Feeds:
Posts
Comments

Posts Tagged ‘Alternate splicing’

Novartis uses a ‘dimmer switch’ medication to fine-tune gene therapy candidates

Reporter: Amandeep Kaur, BSc., MSc.

Using viral vectors, lipid nanoparticles, and other technologies, significant progress has been achieved in refining the delivery of gene treatments. However, modifications to the cargo itself are still needed to increase safety and efficacy by better controlling gene expression.

To that end, researchers at Children’s Hospital of Philadelphia (CHOP) have created a “dimmer switch” system that employs Novartis’ investigational Huntington’s disease medicine branaplam (LMI070) as a regulator to fine-tune the quantity of proteins generated from a gene therapy.

According to a new study published in Nature, the Xon system altered quantities of erythropoietin—which is used to treat anaemia associated with chronic renal disease—delivered to mice using viral vectors. The method has previously been licenced by Novartis, the maker of the Zolgensma gene therapy for spinal muscular atrophy.

The Xon system depends on a process known as “alternative splicing,” in which RNA is spliced to include or exclude specific exons of a gene, allowing the gene to code for multiple proteins. The team used branaplam, a small-molecule RNA-splicing modulator, for this platform. The medication was created to improve SMN2 gene splicing in order to cure spinal muscular atrophy. Novartis shifted its research to try the medication against Huntington’s disease after a trial failure.

A gene therapy’s payload remains dormant until oral branaplam is given, according to Xon. The medicine activates the expression of the therapy’s functional gene by causing it to splice in the desired way. Scientists from CHOP and the Novartis Institutes for BioMedical Research put the dimmer switch to the exam in an Epo gene therapy carried through adeno-associated viral vectors. The usage of branaplam increased mice Epo levels in the blood and hematocrit levels (the proportion of red blood cells to whole blood) by 60% to 70%, according to the researchers. The researchers fed the rodents branaplam again as their hematocrit decreased to baseline levels. The therapy reinduced Epo to levels similar to those seen in the initial studies, according to the researchers.

The researchers also demonstrated that the Xon system could be used to regulate progranulin expression, which is utilised to treat PGRN-deficient frontotemporal dementia and neuronal ceroid lipofuscinosis. The scientists emphasised that gene therapy requires a small treatment window to be both safe and effective.

In a statement, Beverly Davidson, Ph.D., the study’s senior author, said, “The dose of a medicine can define how high you want expression to be, and then the system can automatically ‘dim down’ at a pace corresponding to the half-life of the protein.”

“We may imagine scenarios in which a medication is used only once, such as to control the expression of foreign proteins required for gene editing, or only on a limited basis. Because the splicing modulators we examined are administered orally, compliance to control protein expression from viral vectors including Xon-based cassettes should be high.”

In gene-modifying medicines, scientists have tried a variety of approaches to alter gene expression. For example, methyl groups were utilised as a switch to turn on or off expression of genes in the gene-editing system CRISPR by a team of researchers from the Massachusetts Institute of Technology and the University of California, San Francisco.

Auxolytic, a biotech company founded by Stanford University academics, has described how knocking down a gene called UMPS could render T-cell therapies ineffective by depriving T cells of the nutrition uridine. Xon could also be tailored to work with cancer CAR-T cell therapy, according to the CHOP-Novartis researchers. The dimmer switch could help prevent cell depletion by halting CAR expression, according to the researchers. According to the researchers, such a tuneable switch could help CRISPR-based treatments by providing “a short burst” of production of CRISPR effector proteins to prevent undesirable off-target editing.

Source: https://www.fiercebiotech.com/research/novartis-fine-tunes-gene-therapy-a-huntington-s-disease-candidate-as-a-dimmer-switch?mkt_tok=Mjk0LU1RRi0wNTYAAAF-q1ives09mmSQhXDd_jhF0M11KBMt0K23Iru3ZMcZFf-vcFQwMMCxTOiWM-jHaEvtyGOM_ds_Cw6NuB9B0fr79a3Opgh32TjXaB-snz54d2xU_fw

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Gene Therapy could be a Boon to Alzheimer’s disease (AD): A first-in-human clinical trial proposed

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/03/22/gene-therapy-could-be-a-boon-to-alzheimers-disease-ad-a-first-in-human-clinical-trial-proposed/

Top Industrialization Challenges of Gene Therapy Manufacturing

Guest Authors: Dr. Mark Szczypka and Clive Glover

https://pharmaceuticalintelligence.com/2021/03/29/top-industrialization-challenges-of-gene-therapy-manufacturing/

Dysregulation of ncRNAs in association with Neurodegenerative Disorders

Curator: Amandeep Kaur

https://pharmaceuticalintelligence.com/2021/01/11/dysregulation-of-ncrnas-in-association-with-neurodegenerative-disorders/

Cancer treatment using CRISPR-based Genome Editing System 

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2021/01/09/59906/

CRISPR-Cas9 and the Power of Butterfly Gene Editing

Reporter: Madison Davis

https://pharmaceuticalintelligence.com/2020/08/23/crispr-cas9-and-the-power-of-butterfly-gene-editing/

Gene Editing for Exon 51: Why CRISPR Snipping might be better than Exon Skipping for DMD

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/23/gene-editing-for-exon-51-why-crispr-snipping-might-be-better-than-exon-skipping-for-dmd/

Gene Editing: The Role of Oligonucleotide Chips

Curators: Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/07/gene-editing-the-role-of-oligonucleotide-chips/

Cause of Alzheimer’s Discovered: protein SIRT6 role in DNA repair process – low levels enable DNA damage accumulation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/06/15/cause-of-alzheimers-discovered-protein-sirt6-role-in-dna-repair-process-low-levels-enable-dna-damage-accumulation/

Delineating a Role for CRISPR-Cas9 in Pharmaceutical Targeting

Author & Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/08/30/delineating-a-role-for-crispr-cas9-in-pharmaceutical-targeting/

Brain Science

Larry H Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/03/brain-science/

Read Full Post »