Feeds:
Posts
Comments

Posts Tagged ‘liposome’


Liposomes, Lipidomics and Metabolism

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Building a Better Liposome

Computational models suggest new design for nanoparticles used in targeted drug delivery.

http://www.technologynetworks.com/Metabolomics/news.aspx?ID=184147

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, could provide the basis for efficiently constructing new vehicles for nanodrug delivery.

Liposomes are small containers with shells made of lipids, the same material that makes up the cell membrane. In recent years, liposomes have been used for targeted drug delivery. In this process, the membrane of a drug-containing liposome is engineered to contain proteins that will recognize and interact with complementary proteins on the membrane of a diseased or dysfunctional cell. After the drug-containing liposomes are administered, they travel through the body, ideally connecting with targeted cells where they release the drug.

liposome_853x480-min.jpg

This packaging technique is often used with highly toxic nanodrugs, like chemotherapy drugs, in an attempt to prevent the free drug from damaging non-cancerous cells. However, studies of this model of delivery have shown that in many cases less than 10 percent of the drugs transported by liposomes end up in tumor cells. Often, the liposome breaks open before it reaches a tumor cell and the drug is absorbed into the body’s organs, including the liver and spleen, resulting in toxic side effects.

“Even with current forms of targeted drug delivery, treatments like chemotherapy are still very brutal. We wanted to see how we could make targeted drug delivery better,” said Markus Deserno, professor of physics at Carnegie Mellon and a member of the university’s Center for Membrane Biology and Biophysics.

Deserno and colleagues propose that targeted drug delivery can be improved by making more stable liposomes. Using three different types of computer modeling, they have shown that liposomes can be made sturdier by incorporating a nanoparticle core made of a material like gold or iron and connecting that core to the liposome’s membrane using polymer tethers. The core and tethers act as a hub-and-spoke-like scaffold and shock-absorber system that help the liposome to weather the stresses and strains it encounters as it travels through the body to its target.

Francesca Stanzione and Amadeu K. Sum of the Colorado School of Mines conducted a fine-grained simulation that looked at how the polymer tethers anchor the liposome’s membrane at an atomistic level. Roland Faller of UC Davis did a meso-scale simulation that looked how a number of tethers held on to a small patch of membrane. Each of these simulations allowed researchers to look at smaller components of the liposome, nanoparticle core and tethers, but not the entire structure.

To see the entire structure, Carnegie Mellon’s Deserno and Mingyang Hu developed a coarse-grained model that represents groupings of components rather than individual atoms. For example, one lipid in the cell membrane might have 100 atoms. In a fine-grain simulation, each atom would be represented. In Deserno’s coarse grain simulation, those atoms might be represented by only three pieces instead of 100.

“Its unfeasible to look at the complete construct at an atomistic level. There are too many atoms to consider, and the timescale is too long. Even with the most advanced supercomputer, we wouldn’t have the power to run an atom-level simulation,” Deserno said. “But the physics that matters isn’t locally specific. It’s more like soft matter physics, which can be described at a much coarser resolution.”

Deserno’s simulation allowed the researchers to see how the entire reinforced liposome construct responded to stress and strain. They proposed that if a liposome was given the right-sized hub and tethers, its membrane would be much more resilient, bending to absorb impact and pressure.

Additionally, they were able to simulate how to best assemble the liposome, hub and tether system. They found that if the hub and tether are attached and placed in a solution of lipids, and solvent conditions are suitably chosen, a correctly sized liposome would self-assemble around the hub and tethers.

The researchers hope that chemists and drug developers will one day be able to use their simulations to determine what size core and polymer tethers they would need to effectively secure a liposome designed to deliver a specific drug or other nanoparticle. Using such simulations could narrow down the design parameters, speed up the development process and reduce costs.

 

Lipotype GmbH and NIHS Collaborate

http://www.technologynetworks.com/Metabolomics/news.aspx?ID=184363

NIHS to use the Lipotype Shotgun Lipidomics Technology for lipid analysis.

Lipotype GmbH and the Nestlé Institute of Health Sciences (NIHS) have collaborated to employ the innovative Lipotype Shotgun Lipidomics Technology to analyze lipids in blood for nutritional research. Recently, Lipotype and NIHS have jointly published results of the robustness of the Lipotype Technology. Lipotype envisions a future use of its technology in clinical diagnostics screens for establishing reliable lipid diagnostic biomarkers.

Innovative Lipotype Technology for lipid analysis
The purpose of this collaboration is to enable NIHS to use the Lipotype Shotgun Lipidomics Technology for lipid analysis. The mass spectrometry-based Lipotype technology covers a broad spectrum of lipid molecules and delivers quantitative results in high-throughput. The Nestlé Institute of Health Sciences uses this technology platform for nutritional research. NIHS is a specialized biomedical research institute and is part of Nestlé’s global Research & Development network.

