG alone. Peritoneal tissue was dissected out 28 days after CG injection. The expression patterns of HSP47, type I and type III collagen, alpha-smooth muscle actin (alpha-SMA), as a marker of myofibroblasts, ED-1 (as a marker of macrophages), and factor VIII were examined by immunohistochemistry.

In rats treated with CG alone, the submesothelial collagenous compact zone was thickened, where the expression levels of HSP47, type I and type III collagen and alpha-SMA were increased. Marked macrophage infiltration was also noted and the number of vessels positively stained for factor VIII increased in the CG-treated group. Treatment with antisense ODNs, but not sense ODNs, abrogated CG-induced changes in the expression of HSP47, type I and III collagen, alpha-SMA, and the number of infiltrating macrophages and vessels.

Our results indicate the involvement of HSP47 in the progression of peritoneal fibrosis and that inhibition of HSP47 expression might merit further clinical investigation for the treatment of peritoneal fibrosis in CAPD patients.

 

Trends Mol Med. 2007 Feb;13(2):45-53. Epub 2006 Dec 13.

The collagen-specific molecular chaperone HSP47: is there a role in fibrosis?

Taguchi T1Razzaque MS.

Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that is required for molecular maturation of various types of collagens. Recent studies have shown a close association between increased expression of HSP47 and excessive accumulation of collagens in scar tissues of various human and experimental fibrotic diseases. It is presumed that the increased levels of HSP47 in fibrotic diseases assist in excessive assembly and intracellular processing of procollagen molecules and, thereby, contribute to the formation of fibrotic lesions. Studies have also shown that suppression of HSP47 expression can reduce accumulation of collagens to delay the progression of fibrotic diseases in experimental animal models. Because HSP47 is a specific chaperone for collagen synthesis, it provides a selective target to manipulate collagen production, a phenomenon that might have enormous clinical impact in controlling a wide range of fibrotic diseases. Here, we outline the fibrogenic role of HSP47 and discuss the potential usefulness of HSP47 as an anti-fibrotic therapeutic target.

 

Arthritis Rheum. 2013 May;65(5):1347-56. doi: 10.1002/art.37860.

Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement.

Truchetet ME1Brembilla NCMontanari ELonati PRaschi EZeni SFontao LMeroni PLChizzolini C.

Levels of interleukin-17A (IL-17A) have been found to be increased in synovial fluid from individuals with systemic sclerosis (SSc). This study was undertaken to investigate whether IL-17A-producing cells are present in affected SSc skin, and whether IL-17A exerts a role in the transdifferentiation of myofibroblasts.

Skin biopsy samples were obtained from the involved skin of 8 SSc patients and from 8 healthy control donors undergoing plastic surgery. Immunohistochemistry and multicolor immunofluorescence techniques were used to identify and quantify the cell subsets in vivo, including IL-17A+, IL-4+, CD3+, tryptase-positive, α-smooth muscle actin (α-SMA)-positive, myeloperoxidase-positive, and CD1a+ cells. Dermal fibroblast cell lines were generated from all skin biopsy samples, and quantitative polymerase chain reaction, Western blotting, and solid-phase assays were used to quantify α-SMA, type I collagen, and matrix metalloproteinase 1 (MMP-1) production by the cultured fibroblasts.

IL-17A+ cells were significantly more numerous in SSc skin than in healthy control skin (P = 0.0019) and were observed to be present in both the superficial and deep dermis. Involvement of both T cells and tryptase-positive mast cells in the production of IL-17A was observed. Fibroblasts positive for α-SMA were found adjacent to IL-17A+ cells, but not IL-4+ cells. However, IL-17A did not induce α-SMA expression in cultured fibroblasts. In the presence of IL-17A, the α-SMA expression induced in response to transforming growth factor β was decreased, while MMP-1 production was directly enhanced. Furthermore, the frequency of IL-17A+ cells was higher in the skin of SSc patients with greater severity of skin fibrosis (lower global skin thickness score).

IL-17A+ cells belonging to the innate and adaptive immune system are numerous in SSc skin. IL-17A participates in inflammation while exerting an inhibitory activity on myofibroblast transdifferentiation. These findings are consistent with the notion that IL-17A has a direct negative-regulatory role in the development of dermal fibrosis in humans.

 

Gut. 2014 Dec;63(12):1902-12. doi: 10.1136/gutjnl-2013-305632. Epub 2014 Feb 17.

Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn’s disease.

Honzawa Y1Nakase H1Shiokawa M1Yoshino T1Imaeda H2Matsuura M1Kodama Y1Ikeuchi H3Andoh A2Sakai Y4Nagata K5Chiba T1.

Intestinal fibrosis is a clinically important issue in Crohn’s disease (CD). Heat shock protein (HSP) 47 is a collagen-specific molecular chaperone involved in fibrotic diseases. The molecular mechanisms of HSP47 induction in intestinal fibrosis related to CD, however, remain unclear. Here we investigated the role of interleukin (IL)-17A-induced HSP47 expression in intestinal fibrosis in CD.

Expressions of HSP47 and IL-17A in the intestinal tissues of patients with IBD were determined. HSP47 and collagen I expressions were assessed in intestinal subepithelial myofibroblasts (ISEMFs) isolated from patients with IBD and CCD-18Co cells treated with IL-17A. We examined the role of HSP47 in IL-17A-induced collagen I expression by administration of short hairpin RNA (shRNA) to HSP47 and investigated signalling pathways of IL-17A-induced HSP47 expression using specific inhibitors in CCD-18Co cells.

Gene expressions of HSP47 and IL-17A were significantly elevated in the intestinal tissues of patients with active CD. Immunohistochemistry revealed HSP47 was expressed in α-smooth muscle actin (α-SMA)-positive cells and the number of HSP47-positive cells was significantly increased in the intestinal tissues of patients with active CD. IL-17A enhanced HSP47 and collagen I expressions in ISEMFs and CCD-18Co cells. Knockdown of HSP47 in these cells resulted in the inhibition of IL-17A-induced collagen I expression, and analysis of IL-17A signalling pathways revealed the involvement of c-Jun N-terminal kinase in IL-17A-induced HSP47 expression.

