Cambridge Healthtech Institute’s Inaugural
Biologics for Autoimmune Diseases
Emerging Targets, Therapeutic Strategies and Product Formats for a Growing Market
Part of the Tenth Annual PEGS: the essential protein engineering summit
May 5-6, 2014 | Seaport World Trade Center| Boston, MA
Reporter: Aviva Lev-Ari, PhD, RN
Day 1 | Day 2 | Download Brochure | Speaker Bios
The specificity, efficacy and safety profiles of biologics have traditionally made them good candidates for the treatment of autoimmune diseases. Emerging genetic understandings of the mechanisms of these complex disorders are now being combined with exciting new therapeutic formats and strategies in a renewed wave of attention for the use of biotherapeutics in this therapeutic area. Bispecific and combination therapeutics will provide improved efficacy by impacting multiple targets and processes. Development of biosimilars and biobetters in this space will build on the success of proven therapeutics, while new technologies will offer expanded options for the application of promising validated targets from the past that were not advanced to the market.
The inaugural Biologics for Autoimmune Diseases presents a focused meeting that will track current clinical progress in the major autoimmune diseases, and then offer an exciting exploration of ways in which the industry is applying new science and technology in the development of a next generation of effective and safe therapeutics. Set in the context of the 10th annual PEGS, attendees of this meeting will join more than 1,500 colleagues working in the fields of protein engineering and biologics development, offering unprecedented opportunities for networking and scientific collaboration.
MONDAY, MAY 5
RECOMMENDED PRE-CONFERENCE SHORT COURSES*
Strategy for Entering the Biosimilars Market
*Separate registration required
7:00 am Registration and Morning Coffee
» Plenary Keynote Session
8:30 Chairperson’s Opening Plenary Remarks
Kristi Sarno, Chair, Greater Boston Chapter, Women in Bio; Director, Business Development, Pfenex, Inc.
8:40 Harnessing the Patient’s Immune System
to Combat Cancer
Bahija Jallal, Ph.D., Executive Vice President, MedImmune
With recent FDA approvals, modulation of the immune system is now a clinically validated approach in the treatment of some cancers. At MedImmune, the Oncology Department is developing assets and expertise in Immune Mediated Therapy of Cancer (IMT-C). The challenges from a drug development perspective are multi-fold. The talk will focus on the relevance of preclinical models and translational science to address key issues, including dose selection and rationale combinations.
9:25 Building Regeneron’s Pipeline: From Trap Technology to the VelocImmune Platform to Veloci-Next
George D. Yancopoulos, M.D., Ph.D., President, Regeneron Laboratories; CSO, Regeneron Pharmaceuticals, Inc.
George D. Yancopoulos, M.D., Ph.D., who is the Founding Scientist, President, Research Laboratories and Chief Scientific Officer of Regeneron Pharmaceuticals, one of the world’s top biotechnology companies, will discuss how he and his colleagues exploited a commitment to science and technology to start the company, withstand years of challenges and failures, and emerge with a pipeline of promising technologies and novel/biologics that are beginning to bring hope to countless patients and their families.
10:10 Grand Opening Coffee Break in the Exhibit Hall with Poster Viewing
11:05 Chairperson’s Remarks
Ronald Herbst, Ph.D., Senior Director, Autoimmune Diseases, MedImmune
» 11:10 Keynote Presentation:
Biologics for Systemic Lupus Erythematosus
William Stohl, M.D., Ph.D., Professor, Medicine, Rheumatology, Keck School of Medicine, University of Southern California
With FDA approval of a biologic therapeutic for SLE, optimism abounds for approval of additional agents. Candidates include: biologics to effect B cell depletion/inactivation or generation of regulatory B cells; biologics to effect T cell tolerance, blockade of T cell activation/differentiation, or altered T cell trafficking; and biologics targeting individual cytokines. As understanding of SLE pathogenesis continues to expand, additional therapeutic targets will be identified.
12:10 pm Sponsored Presentation (Opportunity Available)
12:40 Luncheon Presentation I (Sponsorship Opportunity Available)
1:10 Luncheon Presentation II (Sponsorship Opportunity Available)
1:40 Session Break
CLINICAL AND PRECLINICAL UPDATES OF BIOLOGIC THERAPIES FOR AUTOIMMUNE DISEASES
2:00 Chairperson’s Remarks
Lawren Wu, Ph.D., Senior Scientist, Immunology, Genentech, Inc.
2:05 Clinical Update of Secukinumab (Anti-IL-17A) for Psoriasis, Spondyloarthritis and Rheumatoid Arthritis
Christian Antoni, M.D., Ph.D., Vice President, Senior Global Program Head, Integrated Hospital Care Franchise, Novartis Pharmaceuticals Corporation
IL-17A has been implicated as the key cytokine in the pathogenesis of a number of inflammatory autoimmune diseases including psoriasis, spondyloarthritis and rheumatoid arthritis. Secukinumab, a fully human monoclonal antibody that selectively binds to and neutralizes IL-17A, has been shown to be effective in the treatment of plaque psoriasis in phase III studies. A clinical update and results of recent phase II/III studies will be presented.
2:35 Clinical Update of MEDI 551 (Anti-CD19 Antibody) for Autoimmune Disease
Ronald Herbst, Ph.D., Senior Director, Autoimmune Diseases, MedImmune
Human cluster of differentiation (CD) antigen 19 is a B cell-specific surface antigen and an attractive target for B cell depletion. MEDI-551 is an affinity-optimized and afucosylated CD19 mAb with enhanced antibody-dependent cellular cytotoxicity (ADCC). MEDI-551 is currently in several phase 1/2 clinical studies, including B cell malignancies, systemic sclerosis (SSc) and relapsing remitting multiple sclerosis (RRMS).
3:05 Cytokine Modulation by Protein Therapeutics in Anterior and Posterior Ocular Disorders
Christian Dombrowski Ph.D., Senior Scientist, Eleven Biotherapeutics, Inc.
Cytokines, chemokines, and growth factors mediate anterior and posterior eye diseases. A novel soluble receptor inhibitor of IL-17A and IL-17A with potential for treating uveitis and AMD was engineered, along with an IL-6 inhibitor with potential for treating diabetic macular edema. Our lead product, EBI-005 was designed and engineered for the topical treatment of dry eye disease and has evidence of biological activity in a clinical study.
