Feeds:
Posts
Comments

Regulatory MicroRNAs in Aberrant Cholesterol Transport and Metabolism

Curator: Marzan Khan, B.Sc

Aberrant levels of lipids and cholesterol accumulation in the body lead to cardiometabolic disorders such as atherosclerosis, one of the leading causes of death in the Western World(1). The physical manifestation of this condition is the build-up of plaque along the arterial endothelium causing the arteries to constrict and resist a smooth blood flow(2). This obstructive deposition of plaque is merely the initiation of atherosclerosis and is enriched in LDL cholesterol (LDL-C) as well foam cells which are macrophages carrying an overload of toxic, oxidized LDL(2). As the condition progresses, the plaque further obstructs blood flow and creates blood clots, ultimately leading to myocardial infarction, stroke and other cardiovascular diseases(2). Therefore, LDL is referred to as “the bad cholesterol”(2).

Until now, statins are most widely prescribed as lipid-lowering drugs that inhibit the enzyme 3-hydroxy-3methylgutaryl-CoA reductase (HMGCR), the rate-limiting step in de-novo cholesterol biogenesis (1). But some people cannot continue with the medication due to it’s harmful side-effects(1). With the need to develop newer therapeutics to combat cardiovascular diseases, Harvard University researchers at Massachusetts General Hospital discovered 4 microRNAs that control cholesterol, triglyceride, and glucose homeostasis(3)

MicroRNAs are non-coding, regulatory elements approximately 22 nucleotides long, with the ability to control post-transcriptional expression of genes(3). The liver is the center for carbohydrate and lipid metabolism. Stringent regulation of endogenous LDL-receptor (LDL-R) pathway in the liver is crucial to maintain a minimal concentration of LDL particles in blood(3). A mechanism whereby peripheral tissues and macrophages can get rid of their excess LDL is mediated by ATP-binding cassette, subfamily A, member 1 (ABCA1)(3). ABCA1 consumes nascent HDL particles- dubbed as the “good cholesterol” which travel back to the liver for its contents of triglycerides and cholesterol to be excreted(3).

Genome-wide association studies (GWASs) meta-analysis carried out by the researchers disclosed 4 microRNAs –(miR-128-1, miR-148a, miR-130b, and miR-301b) to lie close to single-nucleotide polymorphisms (SNPs) associated with abnormal metabolism and transport of lipids and cholesterol(3) Experimental analyses carried out on relevant cell types such as the liver and macrophages have proven that these microRNAs bind to the 3’ UTRs of both LDL-R and ABCA1 transporters, and silence their activity. Overexpression of miR-128-1 and miR148a in mice models caused circulating HDL-C to drop. Corroborating the theory under investigation further, their inhibition led to an increased clearance of LDL from the blood and a greater accumulation in the liver(3).

That the antisense inhibition of miRNA-128-1 increased insulin signaling in mice, propels us to hypothesize that abnormal expression of miR-128-1 might cause insulin resistance in metabolic syndrome, and defective insulin signaling in hepatic steatosis and dyslipidemia(3)

Further examination of miR-148 established that Liver-X-Receptor (LXR) activation of the Sterol regulatory element-binding protein 1c (SREBP1c), the transcription factor responsible for controlling  fatty acid production and glucose metabolism, also mediates the expression of miR-148a(4,5) That the promoter region of miR-148 contained binding sites for SREBP1c was shown by chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq)(4). More specifically, SREBP1c attaches to the E-box2, E-box3 and E-box4 elements on miR-148-1a promoter sites to control its expression(4).

Earlier, the same researchers- Andres Naars and his team had found another microRNA called miR-33 to block HDL generation, and this blockage to reverse upon antisense targeting of miR-33(6).

These experimental data substantiate the theory of miRNAs being important regulators of lipoprotein receptors and transporter proteins as well as underscore the importance of employing antisense technologies to reverse their gene-silencing effects on LDL-R and ABCA1(4). Such a therapeutic approach, that will consequently lower LDL-C and promote HDL-C seems to be a promising strategy to treat atherosclerosis and other cardiovascular diseases(4).