IL-17A-induced HSP47 expression is involved in collagen I expression in ISEMFs, which might contribute to intestinal fibrosis in CD.

 

Kidney Int. 2003 Sep;64(3):887-96.

Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats.

Nishino T1Miyazaki MAbe KFurusu AMishima YHarada TOzono YKoji TKohno S.

Peritoneal fibrosis is a serious complication in patients on continuous ambulatory peritoneal dialysis (CAPD), but the molecular mechanism of this process remains unclear. Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for biosynthesis and secretion of collagen molecules, and is expressed in the tissue of human peritoneal fibrosis. In the present study, we examined the effect of HSP47 antisense oligonucleotides (ODNs) on the development of experimental peritoneal fibrosis induced by daily intraperitoneal injections of chlorhexidine gluconate (CG).

HSP47 antisense or sense ODNs were injected simultaneously with CG from day 14, after injections of CG alone. Peritoneal tissue was dissected out 28 days after CG injection. The expression patterns of HSP47, type I and type III collagen, alpha-smooth muscle actin (alpha-SMA), as a marker of myofibroblasts, ED-1 (as a marker of macrophages), and factor VIII were examined by immunohistochemistry.

In rats treated with CG alone, the submesothelial collagenous compact zone was thickened, where the expression levels of HSP47, type I and type III collagen and alpha-SMA were increased. Marked macrophage infiltration was also noted and the number of vessels positively stained for factor VIII increased in the CG-treated group. Treatment with antisense ODNs, but not sense ODNs, abrogated CG-induced changes in the expression of HSP47, type I and III collagen, alpha-SMA, and the number of infiltrating macrophages and vessels.

Our results indicate the involvement of HSP47 in the progression of peritoneal fibrosis and that inhibition of HSP47 expression might merit further clinical investigation for the treatment of peritoneal fibrosis in CAPD patients.

 

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2007 Aug;32(4):650-5.

[Effect of heat shock protein 47 on the expression of collagen I induced by TGF-beta(1) in hepatic stellate cell-T6 cells].

[Article in Chinese]

Li Y1Wu WJiang YFWang KK.

To determine the effect of heat shock protein 47 (HSP47) on the expression of collagen I induced by transforming growth factor beta(1) (TGF-beta(1)) in hepatic stellate cell-T6 (HSC-T6) cells.

We used 1 ng/mL and 10 ng/mL recombinant human TGF-beta(1) to stimulate the cultured HSC-T6 cells. Heat shock response (HSR) and antisense oligonucleotides of HSP47 were used to induce and block the expression of HSP47, respectively. The expressions of HSP47 and collagen I were detected by Western blot and the cell viability was observed by MTT assay.

Both HSP47 and collagen I were expressed in normal HSC-T6 cells. Collagen I and HSP47 expression could be induced by both 1 ng/mL and 10 ng/mL TGF-beta(1) and collagen I was expressed the most after the treatment with 10 ng/mL TGF-beta(1). Although HSR could not affect the synthesis of collagen I as it induced the HSP47 expression, HSR could promote the expression of collagen I induced by TGF-beta(1). With no effect on the cell viability, antisense oligonucleotides could significantly inhibit HSR-mediated HSP47 expression and TGF-beta(1)-induced collagen I synthesis.

Over-expression of HSP47 enhances TGF-beta(1)-induced expression of collagen I in HSC-T6 cells, and HSP47 may play important roles in the process of hepatic fibrosis

 

Fibrogenesis Tissue Repair. 2013 Jul 8;6(1):13. doi: 10.1186/1755-1536-6-13.

The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis.

Biancheri P1Pender SLAmmoscato FGiuffrida PSampietro GArdizzone SGhanbari ACurciarello RPasini AMonteleone G,Corazza GRMacdonald TTDi Sabatino A.

Interleukin (IL)-17A and IL-17E (also known as IL-25) have been implicated in fibrosis in various tissues. However, the role of these cytokines in the development of intestinal strictures in Crohn’s disease (CD) has not been explored. We investigated the levels of IL-17A and IL-17E and their receptors in CD strictured and non-strictured gut, and the effects of IL-17A and IL-17E on CD myofibroblasts.

IL-17A was significantly overexpressed in strictured compared with non-strictured CD tissues, whereas no significant difference was found in the expression of IL-17E or IL-17A and IL-17E receptors (IL-17RC and IL-17RB, respectively) in strictured and non-strictured CD areas. Strictured CD explants released significantly higher amounts of IL-17A than non-strictured explants, whereas no difference was found as for IL-17E, IL-6, or tumor necrosis factor-α production. IL-17A, but not IL-17E, significantly inhibited myofibroblast migration, and also significantly upregulated matrix metalloproteinase (MMP)-3, MMP-12, tissue inhibitor of metalloproteinase-1 and collagen production by myofibroblasts from strictured CD tissues.

Our results suggest that IL-17A, but not IL-17E, is pro-fibrotic in CD. Further studies are needed to clarify whether the therapeutic blockade of IL-17A through the anti-IL-17A monoclonal antibody secukinumab is able to counteract the fibrogenic process in CD.

 

Int J Colorectal Dis. 2013 Jul;28(7):915-24. doi: 10.1007/s00384-012-1632-2. Epub 2012 Dec 28.

Role of N-acetylcysteine and GSH redox system on total and active MMP-2 in intestinal myofibroblasts of Crohn’s disease patients.

Romagnoli C1Marcucci TPicariello LTonelli FVincenzini MTIantomasi T.