3:35 IL-1a/b DVD-Ig™: From Design to Clinic for Autoimmune Indications
Tariq Ghayur, Ph.D., Senior Research Fellow, AbbVie
4:05 Refreshment Break in the Exhibit Hall with Poster Viewing
4:45 Problem Solving Breakout Discussions
5:45 Welcome Reception in the Exhibit Hall with Poster Viewing
6:45 End of Day
TUESDAY, MAY 6
7:45 am Morning Coffee
BISPECIFIC ANTIBODIES FOR AUTOIMMUNE DISEASES
8:25 Chairperson’s Remarks
Tariq Ghayur, Ph.D., Senior Research Fellow, AbbVie
8:30 Development of a Human IgG4 Bispecific Antibody for Dual Targeting of IL-4 and IL-13 Cytokines
Lawren Wu, Ph.D., Senior Scientist, Immunology, Genentech, Inc.
Interleukins IL-4 and IL-13 have been implicated in the pathogenesis of asthma and allergy. We have extended a previously developed bispecific antibody technology to develop a human IgG4 bispecific antibody targeting both IL-4 and IL-13. Our work broadens the range of therapeutic bispecific antibody platforms to include both human IgG1 and IgG4 isotypes, resulting in the generation of an anti-IL-4/IL-13 bispecific suitable for clinical studies.
9:00 Proof-of-Concept Studies of B-Lymphocyte Targeted Bispecific DART® Molecules for Autoimmune Disorders
Paul Moore, Ph.D., Vice President, Cell Biology & Immunology, Macrogenics
To address limitations of existing B cell targeted therapies, we have developed MGD010, a bispecific Dual-Affinity ReTargeting (DART) molecule that coligates the inhibitory FcγRIIb (CD32B) receptor and the BCR component, CD79B, to inhibit B cell activation and dampen autoimmunity. Preclinical studies have demonstrated the ability of CD32BxCD79B DARTs to preferentially inhibit activated B cells through activation of the CD32B pathway.
9:30 XmAb5871: An FcgRIIb-Enhanced Anti-CD19 Antibody for Nondepleting B Cell Inhibition
John Desjarlais, Ph.D., Vice President, Research, Xencor
10:00 Coffee Break in the Exhibit Hall with Poster Viewing
EMERGING BIOLOGIC FORMATS
10:45 mRNA-Engineered Mesenchymal Stem Cells as Targeted Drug Factories
Oren Levy, Ph.D., Instructor in Medicine, Harvard Medical School
MSCs are promising candidates for cell-based therapy to treat inflammatory diseases and are compelling to consider as vehicles for delivery of biological agents. We harnessed mRNA transfection to rapidly target systemically administered MSCs to inflamed sites to which they delivered an immunosuppressive cytokine, significantly reducing local inflammation. This platform may be used for cell-based targeted delivery of therapeutics to disease sites.
11:15 AVX-470, An Oral Anti-TNF Antibody for Inflammatory Bowel Disease
Barbara S. Fox, Ph.D., CEO, Avaxia Biologics, Inc.
Avaxia is developing gut-targeted antibody therapeutics – antibodies designed to be taken orally and to act locally in the GI tract. AVX-470 is Avaxia’s lead product, an orally-delivered polyclonal anti-TNF antibody in clinical development for inflammatory bowel disease.
11:45 SOBI002, a Small Affibody-ABD Fusion Protein Targeting Complement Factor C5 as a Next-Generation Biologic for Autoimmune Disease
Patrik Strömberg, Ph.D., Principal Scientist, Drug Design and Development, Swedish Orphan Biovitrum (Sobi), Sweden
SOBI002 is composed of a C5 targeting Affibody molecule fused to an albumin binding domain. In vivo, this molecule displays long terminal half-life, high subcutaneous bioavailability and durable pharmacodynamic effects. No dose-limiting toxicity of SOBI002 was observed in repeat dose studies in monkey and rat. Based on these results, a study to evaluate safety, tolerability, PK and PD of SOBI002 in man is warranted.
12:15 pm Luncheon Presentation I (Sponsorship Opportunity Available)
12:45 Luncheon Presentation II (Sponsorship Opportunity Available)
1:15-1:45 Ice Cream Break in the Exhibit Hall
IMMUNE MODULATION AND TOLERANCE INDUCTION STRATEGIES
2:00 Chairperson’s Remarks
Paul Moore, Ph.D., Vice President, Cell Biology & Immunology, Macrogenics
2:05 Strategies Underlying Tolerance Induction with Antibodies as Combination Therapy
Herman Waldman, Ph.D., Emeritus Professor of Pathology, Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, United Kingdom
Current immunosuppression is often long-term and it penalizes the whole immune system, as well as inflicting many unwanted side effects. If we could harness some of the key mechanisms of tolerance that the body uses, then we might be able to minimize the duration and quantity of drugs given. The talk will summarize approaches to using short-term exposure to anti-lymphocyte antibodies to achieve this end.
2:35 Inducing Antigenic-Specific B Cell Tolerance using Antigenic Liposomes Displaying CD22 Ligands
Matthew Macauley, Ph.D., Researcher, Paulson Laboratory, Chemical Physiology, The Scripps Research Institute
New strategies are needed for antigen-specific suppression of undesired antibody responses. Liposomes displaying both antigen and glycan ligands of the inhibitory B cell co-receptor CD22, induce a tolerogenic program that selectively causes apoptosis in B cells. Since inhibitory antibodies to FVIII are problematic for hemophilia A patients, we used this approach to induce tolerance to FVIII in a hemophilia mouse model, allowing for effective administration of FVIII to prevent bleeding.
3:05 Sponsored Presentation (Opportunity Available)
3:20 Sponsored Presentation (Opportunity Available)
3:35 Refreshment Break in the Exhibit Hall with Poster Viewing
4:15 Antigen-Specific Immunotherapy for Autoimmune Diseases
David Wraith, Ph.D., Professor of Experimental Pathology, School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
Antigen-specific immunotherapy is disease modifying and efficacious. The use of whole antigens for SIT is, however, associated with unacceptable side effects. Apitopes are T cell epitopes designed to modulate immune response to self-antigens or allergens while minimizing the side effects of SIT. This lecture reviews the design and MOA of tolerogenic epitopes and will discuss results of recent clinical trials in allergic and autoimmune diseases.
4:45 The MCAM/Laminin 411 Interaction Provides a TH17 Specific Mechanism for T Cell Entry into the CNS
Ken Flanagan, Ph.D., Senior Scientist, Cell Biology, Prothena Biosciences
Expression of MCAM/CD146 is enriched on TH17 cells. The ligand for MCAM is laminin 411, a molecule critical in T cell infiltration into tissues. Anti-MCAM antibodies inhibit the interaction with laminin 411. The specificity of MCAM expression on TH17 cells combined with the binding of MCAM exclusively to laminin 411 defines a targetable TH17/vascular interaction, to specifically inhibit a particularly pathogenic immune cell population.