Joint research project reveals robustness of Lipotype Technology
During the collaboration, Lipotype and NIHS conducted a joint research project and demonstrated that the Lipotype technology was robust enough to deliver data with high precision and negligible technical variation between different sites. In addition, important features are the high coverage and throughput, which were confirmed when applying the Lipotype technology.

Lipotype envisions these as important features, required for future use in clinical diagnostics screens, in order to establish and validate reliable lipid diagnostic biomarkers. The results have been published in October 2015, in the European Journal of Lipid Science and Technology (Surma et al. “An Automated Shotgun Lipidomics Platform for High Throughput, Comprehensive, and Quantitative Analysis of Blood Plasma Intact Lipids.”).

Lipids play an important role for health and disease
Lipotype is a spin-off company of the Max-Planck-Institute of Molecular Cell Biology and Genetics in Dresden, Germany. Prof. Kai Simons, CEO of Lipotype explains: “We developed a novel Shotgun-Lipidomics technology to analyze lipids in blood and other biological samples. Our analysis is quick and covers hundreds of lipid molecules at the same time. Our technology can be used to identify disease related lipid signatures.”

 

New Treatment for Obesity Developed

http://www.technologynetworks.com/Metabolomics/news.aspx?ID=183998

Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
The treatment, which is a once-daily injectable derivative of a metabolic hormone called GLP-1 conventionally used in the treatment of type 2 diabetes, has proved successful in helping non-diabetic obese patients lose weight.

Professor John Wilding, who leads Obesity and Endocrinology research in the Institute of Ageing and Chronic Disease, investigates the pathophysiology and treatment of both obesity and type 2 diabetes and is applying his expertise in this area to work with, and often act as a consultant for, a number of large pharmaceutical companies looking to develop new treatments for obesity and diabetes.

Exciting development

Professor Wilding, said: “The biology of GLP-1 has been a focus of my research for 20 years; in particular when I was working at Hammersmith Hospital in London, I was part of the team that demonstrated that it was involved in appetite regulation; work on GLP-1 has continued during my time in Liverpool. Being involved in the development of a treatment, from the basic research right through to clinical trials in patients is very exciting”.

“It is likely that the treatment will be used initially in very specific situations, such as helping patients who are severely obese. It differs from current treatments used for diabetes, as it has stronger appetite regulating effects but no greater effect on glucose control.”

In 2014 more than 1.9 billion adults worldwide were classed as obese by the World Health Organisation; in the UK numbers have more than tripled since 1980. This Obesity can lead to other serious health-related illnesses including type 2 diabetes, hypertension and obstructive sleep apnoea as well as increasing the risk for many common cancers.

The drug has been approved in the European Union, but has not yet launched in the UK.

Professor Wilding added: “Consultancy like this can help relationship and reputation building and informs my research keeping it at the forefront of developments. It also brings many other benefits such as publications and income generation, which can help support other research, for example by such as funding for pilot projects that can lead to grant applications and investigator-initiated trials funded by the company”.

 

Evidence of How Incurable Cancer Develops

http://www.technologynetworks.com/Metabolomics/news.aspx?ID=184346

Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.

The findings could lead to more effective treatments and ways to identify those most at risk of developing the cancer.

All patients diagnosed with myeloma, a cancer of the blood-producing bone marrow, first develop a relatively benign condition called ‘monoclonal gammopathy of undetermined significance’ or ‘MGUS’.

MGUS is fairly common in the older population and only progresses to cancer in approximately one in 100 cases. However, currently there is no way of accurately predicting which patients with MGUS are likely to go on to get myeloma.

Myeloma is diagnosed in around 4,000 people each year in the UK. It specifically affects antibody-producing white blood cells found in the bone marrow, called plasma cells. The researcher team from the University of Birmingham, New Cross and Heartlands Hospitals compared the cellular chemistry of bone marrow and blood samples taken from patients with myeloma, patients with MGUS and healthy volunteers.

Surprisingly, the researchers found that the metabolic activity of the bone marrow of patients with MGUS was significantly different to plasma from healthy volunteers, but there were very few differences at all between the MGUS and myeloma samples. The research was funded by the blood cancer charity Bloodwise, which changed its name from Leukaemia & Lymphoma in September.

The findings suggest that the biggest metabolic changes occur with the development of the symptomless condition MGUS and not with the later progression to myeloma.

Dr Daniel Tennant, who led the research at the University of Birmingham, said, “Our findings show that very few changes are required for a MGUS patient to progress to myeloma as we now know virtually all patients with myeloma evolve from MGUS. A drug that interferes with these specific initial metabolic changes could make a very effective treatment for myeloma, so this is a very exciting discovery.”