Intestinal subepithelial myofibroblasts (ISEMFs)(1) are the predominant source of matrix metalloproteinase-2 (MMP-2) in gut, and a decrease in glutathione/oxidized glutathione (GSH/GSSG) ratio, intracellular redox state index, occurs in the ISEMFs of patients with Crohn’s disease (CD). The aim of this study is to demonstrate a relationship between MMP-2 secretion and activation and changes of GSH/GSSG ratio in ISEMFs stimulated or not with tumor necrosis factor alpha (TNFα).

ISEMFs were isolated from ill and healthy colon mucosa of patients with active CD. Buthionine sulfoximine, GSH synthesis inhibitor, and N-acetylcysteine (NAC), precursor of GSH synthesis, were used to modulate GSH/GSSG ratio. GSH and GSSG were measured by HPLC and MMP-2 by ELISA Kit.

In cells, stimulated or not with TNFα, a significant increase in MMP-2 secretion and activation, related to increased oxidative stress, due to low GSH/GSSG ratio, was detected. NAC treatment, increasing this ratio, reduced MMP-2 secretion and exhibited a direct effect on the secreted MMP-2 activity. In NAC-treated and TNFα-stimulated ISEMFs of CD patients’ MMP-2 activity were restored to physiological value. The involvement of c-Jun N-terminal kinase pathway on redox regulation of MMP-2 secretion has been demonstrated.

For the first time, in CD patient ISEMFs, a redox regulation of MMP-2 secretion and activation related to GSH/GSSG ratio and inflammatory state have been demonstrated. This study suggests that compounds able to maintain GSH/GSSG ratio to physiological values can be useful to restore normal MMP-2 levels reducing in CD patient intestine the dysfunction of epithelial barrier.

 

BMC Pulm Med. 2012 Jun 13;12:24. doi: 10.1186/1471-2466-12-24.

Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells.

Hisatomi K1Mukae HSakamoto NIshimatsu YKakugawa THara SFujita HNakamichi SOku HUrata YKubota HNagata K,Kohno S.

Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro.

The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining.

TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1.

We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

 

 

 

Read Full Post »

Intestinal inflammatory pharmaceutics

Curator: Larry H. Bernstein, MD, FCAP

AbbVie Invests in Synthetic Microbes for Treatment of Intestinal Disorders

Aaron Krol    http://www.bio-itworld.com/2016/2/10/abbvie-invests-synthetic-microbes-treatment-intestinal-disorders.html

2.1.2.6

Intestinal Inflammatory Pharmaceutics, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

February 10, 2016 | This morning, AbbVie announced a partnership with Synlogic of Cambridge, Mass., to create microbiome-based therapies for the treatment of inflammatory bowel disease (IBD). The two companies have sketched out a suggested three-year timeline for preclinical research and development, after which AbbVie will take over advancing any drug candidates into clinical trials.

Drugs inspired by the microbes that live in the human gut are a hot topic in biotech. Companies like Seres Health and Vedanta Biosciences are pursuing the idea from a variety of angles, from making traditional small molecule drugs that interact with the microbiome, to creating probiotics or microbial cocktails that restore a healthy balance to the gut ecosystem. IBD, including Crohn’s disease and ulcerative colitis, is an especially popular target for these companies, thanks to strong suggestions that bacterial populations can affect the course of the disease. Already, Second Genome and Coronado Biosciences have taken prospective treatments into the clinic (though the latter has been dealt serious setbacks in Phase II trials).

But even among this peculiar batch of startups, Synlogic’s approach to drug design is exquisitely odd. The company calls its products “synthetic biotics”―in fact, they’re genetically engineered bacteria whose DNA contains intricately designed “gene circuits,” built to start producing therapeutic molecules when and only when the patient needs them.

“We are not looking at correcting the dysregulation of microbes in the gut, like other microbiome companies,” CEO José-Carlos Gutiérrez-Ramos tells Bio-IT World. “We have one bacterium, and it’s engineered to do different functions.”

Synlogic was founded in 2013 by two synthetic biologists at MIT, Timothy Lu and Jim Collins. (Bio-IT World has previously spoken with Lu about his academic work on bacterial gene circuits.) Gutiérrez-Ramos joined almost two years later, leaving a position as the head of Pfizer’s BioTherapeutics R&D group, where he had plenty of opportunity to turn emerging biotechnology ideas into drug candidates ready for submission to the FDA.

Still, synthetic biotics are a good deal more unusual than the biologic drugs he worked on at Pfizer.

His new company doesn’t quite spin functions for its microbes out of whole cloth. All the genes the company uses are copied either from the human genome, or from the bacteria living inside us. But by recombining those genes into circuits, Gutiérrez-Ramos believes Synlogic can finely control whether and when genes are expressed, giving its synthetic biotics the same dosage control as a traditional drug. Meanwhile, choosing the right bacterium to engineer―the current favorite is a strain called E. coli Nissle―ensures the biotics do not form stable colonies in the gut, but can be cleared out as soon as a patient stops treatment.

“We’re pharma guys,” he says. “What we want is to have pharmacologically well-defined products.”

The Molecular Circuit Board

Even before the partnership with AbbVie, Synlogic had a pipeline of drug candidates in development, all meant to treat rare genetic disorders caused by single mutations that shut down the activity of a crucial gene. In principle, there seems to be no reason that bacteria carrying the right genes couldn’t pick up the slack. “We know the patient is missing a function that is typically performed by the liver, or the kidney, or the pancreas,” says Gutiérrez-Ramos. “What we do is shift that function from an organ to a stable fraction of the microbiome.”

The approach is in some ways analogous to gene therapy, where a corrected version of a broken gene is inserted into a patient’s own DNA. “We don’t use that word, but the fact is it’s a non-somatic gene therapy,” Gutiérrez-Ramos says. “And if something goes wrong, you can control it just by stopping treatment.” The most advanced synthetic biotic in Synlogic’s pipeline targets urea cycle disorder, exactly the sort of disease that might otherwise be addressed by gene therapy: patients are missing a single enzyme that helps remove nitrogen from the body and prevent it from forming ammonia in the bloodstream. Synlogic will meet with the FDA this March to discuss whether and how this first product can be tested in humans.