5:15 End of Conference
Speaker Biographies | THERAPEUTICS STREAM
Christian Antoni, M.D., Ph.D., Vice President, Senior Global Program Head, Integrated Hospital Care Franchise, Novartis Pharmaceuticals Corporation
Dr. Christian Antoni MD, PhD is a rheumatologist by training who during his academic career has been involved in the development of multiple biologics in rheumatic diseases. He introduced the treatment of anti-TNF drugs into psoriatic arthritis and was co-founder of GRAPPA (group for research and assessment in psoriasis and psoriatic arthritis). He joined the pharmaceutical industry in 2004 and was involved in the development of the anti-TNF drugs infliximab and golimumab in multiple indications. He joined Novartis in 2008 and is currently VP and Senior Global Program Head for the development of secukinumab, a fully human anti-IL17A monoclonal antibody.
Ellen Border, D.Phil., Scientist, Protein Engineering, Adaptimmune Ltd.
Ellen Border received her DPhil in Structural Biology (supervised by Professor Yvonne Jones) from the University of Oxford before transferring to the Protein Engineering group at Adaptimmune Ltd.
Adrian Bot, M.D., Ph.D., Vice President, Scientific Affairs, Kite Pharma, Inc.
Adrian Bot brings over 13 years of experience in the biopharmaceutical industry and expertise in discovery, research and development of active immunotherapies in oncology. At Kite, Dr. Bot provides scientific and translational research leadership to the company’s technologies and growing product pipeline as well as management of its academic and corporate collaborations. He also supports Kite’s Chief Executive Officer in setting strategic directions as well as in other aspects of the company’s operations. Before joining Kite, Dr. Bot served as Vice President of Research at MannKind Corp, where he led the efforts to discover and advance through development a number of immunotherapies and targeted therapies for different cancer indications. Prior to joining MannKind, he served as Director of Immunology at Allecure Corp. and as Director of Immunology at Alliance Pharmaceutical Corp., where he led the research and development of novel vaccine adjuvants and immunotherapies. Dr. Bot received his M.D. degree from the University of Medicine and Pharmacy in Timisoara, Romania, and his Ph.D. in Biomedical Sciences from Mount Sinai School of Medicine in New York. He conducted his post-graduate training as a visiting scientist at the Scripps Research Institute in La Jolla, CA. He has authored more than 75 scientific publications in basic and applied immunology and is an inventor on more than 10 patents on immune therapeutic approaches and innovative drugs for autoimmune diseases and oncology.
Malcolm Brenner, M.D., Ph.D., Professor, Departments of Pediatrics and Medicine; Stem Cells and Regenerative Medicine (STaR) Center; Program in Translational Biology & Molecular Medicine; Director, Center for Cell and Gene Therapy, Baylor College of Medicine
Malcolm Brenner, M.D., Ph.D., is Director of the Center for Cell and Gene Therapy at Baylor College of Medicine (BCM), Texas Children’s Hospital and The Methodist Hospital. He serves as a professor, in the Departments of Pediatrics and of Medicine at BCM. Brenner received his medical degree and subsequent Ph.D. from Cambridge University, England. Brenner’s clinical research interests span many aspects of stem cell transplantation, using genetic manipulation of cultured cells to obtain therapeutic effects. Efforts in Brenner’s laboratory to analyze the cell of origin when relapse occurs in patients with acute myelogenous leukemia led Brenner’s team to be the first to label autologous bone marrow cells genetically after purging, prior to being reintroduced to the patient. He is studying the effects of gene transfer into autologous neuroblastoma cells and the use of gene-modified EBV-specific cytotoxic T lymphocyctes for prevention and treatment of lymphoproliferative disorders, Hodgkin’s disease, lung cancer and neuroblastoma. His group recently pioneered the first clinical use of a new safety switch for cellular therapy. Brenner is Editor in Chief of “Molecular Therapy” and a former President of the American Society for Gene and Cell Therapy (ASGCT) and the International Society for Cell Therapy. He has won many awards for his work and in 2011 these included the ASGCT Outstanding Achievement Award and the American Society of Hematology Mentor Award.
Cyrille Cohen, Ph.D., Senior Lecturer, Laboratory of Tumor Immunology, Bar-Ilan University Visiting Scientist, Surgery Branch, NCI, NIH
Cyrille Cohen trained as a research fellow at the National Cancer Institute (NIH), pioneering approaches to improve TCR-gene transfer clinically. In 2007, he established the Laboratory of Tumor Immunology and Immunotherapy at Bar-Ilan University (Ramat Gan, Israel), in which he and his group are devising novel strategies to enhance T-cell function to target tumor and viral-infected cells. He has received several research awards and published some 40 research peer-reviewed articles in the field of immunotherapy. Dr Cohen has served on the scientific board of several biotech companies and is also a member of the national committee for the approval of clinical trials based on cell and genetic engineering (Israel Ministry of Health). He is currently a visiting professor in the Surgery Branch collaborating with Dr Steven Rosenberg (NIH/National Cancer Institute, 2013-2014).
Laurence J.N. Cooper, M.D., Ph.D., Grant Taylor, W.W. Sutow and Margaret Sullivan Distinguished Professor in Pediatrics; MDACC Section Chief, Cell Therapy, Children’s Cancer Hospital, Division of Pediatrics (Unit 907); Associate Director, CCIR; Director, Immunology Laboratory of PhysicianScientists, Department of Immunology, MD Anderson Cancer Center
Laurence J.N. Cooper obtained his M.D. and Ph.D. degrees at Case Western Reserve University in Cleveland and then training in Pediatric Oncology and Bone Marrow Transplantation (BMT) at the Fred Hutchinson cancer Research Center in Seattle. He joined M.D. Anderson Cancer Center in 2006 and currently leads the Pediatric Cell Therapy service (formally named the BMT program). In addition to caring for children, adolescents and young adults undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT), he runs a laboratory translating immunology into clinical practice. His program has multiple investigator-initiated trials that infuse T cells and NK cells to target malignancies. The adoptive transfer of lymphocytes represents the future of HSCT as he and other investigators enhance the potency of the immune system to eliminate residual cancers.