The research team found over 200 products of metabolism differed between the healthy volunteers and patients with MGUS or myeloma, compared to just 26 differences between MGUS patients and myeloma patients. The researchers believe that these small changes could drive the key shifts in the bone marrow required to support myeloma growth.

Read Full Post »


Author: Tilda Barliya PhD

Ocular drug delivery is a very challenging field for pharmaceutical scientists.  The unique structure of the eye restricts the entry of drug molecules at the required site of action. The eye and its drugs are classically divided into : Anterior and Posterior segments (1).

Conventional systems like eye drops, suspensions and ointments cannot be considered optimal in  the treatment of vision threatening ocular diseases yet  more than 90% of the marketed ophthalmic formulations are in the form of eye drops.

In the majority of these topical  formulations which target the anterior chamber (the front of the eye) are washed off from the eye by various mechanisms:

  • lacrimation,
  • tear dilution
  • tear turnover
  • Moreover, human cornea comprising of epithelium, substantia propria and endothelium also restricts the ocular entry of drug molecules

Under normal condition the human eye can hold about 25–30 μl of an ophthalmic solution; however after a single blink the volume is reduced to 7–10 μl through nasolacrimal drainage which cause the drug to be systemically absorbed across the nasal mucosa or the gastrointestinal tract. A significant systemic loss from topically applied drugs also occurs from conjunctival absorption into the local circulation (4)

Thus resulting in low ocular  bioavailability of drugs with less than 5% of the drugs entering the eye.   Recently many drug efflux pumps have been identified and significant  enhancement in ocular drug absorption was achieved following their inhibition or evasion. But prolonged use of such inhibitors may result in undesirable effects.

Targeting the posterior chamber is even more difficult due to the tight junctions  of blood retinal barrier (BRB) restrict the entry of systemically administered drugs into the retina. Drugs are therefore delivered to the posterior chamber via:

  • Intravitreal injections
  • Implants
  • periocular injections

Here’s an illustration of the several ocular drug and their administration path

The success of nanoparticle systems for ocular drug delivery may depend on optimizing lipophilic-hydrophilic properties of the polymer-drug system, optimizing rates of biodegradation, and safety. Polymers used for the preparation of nanoparticles should be mucoadhesive and biocompatible. The choice of polymer plays an important role in the release kinetics of the drug from a nanoparticle system (4).

The choice of polymer plays an important role in the release kinetics of the drug from a nanoparticle system. Ocular bioavailability from a mucoadhesive dosage form will depend on the polymer’s bioadhesion characteristics, which are affected by its swelling properties, hydration time, molecular weight, and degree of crosslinking. The binding of drug depends on the physicochemical properties of the molecule as well as of the nanoparticle polymer, and also on the manufacturing process for these nanoparticle systems (4).

Other areas in which nanotechnology may be used is the use as biosensors, cell delivery and scaffolds etc (2)

Delivery of a drug via nanotechnology based product fulfills mainly three  objectives as follows:

  1. enhances drug permeation
  2. controls the release of drug
  3. targets drug

Tiwari et al (1) nicely covered different ocular delivery systems available. In this section we’ll review only few of the these drug products:

Viscosity improver:

The viscosity enhancers used are hydrophilic polymers such as cellulose, polyalcohol and polyacrylic acid. Sodium carboxy methyl cellulose is one of the most important mucoadhesion polymers having mono adhesive strength. Viscosity vehicles increases the contact time and no marked sustaining effect are seen.

Prodrugs:

Prodrugs enhance comeal drug permeability through modification of the hydrophilic or lipophilicity of the drug . The method includes modification of chemical structure of the drug molecule, thus making it selective, site specific and a safe ocular drug delivery system. Drugs with increased penetrability through prodrug formulations are epinephrine1, phenylephrine, timolol, and pilocarpine. The main indication of these drugs is to treat glaucoma thought epinephrine1 and phenylephrine are also being used to treat redness of the eye  and/or part of dialing eye-drops.

Colloidal Carriers:
Nanoparticles  provide sustained release-and prolonged therapeutic activity when retained in the cul-de-sac after  topical administration and the entrapped drug must be released from the particles at an appropriate rate. Most commonly used polymers are venous poly (alkyl cyanoacrylates), poly Scaprolactone and polylactic-co-glycolic acid, which undergo hydrolysis in tears. Enhanced permeation across the cornea was also observed when poly (epsilon-caprolactone) nanoparticles were coated with polyethylene glycol.

