Posts Tagged ‘hydrogel’

Update 6/11/2020

CRISPR-IL used to develop next-gen genome editing products

  1. Haifa-based Pluristem Therapeutics is a regenerative medicine company that plans to develop next-generation multi-species genome editing products for human, plant and animal DNA that could improve work done in the pharma, agriculture and aquaculture industries.
  2. The CRISPR-IL consortium includes Sheba Medical Center and Schneider Children’s Medical Center, Bar-Ilan University, Ben-Gurion University of the Negev, Hebrew University of Jerusalem, the Weizmann Institute of Science, IDC Herzliya and Tel-Aviv University.
  3. This consortium is also joined by Pluristem Therapeutics, which plans to bring together a team of multi-disciplinary experts to develop artificial intelligence  based end-to-end genome-editing solutions.
  4. The genome editing product designed by Pluristerm should improve existing technology.
  5. The project also includes “the computational design of on-target DNA modification, with minimal accidental, off-target modifications, improve modification efficiency.
  6. The product provides an accurate measuring tool to ensure the desired modification.



CRISPR cuts turn gels into biological watchdogs

Reporter: Irina Robu, PhD

Genome editing if of significant interest in the prevention and treatment of human diseases including single-gene disorders such as cystic fibrosis, hemophilia and sickle cell disease. It also shows great promise for the prevention and treatment of diseases such as cancer, heart disease, mental illness and human immunodeficiency virus infection. However, ethical concerns arise when genome editing, using technologies such as CRISPR-Cas9 is used to alter human genomes.

James Collins, bioengineer at MIT and his team worked with water-filled polymers that are held together by strands of DNA, known as DNA hydrogels. To alter the properties of these materials, these scientists turned to a form of CRISPR that uses a DNA-snipping enzyme called Cas12a, which can be programed to recognize a specific DNA sequence. The enzyme then cuts its target DNA strand, then severs single strands of DNA nearby. This property lets scientists to build a series of CRISPR-controlled hydrogels encapsulating a target DNA sequence and single strands of DNA, which break up after Cas12a identifies the target sequence in a stimulus. The break-up of the single DNA strands activates the hydrogels to change shape or completely dissolve, releasing a payload.

According to Collins and his team, the programmed hydrogels will release enzymes, small molecules and human cells as part of a smart therapy in response to stimuli. However, in order to make it a smart therapeutic, the researchers in collaboration with Dan Luo, bioengineer at Cornell University placed the CRISPR- controlled hydrogels into electric circuits. The circuit is switched off in response to the detection of the genetic material of harmful pathogens such as Ebola virus and methicillin-resistant Staphylococcus aureus. The team used these hydrogels to develop a prototype diagnostic tool that sends a wireless signal to identify Ebola in lab samples.

Yet, it is evident that these CRISPR-controlled hydrogels show great potential for the prevention and treatment of diseases.






Read Full Post »

New ways to Heal Damage after a Heart Attack

Reporter: Irina Robu, PhD

More than a million Americans have heart attacks each year. Researchers at Northwestern University and University of California, San Diego have designed a minimally invasive platform to deliver nanomaterial that turns body’s inflammatory response into a signal rather than means of scarring following a heart attack. The researchers from Northwestern-UC San Diego established a novel way to deliver a bioactivated, biodegradable, regenerative substance through a noninvasive catheter without clogging in-vivo in a rat model.

When a person has a heart attack, the extracellular matrix is stripped away and scar tissue forms in its place, decreasing the heart’s functionality. The team injects a self-assembling peptide that seeks out a target, the heart’s damaged extracellular matrix and the solution is then activated by the inflammatory environment itself and gels.

The team’s preclinical research was led in rats and segmented into two proof-of-concept tests. The first test recognized that the material could be fed through a catheter without clogging and without interacting with human blood. The second determined whether the self-assembling peptides could find their way to the damaged tissue, bypassing healthy heart tissue. The scientists attached a fluorescent tag to the self-assembling peptides and imaged the heart to see where the peptides eventually settled.

Researchers now know that when they remove the fluorescent tag and replace it with a therapeutic, the self-assembling peptides will locate to the affected area of the heart. One hurdle is that catheter delivery in a rodent model is far more complicated than the same procedure in a human.

A major innovation occurred when sterically constrained cyclic peptides, which flow freely during delivery and rapidly assemble into hydrogels when they come in contact with disease associated enzymes. The process creates conditions for the peptides to better self-assemble on top one another and form the scaffold that resembles the native extracellular matrix.