John R. Desjarlais, Ph.D. Director of Protein Engineering at Xencor
Dr. Desjarlais is Director of Protein Engineering at Xencor, a drug discovery company dedicated to designing safer and more effective protein therapeutics. Xencor uses computational methods to rationally design protein drugs with features tuned for clinical use. Before joining Xencor in 1997, Dr. Desjarlais was an Assistant Professor of Chemistry at Penn State University, where he continued the development of protein design methods that he initiated as a postdoctoral fellow at UC Berkeley. Ken Flanagan, Ph.D., Senior Scientist, Cell Biology, Prothena Biosciences He received his BS from Cornell University in 1998 in Nutrition. He completed his MS at Albert Einstein College of Medicine in 2001 in Immunology and his PhD at Columbia University in 2004 in Immunology.
Barbara S. Fox, Ph.D., Chief Executive Officer, Avaxia Biologics, Inc.
Barbara S. Fox, PhD, is founder and CEO of Avaxia Biologics, a leader in the growing field of gut-targeted therapeutics. Avaxia’s lead clinical candidate, AVX-470, is an oral anti-TNF antibody for inflammatory bowel disease. Dr. Fox’s previous positions have included Affiliated Entrepreneur at Oxford Bioscience Partners; founder, President and Chief Scientific Officer of Recovery Pharmaceuticals; Vice President, Discovery and Immunology at ImmuLogic Pharmaceutical Corp.; and Associate Professor of Rheumatology and Clinical Immunology at the U. Maryland School of Medicine. Dr. Fox received her PhD in Chemistry from MIT and trained as a post-doc in cellular immunology at the NIH.
Eric Furfine, Ph.D., Chief Scientific Officer, Eleven Biotherapeutics
With more than 20 years of experience in drug research and development, Eric Furfine has been involved in advancing numerous products into clinical development across multiple therapeutic areas. Prior to joining Eleven Biotherapeutics, Dr. Furfine was Senior Vice President of Research and Preclinical Development at Adnexus, a Bristol-Myers Squibb R&D Company. In this role, he directed and led all activities in the discovery, preclinical development and much of clinical pharmacology of Adnectins, which are novel targeted protein therapeutic agents. Previously, he was Vice President of Preclinical Development at Regeneron Pharmaceuticals, responsible for all aspects of preclinical development and a significant portion of clinical pharmacology. Dr. Furfine also spent more than a decade in senior level research positions at GlaxoSmithKline, where he was program leader and co-inventor of LEXIVA® (fosamprenavir calcium). Dr. Furfine conducted his postdoctoral research at University of California, San Francisco and holds a Ph.D. in Biochemistry from Brandeis University.
Ronald Herbst, Ph.D., Senior Director, Autoimmune Diseases, MedImmune
Dr. Ronald Herbst is senior director in the research organization of MedImmune, where he is leading a group dedicated to the development of novel antibody and protein therapeutics for the treatment of systemic autoimmune diseases. Dr. Herbst joined MedImmune in February of 2006 as Associate Director and lead of the Oncology/RIA B cell group. Prior to joining MedImmune, Dr. Herbst was senior principal investigator at Schering-Plough Biopharma (formerly DNAX), where he focused on signal transduction research and small and large molecule drug discovery in several disease areas. Dr. Herbst received his diploma (Masters) in microbiology and pharmacology/toxicology from the Ludwig-Maximilian University in Munich. Following his doctorate in molecular biology at the Max-Planck Institute of Biochemistry in Munich he conducted his postdoctoral research in the Department of Biology at Stanford University.
Michael C. Jensen, M.D., Professor, Pediatrics, University of Washington School of Medicine; Director, Ben Towne Center for Childhood Cancer Research/Seattle Children’s Research Institute; Joint Member, Program in Immunology, Fred Hutchinson Cancer Research Center
Michael Jensen graduated from the University of Pennsylvania School of Medicine then completed training in Pediatric Hematology and Oncology at the University of Washington/Fred Hutchinson Cancer Research Center. His laboratory work began under the mentorship of Dr. Philip Greenberg, Program Head in Immunology, FHCRC and focused on the immunobiology of tumor-specific T-cells. Following completion of his fellowship, Dr. Jensen joined the faculty at the City of Hope National Medical Center where he built a translational research program integrating gene therapy and cellular immunotherapy for cancer. This program grew in to the Department of Cancer Immunotherapeutics & Tumor Immunology within the Beckman Research Institute and was incorporated into the institution’s NCI-Comprehensive Cancer Center as the Cancer Immunotherapeutics Program with Dr Jensen as its leader. During his tenure at City of Hope, Dr Jensen’s research program placed a strong emphasis on bench-to-bedside translational research and resulted in five FDA-authorized Investigational New Drug Applications covering first-in-human applications of adoptive transfer of genetically engineered T-cells having re-directed tumor specificity for lymphoma, neuroblastoma, and malignant gliomas. In 2010, Dr Jensen joined the University of Washington School of Medicine faculty as a Professor of Pediatrics and is the founding director of the Ben Towne Center for Childhood Cancer Research.
David Kranz, Ph.D., Phillip A. Sharp Professor, Biochemistry, University of Illinois
David Kranz received his PhD in 1982 from the University of Illinois in Urbana and conducted post-doctoral work at MIT for five years, examining the molecular basis of T cell recognition and function, in the laboratories of Professors Herman Eisen and Susumu Tonegawa. He joined the faculty of the Department of Biochemistry at the University of Illinois in 1987, where his research program has focused on the structure, function, and engineering of T cell receptors. He currently holds the Phillip A. Sharp Professorship in Biochemistry.
Oren Levy, Ph.D., Instructor in Medicine, Harvard Medical School
Dr. Oren Levy received his BSc degree in Biology from Ben Gurion University (BGU), Israel. He carried out his MSc and PhD research in BGU, focusing on the ERK1\2 and JAK\STAT pathways and their involvement in vascular smooth muscle cell (VSMC) hypertrophy as well as in human mesenchymal stromal cell (MSC) proliferation and osteogenic differentiation. In 2011, Dr. Levy joined the lab of Dr. Jeffrey Karp at Harvard Medical School/Brigham and Women’s hospital as a postdoctoral research fellow and in 2013 became an instructor of Medicine in Harvard Medical School. His research focuses on developing bio-engineering strategies to improve MSC therapeutic potential and to harness them for cell-based targeted delivery of therapeutics.
John Maher, Consultant and Senior Lecturer in Immunology, Department of Research Oncology, King’s College London
John Maher is a clinical immunologist and immunopathologist who leads the “CAR Mechanics” research group within King’s College London. He is also a consultant immunologist within King’s Health Partners and Barnet & Chase Farm NHS Trust.