References:

1.Goedeke L1,Wagschal A2,Fernández-Hernando C3, Näär AM4. miRNA regulation of LDL-cholesterol metabolism. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2047-2052

https://www.ncbi.nlm.nih.gov/pubmed/26968099

2.MedicalNewsToday. Joseph Nordgvist. Atherosclerosis:Causes, Symptoms and Treatments. 13.08.2015

http://www.medicalnewstoday.com/articles/247837.php

3.Wagschal A1,2, Najafi-Shoushtari SH1,2, Wang L1,2, Goedeke L3, Sinha S4, deLemos AS5, Black JC1,6, Ramírez CM3, Li Y7, Tewhey R8,9, Hatoum I10, Shah N11, Lu Y11, Kristo F1, Psychogios N4, Vrbanac V12, Lu YC13, Hla T13, de Cabo R14, Tsang JS11, Schadt E15, Sabeti PC8,9, Kathiresan S4,6,8,16, Cohen DE7, Whetstine J1,6, Chung RT5,6, Fernández-Hernando C3, Kaplan LM6,10, Bernards A1,6,16, Gerszten RE4,6, Näär AM1,2. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. . Nat Med.2015 Nov;21(11):1290

https://www.ncbi.nlm.nih.gov/pubmed/26501192

4.Goedeke L1,2,3,4, Rotllan N1,2, Canfrán-Duque A1,2, Aranda JF1,2,3, Ramírez CM1,2, Araldi E1,2,3,4, Lin CS3,4, Anderson NN5,6, Wagschal A7,8, de Cabo R9, Horton JD5,6, Lasunción MA10,11, Näär AM7,8, Suárez Y1,2,3,4, Fernández-Hernando C1,2,3,4. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med. 2015 Nov;21(11):1280-9.

https://www.ncbi.nlm.nih.gov/pubmed/26437365

5.Eberlé D1, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004 Nov;86(11):839-48.

https://www.ncbi.nlm.nih.gov/pubmed/15589694

6.Harvard Medical School. News. MicoRNAs and Metabolism.

https://hms.harvard.edu/news/micrornas-and-metabolism

7. MGH – Four microRNAs identified as playing key roles in cholesterol, lipid metabolism

http://www.massgeneral.org/about/pressrelease.aspx?id=1862

 

Other related articles published in this Open Access Online Scientific Journal include the following:

 

  • Cardiovascular Diseases, Volume Three: Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics,

on Amazon since 11/29/2015

http://www.amazon.com/dp/B018PNHJ84

 

HDL oxidation in type 2 diabetic patients

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/27/hdl-oxidation-in-type-2-diabetic-patients/

 

HDL-C: Target of Therapy – Steven E. Nissen, MD, MACC, Cleveland Clinic vs Peter Libby, MD, BWH

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/11/07/hdl-c-target-of-therapy-steven-e-nissen-md-macc-cleveland-clinic-vs-peter-libby-md-bwh/

 

High-Density Lipoprotein (HDL): An Independent Predictor of Endothelial Function & Atherosclerosis, A Modulator, An Agonist, A Biomarker for Cardiovascular Risk

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/03/31/high-density-lipoprotein-hdl-an-independent-predictor-of-endothelial-function-artherosclerosis-a-modulator-an-agonist-a-biomarker-for-cardiovascular-risk/

 

Risk of Major Cardiovascular Events by LDL-Cholesterol Level (mg/dL): Among those treated with high-dose statin therapy, more than 40% of patients failed to achieve an LDL-cholesterol target of less than 70 mg/dL.

Reporter: Aviva Lev-Ari, PhD., RN

https://pharmaceuticalintelligence.com/2014/07/29/risk-of-major-cardiovascular-events-by-ldl-cholesterol-level-mgdl-among-those-treated-with-high-dose-statin-therapy-more-than-40-of-patients-failed-to-achieve-an-ldl-cholesterol-target-of-less-th/

 

LDL, HDL, TG, ApoA1 and ApoB: Genetic Loci Associated With Plasma Concentration of these Biomarkers – A Genome-Wide Analysis With Replication

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/12/18/ldl-hdl-tg-apoa1-and-apob-genetic-loci-associated-with-plasma-concentration-of-these-biomarkers-a-genome-wide-analysis-with-replication/

 

Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/15/two-mutations-in-a-pcsk9-gene-eliminates-a-protein-involve-in-controlling-ldl-cholesterol/

Artherogenesis: Predictor of CVD – the Smaller and Denser LDL Particles

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/11/15/artherogenesis-predictor-of-cvd-the-smaller-and-denser-ldl-particles/

 

A Concise Review of Cardiovascular Biomarkers of Hypertension

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/04/25/a-concise-review-of-cardiovascular-biomarkers-of-hypertension/

 