Gutierrez Ramos

The new IBD program with AbbVie, however, adds a whole new level of complexity. Executives from the two companies have been in discussions for around six months, and both agree that no single mechanism will be enough to provide significant relief for patients. Crohn’s and ulcerative colitis are painful autoimmune diseases that involve both a weakening of the epithelial lining in the stomach, and a buildup of inflammatory molecules. The development plan that AbbVie and Synlogic have agreed on includes three separate methods of attack to relieve these symptoms.

“One approach AbbVie is very interested in is for our synthetic biotics to produce substances that could tighten the epithelial barrier,” says Gutiérrez-Ramos. “Another approach is to degrade pro-inflammatory molecules”―the same tack taken by AbbVie’s current leading IBD drug, Humira, which targets the inflammatory protein TNFα. “Finally, we can produce anti-inflammatory molecules.”

Uniquely, synthetic biotics can perform all three functions at once; it’s just a matter of inserting the right genes. But that alone might not be a decisive advantage over some sort of combination therapy. The biggest selling point of Synlogic’s microbes is not the genes they can be engineered to express―what you might call the “output” of their gene circuits―but the input, the DNA elements called “inducible promoters” that decide when those genes should be activated.

The core idea is that patients will have a constant population of synthetic biotics in their bodies, taken daily―but those microbes will only generate their therapeutic payloads when needed. In IBD, Gutiérrez-Ramos explains, “it’s not that the patient is always inflamed, but they have flares. Our vision, and AbbVie’s vision, is that the bacteria that you take every day sense when the flare is coming, and then trigger the genetic output.”

This would be a major improvement over a drug like Humira, which after all is constantly inhibiting a part of the immune system. Patients taking Humira, or one of the many other immunosuppressant drugs for IBD, are at a constantly heightened risk of infection; tuberculosis is a particular specter for these patients. If Synlogic can find a genetic “on-switch” that responds to a reliable indicator of IBD flares, it could potentially create a much more precisely administered treatment, while still giving patients the simple dosing schedule of one pill every day.

The company has leads on two inducible promoters that might do the trick: one that reacts to nitric oxide, and another tied to reactive oxygen species. Of course, there’s no guarantee that either will respond sensitively to IBD flares in a real clinical setting. “This is an early time for the technology,” says Gutiérrez-Ramos. “We have demonstrated this in animals, but we have to demonstrate it in humans.”

Although it’s far too early to say if synthetic biotics will become an ordinary part of the pharma toolkit, AbbVie’s decision to invest in the technology offers the means to test this approach on a large scale. Synlogic expects to raise its own funding for trials of its rare disease products, which the FDA does not expect to enroll huge numbers of patients, but IBD is a problem of a very different order.

“We are very honored to work with truly the leader in treatment of inflammatory bowel disease,” says Gutiérrez-Ramos. With the backing of big pharma, it will be possible to trial microbiome-based therapies for the kinds of common, chronic diseases that are the biggest drain on our healthcare system. What’s more, the AbbVie partnership is an important signal of the industry’s faith in synthetic biology as an approach to treating disease.

Read Full Post »

IBD: Immunomodulatory Effect of Retinoic Acid – IL-23/IL-17A axis correlates with the Nitric Oxide Pathway

Curators: Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

SOURCE

http://www.ncbi.nlm.nih.gov/pubmed/23472658

The Voice of Dr. Larry:

The correlation is significantly higher in patients with active CD. (which I would expect)

The all-trans retinoic acid piece for downregulation is quite interesting.  My work for all these years with Yves Ingenbleek on TTR also has an important relationship to AtRA.  

The transthyretin travels in the circulation as a 4 molecules of TTR carrying TH with one molecule of RBP carrying one molecule retinol.  There is a nuclear binding site for synthesis of retinoic acid and vitamin D released into the circulation, and a retinoic acid binding site when the retinol is released to the cell binding site.

When there is an acute inflammatory reaction, there is a concordant decrease of hepatic synthesis of TTR and of RBP, and other proteins, such as albumin, with the preferential increase of cytokines that are seen in the cytokine storm.   If the inflammatory reaction persists, then the effect is consequential.  The decrease in TTR is associated with a decrease in the bound RBP, which is lost in the urine, leading to a decreased transport of retinoic acid.  If this persists, there is a persistent catabolic state with breakdown of lean body mass. This is very much like an accelerated protein energy malnutrition state.  The breakdown of LBM is linearly related to TTR in plasma.  There is also an effect on S-adenosyl methionine, and a reactive increase in the homocysteine.  In long term veganism – there is elevated risk of AMI (the S/N ratio in vegetables is half that in meat.  The largest example of this is in septicemia.

In the paper attached, retinoic acid suppresses the effect of IL17, IL23 and IL6.  This is an anti-inflammatory role because of the relationship of liver suppression of TTR, RBP and so called negative-APPs.  Whether the retinoic acid would restore hepatic synthetic activity and an anabolic state is the question.

On Mon, Jan 25, 2016 at 5:48 PM, Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu> wrote:

J Interferon Cytokine Res. 2013 Jul;33(7):355-68. doi: 10.1089/jir.2012.0063. Epub 2013 Mar 8.

IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid.

Rafa H1Saoula HBelkhelfa MMedjeber OSoufli IToumi Rde Launoit YMoralès ONakmouche M,Delhem NTouil-Boukoffa C.