Marcela V. Maus, M.D., Ph.D., Director, Translational Medicine and Early Clinical Development, Translational Research Program, Abramson Cancer Center, University of Pennsylvania
Marcela Maus completed undergraduate studies at MIT and her MD and PhD at Penn. She has been in the field of gene and cell therapies since 1999. As a graduate student, she worked with Dr. Carl June on the biology of human T cell activation; she developed artificial antigen presenting cells to optimally expand T cells for immunotherapy, and described the requirement for 4-1BB signaling to allow persistence and resistance to activation induced cell death in human T cells. After medical school, she spent one year in Dr. Kathy High’s laboratory, dissecting out the immune response to vector proteins that occurred in patients with hemophilia who had undergone liver-directed AAV-mediated gene transfer. She then completed residency training in internal medicine at the University of Pennsylvania Health System, and went to Memorial Sloan-Kettering to pursue fellowship training in Hematology and Medical Oncology, where she focused on melanoma and bone marrow transplantation, since these are the clinical modalities most relevant to gene and cell therapies. She is board-certified in Internal Medicine, Medical Oncology and in Hematology. During the research portion of fellowship, she completed a post-doc in Michel Sadelain’s laboratory, where she engineered new antigen receptors to genetically modify T cells to target the cancer-testis antigen NY-ESO-1. Dr. Maus recently returned to Penn as Director of Translational Medicine and Early Clinical Development in the Translational Research Program headed by Dr. Carl June. Her laboratory effort focuses on pre-clinical development and correlative studies relevant to T cell immunotherapies, and acting as regulatory sponsor for new trials of T cell therapies. She is deeply involved in generating new forms of chimeric antigen receptors directed to new targets and bringing them to the clinical setting to treat patients with mesothelioma, ovary cancer, multiple myeloma, breast cancer, melanoma, and glioblastoma.
Jeffrey S. Miller, M.D., Deputy Director, Masonic Cancer Center; Deputy Director, Clinical and Translational Sciences Institute; Director, Cancer Experimental Therapeutics Initiative, University of Minnesota
Jeffrey S. Miller, MD, received a Bachelor of Science degree from Northwestern University in Evanston, Illinois and received his MD from Northwestern University School of Medicine. He completed an internship and residency in Internal Medicine at the University of Iowa in Iowa City. After completing a post-doctoral fellowship in Hematology, Oncology and Transplantation at the University of Minnesota, he joined the faculty in 1991. Dr. Miller is currently a Professor of Medicine at the University of Minnesota. He is the Deputy Director of the University of Minnesota Masonic Comprehensive Cancer Center and the Clinical and Translational Sciences Award (CTSA). He has more than 20 years of experience studying the biology of NK cells and other immune effector cells and their use in clinical immunotherapy with over 150 peer-reviewed publications. He is a member of numerous societies such as the American Society of Hematology, the American Association of Immunologists, a member of the American Society of Clinical Investigation since 1999. He serves on the editorial board for Blood and is a reviewer for a number of journals and NIH grants.
Paul Moore, Ph.D., Vice President, Cell Biology & Immunology, Macrogenics
Dr. Moore has 20 years experience working in biotech, coordinating efforts focused on the discovery and development of novel biologic based therapies. He began his biotechnology career at Human Genome Sciences, where he directed genomic-based target discovery programs and the preclinical development of various protein and mAb based therapeutics for the treatment of cancer, metabolic, and autoimmune diseases. Notably these efforts led to the discovery of BLyS as a B-cell survival factor providing the basis for the development of Benlysta for the treatment for lupus. At MacroGenics, Dr Moore leads a group dedicated to the discovery, characterization and development of novel antibody based therapeutics including bispecific DARTs for the treatment of cancer or autoimmune disease. Dr Moore obtained his PhD from University of Glasgow, performed post-doctoral work at Hoffman La Roche and has (co)-authored 70 peer reviewed publications.
Matthew Porteus, M.D., Ph.D., Associate Professor, Pediatrics (Cancer Biology), Stanford School of Medicine
Matthew Porteus is an associate professor of Pediatrics whose research focuses on using homologous recombination based genome editing to develop novel cell based therapeutics. He received his MD and PhD degrees from Stanford University and completed residency in Pediatrics at Boston Children’s Hospital and a fellowship in Pediatric Hematology/Oncology at Boston Children’s Hospital and the Dana Farber Cancer Institute. He did his postdoctoral work under the mentorship of Dr. David Baltimore and has been an associate professor at Stanford since 2010.
Laszlo Radvanyi, Ph.D., Professor, Melanoma Medical Oncology, University of Texas , MD Anderson Cancer Center
Since 2005 Laszlo Radvanyi has been a Professor in the Melanoma Medical Oncology Department at MD Anderson Cancer Center and co-leader of the TIL therapy program there. He also conducts translational research on TIL adoptive cell therapy and basic research on CD8+ T cell function in melanoma and breast cancer. Dr. Radvanyi has published over 85 papers. He was previously a Senior Scientist at Sanofi-Pasteur Canada helping lead a tumor antigen discovery program in breast cancer.
Michel Sadelain, M.D., Ph.D., Director, Center for Cell Engineering & Gene Transfer and Gene Expression Laboratory; Stephen and Barbara Friedman Chair, Memorial Sloan-Kettering Cancer Center
Michel Sadelain, MD, PhD, is the director of the Center for Cell Engineering and the Stephen and Barbara Friedman Chair at Memorial Sloan-Kettering Cancer Center, as well as professor of medicine at Weill Cornell Medical College in New York. After earning his medical degree from the University of Paris, France, and his doctorate in Immunology from the University of Alberta, Canada, Dr. Sadelain trained as a fellow at the Massachusetts Institute of Technology in Cambridge, Massachusetts, before joining MSKCC in 1994. In October 2012, he was awarded the Cancer Research Institute’s prestigious Coley Award for Distinguished Research in Tumor Immunology. Dr. Sadelain investigates T lymphocytes, hematopoietic stem cells and induced pluripotent stem cells for their potential use in cell-based therapies to treat cancer and genetic disorders. His laboratory pioneered different strategies to target T lymphocytes to tumor cells and augment their anti-tumoral activity by reprogramming their antigen specificity and costimulatory support. His group was the first to demonstrate the feasibility of treating beta-thalassemia by transferring the human beta-globin gene in bone marrow stem cells of thalassemic mice, paving the way for clinical trials aiming to cure severe globin disorders with genetically engineered hematopoietic stem cells. His recent work explores the therapeutic potential of induced pluripotent stem cells, in particular the identification of genomic “safe harbors” for safe and effective genetic engineering.