Triglycerides: Is it a Risk Factor or a Risk Marker for Atherosclerosis and Cardiovascular Disease ? The Impact of Genetic Mutations on (ANGPTL4) Gene, encoder of (angiopoietin-like 4) Protein, inhibitor of Lipoprotein Lipase

Reporters, Curators and Authors: Aviva Lev-Ari, PhD, RN and Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/13/triglycerides-is-it-a-risk-factor-or-a-risk-marker-for-atherosclerosis-and-cardiovascular-disease-the-impact-of-genetic-mutations-on-angptl4-gene-encoder-of-angiopoietin-like-4-protein-that-in/

 

Excess Eating, Overweight, and Diabetic

Larry H Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/15/excess-eating-overweight-and-diabetic/

 

Obesity Issues

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/12/obesity-issues/

 

Advertisements

2017 MassBio Annual Meeting  March 30, 2017 8:00 AM – March 31, 2017 4:00 PM, Royal Sonesta Boston, Cambridge MA

Reporter: Aviva Lev-Ari, PhD, RN

 Leaders in Pharmaceutical Business Intelligence will cover the event

Aviva Lev-Ari, PhD, RN

will be streaming content using Social Media from the Royal Sonesta Boston on 3/30 and 3/31 in

REAL TIME

massbio-am17-banner

2017 MassBio Annual Meeting

March 30, 2017 8:00 AM March 31, 2017 4:00 PM
Royal Sonesta Boston40 Edwin Land BoulevardCambridge MA US 02142

 

UPDATED on 3/2/2017

Governor Charlie Baker to Address MassBio’s Annual Meeting

MassBio is thrilled to announce that Governor Charlie Baker will address attendees of MassBio’s 2017 Annual Meeting, which focuses on the most critical challenges facing the Massachusetts life sciences industry. 

Check out some recent news stories on Governor Baker:  

We’re #1: US News & World Report Ranks Massachusetts Best State

CBS Boston, 2/28/2017

Massachusetts Puts $39 Million Behind STEM Education

CivSource, 2/22/2017

Baker backs immigrant visas for Mass. firms

The Boston Globe, 2/4/2017

Plenary Sessions

Value: Biotech in the Era of Real-World Evidence
It is a time of great change in healthcare, as patients seek insight and engagement in the development of treatments, policymakers disagree on whether to regulate the industry more or less, and the market shifts from volume-based to value-based payment models. With scientific discovery advancing faster than innovations to our insurance and payment models, how do biopharma companies plan for bringing new treatments to market?

Convergence
We will discuss the trends toward convergence in drugs, diagnostics, devices and digital health

Cancer Moonshot: Where Des it Go From Here?

Better Business Track

The Next Generation
What are the challenges facing young researchers and new entrepreneurs today? We’ will discuss workforce development, diversity, the funding environment and more.

Changes in the Valley of Death
There is much hand-wringing over the challenges of getting early-stage funding today. But there has always been a “valley of death” in biotech. How is today’s valley different than in years past? Is it really harder to raise money today? How is the diverse and fragmented funding environment making the process harder or easier?

Emerging Markets in the Global Landscape
How are emerging markets and today’s global landscape impacting biopharma strategy?

Trends in Science Track

CNS
We will discuss current research and trends in Parkinson’s, Alzheimer’s, and other CNS diseases

CRISPR and What’s Next
A look at where CRISPR technology is heading and the next generation of gene editing tools (CAS9, Cpf1, etc.)

Pain & Addiction
We all understand the devastation that prescription drug addiction is causing in our society. But we can’t eliminate addiction until we discover a non-addictive method for treating pain. What’s next for pain?

Aging
As the population ages and lives longer, there is significant opportunity in research and treating diseases of aging. We will discuss osteoarthritis, hearing loss, Alzheimer’s, dementia and other health conditions related to aging.

Convergence Track (New for 2017!)

Funding Issues at the Intersections
Despite the hype about cross-industry collaboration and convergence, it is hard to raise money for technologies at the intersections of these industries. Who is funding convergent ideas and how do you sell them?

Big Data Analytics Possibilities

Next Generation Diagnostics

FDA Policy

 

SOURCE

https://www.massbio.org/events/2017-massbio-annual-meeting-1473?utm_campaign=2017-annual-meeting&utm_medium=display&utm_source=endpoints-banner&utm_content=&utm_term=


Researchers determine how part of the endoplasmic reticulum gets its TUBULAR shape

Reporter: Aviva Lev-Ari, PhD, RN

 

It’s Tubular

Researchers determine how part of the endoplasmic reticulum gets its shape

From the double membrane enclosing the cell nucleus to the deep infolds of the mitochondria, each organelle in our cells has a distinctive silhouette that makes it ideally suited to do its job. How these shapes arise, however, is largely a mystery.