Author information

Abstract

Inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of the gastrointestinal tract, which are clinically present as 1 of the 2 disorders, Crohn’s disease (CD) or ulcerative colitis (UC) (Rogler 2004). The immune dysregulation in the intestine plays a critical role in the pathogenesis of IBD, involving a wide range of molecules, including cytokines. The aim of this work was to study the involvement of T-helper 17 (Th17) subset in the bowel disease pathogenesis by the nitric oxide (NO) pathway in Algerian patients with IBD. We investigated the correlation between the proinflammatory cytokines [(interleukin (IL)-17, IL-23, and IL-6] and NO production in 2 groups of patients. We analyzed the expression of messenger RNAs (mRNAs) encoding Th17 cytokines, cytokine receptors, and NO synthase 2 (NOS2) in plasma of the patients. In the same way, the expression of p-signal transducer and activator of transcription 3 (STAT3) and NOS2 was measured by immunofluorescence and immunohistochemistry. We also studied NO modulation by proinflammatory cytokines (IL-17A, IL-6, tumor necrosis factor α, or IL-1β) in the presence or absence of all-trans retinoic acid (At RA) in peripheral blood mononuclear cells (PBMCs), monocytes, and in colonic mucosa cultures. Analysis of cytokines, cytokine receptors, and NOS2 transcripts revealed that the levels of mRNA transcripts of the indicated genes are elevated in all IBD groups. Our study shows a significant positive correlation between the NO and IL-17A, IL-23, and IL-6 levels in plasma of the patients with IBD. Interestingly, the correlation is significantly higher in patients with active CD. Our study shows that both p-STAT3 and inducible NOS expression was upregulated in PBMCs and colonic mucosa, especially in patients with active CD. At RA downregulates NO production in the presence of proinflammatory cytokines for the 2 groups of patients. Collectively, our study indicates that the IL-23/IL-17A axis plays a pivotal role in IBD pathogenesis through the NO pathway.

PMID: 23472658

[PubMed – indexed for MEDLINE]

 

SOURCE

http://www.ncbi.nlm.nih.gov/pubmed/23472658

 

Read Full Post »

Collagen-binding Molecular Chaperone HSP47: Role in Intestinal Fibrosis – colonic epithelial cells and subepithelial myofibroblasts

 

Curators: Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

 

Biochem Biophys Res Commun. 2015 Jan 16;456(3):707-13. doi: 10.1016/j.bbrc.2014.12.051. Epub 2014 Dec 16.

De novo design based pharmacophore query generation and virtual screening for the discovery of Hsp-47 inhibitors.

Katarkar A1, Haldar PK2, Chaudhuri K3.

Abstract

Heat shock protein-47 (Hsp-47) is exclusive collagen specific molecular chaperone involved in the maturation, processing and secretion of procollagen. Hsp-47 is consistently upregulated in several fibrotic diseases. Till date there is no potential antifibrotic small molecule drug available and Hsp-47 is known to be potential therapeutic target for fibrotic disorder and drug designing. We used the de novo drug design approach followed by pharmacophore generation and virtual screening to propose Hsp-47 based antifibrotic molecules. We used e-LEAD server for de novo drug design and ZINCPharmer for 3D pharmacophore generation and virtual screening. The virtually screened molecule may inhibit direct recruitment of collagen triple helix to interact with Hsp-47 and act as antifibrotic drug.

Copyright © 2014 Elsevier Inc. All rights reserved.

KEYWORDS:

De novo drug designing; Heat shock protein 47; Pharmacophore; Virtual screening

PMID:
25522881
[PubMed – indexed for MEDLINE]

SOURCE

http://www.ncbi.nlm.nih.gov/pubmed/25522881

 

REFERENCES

1.

Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn’s disease.

Honzawa Y, Nakase H, Shiokawa M, Yoshino T, Imaeda H, Matsuura M, Kodama Y, Ikeuchi H, Andoh A, Sakai Y, Nagata K, Chiba T.

Gut. 2014 Dec;63(12):1902-12. doi: 10.1136/gutjnl-2013-305632. Epub 2014 Feb 17.

PMID: 24534724 [PubMed – indexed for MEDLINE]

Similar articles

2.

Role of heat shock protein 47 in intestinal fibrosis of experimental colitis.

Kitamura H, Yamamoto S, Nakase H, Matsuura M, Honzawa Y, Matsumura K, Takeda Y, Uza N, Nagata K, Chiba T.

Biochem Biophys Res Commun. 2011 Jan 14;404(2):599-604. doi: 10.1016/j.bbrc.2010.12.006. Epub 2010 Dec 6.

PMID: 21144841 [PubMed – indexed for MEDLINE]

Similar articles

3.

Interstitial expression of heat shock protein 47 and alpha-smooth muscle actin in renal allograft failure.

Abe K, Ozono Y, Miyazaki M, Koji T, Shioshita K, Furusu A, Tsukasaki S, Matsuya F, Hosokawa N, Harada T, Taguchi T, Nagata K, Kohno S.

Nephrol Dial Transplant. 2000 Apr;15(4):529-35.

PMID: 10727549 [PubMed – indexed for MEDLINE] Free Article

Similar articles

4.

Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats.

Nishino T, Miyazaki M, Abe K, Furusu A, Mishima Y, Harada T, Ozono Y, Koji T, Kohno S.

Kidney Int. 2003 Sep;64(3):887-96.

PMID: 12911538 [PubMed – indexed for MEDLINE]

Similar articles

5.

Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice.

Huang JQ, Tao R, Li L, Ma K, Xu L, Ai G, Fan XX, Jiao YT, Ning Q.

Int J Parasitol. 2014 Jan;44(1):23-35. doi: 10.1016/j.ijpara.2013.08.009. Epub 2013 Dec 1.

PMID: 24295791 [PubMed – indexed for MEDLINE]

Similar articles

6.

The collagen-specific molecular chaperone HSP47: is there a role in fibrosis?

Taguchi T, Razzaque MS.

Trends Mol Med. 2007 Feb;13(2):45-53. Epub 2006 Dec 13.