Read Full Post »

3D Print Shape-Shifting Smart Gel

Reporter: Irina Robu, PhD

Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment play a crucial role in tissue engineering and they are ubiquitously in our lives, including in contact lenses, diapers and the human body.

Researchers at Rutgers have invented a printing method for a smart gel that can be used to create materials for transporting small molecules like drugs to human organs. The approach includes printing a 3D object with a hydrogel that changes shape over time when temperature changes. The potential of the smart hydrogels could be to create a new are of soft robotics and enable new applications in flexible sensors and actuators, biomedical devices and platforms or scaffolds for cells to grow.

Rutgers engineers operated with a hydrogel that has been in use for decades in devices that generate motion and biomedical applications such as scaffolds for cells to grow on. The engineers learned how to precisely control hydrogel growth and shrinkage. In temperatures below 32 degrees Celsius, the hydrogel absorbs more water and swells in size. When temperatures exceed 32 degrees Celsius, the hydrogel begins to expel water and shrinks, the study showed.

According to the Rutgers engineers, the objects they can produce with the hydrogel range from the width of a human hair to several millimeters long. The engineers also showed that they can grow one area of a 3D-printed object by changing temperatures.



Read Full Post »

Bio-inks and 3D BioPrinting

Curator: Stephen J. Williams, Ph.D.


Bio-ink is a material made from living cells that behaves much like a liquid, allowing people to “print” it in order to create a desired shape. This material was developed by researchers at the University of Missouri, Columbia, with the goal of someday being able to do things like print replacements for failing organs. This technology is only in the very early stages of testing and development, but it shows promise.

To make bio-ink, scientists create a slurry of cells that can be loaded into a cartridge and inserted into a specially designed printer, along with another cartridge containing a gel known as bio-paper. After inputting the standards for the thing they want to print, the researchers trigger the printer, and the cartridges alternate layers to build a three dimensional structure, with the bio-paper creating a supportive matrix that the ink can thrive on.

Through a process that is not yet totally understood, the individual droplets fuse together, eventually latticing upwards through the bio-paper to create a solid structure. Understanding this process and the point at which cells differentiate to accomplish different tasks is an important part of creating a usable material; perhaps someday hospitals will be able to use it to generate tissue and organs for use by their patients.


The most obvious potential use for bio-ink is in skin grafting. With this technology, labs could quickly create sheets of skin for burn victims and other people who might be in need of grafts. By creating grafts derived from the patient’s own cells, it could reduce the risk of rejection and scarring. Bio-ink could also be used to make replacements for vascular material removed during surgeries, allowing people to receive new veins and arteries.

Eventually, entire organs could be constructed from this material. Since organs are in short supply around the world, bio-ink could potentially save untold numbers of lives, as patients would no longer have to wait on the transplant list for new organs. The use of such organs could also allay fears about contaminated organ supplies or unscrupulous organ acquisition methods.



Universal Matrix for 3D Tissue Printing

BioInkTM is a chemically-defined hydrogel to support growth of different cell types. It allows cell adhesion, mimics the natural extracellular matrix and is biodegradable.

BioInkTM is provided as a ready-to-use chemically-defined hydrogel to print 3D tissue models. Exclusively designed for regenHU’s BioFactory® and 3DDiscovery® tissue and bio-printers.

A versatile, chemically-defined hydrogel, supporting cell attachment, growth, differentiation and migration. The BioInkTM is suitable for long-term tissue cultivation (in vitro human dermis for up to 7 weeks).








A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation

  • a Cartilage Engineering + Regeneration Laboratory, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
  • b Biomaterials Department, INNOVENT e.V. Jena, Prüssingstrasse 27 B, 07745 Jena, Germany
  • c AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland


Layer-by-layer bioprinting is a logical choice for the fabrication of stratified tissues like articular cartilage. Printing of viable organ replacements, however, is dependent on bioinks with appropriate rheological and cytocompatible properties. In cartilage engineering, photocrosslinkable glycosaminoglycan-based hydrogels are chondrogenic, but alone have generally poor printing properties. By blending the thermoresponsive polymer poly(N-isopropylacrylamide) grafted hyaluronan (HA-pNIPAAM) with methacrylated hyaluronan (HAMA), high-resolution scaffolds with good viability were printed. HA-pNIPAAM provided fast gelation and immediate post-printing structural fidelity, while HAMA ensured long-term mechanical stability upon photocrosslinking. The bioink was evaluated for rheological properties, swelling behavior, printability and biocompatibility of encapsulated bovine chondrocytes. Elution of HA-pNIPAAM from the scaffold was necessary to obtain good viability. HA-pNIPAAM can therefore be used to support extrusion of a range of biopolymers which undergo tandem gelation, thereby facilitating the printing of cell-laden, stratified cartilage constructs with zonally varying composition and stiffness.