Harvard Medical School cell biologists have now cracked the code for part of the endoplasmic reticulum (ER), a protein- and fat-making organelle that consists of stacked sheets in some parts and a complex network of tubules in others.

Producing the ER’s tubular network is “surprisingly simple,” requiring just three ingredients, principal investigator Tom Rapoport, professor of cell biology at HMS, and colleagues report Feb. 22 in Nature.

SOURCE

https://hms.harvard.edu/news/its-tubular-dude?utm_source=Silverpop&utm_medium=email&utm_term=s1&utm_content=2.27.17.HMS


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

During pregnancy, the baby is mostly protected from harmful microorganisms by the amniotic sac, but recent research suggests the baby could be exposed to small quantities of microbes from the placenta, amniotic fluid, umbilical cord blood and fetal membranes. One theory is that any possible prenatal exposure could ‘pre-seed’ the infant microbiome. In other words, to set the right conditions for the ‘main seeding event’ for founding the infant microbiome.

When a mother gives birth vaginally and if she breastfeeds, she passes on colonies of essential microbes to her baby. This continues a chain of maternal heritage that stretches through female ancestry for thousands of generations, if all have been vaginally born and breastfed. This means a child’s microbiome, that is the trillions of microorganisms that live on and in him or her, will resemble the microbiome of his/her mother, the grandmother, the great-grandmother and so on, if all have been vaginally born and breastfed.

As soon as the mother’s waters break, suddenly the baby is exposed to a wave of the mother’s vaginal microbes that wash over the baby in the birth canal. They coat the baby’s skin, and enter the baby’s eyes, ears, nose and some are swallowed to be sent down into the gut. More microbes form of the mother’s gut microbes join the colonization through contact with the mother’s faecal matter. Many more microbes come from every breath, from every touch including skin-to-skin contact with the mother and of course, from breastfeeding.

With formula feeding, the baby won’t receive the 700 species of microbes found in breast milk. Inside breast milk, there are special sugars called human milk oligosaccharides (HMO’s) that are indigestible by the baby. These sugars are designed to feed the mother’s microbes newly arrived in the baby’s gut. By multiplying quickly, the ‘good’ bacteria crowd out any potentially harmful pathogens. These ‘good’ bacteria help train the baby’s naive immune system, teaching it to identify what is to be tolerated and what is pathogen to be attacked. This leads to the optimal training of the infant immune system resulting in a child’s best possible lifelong health.

With C-section birth and formula feeding, the baby is not likely to acquire the full complement of the mother’s vaginal, gut and breast milk microbes. Therefore, the baby’s microbiome is not likely to closely resemble the mother’s microbiome. A baby born by C-section is likely to have a different microbiome from its mother, its grandmother, its great-grandmother and so on. C-section breaks the chain of maternal heritage and this break can never be restored.

The long term effect of an altered microbiome for a child’s lifelong health is still to be proven, but many studies link C-section with a significantly increased risk for developing asthma, Type 1 diabetes, celiac disease and obesity. Scientists might not yet have all the answers, but the picture that is forming is that C-section and formula feeding could be significantly impacting the health of the next generation. Through the transgenerational aspect to birth, it could even be impacting the health of future generations.

References:

https://blogs.scientificamerican.com/guest-blog/shortchanging-a-babys-microbiome/

https://www.ncbi.nlm.nih.gov/pubmed/23926244

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/25290507

https://www.ncbi.nlm.nih.gov/pubmed/25974306

https://www.ncbi.nlm.nih.gov/pubmed/24637604

https://www.ncbi.nlm.nih.gov/pubmed/22911969

https://www.ncbi.nlm.nih.gov/pubmed/25650398

https://www.ncbi.nlm.nih.gov/pubmed/27362264

https://www.ncbi.nlm.nih.gov/pubmed/27306663

http://www.mdpi.com/1099-4300/14/11/2036

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464665/

https://www.ncbi.nlm.nih.gov/pubmed/24848255

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/28112736

http://ndnr.com/gastrointestinal/the-infant-microbiome-how-environmental-maternal-factors-influence-its-development/


Using “Cerebral Organoids” to Trace the Elemental Composition of a Developing Brain

Curator: Marzan Khan, B.Sc

A research focused on the detection of micronutrient accumulation in the developing brain has been conducted recently by a team of scientific researchers in Brazil(1). Their study was comprised of a cutting-edge technology human cerebral organoids, which are a close equivalent of the embryonic brain, in in-vitro models to identify some of the minerals essential during brain development using synchroton radiation(1). Since the majority of studies done on this matter have relied on samples from animal models, the adult brain or post-mortem tissue, this technique has been dubbed the “closest and most complete study system to date for understanding human neural development and its pathological manifestations”(2).