PMID: 17169614 [PubMed – indexed for MEDLINE]

Similar articles

7.

Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement.

Truchetet ME, Brembilla NC, Montanari E, Lonati P, Raschi E, Zeni S, Fontao L, Meroni PL, Chizzolini C.

Arthritis Rheum. 2013 May;65(5):1347-56. doi: 10.1002/art.37860.

PMID: 23335253 [PubMed – indexed for MEDLINE] Free Article

Similar articles

8.

[Effect of heat shock protein 47 on the expression of collagen I induced by TGF-beta(1) in hepatic stellate cell-T6 cells].

Li Y, Wu W, Jiang YF, Wang KK.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2007 Aug;32(4):650-5. Chinese.

PMID: 17767059 [PubMed – indexed for MEDLINE] Free Article

Similar articles

23.

Tumor budding, myofibroblast proliferation, and fibrosis in obstructing colon carcinoma: the roles of Hsp47 and basic fibroblast growth factor.

Xu CJ, Mikami T, Nakamura T, Tsuruta T, Nakada N, Yanagisawa N, Jiang SX, Okayasu I.

Pathol Res Pract. 2013 Feb 15;209(2):69-74. doi: 10.1016/j.prp.2012.10.008. Epub 2012 Dec 21.

PMID: 23265436 [PubMed – indexed for MEDLINE]

Similar articles

24.

The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease.

Sugihara T, Kobori A, Imaeda H, Tsujikawa T, Amagase K, Takeuchi K, Fujiyama Y, Andoh A.

Clin Exp Immunol. 2010 Jun;160(3):386-93. doi: 10.1111/j.1365-2249.2010.04093.x. Epub 2010 Jan 19.

PMID: 20089077 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

25.

Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells.

Chen JJ, Zhao S, Cen Y, Liu XX, Yu R, Wu DM.

Br J Dermatol. 2007 Jun;156(6):1188-95.

PMID: 17535221 [PubMed – indexed for MEDLINE]

Similar articles

26.

Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD.

Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jürgens M, Schmechel S, Konrad A, Göke B, Ochsenkühn T, Müller-Myhsok B, Lohse P, Brand S.

Inflamm Bowel Dis. 2008 Apr;14(4):437-45.

PMID: 18088064 [PubMed – indexed for MEDLINE]

Similar articles

27.

Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1.

Sasaki H, Sato T, Yamauchi N, Okamoto T, Kobayashi D, Iyama S, Kato J, Matsunaga T, Takimoto R, Takayama T, Kogawa K, Watanabe N, Niitsu Y.

J Immunol. 2002 May 15;168(10):5178-83.

PMID: 11994473 [PubMed – indexed for MEDLINE] Free Article

Similar articles

28.

Increased activation of latent TGF-β1 by αVβ3 in human Crohn’s disease and fibrosis in TNBS colitis can be prevented by cilengitide.

Li C, Flynn RS, Grider JR, Murthy KS, Kellum JM, Akbari H, Kuemmerle JF.

Inflamm Bowel Dis. 2013 Dec;19(13):2829-39. doi: 10.1097/MIB.0b013e3182a8452e.

PMID: 24051933 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

29.

Distinct profiles of effector cytokines mark the different phases of Crohn’s disease.

Zorzi F, Monteleone I, Sarra M, Calabrese E, Marafini I, Cretella M, Sedda S, Biancone L, Pallone F, Monteleone G.

PLoS One. 2013;8(1):e54562. doi: 10.1371/journal.pone.0054562. Epub 2013 Jan 17.

PMID: 23349929 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

30.

CARD-024, a vitamin D analog, attenuates the pro-fibrotic response to substrate stiffness in colonic myofibroblasts.

Johnson LA, Sauder KL, Rodansky ES, Simpson RU, Higgins PD.

Exp Mol Pathol. 2012 Aug;93(1):91-8. doi: 10.1016/j.yexmp.2012.04.014. Epub 2012 Apr 18.

PMID: 22542712 [PubMed – indexed for MEDLINE]

Similar articles

31.

TAK1 is a key modulator of the profibrogenic phenotype of human ileal myofibroblasts in Crohn’s disease.

Grillo AR, Scarpa M, D’Incà R, Brun P, Scarpa M, Porzionato A, De Caro R, Martines D, Buda A, Angriman I, Palù G, Sturniolo GC, Castagliuolo I.

Am J Physiol Gastrointest Liver Physiol. 2015 Sep 15;309(6):G443-54. doi: 10.1152/ajpgi.00400.2014. Epub 2015 Jul 16.

PMID: 26185333 [PubMed – indexed for MEDLINE]

Similar articles

32.

IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation.

Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, Wang X, Ryffel B, Sun B.

J Immunol. 2013 Aug 15;191(4):1835-44. doi: 10.4049/jimmunol.1203013. Epub 2013 Jul 10.

PMID: 23842754 [PubMed – indexed for MEDLINE] Free Article

Similar articles

33.

Epithelial expression of interleukin-37b in inflammatory bowel disease.

Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Ban H, Bamba S, Sonoda H, Shimizu T, Fujiyama Y, Andoh A.

Clin Exp Immunol. 2013 Jun;172(3):410-6. doi: 10.1111/cei.12061.

PMID: 23600829 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

34.

Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts.

Johnson LA, Rodansky ES, Sauder KL, Horowitz JC, Mih JD, Tschumperlin DJ, Higgins PD.

Inflamm Bowel Dis. 2013 Apr;19(5):891-903. doi: 10.1097/MIB.0b013e3182813297.

PMID: 23502354 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

35.

Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis.

Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bächinger HP, Nagata K.

Mol Biol Cell. 2006 May;17(5):2346-55. Epub 2006 Mar 8.

PMID: 16525016 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

36.

IL-10 treatment is associated with prohibitin expression in the Crohn’s disease intestinal fibrosis mouse model.