bioink presentation_1 bioink presentation_2 bioink presentation_3 bioink presentation_4 bioink presentation_5 bioink presentation_6 bioink presentation_7 bioink presentation_8 bioink presentation_9 bioink presentation_10 bioink presentation_11 bioink presentation_12 bioink presentation_13 bioink presentation_14 bioink presentation_15



For more information see:



And for more information on biopaper and methodology please see this pdf file courtesy of The First Symposium on BioPrinting in Tissue Engineering (see file) biopaper presentation



Read Full Post »

Immunopathogenesis Advances in Diabetes and Lymphomas

Larry H Bernstein, MD, FCAP, Curator




 Science team says they’ve taken another step toward a potential cure for diabetes

Wednesday, January 27, 2016 | By John Carroll
Building on years of work on developing new insulin-producing cells that could one day control glucose levels and cure diabetes, a group of investigators led by scientists at MIT and Boston Children’s Hospital say they’ve developed a promising new gel capsule that protected the cells from an immune system assault.

Dr. Jose Oberholzer, a professor of bioengineering at the University of Illinois at Chicago, tested a variety of chemically modified alginate hydrogel spheres to see which ones would be best at protecting the islet cells created from human stem cells.

The team concluded that 1.5-millimeter spheres of triazole-thiomorphine dioxide (TMTD) alginate were best at protecting the cells and allowing insulin to seep out without spurring an errant immune system attack or the development of scar tissue–two key threats to making this work in humans.

They maintained healthy glucose levels in the rodents for 174 days, the equivalent to decades for humans.

“While this is a very promising step towards an eventual cure for diabetes, a lot more testing is needed to ensure that the islet cells don’t de-differentiate back toward their stem-cell states or become cancerous,” said Oberholzer.

Millions of diabetics have effectively controlled the chronic disease with existing therapies, but there’s still a huge unmet medical need to consider. While diabetes companies like Novo ($NVO) like to cite the fact that a third of diabetics have the disease under control, a third are on meds but don’t control it well and a third haven’t been diagnosed. An actual cure for the disease, which has been growing by leaps and bounds all over the world, would be revolutionary.

Their study was published in Nature Medicine.

– here’s the release
– get the journal abstract


Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice

Arturo J Vegas, Omid Veiseh, Mads Gürtler,…, Robert Langer & Daniel G Anderson

Nature Medicine (2016)   http://dx.doi.org:/10.1038/nm.4030

The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes1. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically2, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue3. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-β cells), which may represent an unlimited source of human cells for pancreas replacement therapy4. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier56. However, clinical implementation has been challenging because of host immune responses to the implant materials7. Here we report the first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-β cells. SC-β cells were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin, which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.

Subject terms: Regenerative medicine  Type 1 diabetes

Figure 1: SC-β cells encapsulated with TMTD alginate sustain normoglycemia in STZ-treated immune-competent C57BL/6J mice.close

(a) Top, schematic representation of the last three stages of differentiation of human embryonic stem cells to SC-β cells. Stage 4 cells (pancreatic progenitors 2) co-express pancreatic and duodenal homeobox 1 (PDX-1) and NK6 homeobox 1…


Potential Cure for Diabetes Discovered  
http://www.rdmag.com/news/2016/01/potential-cure-diabetes-discovered   01/27/2016

Two new scientific papers published on Monday demonstrated tools that could result in potential therapies for patients diagnosed with type 1 diabetes, a condition in which the immune system limits the production of insulin, typically in adolescents.  See —

Bubble Technique Could Create Type 1 Diabetes Therapy


Two new scientific papers published on Monday demonstrated tools that could result in potential therapies for patients diagnosed with type 1 diabetes, a condition in which the immune system limits the production of insulin, typically in adolescents.

Previous treatments for this disease have involved injecting beta cells from dead donors into patients to help their pancreas generate healthy-insulin cells, writes STAT. However, this method has resulted in the immune system targeting these new cells as “foreign” so transplant recipients have had to take immune-suppressing medications for the rest of their lives.