Cerebral organoids are three-dimensional miniature structures derived from human pluripotent stem cells that further differentiate into structures closely resembling the developing brain(2). Concentrating on two different time points during the developmental progression, the researchers illustrated the micronutrient content during an interval of high cell division marked on day 30 as well as day 40 when the organoids were starting to become mature neurons that secrete neurotransmitters, arranging into layers and forming synapses(2).

Synchrotron radiation X-ray fluorescence (SR-XRF) spectroscopy was used to discern each type of element present(2). After an incident beam of X-ray was directed at the sample, each atom emitted a distinct photon signature(2). Phosphorus (P), Potassium (P), Sulphur (S), Calcium (Ca), Iron (Fe), and Zinc (Zn) were found to be present in the samples in significant concentrations(2). Manganese (Mn), Nickel (Ni) and Copper (Cu) were also detected, but in negligible amounts, and therefore tagged as “ultratrace” elements(2). The distribution of these minerals, their concentration as well as their occurrence in pairs were examined at each interval(2).

Phosphorus was discovered to be the most abundant element in the cerebral organoid samples(3). Between the two time points at 30 days (cell proliferation) and 45 days (neuronal maturation) there was a marked decrease in P content(2). Since phosphorus is a major component of nucleotides and phospholipids, this reduction was clarified as a shift from a stage of cell division that requires the production of DNA and phospholipids, to a migratory and differentiation phase(2). Potassium levels were maintained during both phases, substantiating its role in mitotic cell division as well as cell migration over long distances(2). Sulfur levels were reportedly high at 30 days and 45 days(2). It was hypothesized that this element was responsible for the patterning of the organoids(2). Calcium, known to control transcription factors involved in neuronal differentiation and survival were detected in the micromolar range, along with zinc and iron(2). Zinc commits the differentiation of pluripotent stem cells into neuronal cells and iron is necessary for neuronal tissue expansion(2).

The cells in an embryo start to differentiate very early on- the neural plate is formed on the 16th day of contraception, which further folds and bulges out to become the nervous system (containing the brain and spinal cord regions)(3). Nutrients obtained from the mother are the primary sources of diet and energy for a developing embryo to fully differentiate and specialize into different organs(2). Lack of proper nutrition in pregnant mothers has been linked to many neurodegenerative diseases occurring in their progeny(2). Spina bifida which is characterized by the incomplete development of the brain and spinal cord, is a classic example of maternal malnutrition(2,4). Paucity of minerals in the diet of pregnant women are known to hamper learning and memory in children(2). Even Schizophrenia, Parkinson’s and Huntington’s disease have been associated to malnourishment(2). By showing the different types of elements present in statistically significant concentrations in cerebral organoids, the results of this study underscore the necessity of a healthy nourishment available to mothers during pregnancy for optimal development of the fetal brain(2).

References:

1.Kenny Walter. 02/10/2017. Study focuses on Microcutrients in Human Minibrains. RandDMagazine.http://www.rdmag.com/article/2017/02/study-focuses-micronutrients-human-minibrains?et_cid=5825577&et_rid=461755519&type=cta&et_cid=5825577&et_rid=461755519&linkid=conten

2.Sartore RC, Cardoso SC, Lages YVM, Paraguassu JM, Stelling MP, Madeiro da Costa RF, Guimaraes MZ, Pérez CA, Rehen SK.(2017)Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ 5:e2927https://doi.org/10.7717/peerj.292

3.Fetal Development: Baby’s Nervous System and Brain; What to expect; 20/07/201. http://www.whattoexpect.com/pregnancy/fetal-brain-nervous-system/

4. Spina Bifida Fact Sheet; National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD 20892

https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Spina-Bifida-Fact-Sheet

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Zinc-Finger Nucleases (ZFNs) and Transcription Activator–Like Effector Nucleases (TALENs)

Reporter: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/03/04/talens-and-zfns/

 