Liposomes:

Liposomes are lipid vesicles containing aqueous core which have been widely exploited in ocular delivery for various drug molecules.Liposomes are favorable for lipophilic drugs and not for-hydrophilic drugs. liposomes has an affinity to bind to, ocular surfaces, and release contents at optimal rates. Coating with bioadhesive polymers to liposomes, prolong the  precomea retention of liposomes. Carbopol 1342-coated pilocarpine containing liposomes were  shown to produce a longer duration of action. Ciprofloxacin (CPFX) was also formulated in  liposomal environmental which lowered tear-driven dilution in the conjunctival sac.  Multilamellar vesicles from lecithin and alpha-L-dipalmithoyl-phosphatidylcholine were used to prepare liposome containing CPFX. This approach produced sustained release of the drug  depending on the nature of the lipid composition selected.

There are many other known forms used in the industry to enhance drug penetration and bioavailability such as dendrimers, bioadhesive polymers, niosomes and microemulsions which will be discussed elsewhere.

Summary:

Drug delivery by topical and intravitreal routes cannot always be considered safe, effective and patient friendly. Drug delivery by periocular route can potentially overcome many of these limitations and also can provide sustained drug levels in  ocular pathologies affecting both segments. Transporter targeted delivery can be a promising  strategy for many drug molecules. Colloidal carriers can substantially improve the current therapy and may emerge as an alternative following their periocular administration. Ophthalmic drug delivery, more than any other route of administration, may benefit to a full extent from the characteristics of nano-sized drug particles. Other aspect of nanotechnology and ocular drug delivery will be discussed in the next chapter.

REFERENCES

1. Tiwari A and Shukla KR. Novel ocular drug delivery systems: An overview. J. Chem. Pharm. Res., 2010, 2(3):348-355

http://jocpr.com/vol2-iss3-2010/JOCPR-2010-2-3-348-355.pdf

2. Kalishwaralal K., Barathmanikanth S., Pandian SR, Deepak V and Gurunathan S.  Silver nano-a trove for retinal therapies. J Control Release  2010 Jul 14;145(2):76-90http://www.ncbi.nlm.nih.gov/pubmed/20359511

3.Cholkar K., Patel SP., Vadlapudi AD and Mitra AK. Novel Strategies for Anterior Segment Ocular Drug Delivery. J Ocul Pharmaco Ther  2012 Dec 5. [Epub ahead of print]

4. Bucolo C., Drago F and Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012; 3: 188.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486627/

5. Vega E., Gamisans F., García M. L., Chauvet A., Lacoulonche F., Egea M. A. (2008). PLGA nanospheres for the ocular delivery of flubiprofen: drug release and interactions. J. Pharm. Sci.97, 5306–5317.

Read Full Post »


Nanotechnology and HIV/AIDS Treatment

Author: Tilda Barliya, PhD

 

AIDS was first reported in 1981 followed by the identification of HIV as the cause of the disease in 1983 and is now a global pandemic that has become the leading infectious killer of adults worldwide. By 2006, more than 65 million people had been infected with the HIV virus worldwide and 25 million had died of AIDS (Merson MH. The HIV-AIDS pandemic at 25 – the global response. (1, 2). This has caused tremendous social and economic damage worldwide, with developing countries, particularly Sub-Saharan Africa, heavily affected.

A cure for HIV/AIDS has been elusive in almost 30 years of research. Early treatments focused on antiretroviral drugs that were effective only to a certain degree. The first drug, zidovudine, was approved by the US FDA in 1987, leading to the approval of a total of 25 drugs to date, many of which are also available in fixed-dose combinations and generic formulations for use in resource-limited settings (to date, only zidovudine and didanosine are available as true generics in the USA).

However, it was the advent of a class of drugs known as protease inhibitors and the introduction of triple-drug therapy in the mid-1990s that revolutionized HIV/AIDS treatment (3,4). This launched the era of highly active antiretroviral therapy (HAART), where a combination of three or more different classes of drugs are administered simultaneously.

Challenges of HIV/AIDS treatment

  • HIV resides in latent cellular and anatomical reservoirs where current drugs are unable to completely eradicate the virus.
  • Macrophages are major cellular reservoirs, which also contribute to the generation of elusive mutant viral genotypes by serving as the host for viral genetic recombination.
  • Anatomical latent reservoirs include secondary lymphoid tissue, testes, liver, kidney, lungs, the gut and the brain.
  • The major challenge facing current drug regimens is that they do not fully eramacrdicate the virus from these reservoirs; requiring patients take medications for life. Under current treatment, pills are taken daily, resulting in problems of patient adherence. The drugs also have side effects and in some people the virus develops resistance against certain drugs.