The first paper published in the journal Nature Biotechnology explained how scientists analyzed a seaweed extract called alginate to gauge its effectiveness in supporting the flow of sugar and insulin between cells and the body. An estimated 774 variations were tested in mice and monkeys in which results indicated only a handful could reduce the body’s response to foreign invaders, explains STAT.

The other paper in the journal Nature Medicine detailed a process where scientists developed small capsules infused with alginate and embryonic stem cells. A six-month observation period revealed this “protective bubble” technique “began to produce insulin in response to blood glucose levels” after transplantation in mice subjects with a condition similar to type 1 diabetes, reports Gizmodo.

Essentially, this cured the mice of their diabetes, and the beta cells worked as well as the body’s own cells, according to the researchers. Human trials could still be a few years away, but this experiment could yield a safer alternative to insulin injections.


Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates

Arturo J Vegas, Omid Veiseh, Joshua C Doloff, et al.

Nature Biotechnology (2016)    http://dx.doi.org:/10.1038/nbt.3462

The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient1, 2, 3, 4, 5, 6. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.


Video 1: Intravital imaging of 300 μm SLG20 microcapsules.

Video 2: Intravital imaging of 300 μm Z2-Y12 microcapsules.

Video 3: NHP Laparoscopic procedure for the retrieval of Z2-Y12 spheres.


Clinical Focus on Follicular Lymphoma: CAR T-Cells Active in Relapsed Blood Cancers

MedPage Today

CAR T-Cells Active in Relapsed Blood Cancers

Complete responses in half of patients

by Charles Bankhead

Patients with relapsed and refractory B-cell malignancies have responded to treatment with modified T-cells added to conventional chemotherapy, data from an ongoing Swedish study showed.

Six of the first 11 evaluable patients achieved complete responses with increasing doses of chimeric antigen receptor (CAR)-modified T-cells that target the CD19 antigen, although two subsequently relapsed.

Five of the six responding patients received preconditioning chemotherapy the day before CAR T-cell infusion, in addition to chemotherapy administered up to 90 days before T-cell infusion to reduce tumor-cell burden. The remaining five patients received only the earlier chemotherapy, according to a presentation at the inaugural International Cancer Immunotherapy Conference in New York City.

“The complete responses in lymphoma patients despite the fact that they received only low doses of preconditioning compared with other published data surprised us,” Angelica Loskog, PhD, of Uppsala University in Sweden, said in a statement. “The strategy of both providing tumor-reductive chemotherapy for weeks prior to CAR T-cell infusion combined with preconditioning just before CAR T-cell infusion seems to offer promise.

CAR T-cells have demonstrated activity in a variety of studies involving patients with B-cell malignancies. Much of the work has focused on patients with leukemia, including trials in the U.S. B-cell lymphomas have proven more difficult to treat with CAR T-cells because the diseases are associated with higher concentration of immunosuppressive cells that can inhibit CAR T-cell activity, said Loskog. Moreover, blood-vessel abnormalities and accumulation of fibrotic tissue can hinder tumor penetration by therapeutic T-cells.

Each laboratory has its own process for modifying T-cells. Loskog and colleagues in Sweden and at Baylor College of Medicine in Houston have developed third-generation CAR T-cells that contain signaling domains for CD28 and 4-1BB, which act as co-stimulatory molecules. In preclinical models, third-generation CAR T-cells have demonstrated increased activation and proliferation in response to antigen challenge. Additionally, they have chosen to experiment with tumor burden-reducing chemotherapy, a preconditioning chemotherapy to counter the higher immunosuppressive cell count in lymphoma patients.

Loskog reported details of an ongoing phase I/IIa clinical trial involving patients with relapsed or refractory CD19-positive B-cell malignancies. Altogether, investigators have treated 12 patients with increasing doses (2 x 107 to 2 x 108 cells/m2) of CAR T-cells. One patient (with mixed follicular/Burkitt lymphoma) has yet to be evaluated for response. The remaining 11 included three patients with diffuse large B-cell lymphoma (DLBCL), one with follicular lymphoma transformed to DLBCL, two with chronic lymphocytic leukemia, two with mantle cell lymphoma, and three with acute lymphoblastic leukemia.

All of the patients with lymphoma received standard tumor cell-reducing chemotherapy, beginning 3 to 90 days before administration of CAR T-cells. Beginning with the sixth patient in the cohort, patients also received preconditioning chemotherapy (cyclophosphamide/fludarabine) 1 to 2 days before T-cell infusion to reduce the number and activity of immunosuppressive cells.