William Stohl, M.D., Ph.D., Professor of Medicine, Division of Rheumatology, Keck School of Medicine, University of Southern California
William Stohl received his BS from the Massachusetts Institute of Technology, his MD and PhD from the University of Pennsylvania, his clinical training at Washington University of St. Louis, and his post-doctoral research training in the laboratory of the late Henry Kunkel at the Rockefeller University. Dr. Stohl is ABIM-certified in Internal Medicine and Rheumatology and is currently Professor of Medicine and Chief, Division of Rheumatology, at the University of Southern California Keck School of Medicine. Dr. Stohl’s research interests have largely focused on B cells and their dysregulation in systemic autoimmune disorders, especially SLE.
Patrik Strömberg, Ph.D., Principal Scientist, Drug Design and Development, Swedish Orphan Biovitrum (Sobi), Sweden
Patrik Strömberg defended his PhD thesis in medical biochemistry at the Karolinska Institutet in 2002. Since then he has spent more than ten years working with biopharmaceutical development, the first 5 years at the AstraZeneca Biotech Laboratory and the last 6 years at Swedish Orphan Biovitrum, where he is currently a principal scientist and project leader in the Drug Design and Development organization.
Herman Waldman, Ph.D., Emeritus Professor of Pathology, Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, United Kingdom
Herman Waldmann, FRS is a Professor of Pathology and Head of the Sir William Dunn School of Pathology at the University of Oxford. An immunologist, he is best known for his work on therapeutic monoclonal antibodies, particularly Campath-1, now licensed as Lemtrada for the treatment of multiple sclerosis Dr. Walmann received his undergraduate and graduate degrees from the University of Cambridge and began his scientific career there in the Department of Pathology. He became Head of the Immunology Division and was named Kay Kendall Chair in Therapeutic Immunology. It was at Cambridge that he studied mechanisms by which cells of the immune system could interact to mount immune responses. This early work led him to become interested in immunological tolerance and achieving tolerance for therapeutic purposes. Since 1980 he has been funded by an Medical Research Council Programme Grant to study mechanisms of transplantation tolerance and strategies to achieve this both experimentally and clincially. In 1985 he published the first studies to show that short courses of CD4 antibody therapy could bring about long-term immunological tolerance to foreign proteins, and this work led to the first demonstrations of transplantation tolerance resulting from short-tem antibody blockade. His mechanistic studies of tolerance uncovered a role for regulatory T-cells in infectious tolerance which was published in a seminal paper in Science in 1993. The strategies emerging from his laboratory since that time have been based on the use of therapeutic antibodies to enhance regulation over conventional T-cell immunity. In order to apply antibodies clinically Waldmann developed the first academic antibody therapeutic manufacturing facility. He and his team were able to apply clinical-grade antibodies in a wide range of probing therapeutic studies that enabled them to develop a series of humanized antibodies (CD52, CD3, CD4 and others) which have since been transferred to the pharmceutical industry. His team’s work since 1971 has resulted in more than 500 publications, the majority directed to therapeutic antibodies and their mechanisms of action. These contributions have led to his election to the Royal Society in 1990. Professor Waldmann is the recipient of the Jose Carreras Medal of the European Hematology Society, the Juvenile Diabetes Research Foundation Excellence in Clinical Research Award (2005), University of Iowa Distinguished Professor Lecture, Thomas E Starzl Prize in Surgery and Immunology, Scrip Lifetime Achievement award (2007)and an Honorary Doctorate (DSc) University of Cambridge (2008).
David Wraith, Ph.D., Professor of Experimental Pathology, School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
David Wraith trained as an immunologist: he has worked in the field of T cell biology and the role of T lymphocytes in protection from infection and in autoimmunity since 1981. David worked with Dr Brigitte Askonas at the National Institute for Medical Research, Mill Hill to define the mechanism by which cytotoxic T cells respond to and kill influenza virus infected cells through recognition of peptide fragments of antigen. Their work led to the development of a vaccine that would induce cytotoxic T cells capable of heterotypic immunity. In 1986 and 1987 David was awarded MRC and National MS Society fellowships to work in the laboratory of Hugh McDevitt in Stanford. Here he focused on MHC class II recognition and autoimmune disease. Their work described how monoclonal antibodies and synthetic peptides could be developed for immunotherapy of autoimmune diseases. In 1989 David was awarded the Wellcome Trust Senior Fellowship to establish a new laboratory in Cambridge where he worked on mechanisms of thymic selection and was among the first to demonstrate induction of peripheral tolerance by administration of soluble peptide antigens. Since 1995 his laboratory in Bristol has focused on the mechanism of peptide therapy. Their work provided the essential rules governing the design of therapeutic peptides and led to the establishment of a University of Bristol spinout company, Apitope NV (www.apitope.com). The company has designed peptides for treatment of various autoimmune diseases and has successfully completed phase I trials in relapsing multiple sclerosis. David’s research laboratory is currently defining the differentiation pathway of antigen induced Treg cells, focusing on the role of specific genes including IL-10 and CTLA-4. The aim of this approach is to improve the efficacy of peptide therapy for treating of allergic and autoimmune diseases in man.
Lawren Wu, Ph.D., Senior Scientist, Immunology, Genentech
Lawren Wu is a Senior Scientist in the Department of Immunology at Genentech, where his group is involved in the discovery of new targets and the development of new therapies for autoimmune and allergic diseases. Lawren’s background and training is in immunology and protein biophysics/biochemistry. At Genentech his group has a major focus on understanding the heterogeneity and pathogenesis of severe asthma and the biology of IgE production. In addition, his group studies intracellular signaling pathways and mechanisms of T- and B-lymphocyte activation and differentiation.
PEPTIDE THERAPEUTICS
Jesper Lau, Ph.D., Vice President, Diabetes Protein & Peptide Chemistry, Novo Nordisk A/S Dr. Jesper Lau studied biology and chemistry at the University of Southern Denmark. After his Ph.D. in organic chemistry in 1990, and a research visitor stay in the group of Professor Barry Trost at Stanford University in California, he joined Health Care Discovery at Novo Nordisk.
Jesper Lau possesses long-term expertise within combinatorial chemistry, medicinal chemistry and drug discovery, but since 2002, has been engaged in protein and peptide engineering. The main focus has been establishing technologies to improve the therapeutic properties of endogenous peptides and proteins. During +20 years in pharma, he has optimised numerous leads to clinical candidates within diseases in the central nervous system, growth hormone disorders, and especially within diabetes care with particular interest in glucagon like peptide 1 (GLP-1) where he was project responsible for once weekly GLP-1 and is first inventor of semaglutide.