Current treatment in HIV/AIDS

The use of the HAART regimen, particularly in the developed world, has resulted in tremendous success in improving the expectancy and quality of lives for patients. However, some HAART regimens have serious side effects and, in all cases, HAART has to be taken for a lifetime, with daily dosing of one or more pills. Due to the need to take the medication daily for a lifetime, patients fail to adhere to the treatment schedule, leading to ineffective drug levels in the body and rebound of viral replication.Some patients also develop resistance to certain combinations of drugs, resulting in failure of the treatment. The absence of complete cure under current treatment underscores the great need for continued efforts in seeking innovative approaches for treatment of HIV/AIDS.

Drug resistance is mainly caused by the high genetic diversity of HIV-1 and the continuous mutation it undergoes. This problem is being addressed with individualized therapy, whereby resistance testing is performed to select a combination of drugs that is most effective for each patient (5). In addition, side effects due to toxicities of the drugs are also a concern. There are reports that patients taking HAART experience increased rates of heart disease, diabetes, liver disease, cancer and accelerated aging. Most experts agree that these effects could be due to the HIV infection itself or co-infection with another virus, such as co-infection with hepatitis C virus resulting in liver disease. However, the toxicities resulting from the drugs used in HAART could also contribute to these effects.

Under current treatment, complete eradication of the virus from the body has not been possible. The major cause for this is that the virus resides in ‘latent reservoirs’ within memory CD4+ T cells and cells of the macrophage–monocyte lineage. A major study recently found that, in addition to acting as latent reservoirs, macrophages significantly contribute to the generation of elusive mutant viral genotypes by serving as the host for viral genetic recombination (6).  The cells that harbor latent HIV are typically concentrated in specific anatomic sites, such as secondary lymphoid tissue, testes, liver, kidney, lungs, gut and the CNS. The eradication of the virus from such reservoirs is critical to the effective long-term treatment of HIV/AIDS patients.

Therefore, there is a great need to explore new approaches for developing nontoxic, lower-dosage treatment modalities that provide more sustained dosing coverage and effectively eradicate the virus from the reservoirs, avoiding the need for lifetime treatments.

Nanotechnology for HIV/AIDS treatment

The use of nanotechnology platforms for delivery of drugs is revolutionizing medicine in many areas of disease treatment.

Nanotechnology-based platforms for systemic delivery of antiretroviral drugs could have similar advantages.

  • Controlled-release delivery systems can enhance their half-lives, keeping them in circulation at therapeutic concentrations for longer periods of time. This could have major implications in improving adherence to the drugs.
  • Nanoscale delivery systems also enhance and modulate the distribution of hydrophobic and hydrophilic drugs into and within different tissues due to their small size. This particular feature of nanoscale delivery systems appears to hold the most promise for their use in clinical treatment and prevention of HIV. Specifically, targeted delivery of antiretroviral drugs to CD4+ T cells and macrophages as well as delivery to the brain and other organ systems could ensure that drugs reach latent reservoirs
  • Moreover, by controlling the release profiles of the delivery systems, drugs could be released over a longer time and at higher effective doses to the specific targets. Figure 1. Various nanoscale drug delivery systems.

Optional treatments:

  •    Antiretroviral drugs
  •    Gene Therapy
  •    Immune Therapy
  •    Prevention

An external file that holds a picture, illustration, etc.Object name is nihms180336f1.jpg Object name is nihms180336f1.jpg

The use of nanotechnology systems for delivery of antiretroviral drugs has been extensively reviewed by Nowacek et al. and Amiji et al. (7,8).

In a recent study based on polymeric systems, nanosuspensions (200 nm) of the drug rilpivirine (TMC278) stabilized by polyethylene. A series of experiments by Dou et al. showed that nanosuspension of the drug indinavir can be stabilized by a surfactant system comprised of Lipoid E80 for effective delivery to various tissues. The indinavir nanosuspensions were loaded into macrophages and their uptake was investigated. Macrophages loaded with indinavir nanosuspensions were then injected intravenously into mice, resulting in a high distribution in the lungs, liver and spleen. More significantly, the intravenous administration of a single dose of the nanoparticle-loaded macrophages in a rodent mouse model of HIV brain infection resulted in significant antiviral activity in the brain and produced measureable drug levels in the blood up to 14 days post-treatment.polypropylene glycol (poloxamer 338) and PEGylated tocopheryl succinate ester (TPGS 1000) were studied in dogs and mice. A single-dose administration of the drug in nanosuspensions resulted in sustained release over 3 months in dogs and 3 weeks in mice, compared with a half-life of 38 h for free drug. These results serve as a proof-of-concept that nanoscale drug delivery may potentially lower dosing frequency and improve adherence.