Cytokine release syndrome is a common effect of CAR T-cell therapy and occurred in several patients treated. In general, the syndrome has been manageable and has not interfered with treatment or response to the modified T-cells.

On the basis of the data produced thus far, the investigators have proceeded with patient evaluation and enrollment. They have already begun cell production for the next patient that will be treated with autologous CAR T-cells.

Although laboratories have their own cell production techniques, the treatment strategy has broad applicability to the treatment of B-cell malignancies, said Loskog.

“The results using different CARs and different techniques for manufacturing them is very similar in the clinic, in terms of initial complete response,” she told MedPage Today. “By using 4-1BB as a co-stimulator in the CAR intracellular region, it seems possible to achieve long-term complete responses in some patients. However, preconditioning of the patients with chemotherapy to reduce the regulatory immune cells seems crucial for effect.”

In an effort to manage the effect of patients’ immunosuppressive cells, the investigators have begun studying each the immune profile before and after treatment. Preliminary results suggest that the population of immunosuppressive cells increases over time, which has the potential to interfere with CAR T-cell responses.

“Especially for lymphoma, it may be crucial to deplete such cells prior to CAR infusion,” said Loskog. “It may even be necessary with supportive treatment for some time after CAR T-cell infusion. A supportive treatment needs to specifically regulate the suppressive cells while sparing the effect of CARs.”

The immunotherapy conference is jointly sponsored by the American Association for Cancer Research, the Cancer Research Institute, the Association for Cancer Immunotherapy, and the European Academy of Tumor Immunology.


PET-CT Best for FL Response Assessment

PET-CT associated with better progression-free and overall survival rates in follicular lymphoma.

Kay Jackson

PET-CT (PET) rather than contrast-enhanced CT scanning should be considered the new gold standard for response assessment after first-line rituximab therapy for high-tumor burden follicular lymphoma (FL), a pooled analysis of a central review in three multicenter studies indicated.

Read Full Post »

FDA Guidance On Source Animal, Product, Preclinical and Clinical Issues Concerning the Use of Xenotranspantation Products in Humans – Implications for 3D BioPrinting of Regenerative Tissue

Reporter: Stephen J. Williams, Ph.D.


The FDA has submitted Final Guidance on use xeno-transplanted animal tissue, products, and cells into human and their use in medical procedures. Although the draft guidance was to expand on previous guidelines to prevent the introduction, transmission, and spread of communicable diseases, this updated draft may have implications for use of such tissue in the emerging medical 3D printing field.

This document is to provide guidance on the production, testing and evaluation of products intended for use in xenotransplantation. The guidance includes scientific questions that should be addressed by sponsors during protocol development and during the preparation of submissions to the Food and Drug Administration (FDA), e.g., Investigational New Drug Application (IND) and Biologics License Application (BLA). This guidance document finalizes the draft guidance of the same title dated February 2001.

For the purpose of this document, xenotransplantation refers to any procedure that involves the transplantation, implantation, or infusion into a human recipient of either (a) live cells, tissues, or organs from a nonhuman animal source, or (b) human body fluids, cells, tissues or organs that have had ex vivo contact with live nonhuman animal cells, tissues or organs. For the purpose of this document, xenotransplantation products include live cells, tissues or organs used in xenotransplantation. (See Definitions in section I.C.)

This document presents issues that should be considered in addressing the safety of viable materials obtained from animal sources and intended for clinical use in humans. The potential threat to both human and animal welfare from zoonotic or other infectious agents warrants careful characterization of animal sources of cells, tissues, and organs. This document addresses issues such as the characterization of source animals, source animal husbandry practices, characterization of xenotransplantation products, considerations for the xenotransplantation product manufacturing facility, appropriate preclinical models for xenotransplantation protocols, and monitoring of recipients of xenotransplantation products. This document recommends specific practices intended to prevent the introduction and spread of infectious agents of animal origin into the human population. FDA expects that new methods proposed by sponsors to address specific issues will be scientifically rigorous and that sufficient data will be presented to justify their use.

Examples of procedures involving xenotransplantation products include:

  • transplantation of xenogeneic hearts, kidneys, or pancreatic tissue to treat organ failure,
  • implantation of neural cells to ameliorate neurological degenerative diseases,
  • administration of human cells previously cultured ex vivo with live nonhuman animal antigen-presenting or feeder cells, and
  • extracorporeal perfusion of a patient’s blood or blood component perfused through an intact animal organ or isolated cells contained in a device to treat liver failure.