Calcium Regulation Key Mechanism Discovered: New Potential for Neuro-degenerative Diseases Drug Development

Reporter: Aviva Lev-Ari, PhD., RN

https://pharmaceuticalintelligence.com/2013/01/17/calcium-regulation-key-mechanism-discovered-new-potential-for-neuro-degenerative-diseases-drug-development/

 

How Methionine Imbalance with Sulfur-Insufficiency Leads to Hyperhomocysteinemia

Curator: Larry H Bernstein, MD, FACP

https://pharmaceuticalintelligence.com/2013/04/04/sulfur-deficiency-leads_to_hyperhomocysteinemia/

 

Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker

Co-Author of the FIRST Article: Larry H. Bernstein, MD, FCAP

Reviewer and Curator of the SECOND and of the THIRD Articles: Larry H. Bernstein, MD, FCAP

Article Architecture Curator: Aviva Lev-Ari, PhD., RN

https://pharmaceuticalintelligence.com/2013/12/10/epo-as-therapeutics-for-anemia-in-chf/

 

The relationship of S amino acids to marasmic and kwashiorkor PEM

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/10/24/the-relationship-of-s-amino-acids-to-marasmic-and-kwashiorkor-pem/

 

Mutations in a Sodium-gated Potassium Channel Subunit Gene related to a subset of severe Nocturnal Frontal Lobe Epilepsy

Reporter: Aviva Lev-Ari, PhD., RN

https://pharmaceuticalintelligence.com/2012/10/22/mutations-in-a-sodium-gated-potassium-channel-subunit-gene-to-a-subset-of-severe-nocturnal-frontal-lobe-epilepsy/

 

Copper and its role on “progressive neurodegeneration” and death

Reported by: Dr. Venkat S. Karra, Ph.D.

https://pharmaceuticalintelligence.com/2012/08/14/copper-and-its-role-on-progressive-neurodegeneration-and-death/

 

Metabolomics, Metabonomics and Functional Nutrition: the next step in nutritional metabolism and biotherapeutics

Reviewer and Curator: Larry H. Bernstein, MD, FCAP 

https://pharmaceuticalintelligence.com/2014/08/22/metabolomics-metabonomics-and-functional-nutrition-the-next-step-in-nutritional-metabolism-and-biotherapeutics/

 

Nutrition and Aging

Curator: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/10/25/nutrition-and-aging/

 

The Three Parent Technique to Avoid Mitochondrial Disease in Embryo

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2016/10/07/the-three-parent-technique-to-avoid-mitochondrial-disease-in-embryo/

 


Precision Medicine Market size worth $87.7BIL by 2023

 Article Publication Request by

Jui Kate | SEO Analyst

Global Market Insights

E-mail: jui.k@gminsights.com | Web: www.gminsights.com 

Published Date: July 25, 2016   Author: Global Market Insights, Inc.

Precision Medicine Market size is expected to reach USD 87.79 billion by 2023; as per a new research report by Global Market Insights, Inc.
Increasing demand for personalized medicine specifically in cancer treatments and advancements in new healthcare technologies will drive precision global medicine market size. Favorable government regulations and standards will help sustain revenue growth.
The individualized diagnosis approach has dramatically improved owing to large-scale biologic database development, efficient methods for patient characterization, and computational tools to analyze large data sets. Emphasizing the need for public health database, The White House dedicated USD 55 million for creation of its largest database ‘Precision Medicine Initiative’ (PMI).

 

 Request Sample Buy NowInquiry Before Buying

 

Recent research advances have helped expand benefits to various aspects of healthcare by enabling better understanding of disease mechanisms, assessment of disease risks and prediction of optimal therapy. A large number of investments in diagnostic research will further accelerate the shift from treatment to preventive medicine in healthcare.
Gene sequencing market size was over USD 8 billion in 2015. Post announcement of the PMI, FDA has recently issued draft guidelines on next generation sequencing-based tests to develop a new kind of healthcare that takes into account individual differences in people’s genes, environments and lifestyles.
Browse key industry insights spread across 94 pages with 85 market data tables & 62 figures & charts from the report, “Precision Medicine Market Size By Technology (Big Data Analytics, Gene Sequencing, Drug Discovery, Bioinformatics, Companion Diagnostics), By Application (Oncology, CNS, Immunology, Respiratory), Industry Analysis Report, Regional Outlook (U.S., Canada, Germany, UK, France, Scandinavia, Italy, Japan, China, India, Singapore, Mexico, Brazil, South Africa, UAE, Qatar, Saudi Arabia), Application Potential, Price Trends, Competitive Market Share & Forecast, 2016 – 2023” in detail along with the table of contents:

https://www.gminsights.com/industry-analysis/precision-medicine-market
Key insights from the report include:

  • Drug discovery technology contributed over USD 9 billion to the global precision medicine market size in 2015, and is estimated to expand at 8.3% CAGR from 2016 to 2023. NGS and other such technologies will open new opportunities for industry participants. Regulation of NGS based test development will help create regulatory processes for genetic test development and application.
  • The global companion diagnostics market is predicted to reach USD 17 billion by 2023. It plays a significant role in development of targeted drugs, thus speeding up the move towards more precise and individualized pharmacotherapy.
  • Oncology application was over 30% of the precision medicine market share in 2015. There have been significant developments taken place across the globe in the area of breast cancer and other related cancers. Predictive biomarkers in lung cancer therapy targets receptors such as c-ros oncogene 1 receptor tyrosine kinase (ROS1), Epidermal Growth Factor Receptor (EGFR), Immune Checkpoints, and Anaplastic Lymphoma Kinase (ALK).
  • U.S. precision medicine market share accounted for over 65% of the North American revenue in 2015, and is anticipated to continue witnessing growth due to increased government initiatives. For instance, The President’s budget in 2016 has allocated USD 130 million to the NIH for development of a national research cohort of a million voluntary U.S. participants, and the data is linked to EHR for easy access to academic scientists and physicians.
  • China contributed 25% to the Asia Pacific precision medicine market size in 2015, mainly due to considerable government initiatives supporting growth in the region. Pfizer, Novartis, Covance, Medtronics, Qiagen, Quest Diagnostics, Roche Holding, Teva Pharmaceuticals, and Biocrates Life Sciences are some notable industry participants.

Global Market Insights has segmented the precision medicine industry on the basis of technology, application, and region:

  • Precision Medicine Market Technology Analysis (Revenue, USD Million; 2013 – 2023)
    • Big data analytics
    • Gene Sequencing
    • Drug discovery
    • Bio Informatics
    • Companion Diagnostics
  • Precision Medicine Market Application Analysis (Revenue, USD Million; 2013 – 2023)
    • Oncology
    • CNS
    • Immunology
    • Respiratory
  • Precision Medicine Market Regional Analysis (Revenue, USD Million; 2013 – 2023)
    • North America
      • U.S.
      • Canada
    • Europe
      • UK
      • Germany
      • France
      • Italy
      • Scandinavia
    • Asia Pacific
      • China
      • Japan
      • India
      • Singapore
    • Latin America
      • Mexico
      • Brazil
    • MEA
      • South Africa
      • Saudi Arabia
      • Qatar
      • UAE

SOURCE

From: Jui Kate <jui.k@gminsights.com>

Date: Friday, February 17, 2017 at 6:35 AM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Article Publication Request


Pharmacovigilance Market size to exceed $8BIL by 2024

Article Publication Request by

Jui Kate | SEO Analyst

Global Market Insights

E-mail: jui.k@gminsights.com | Web: www.gminsights.com 

Published Date: December 13, 2016   Author: Global Market Insights, Inc.

Pharmacovigilance Market size is expected to exceed USD 8 billion by 2024; according to a new research report by Global Market Insights, Inc.
Growing number of adverse drug reactions (ADRs) coupled with increasing prevalence of chronic diseases will drive global pharmacovigilance market size. Furthermore, growing geriatric population base is associated with increased drug consumption for treatment of chronic diseases such as diabetes, oncology cardiovascular and respiratory disorders.
Rising demand for drugs has driven the need for new drug development through clinical trials. Pharmaceutical companies are collaborating with CROs to streamline R&D, medical writing, manufacturing operations, clinical data management and other pharmacovigilance activities to achieve greater efficiency at reduced cost. Outsourcing should enable better regulatory compliance, higher productivity and improved strategic outcomes spurring pharmacovigilance market growth.
Increasing number of National pharmacovigilance centers across the globe along with rising patient awareness regarding adverse drug events will stimulate global pharmacovigilance market growth. However, lack of skilled professionals and risk associated with data security and web-based drug sales will hamper business expansion.