Christophe Bonny, Ph.D., CSO, Bicycle Therapeutics, Ltd.
Christophe Bonny, Ph.D., has over 20 years of experience in the field of molecular biology and signalling pathways, has authored over 70 scientific publications, and is an inventor on several patents. Dr. Bonny discovered D-JNKI, a cell permeable peptide inhibitor of the JNK protein, which formed the basis for the creation of the biotechnology company Xigen S.A. in 2003. In 2005, he received the Pfizer Research Prize for this discovery and the molecule is currently in Phase III clinical trials for hearing loss. Prior to joining Bicycle Therapeutics, Dr. Bonny was CSO of Xigen S.A. and also served as its President. He also held the position of Head of Research of the Medical Genetics unit at the University of Lausanne Hospital (CHUV). Following completion of a PhD at the University of Neuchâtel (CH), Dr. Bonny completed a Research Fellowship at Northwestern University Evanston IL (USA).
Yong S. Chang, Ph.D., Vice President, Biology and Translational Research, Aileron Therapeutics, Inc.
Yong Chang has served as Head of Biology since April 2011 and leads cell and molecular biology, translational pharmacology, DMPK, and in vivo pharmacology. Yong joined Aileron from MedImmune, Inc. where he was the head of translational pharmacology. As one of the senior members of the Global Oncology Leadership Team and research review committee, Dr. Chang played an instrumental role in formulating strategy and direction for the departments of Oncology and Translational Sciences. He also led multiple translational and product development teams. Prior to MedImmune, he worked with Bayer Pharmaceuticals, where he held positions with increasing responsibilities and contributed to the launch of Nexavar® (sorafenib). Prior to Bayer, Dr. Chang worked at Roche Pharmaceuticals.
William Bachovchin, Ph.D., Professor, Developmental, Molecular & Chemical Biology, Sackler School of Graduate and Biomedical Sciences, Tufts University
Dr Bachovchin received a BS degree in Biology from Wake Forest University a doctoral degree in Chemistry from The California Institute of Technology, and did postdoctoral work at Harvard Medical School before arriving at Tufts University School of Medicine, where he is a full Professor in the Department of Developmental, Molecular and Chemical Biology. Dr. Bachovchin is an author on more than 100 peer reviewed journal articles, and an inventor on more than 15 issued patents as well as numerous pending applications. Dr. Bachovchin is a leader in the areas of NMR spectroscopy, enzymes mechanisms and drug design and discovery, especially in areas pertaining to the post proline cleaving family of enzymes. To date three drugs designed by Dr. Bachovchin have entered human clinical trials and several more are in late stage preclinical testing. Dr. Bachovchin also serves as Executive Vice President, Chief Scientist and member of the board of directors of Arisaph pharmaceuticals, a company he co-founded in 1999. He is also a co-founder of Point Therapeutics which was a publically traded biotechnology company prior to its merger with Dara BioSciences.
Ulrich Brinkmann, Ph.D., Scientific Director, Pharma Research and Early Development, Roche
Dr. Ulrich Brinkmann heads as Expert Scientist a New Technology / Protein Engineering unit within Roche Pharma Research in Penzberg, FRG. His Ph.D thesis covered development of expression systems to produce recombinant reteplase. Subsequently, he held positions as Postoc and Associate Scientist at the NIH/NCI (Ira Pastan Lab) focusing on antibody stabilization/engineering and recombinant immunotoxins for cancer therapy. Prior to joining Roche, he served as CSO in Functional Genetics and Pharmacogenetics companies, Xantos and Epidauros respectively.
Chris Herring, Ph.D., Head, Protein Sciences, GlaxoSmithKline
Dr Chris Herring has 15 years experience within the Biotech and Biopharmaceutical Industry. He is currently head of Protein Sciences in the Biopharm Innovation group in GSK’s Biopharm R&D unit. He leads a group of >20 scientists covering all aspects of protein engineering, antigen and antibody/antibody fragment expression, purification and biophysical characterisation. He has particular expertise with half-life extension technologies, particularly GSKs AlbudAb™ technology, and led the pre-clinical development of the most clinically advanced AlbudAb™ project.
Before their acquisition by GSK he was Associate Director at Domantis Limited, the domain antibody company. He was involved from shortly after the company’s founding, enjoying the opportunity to set up the first laboratories and Pichia and E. coli expression capabilities, as well as contributing to the early development work on domain antibodies and AlbudAbs™ and several therapeutic programs. From 1998-2001 he worked for Novartis Pharma AG focussing on retrovirology and retroviral safety. Prior to this he did a post-doc in the Department of Pathology at the University of Cambridge working on retroviral gene trapping.
He completed his PhD at the University of Manchester in 1996 studying DNA repair at the Cancer Research Campaign’s Paterson Institute for Cancer Research and his BSc (Hons) in Biochemistry from the University of Surrey in 1992.
Alan T. Remaley, M.D., Ph.D., Section Chief, Lipoprotein Metabolism Laboratory, National Institutes of Health (NIH)
Alan Remaley received his B.S. in biochemistry and chemistry from the University of Pittsburgh in 1981, and a M.D. and Ph.D. in biochemistry from the University of Pittsburgh in 1987. In 1990, he completed a residency in clinical pathology at the University of Pennsylvania and became board-certified in clinical pathology in 1992. He joined the NIH in 1990 as a medical staff fellow and did a postdoctoral fellowship on lipoprotein metabolism in the Molecular Disease Branch at the NHLBI. In 1995, Dr. Remaley became a senior staff member of the Department of Laboratory Medicine at the NIH, where he is currently the Director of the Immunoassay and Special Chemistry section. In 2007, he became the Section Chief of the Lipoprotein Metabolism laboratory in the Cardiovascular and Pulmonary Branch of the NHLBI. Dr. Remaley has received numerous honors and awards over his career and is a Captain in the United States Public Health Service. He has published more than 150 peer-reviewed articles and is on the editorial board of several journals, including Journal of Lipid Research, Journal of Pediatric Biochemistry, Atherosclerosis, and Clinical Chemistry. Dr. Remaley is a member of the American Association of Clinical Chemistry (AACC), College of American Pathologists, American Heart Association, and National Lipid Association.
ChiChi Huang, Ph.D., Scientific Director, Antibody Drug Discovery, Janssen R&D, LLC
Chichi Huang is a protein chemist with industrial experience in the design and engineering of protein therapeutics. He received his Ph.D. in Biochemistry from Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA. He completed his post-doctoral training in Dr. Timothy Springer’s Lab at Harvard Medical School, for studying the structure and function of beta2 integrins. Chichi Huang spent more than five years in the Pfizer Global Research Center at Groton, Connecticut, working on vaccine design and development. Since joined Centocor, Johnson and Johnson in 2002, he has been working on several antibody and peptide therapeutic projects and some of them are or will be in clinical trials.