The guidance addresses issues such as:

  1. Clinical Protocol Review
  2. Xenotransplantation Site
  3. Criteria for Patient Selection
  4. Risk/Benefit Assessment
  5. Screening for Infectious Agents
  6. Patient Follow-up
  7. Archiving of Patient Plasma and Tissue Specimens
  8. Health Records and Data Management
  9. Informed Consent
  10. Responsibility of the Sponsor in Informing the Patient of New Scientific Information

A full copy of the PDF can be found below for reference:


An example of the need for this guidance in conjunction with 3D printing technology can be understood from the below article (source http://www.geneticliteracyproject.org/2015/09/03/pig-us-xenotransplantation-new-age-chimeric-organs/)

Pig in us: Xenotransplantation and new age of chimeric organs

David Warmflash | September 3, 2015 | Genetic Literacy Project

Imagine stripping out the failing components of an old car — the engine, transmission, exhaust system and all of those parts — leaving just the old body and other structural elements. Replace those old mechanical parts with a brand new electric, hydrogen powered, biofuel, nuclear or whatever kind of engine you want and now you have a brand new car. It has an old frame, but that’s okay. The frame wasn’t causing the problem, and it can live on for years, undamaged.

When challenged to design internal organs, tissue engineers are taking a similar approach, particularly with the most complex organs, like the heart, liver and kidneys. These organs have three dimensional structures that are elaborate, not just at the gross anatomic level, but in microscopic anatomy too. Some day, their complex connective tissue scaffolding, the stroma, might be synthesized from the needed collagen proteins with advanced 3-D printing. But biomedical engineering is not there yet, so right now the best candidate for organ scaffolding comes from one of humanity’s favorite farm animals: the pig.

Chimera alarmists connecting with anti-biotechnology movements might cringe at the thought of building new human organs starting with pig tissue, but if you’re using only the organ scaffolding and building a working organ from there, pig organs may actually be more desirable than those donated by humans.

How big is the anti-chimerite movement?

Unlike anti-GMO and anti-vaccination activists, there really aren’t too many anti-chemerites around. Nevertheless, there is a presence on the web of people who express concern about mixing of humans and non-human animals. Presently, much of their concern is focussed on the growing of human organs inside non-human animals, pigs included. One anti-chemerite has written that it could be a problem for the following reason:

Once a human organ is grown inside a pig, that pig is no longer fully a pig. And without a doubt, that organ will no longer be a fully human organ after it is grown inside the pig. Those receiving those organs will be allowing human-animal hybrid organs to be implanted into them. Most people would be absolutely shocked to learn some of the things that are currently being done in the name of science.

The blog goes on to express alarm about the use of human genes in rice and from there morphs into an off the shelf garden variety anti-GMO tirade, though with an an anti-chemeric current running through it. The concern about making pigs a little bit human and humans a little bit pig becomes a concern about making rice a little bit human. But the concern about fusing tissues and genes of humans and other species does not fit with the trend in modern medicine.

Utilization of pig tissue enters a new age 


A porcine human ear for xenotransplantation. source: The Scientist

For decades, pig, bovine and other non-human tissues have been used in medicine. People are walking around with pig and cow heart valves. Diabetics used to get a lot of insulin from pigs and cows, although today, thanks to genetic engineering, they’re getting human insulin produced by microorganisms modified genetically to make human insulin, which is safer and more effective.

When it comes to building new organs from old ones, however, pig organs could actually be superior for a couple of reasons. For one thing, there’s no availability problem with pigs. Their hearts and other organs also have all of the crucial components of the extracellular matrix that makes up an organ’s scaffolding. But unlike human organs, the pig organs don’t tend to carry or transfer human diseases. That is a major advantage that makes them ideal starting material. Plus there is another advantage: typically, the hearts of human cadavers are damaged, either because heart disease is what killed the human owner or because resuscitation efforts aimed at restarting the heart of a dying person using electrical jolts and powerful drugs.

Rebuilding an old organ into a new one

How then does the process work? Whether starting with a donated human or pig organ, there are several possible methods. But what they all have in common is that only the scaffolding of the original organ is retained. Just like the engine and transmission of the old car, the working tissue is removed, usually using detergents. One promising technique that has been applied to engineer new hearts is being tested by researchers at the University of Pittsburgh. Detergents pumped into the aorta attached to a donated heart (donated by a human cadaver, or pig or cow). The pressure keeps the aortic valve closed, so the detergents to into the coronary arteries and through the myocardial (heart muscle) and endocardial (lining over the muscle inside the heart chambers) tissue, which thus gets dissolved over the course of days. What’s left is just the stroma tissue, forming a scaffold. But that scaffold has signaling factors that enable embryonic stem cells, or specially programed adult pleuripotent cells to become all of the needed cells for a new heart.