Active targeting strategies have also been employed for antiretroviral drug delivery. Macrophages, which are the major HIV reservoir cells, have various receptors on their surface such as formyl peptide, mannose, galactose and Fc receptors, which could be utilized for receptor-mediated internalization. The drug stavudine was encapsulated using various liposomes (120–200 nm) conjugated with mannose and galactose, resulting in increased cellular uptake compared with free drug or plain liposomes, and generating significant level of the drug in liver, spleen and lungs. Stavudine is a water-soluble drug with a very short serum half-life (1 h). Hence, the increased cellular uptake and sustained release in the tissues afforded by targeted liposomes is a major improvement compared with free drug. The drug zidovudine, with half-life of 1 h and low solubility, was also encapsulated in a mannose-targeted liposome made from stearylamine, showing increased localization in lymph node and spleen. An important factor to consider here is that although most of the nucleoside drugs such as stavudine and zidovudine have short serum half-lives, the clinically relevant half-life is that of the intracellular triphosphate form of the drug. For example, despite zidovudine’s 1 h half-life in plasma, it is dosed twice daily based on intracellular pharmacokinetic and clinical efficacy data. Therefore, future nanotechnology-based delivery systems will have to focus in showing significant increase of the half-lives of the encapsulated drugs to achieve a less frequent dosing such as once weekly, once-monthly or even less.

Gene Therapy for HIV/AIDS

In addition to improving existing antiretroviral therapy, there are ongoing efforts to discover alternative approaches for treatment of HIV/AIDS. One promising alternative approach is gene therapy, in which a gene is inserted into a cell to interfere with viral infection or replication. Other nucleic acid-based compounds, such as DNA, siRNA, RNA decoys, ribozymes and aptamers or protein-based agents such as fusion inhibitors and zinc-finger nucleases can also be used to interfere with viral replication.

An external file that holds a picture, illustration, etc.Object name is nihms180336f2.jpg Object name is nihms180336f2.jpg

RNAi is also considered to have therapeutic potential for HIV/AIDS. Gene silencing is induced by double stranded siRNA, which targets for destruction

he mRNA of the gene of interest. For HIV/AIDS, RNAi can either target the various stages of the viral replication cycle or various cellular targets involved in viral infection such as CD4, CCR5, and/or CXCR4, the major cell surface co-receptors responsible for viral entry. HIV replicates by reverse transcription to form DNA and uses the DNA to produce copies of its mRNA for protein synthesis; siRNA therapy could be used to knock down this viral mRNA. As with other gene therapy techniques, delivery of siRNA to specific cells and tissues has been the major challenge in realizing the potential of RNAi.

New nanotechnology platforms are tackling this problem by providing nonviral alternatives for effective and safe delivery. The first nontargeted delivery of siRNA in humans via self-assembling, cyclodextrin polymer-based nanoparticles for cancer treatment have recently entered Phase I clinical trials.

Although at an early stage, nonviral delivery of siRNA for treatment of HIV infection is also gaining ground. A fusion protein, with a peptide transduction domain and a double stranded RNA-binding domain, was used to encapsulate and deliver siRNA to T cells in vivo. CD4- and CD8-specific siRNA delivery caused RNAi responses with no adverse effects such as cyto-toxicity or immune stimulation. Similarly, a protamine-antibody fusion protein-based siRNA delivery demonstrated that siRNA knockdown of the gag gene can inhibit HIV replication in primary T cells

Single-walled nanotubes were shown to deliver CXCR4 and CD4 specific siRNA to human T cells and peripheral blood mononuclear cells. Up to 90% knockdown of CXCR4 receptors and up to 60% knockdown of CD4 expression on T cells was observed while the knockdown of CXCR4 receptors on peripheral blood mononuclear cells was as high as 60%. In a separate study, amino-terminated carbosilane dendrimers (with interior carbon-silicon bonds) were used for delivery of siRNA to HIV-infected lymphocytes.

These pioneering studies demonstrate that nonviral siRNA delivery is possible for HIV/AIDS treatment. However, more work needs to be done in optimizing the delivery systems and utilizing designs for efficient targeting and intracellular delivery. The recent developments in polymer- and liposome-based siRNA delivery systems could be optimized for targeting cells that are infected with HIV, such as T cells and macrophages. Moreover, since HIV mutates and has multiple strains with different genetic sequences, combination siRNA therapy targeting multiple genes should be pursued. For these applications, nanotechnology platforms with capability for co-delivery and targeting need to be developed specifically for HIV-susceptible cells. A macrophage and T-cell-targeted and nanotechnology-based combination gene therapy may be a promising platform for efficient HIV/AIDS treatment.