Yuan C, Chen WX, Zhu JS, Chen NW, Lu YM, Ou YX, Chen HQ.

Mediators Inflamm. 2013;2013:617145. doi: 10.1155/2013/617145. Epub 2013 Apr 14.

PMID: 23690666 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

37.

Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts.

Sponheim J, Pollheimer J, Olsen T, Balogh J, Hammarström C, Loos T, Kasprzycka M, Sørensen DR, Nilsen HR, Küchler AM, Vatn MH, Haraldsen G.

Am J Pathol. 2010 Dec;177(6):2804-15. doi: 10.2353/ajpath.2010.100378. Epub 2010 Oct 29.

PMID: 21037074 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

38.

The molecular chaperone HSP47 rapidly senses gravitational changes in myoblasts.

Oguro A, Sakurai T, Fujita Y, Lee S, Kubota H, Nagata K, Atomi Y.

Genes Cells. 2006 Nov;11(11):1253-65.

PMID: 17054723 [PubMed – indexed for MEDLINE] Free Article

Similar articles

39.

HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice.

Obata Y, Nishino T, Kushibiki T, Tomoshige R, Xia Z, Miyazaki M, Abe K, Koji T, Tabata Y, Kohno S.

Acta Biomater. 2012 Jul;8(7):2688-96. doi: 10.1016/j.actbio.2012.03.050. Epub 2012 Apr 6.

PMID: 22487929 [PubMed – indexed for MEDLINE]

Similar articles

40.

Antisense oligonucleotide inhibition of heat shock protein (HSP) 47 improves bleomycin-induced pulmonary fibrosis in rats.

Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T.

Respir Res. 2007 May 15;8:37.

PMID: 17504519 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

41.

Interleukin-17A plays a pivotal role in cholestatic liver fibrosis in mice.

Hara M, Kono H, Furuya S, Hirayama K, Tsuchiya M, Fujii H.

J Surg Res. 2013 Aug;183(2):574-82. doi: 10.1016/j.jss.2013.03.025. Epub 2013 Mar 28.

PMID: 23578751 [PubMed – indexed for MEDLINE]

Similar articles

42.

Involvement of interleukin-17A-induced hypercontractility of intestinal smooth muscle cells in persistent gut motor dysfunction.

Akiho H, Tokita Y, Nakamura K, Satoh K, Nishiyama M, Tsuchiya N, Tsuchiya K, Ohbuchi K, Iwakura Y, Ihara E, Takayanagi R, Yamamoto M.

PLoS One. 2014 May 5;9(5):e92960. doi: 10.1371/journal.pone.0092960. eCollection 2014.

PMID: 24796324 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

43.

Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2.

Theiss AL, Simmons JG, Jobin C, Lund PK.

J Biol Chem. 2005 Oct 28;280(43):36099-109. Epub 2005 Sep 1.

PMID: 16141211 [PubMed – indexed for MEDLINE] Free Article

Similar articles

44.

Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis.

Sunamoto M, Kuze K, Tsuji H, Ohishi N, Yagi K, Nagata K, Kita T, Doi T.

Lab Invest. 1998 Aug;78(8):967-72.

PMID: 9714184 [PubMed – indexed for MEDLINE]

Similar articles

45.

Transcriptomic analysis of intestinal fibrosis-associated gene expression in response to medical therapy in Crohn’s disease.

Burke JP, Ferrante M, Dejaegher K, Watson RW, Docherty NG, De Hertogh G, Vermeire S, Rutgeerts P, D’Hoore A, Penninckx F, Geboes K, Van Assche G, O’Connell PR.

Inflamm Bowel Dis. 2008 Sep;14(9):1197-204. doi: 10.1002/ibd.20482.

PMID: 18452219 [PubMed – indexed for MEDLINE]

Similar articles

46.

The change of HSP47, collagen specific molecular chaperone, expression in rat skeletal muscle may regulate collagen production with gravitational conditions.

Oguro A, Sakurai T, Okuno M, Nagata K, Atomi Y.

Biol Sci Space. 2004 Nov;18(3):150-1.

PMID: 15858365 [PubMed – indexed for MEDLINE]

Similar articles

47.

IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid.

Rafa H, Saoula H, Belkhelfa M, Medjeber O, Soufli I, Toumi R, de Launoit Y, Moralès O, Nakmouche M, Delhem N, Touil-Boukoffa C.

J Interferon Cytokine Res. 2013 Jul;33(7):355-68. doi: 10.1089/jir.2012.0063. Epub 2013 Mar 8.

PMID: 23472658 [PubMed – indexed for MEDLINE]

Similar articles

48.

[Therapeutic strategy for fibrotic diseases by regulating the expression of collagen-specific molecular chaperone HSP47].

Nagata K.

Nihon Yakurigaku Zasshi. 2003 Jan;121(1):4-14. Review. Japanese.

PMID: 12617032 [PubMed – indexed for MEDLINE]

Similar articles

49.

Functional linkage between the endoplasmic reticulum protein Hsp47 and procollagen expression in human vascular smooth muscle cells.

Rocnik EF, van der Veer E, Cao H, Hegele RA, Pickering JG.

J Biol Chem. 2002 Oct 11;277(41):38571-8. Epub 2002 Aug 5.

PMID: 12163502 [PubMed – indexed for MEDLINE] Free Article

Similar articles

50.

Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn’s disease.

Ogino T, Nishimura J, Barman S, Kayama H, Uematsu S, Okuzaki D, Osawa H, Haraguchi N, Uemura M, Hata T, Takemasa I, Mizushima T, Yamamoto H, Takeda K, Doki Y, Mori M.

Gastroenterology. 2013 Dec;145(6):1380-91.e1. doi: 10.1053/j.gastro.2013.08.049. Epub 2013 Aug 29.