Eventually, 3-D printing technology may reach the point when no donated scaffolding is needed, but that’s not the case quite yet, plus with a pig scaffolding all of the needed signaling factors are there and they work just as well as those in a human heart scaffold. All of this can lead to a scenario, possibly very soon, in which organs are made using off-the-self scaffolding from pig organs, ready to produce a custom-made heart using stem or other cells donated by new organ’s recipient.

David Warmflash is an astrobiologist, physician, and science writer. Follow @CosmicEvolution to read what he is saying on Twitter.

And a Great Article in The Scientist by Dr. Ed Yong Entitled

Replacement Parts

To cope with a growing shortage of hearts, livers, and lungs suitable for transplant, some scientists are genetically engineering pigs, while others are growing organs in the lab.

By Ed Yong | August 1, 2012

Source: http://www.the-scientist.com/?articles.view/articleNo/32409/title/Replacement-Parts/

.. where Joseph Vacanti and David Cooper figured that using

“engineered pigs without the a-1,3-galactosyltransferase gene that produces the a-gal residues. In addition, the pigs carry human cell-membrane proteins such as CD55 and CD46 that prevent the host’s complement system from assembling and attacking the foreign cells”

thereby limiting rejection of the xenotransplated tissue.

In addition to issues related to animal virus transmission the issue of optimal scaffolds for organs as well as the advantages which 3D Printing would have in mass production of organs is discussed:

To Vacanti, artificial scaffolds are the future of organ engineering, and the only way in which organs for transplantation could be mass-produced. “You should be able to make them on demand, with low-cost materials and manufacturing technologies,” he says. That is relatively simple for organs like tracheas or bladders, which are just hollow tubes or sacs. Even though it is far more difficult for the lung or liver, which have complicated structures, Vacanti thinks it will be possible to simulate their architecture with computer models, and fabricate them with modern printing technology. (See “3-D Printing,” The Scientist, July 2012.) “They obey very ordered rules, so you can reduce it down to a series of algorithms, which can help you design them,” he says. But Taylor says that even if the architecture is correct, the scaffold would still need to contain the right surface molecules to guide the growth of any added cells. “It seems a bit of an overkill when nature has already done the work for us,” she says.

Other articles of FDA Guidance and 3D Bio Printing on this Open Access Journal Include:

Read Full Post »




Scientists at University of Stuttgart, University of Virgnia and Koc Universityhave 3D printed multimaterial parts with multidirectional stiffness gradients. By mixing their expertise in materials engineering and digital processing, scientists create a series of sets of cellulose-based filaments with modifying mechanical and rheological properties, despite having similar compositions. The materials were then used in conjunction with each other to program specific deformation profiles into complex parts.

Functionally graded materials (FGMs) have a gradually changing composition or structure and can be designed to create a precise stiffness profile in each part was then generated. When printed, the samples could be deformed in distinctive profiles due the alteration in stiffness across the geometry of the parts. Eventually, scientists had ‘programmed’ a set of desired deformation geometries.




Three-dimensional printed microfibers used to reinforce hydrogels

Reporter: Irina Robu, PhD

The field of tissue engineering has continued to evolve with the intention to restore, replace and regenerate loss and damaged tissues. Engineered tissues have been able to help millions of people which why their development and design is important. The tree components that are needed for this are cells, scaffold and bioactive factors. 

The scaffold is responsible for providing the structure and support needed to provide tissue development but they differ in composition, design, material properties, structure properties etc. In the spite of everything,  the concept of a scaffold is to mimic the function of the native extracellular matrix by creating similar architectural, biological and mechanical features.

One classic material that is used for tissue engineering are hydrogels, which are designed to provide a hydrated 3D environment of the cells which act as cell carriers. But, hydrogels are unable to provide the needed mechanical properties needed to form extracellular matrix.

Taking the account the limitation, scientists from Medical Center at Utrecht University created a 3D dimensional microfiber network through melt electrospinning to reinforce hydrogel architecture, in order to provide mechanical and biological stable environment for engineered constructs. They took into account that they hydrogel mechanical properties should match those of the target tissue to promote enhanced performance. 