Immunotherapy for HIV/AIDS

The various treatment approaches described above focus on treating HIV/AIDS by directly targeting HIV at the level of the host cell or the virus itself. An alternative approach is immunotherapy aimed at modulating the immune response against HIV. CD8+ cytotoxic T-cell responses to acute HIV infection appear to be relatively normal, while neutralizing antibody production by B cells is delayed or even absent.

Immunotherapy is a treatment approach involving the use of immunomodulatory agents to modulate the immune response against a disease. Similar to vaccines, it is based on immunization of individuals with various immunologic formulations; however, the purpose is to treat HIV-infected patients as opposed to protect healthy individuals (preventive vaccines will be discussed in an upcoming section). The various immunotherapy approaches for HIV/AIDS could be based on delivering cytokines (such as IL-2, IL-7 and IL-15) or antigens. The development of cellular immunity, and to a large degree humoral immunity, requires antigen-presenting cells (APCs) to process and present antigens to CD4+and CD8+ T cells. Dendritic cells (DCs) are the quintessential professional APCs responsible for initiating and orchestrating the development of cellular and humoral (antibody) immunity.

Various polymeric systems have been explored for in vivo targeting of DCs and delivery of small molecules, proteins or DNAs showing potential for immunotherapy. Poly(ethylene glycol) (PEG) stabilized poly(propylene sulfide) polymer nanoparticles accumulated in DCs in lymph nodes. Following nanoparticle injection, DCs containing nanoparticles accumulated in lymph nodes, peaking at 4 days with 40–50% of DCs and other APCs having internalized nanoparticles.

In another study, nanoparticles of the copolymer poly(D,L-lacticide-co-glycolide) (PLGA) showed efficient delivery of antigens to murine bone marrow-derived DCs in vitro, suggesting their potential use in immunotherapy. More recently, a very interesting work showed that HIV p24 protein adsorbed on the surface of surfactant-free anionic poly(D,L-lactide) (PLA) nanoparticles were efficiently taken-up by mouse DCs, inducing DC maturation. he p24-nanoparticles induced enhanced cellular and mucosal immune responses in mice. Although this targeting is seen in ex vivo-generated DCs and not in vivo DCs, the efficient delivery of the antigen to DCs through the nanoparticles is an important demonstration that may eventually be applied to in vivo DC targeting.

Clinical Trial

he most clinically advanced application of nanotechnology for immunotherapy of HIV/AIDS is the DermaVir patch that has reached Phase II clinical trials (9). DermaVir is a targeted nanoparticle system based on polyethyleimine mannose (PEIm), glucose and HIV antigen coding DNA plasmid formulated into nanoparticles (~100 nm) and administered under a patch after a skin preparation. The nanoparticles are delivered to epidermal Langerhans cells that trap the nanoparticles and mature to become highly immunogenic on their way to the lymph nodes. Mature DCs containing the nanoparticles present antigens to T cells inducing cellular immunity. Preclinical studies and Phase I clinical trials showed safety and tolerability of the DermaVir patch, which led the progression to Phase II trials. This is the first nanotechnology-based immunotherapy for HIV/AIDS that has reached the clinic and encourages further work in this area.

Table 1

Summary of nanotechnology-based treatment approaches for HIV/AIDS.

Type of therapy Therapeutic agent (drug or gene) Nanotechnology delivery platform Development stage Refs.
Antiretroviral therapy Rilpivirine (TMC278) Poloxamer 338/TPGS 1000 Preclinical [35]
Indinavir Liposome-laden macrophages Preclinical [3638]
Stavudine Mannose- and galactose-targeted liposome Preclinical [3941]
Zidovudine Mannose-targeted liposome Preclinical [42]
Efavirenz Mannose-targeted dendrimer Preclinical [43,45]
Lamivudine Mannose-targeted dendrimer Preclinical [46]
Nanomaterials Fullerene derivatives Preclinical [4955]
Dendrimers Preclinical [56,57]
Silver nanoparticles Preclinical [58,59]
SDC-1721/gold nanoparticles Gold nanoparticles Preclinical [60]
Gene therapy siRNA Peptide fusion proteins, protamine–antibody fusion proteins, dendrimers, single walled carbon nanotubes, peptide–antibody conjugates Preclinical [7781]
Immunotherapy P24 protein Poly (D,L-lactide) nanoparticles/dendritic cells Preclinical [98]
Plasmid DNA Mannose-targeted polyethyleimine polymers Phase II clinical trials [99]

Note:  to open the references in the table 1, please go to ref 1 in this post to see full ref info.

Nanotechnology for HIV/AIDS prevention

The search for a safe and effective HIV/AIDS vaccine has been challenging in the almost three decades since the discovery of the disease. Recently, high-profile clinical trial failures have prompted great debate over the vaccine research, with some suggesting the need for a major focus on fundamental research, with fewer efforts on clinical trials.