 

Request Sample Buy NowInquiry Before Buying

The phase IV clinical trial market size was valued more than USD 2 billion in 2015 and is expected to grow at over 10% by 2024. Phase IV studies ensure that restrictions could be imposed on a drug being sold depending on its safety performance.
Contract outsourcing market size was valued over USD 1 billion in 2015, poised to grow at 12.2% from 2016 to 2024 and surpass USD 4 billion by 2024. Contract outsourcing reduces overall economic losses linked with drug approval delays and trial failures. It is widely opted by companies to avoid huge investments and delegate such activities to specialized firms in this area.
U.S. pharmacovigilance market size was valued at more than USD 1 billion in 2015, with expectations to grow at 10.7% over the forecast period, owing to favorable governmental regulations, huge clinical trial volume and presence of large scale research companies. Additionally, growing patient concerns related to the drug safety and rising adverse drug events related mortality rates will positively impact pharmacovigilance market share.
Spain pharmacovigilance market size was valued over USD 230 million in 2015 and should witness 10.2% CAGR from 2016 to 2024, to surpass USD 550 million by 2024. Rising demand for new drug development, growing geriatric population and increasing outsourcing by pharmaceutical companies should fuel regional industry growth. India pharmacovigilance market growth was more than 14% from 2016 to 2024, and expected to reach USD 668 million by 2024. The strong and robust growth is attributed to increasing number of clinical trials conducted across Asian countries, owing to low cost trial advantage over developed countries.
Key industry players such as Quintiles offer literature monitoring, safety aggregate reporting, benefit risk management, analytics and signal detection services. Synowledge offer signal detection services, which help clinical experts determine medical significance with the use of hi-tech visualization techniques.
Many industry participants are focusing on outsourcing pharmacovigilance services as a feasible cost reduction avenue. Outsourcing helps achieve better pharmacovigilance through regulatory compliance, better quality, enhanced productivity and improved strategic outcomes.
Browse key industry insights spread across 111 pages with 66 market data tables & 6 figures& charts from the report, “Pharmacovigilance Market Size By Clinical Trial Phase (Preclinical, Phase I, Phase II, Phase III, Phase IV), By Service Provider (In-house, Contract outsourcing) Industry Analysis Report, Regional Outlook (U.S., Canada, UK, Germany, Spain, Italy, France, China, Japan, India, Australia, Argentina, Brazil, Mexico, South Africa, Saudi Arabia, UAE, Qatar), Application Potential, Price Trends, Competitive Market Share & Forecast, 2016 – 2024” in detail along with the table of contents:

https://www.gminsights.com/industry-analysis/pharmacovigilance-market
Key insights from the report include:

  • Europe pharmacovigilance market size was over USD 790 million in 2015 growing at anticipated close to 10% CAGR. Germany, UK, Spain together contributed for over 70% of regional pharmacovigilance market share in 2015.
  • Brazil pharmacovigilance market share was more than 60% of regional revenue for 2015, with target slated to exceed USD 300 million by 2024. South Africa pharmacovigilance market size was more than USD 37 million and anticipated for over 5% growth.
  • Phase III clinical trial market size was more than USD 450 million in 2015, with expectations to grow over 10% CAGR, due to increasing requirement for drug safety monitoring and evaluation.
  • Contract outsourcing held more than 50% of pharmacovigilance market share with target market size of over USD 1.7 billion in 2015. Increasing outsourcing trend adopted by pharmaceutical companies will serve as a high impact driver for the business growth.
  • Global pharmacovigilance market will be driven by collaboration between pharmaceutical companies and contract research organizations (CROs). The key industry participants include Accenture, Quintiles, Cognizant Technology Solutions, Boehringer Ingelheim, Covance, PAREXEL International Corporation, Bristol-Myers Squibb, Janssen Research & Development, Synowlwedge, United BioSource Corporation and ICON.

Pharmacovigilance market research report includes in-depth industry coverage with estimates & forecast in terms of revenue in USD million from 2012 to 2024, for the following segments:

Pharmacovigilance Market By Clinical Trial

  • Preclinical
  • Phase I
  • Phase II
  • Phase III
  • Phase IV

Pharmacovigilance Market By End User

  • In-house
  • Contract outsourcing

 

The above information is provided for the following regions and countries:

  • North America
    • U.S.
    • Canada
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
  • Asia Pacific
    • China
    • Japan
    • India
    • Australia
  • Latin America
    • Argentina
    • Brazil
    • Mexico
  • Middle East and Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Qatar

SOURCE

From: Jui Kate <jui.k@gminsights.com>

Date: Friday, February 17, 2017 at 6:35 AM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Article Publication Request