PMID: 23993972 [PubMed – indexed for MEDLINE]

Similar articles

51.

The possible role of colligin/HSP47, a collagen-binding protein, in the pathogenesis of human and experimental fibrotic diseases.

Razzaque MS, Taguchi T.

Histol Histopathol. 1999 Oct;14(4):1199-212. Review.

PMID: 10506936 [PubMed – indexed for MEDLINE]

Similar articles

52.

Heat shock protein 47 is expressed in fibrous regions of human atheroma and Is regulated by growth factors and oxidized low-density lipoprotein.

Rocnik E, Chow LH, Pickering JG.

Circulation. 2000 Mar 21;101(11):1229-33.

PMID: 10725279 [PubMed – indexed for MEDLINE] Free Article

Similar articles

53.

Can we influence fibrosis in Crohn’s disease?

Assche GV.

Acta Gastroenterol Belg. 2001 Apr-Jun;64(2):193-6.

PMID: 11475134 [PubMed – indexed for MEDLINE]

Similar articles

54.

Role of MutS homolog 2 (MSH2) in intestinal myofibroblast proliferation during Crohn’s disease stricture formation.

Floer M, Binion DG, Nelson VM, Manley S, Wellner M, Sadeghi S, Behmaram B, Sewell C, Otterson MF, Kucharzik T, Rafiee P.

Am J Physiol Gastrointest Liver Physiol. 2008 Sep;295(3):G581-90. doi: 10.1152/ajpgi.90311.2008. Epub 2008 Jul 17.

PMID: 18635600 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

55.

Prostaglandin E₂ and polyenylphosphatidylcholine protect against intestinal fibrosis and regulate myofibroblast function.

Baird AC, Lloyd F, Lawrance IC.

Dig Dis Sci. 2015 Jun;60(6):1603-16. doi: 10.1007/s10620-015-3552-9. Epub 2015 Jan 29.

PMID: 25630423 [PubMed – indexed for MEDLINE]

Similar articles

56.

Contribution of intestinal smooth muscle to Crohn’s disease fibrogenesis.

Severi C, Sferra R, Scirocco A, Vetuschi A, Pallotta N, Pronio A, Caronna R, Di Rocco G, Gaudio E, Corazziari E, Onori P.

Eur J Histochem. 2014 Dec 17;58(4):2457. doi: 10.4081/ejh.2014.2457.

PMID: 25578979 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

57.

Interleukin-17A contributes to the development of post-operative atrial fibrillation by regulating inflammation and fibrosis in rats with sterile pericarditis.

Fu XX, Zhao N, Dong Q, Du LL, Chen XJ, Wu QF, Cheng X, Du YM, Liao YH.

Int J Mol Med. 2015 Jul;36(1):83-92. doi: 10.3892/ijmm.2015.2204. Epub 2015 May 8.

PMID: 25955429 [PubMed – in process] Free PMC Article

Similar articles

58.

Hallmarks of epithelial to mesenchymal transition are detectable in Crohn’s disease associated intestinal fibrosis.

Scharl M, Huber N, Lang S, Fürst A, Jehle E, Rogler G.

Clin Transl Med. 2015 Feb 7;4:1. doi: 10.1186/s40169-015-0046-5. eCollection 2015.

PMID: 25852817 [PubMed] Free PMC Article

Similar articles

59.

Pathogenic aspects and therapeutic avenues of intestinal fibrosis in Crohn’s disease.

Zorzi F, Calabrese E, Monteleone G.

Clin Sci (Lond). 2015 Dec;129(12):1107-13. doi: 10.1042/CS20150472. Review.

PMID: 26494636 [PubMed – indexed for MEDLINE]

Similar articles

60.

Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis.

Morry J, Ngamcherdtrakul W, Gu S, Goodyear SM, Castro DJ, Reda MM, Sangvanich T, Yantasee W.

Biomaterials. 2015 Oct;66:41-52. doi: 10.1016/j.biomaterials.2015.07.005. Epub 2015 Jul 10.

PMID: 26196532 [PubMed – in process]

Similar articles

61.

Mechanisms that mediate the development of fibrosis in patients with Crohn’s disease.

Li C, Kuemmerle JF.

Inflamm Bowel Dis. 2014 Jul;20(7):1250-8. doi: 10.1097/MIB.0000000000000043. Review.

PMID: 24831560 [PubMed – indexed for MEDLINE] Free PMC Article

Similar articles

62.

In the Intestinal Mucosa of Children With Potential Celiac Disease IL-21 and IL-17A are Less Expressed than in the Active Disease.

Borrelli M, Gianfrani C, Lania G, Aitoro R, Ferrara K, Nanayakkara M, Ponticelli D, Zanzi D, Discepolo V, Vitale S, Barone MV, Troncone R, Auricchio R, Maglio M.

Am J Gastroenterol. 2016 Jan;111(1):134-44. doi: 10.1038/ajg.2015.390. Epub 2016 Jan 12.

PMID: 26753888 [PubMed – in process]

Similar articles

63.

In-silico analysis of heat shock protein 47 for identifying the novel therapeutic agents in the management of oral submucous fibrosis.

Pillai JP, Parmar GJ, Rawal R, Shaikh F, Chauhan GR, Pillai RJ.

Indian J Dent Res. 2014 Sep-Oct;25(5):580-5. doi: 10.4103/0970-9290.147094.

PMID: 25511055 [PubMed – in process] Free Article

Similar articles

64.

De novo design based pharmacophore query generation and virtual screening for the discovery of Hsp-47 inhibitors.

Katarkar A, Haldar PK, Chaudhuri K.

Biochem Biophys Res Commun. 2015 Jan 16;456(3):707-13. doi: 10.1016/j.bbrc.2014.12.051. Epub 2014 Dec 16.

PMID: 25522881 [PubMed – indexed for MEDLINE]

Read Full Post »

« Newer Posts - Older Posts »