Jan Johansson, Ph.D., CEO and President, Artery Therapeutics, Inc.
Jan O. Johansson,M.D., Ph.D., is CEO of Artery Therapeutics Inc. He is a serial Biotech entrepreneur and has as founder and/or corporate officer helped take 3 companies’ public and raised more than $400M in private and public markets. He has published more than 60 peer-reviewed articles in the CVD area, more than 100 abstracts, and is the inventor of 30 patents.
Fredrik Frejd, Ph.D., CSO, Vice President R&D, Biopharma, Affibody AB
Prof. Fredrik Frejd is CSO and Vice President Research of Affibody AB. He is also professor at Uppsala University with special focus on development of targeting peptides for translational therapy in oncology. Dr. Frejd has over fifteen years of experience in life science research with particular expertise in tumor biology, phage display and therapeutic protein engineering of antibody fragments and alternative scaffolds. He joined Affibody AB in 2002 and received his PhD in 2001 in the group of professor Dario Neri at the Swiss Federal Institute of Technology, ETH, Zurich, where he worked on therapeutic targeting of tumoral angiogenesis.
Irwin Chaiken Ph.D., Professor, Department of Biochemistry and Molecular Biology Drexel University College of Medicine
Dr. Chaiken received a Bachelor of Arts degree in 1964, with a major in Chemistry and minor in Biology, from Brown University, followed by a Ph.D. in 1968 in Biological Chemistry from University of California Los Angeles working with Dr. Emil L. Smith on the active site of papain. After being a UCLA Postdoctoral Scholar 1968-9, he was awarded an NIH Postdoctoral Fellowship and carried out research on protein folding and interaction mechanisms 1969-70 at the National Institutes of Health in Bethesda with Dr. Christian B. Anfinsen. He became an NIH Staff Fellow and from 1973-87 was Senior Investigator at the NIH. He was Director of Macromolecular Sciences and then a Research Fellow at SmithKline Beecham R&D from 1988-95. After serving as a Research Professor at the University of Pennsylvania 1995-2003, he assumed his current position as Professor of Biochemistry and Molecular Biology at Drexel University College of Medicine. Dr. Chaiken’s Research Group uses a combination of chemical and biological approaches to investigate the fundamental nature of protein interactions in solution and cells and their roles in disease pathogenesis. Their major current focus is on the envelope protein machine that controls HIV-1 cell entry into host cells. They are using protein structure and mechanism as a basis to derive inactivators of HIV-1 and to determine their molecular and virological modes of action. Env inhibitors being discovered in this work are being evaluated for use in the development of AIDS therapeutics, microbicides and vaccines. In addition, they seek to stimulate cross-disciplinary research and education programs to reveal fundamental nanoscale mechanisms of protein machines at membrane surfaces and in cells.
Jean-Philippe Pellois, Ph.D., Associate Professor, Biochemistry and Biophysics, Texas A&M University
Jean-Philippe Pellois received a Master in Chemical Engineering from the Ecole Superieure de Chimie, Physique and Electronique, (Lyon, France) in 1999. He received a PhD in organic chemistry in 2002 from the University of Houston, Texas, in 2002. Under the guidance of Prof Xiaolian Gao, his thesis project consisted of the development of photogenerated reagents for the light-directed parallel synthesis of peptide microarrays. He joined the laboratory of Tom Muir at the Rockefeller University (NY, NY) as a postdoctoral associate in 2002. There, he developed semi-synthetic proteins that are activated with light and used these tools to study signal transduction pathways in live cells. Jean-Philippe Pellois joined the department of Biochemistry and Biophysics as an assistant professor in 2006. He was promoted to associate professor in 2012.
Joyce A. Schroeder, Ph.D., Professor, Molecular and Cellular Biology, Program in Cancer Biology, BIO 5 Institute, Arizona Cancer Center, University of Arizona
Dr. Schroeder began studying breast cancer in 1993 as a graduate student at the University of North Carolina, Chapel Hill, where she earned her PhD in Microbiology and Immunology. After earning her PhD, she went to the Mayo Clinic in Scottsdale to perform her postdoc. From the Mayo Clinic, she was hired as an Assistant Professor by the department of Molecular and Cellular Biology and the Arizona Cancer Center at the University of Arizona. Since coming to the UA in 2002, her lab has focused on understanding the molecular and cellular mechanisms of breast cancer, and that work has included the development of novel cancer therapeutics. She has published over 30 scientific articles on the mechanisms of breast cancer, including three describing novel peptide-based therapeutics. She is the inventor of multiple patents, including national and international patents on peptide-based therapeutics. Promoted to full Professor in 2013, she is also the Chief Scientific Officer of Arizona Cancer Therapeutics, a platform company designed to move peptide based cancer therapeutics to the clinic.
Hong Moulton, Ph.D., Associate Professor, Senior Researcher, Department of Biomedical Sciences, Oregon State University
Dr. Hong Moulton is a senior research Associate Professor at the Department of Biomedical Sciences of the College of Veterinary Medicine at Oregon State University. After undergraduate education in chemistry and teaching chemistry in China, Dr. Moulton moved to the US and completed her Ph.D. studying biochemistry and biophysics at Portland State University. After receiving her Ph.D, she started postdoctoral work with Dr. Jim Summerton, who invented Morpholino antisense oligos at AVI BioPharma Inc. (later renamed Sarepta Therapeutics, Inc.). Her postdoc focus was to improve systemic delivery of Morpholinos. Dr. Moulton continued working on Morpholino delivery after Dr. Summerton left the company. She invented the cell-penetrating peptide-Morpholino conjugate (known as PPMO) technology and has patented and published widely on optimization and applications of the conjugates as potential therapeutics for various infectious and genetic diseases. Dr. Moulton left AVI BioPharma as Director of Discovery Research and joined Oregon State University in 2010. She continues her work on delivery optimization of Morpholinos in her academic lab and collaborates broadly to develop the technology in various disease models.
Philippe Sarret, Ph.D., Professor, Physiology and Biophysics, University of Sherbrooke
Professor Sarret is Chair of Canadian Research in Neurophysiopharmacology of Chronic Pain, and is Director of the Center for Neurosciences Research at the University of Sherbrooke. He received his PhD at the Institute of Pharmacology in France and completed post-doctoral training at McGill University.
SOURCE
Leave a Reply