The major challenges in the development of a preventive HIV/AIDS vaccine have been the extensive viral strain and sequence diversity, viral evasion of humoral and cellular immune responses, coupled with the lack of methods to elicit broadly reactive neutralizing antibodies and cytotoxic T cells. The challenge associated with delivery of any exogenous antigen (such as nanoparticles) to APCs, is that exogenous antigens require specialized ‘cross-presentation’ in order to be presented by MHC class I and activate CD8+cytotoxic T cells.

his requirement for cytosolic delivery of antigens and cross-presentation represents yet another hurdle for HIV intracellular antigen vaccine, but potentially an advantage of nanodelivery. Humoral responses (neutralizing antibodies produced by B cells) are generated to intact antigen presented on the surface for the virus, or nanoparticles, but these humoral responses typically require ‘help’ from CD4+ T cells, but rather both. Nanoparticles have potential as adjuvants and delivery systems for vaccines. Table 2 present the different approaches.

Table 2

Summary of nanotechnology developments for prevention of HIV/AIDS.

Type of preventive agent Antigen/adjuvant or drug Nanotechnology platform Development stage Refs.
Protein or peptide vaccine gp41, gp120, gp160, p24, Env, Gag, Tat Liposomes, nanoemulsion, MF59, PLA nanoparticles, poly(γ-glutamic acid) nanoparticles Preclinical [108111]
[119120]
[122125]
[128130]
DNA vaccine env, rev, gag, tat, CpG ODN Liposomes, nanoemulsion, PLA nanoparticles Preclinical [115,121]
Inactivated viral particle Inactivated HIV viral particle Polystyrene nanospheres Preclinical [126127]
Microbicides L-lysine dendrimer L-lysine dendrimer Phase I/II [136138]
PLGA nanoparticles
PSC-RANTES PLGA Preclinical [139]
siRNA Nanoparticles, lipids, cholesterol conjugation Preclinical [141144]

ODN: Oligonucleotides; PLA: Poly(D,L-lactide); PLGA: Poly(D,L-lacticide-co-glycolide).

Note:  to open the references in the table 2, please go to ref 1 in this post to see full ref info.

 

Summary

Nanotechnology can impact the treatment and prevention of HIV/AIDS with various innovative approaches. Treatment options may be improved using nanotechnology platforms for delivery of antiretroviral drugs. Controlled and sustained release of the drugs could improve patient adherence to drug regimens, increasing treatment effectiveness.

While there is exciting potential for nanomedicine in the treatment of HIV/AIDS, challenges remain to be overcome before the potential is realized. These include toxicity of nanomaterials, stability of nanoparticles in physiological conditions and their scalability for large-scale production. These are challenges general to all areas of nanomedicine and various works are underway to tackle them.

Another important consideration in investigating nanotechnology-based systems for HIV/AIDS is the economic aspect, as the hardest hit and most vulnerable populations reside in underdeveloped and economically poor countries. In the case of antiretroviral therapy, nanotherapeutics may increase the overall cost of treatment, reducing the overall value. However, if the nanotherapeutics could improve patient adherence by reducing dosing frequency as expected, and furthermore, if they can eradicate viral reservoirs leading to a sterile immunity, these advantages may effectively offset the added cost.

 

Ref:

1. Mamo T, Moseman EA., Kolishetti N., Salvadoe-Morales C., Shi J., Kuritzkes DR., Langer R., von-Adrian U and Farokhzad OF.   Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5(2): 269-295.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861897/

2. Merson MH. The HIV-AIDS pandemic at 25 – the global response. N Engl J Med.2006;354(23):2414–2417

3. Walensky RP, Paltiel AD, Losina E, et al. The survival benefits of AIDS treatment in the United States. J Infect Dis. 2006;194(1):11–19

4. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science. 2009;323(5919):1304–1307)

5.Sax PE, Cohen CJ, Kuritzkes DR. HIV Essentials. Physicians’ Press; Royal Oak, MI, USA: 2007.

6. Lamers SL, Salemi M, Galligan DC, et al. Extensive HIV-1 intra-host recombination is common in tissues with abnormal histopathology. PLoS One. 2009;4(3):E5065.

7. Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 2006;3(5):613–628.

8. Amiji MM, Vyas TK, Shah LK. Role of nanotechnology in HIV/AIDS treatment: Potential to overcome the viral reservoir challenge. Discov Med. 2006;6(34):157–162

9. Lori F, Calarota SA, Lisziewicz J. Nanochemistry-based immunotherapy for HIV-1. Curr Med Chem. 2007;14(18):1911–1919

Read Full Post »