Researchers in the past have tried to mimic  the architecture of native tissues including reinforced nanofibers, woven scaffolds, non-woven scaffolds and microfibers. The typical manufacturing technique used is electrospinning which is advantageous because it creates a more accurate structural mimic of the native tissue extracellular matrix. 

In the study published by researchers at University of Utrecht Medical Center, use melt electrospinning. This electrospinning assembles the fibers layer by layer, supplying regulated control over assembly architecture. The researchers aimed to create a support for gelatin methacrylamide hydrogels with high porosity fiber scaffolds made of poly(ε-caprolactone) (PCL). The composite was created by infusing and crosslinking methacrylamide hydrogels within the PCL scaffolds. To stimulate the level of hydrogel reinforcement, a mathematical model was developed using the scaffold parameters. 

The study showed that the reinforced hydrogel stiffness was identical to that of articular cartilage as it increased up to 54-fold compared to hydrogels or microfiber scaffolds alone. The microfiber network can be used by various types of hydrogels which indicates that  they can offer mechanically and biologically favorable environments for various types of engineered tissues.

This current development in the field of tissue engineering will allow for the creation and use of resistant and effectual hydrogels to treat tissue loss or damage. The organized fibrous PCL scaffolds within the hydrogel allow for a healthy and diversified cell culture environment, because the hydrogel degrades over a few months which allows for new tissue to integrate into the scaffold. The PCL scaffold will in turn disintegrate within years, acting as a reinforcing network that will develop functional tissue. This reinforced hydrogel represents a step towards creating biomechanical functional tissue constructs and hopefully, more research will someday lead to the creation of the ideal, modify according to individual specifications engineered tissue replacement.



Read Full Post »

Rat Hearts Healed by a Protein-rich Gel

Reporter: Irina Robu, PhD

John Hopkins researchers  created a sticky protein rich gel which appear to help stem cells stay on or in rat hearts and have the ability to restore metabolism after transplantation in addition to improving cardiac function after simulated heart attacks.  When the heart beats, it pushes cells injected into the heart wall out in the lungs before they get a chance to attach to the wall.  John Hopkins researchers applied a hydrogel to the beating rat hearts to improve cell stem uptake to the heart muscle and speed up tissue healing after the heart attack.

In an effort solve the difficulties, M. Roselle Abraham, M.D. along with  Angel Chan, M.D., Ph.D. and  Jennifer Elisseeff, Ph.D. developed a hydrogel that combines serum, a protein-filled component of blood that contains everything cells need to survive, with hyaluronic acid, a molecule already present in the heart and in the matrix that surrounds and supports cells.

By mixing these two components, the researchers created a sticky gel that functioned as a synthetic stem cell niche: It encapsulated stem cells while nurturing them and rapidly restored their metabolism.

Their tests showed that encapsulated stem embryonic and adult stem cells survived at levels near 100 percent but still proliferated and survived for days.  According to their article being published in December 2015 issue of Biomaterials, when cell-gel combination was injected into the living hearts about 73% of cells were retained in the hearts after an hour and for the seven days the cells encapsulated into the hydrogel increased in number.

In rat models of heart attack damage, Abraham’s team shows that the hydrogel with encapsulated cells improved pumping efficiency of the left ventricle over the four weeks after injection by 15 percent, compared with 8 percent from cells in solution.  Abraham’s group showed that even injections of the hydrogel by itself improved heart function and increased the number of blood vessels in the region of the heart attack.



Read Full Post »

Author: Tilda Barliya PhD

Peripheral nerve lacerations are common injuries and often cause long lasting disability (1a) due to pain, paralyzed muscles and loss of adequate sensory feedback from the nerve receptors in the target organs such as skin, joints and muscles (1b).

Nerve injuries are common and typically affect young adults with the majority of injuries occur from trauma or complication of surgery. Traumatic injuries can occur due to stretch, crush, laceration (sharps or bone fragments), and ischemia, and are more frequent in wartime, i.e., blast exposure. Domestic or occupational accidents with glass, knifes of machinery may also occur.

Statistics show that peripheral nervous system (PNS) injuries were 87% from trauma and 12% due to surgery (one-third tumor related, two-thirds non– tumor related). Nerve injuries occurred 81% of the  time in the upper extremities and 11% in the lower extremities, with the balance in other locations (4).

Injury to the PNS can range from severe, leading to major loss of function or intractable neuropathic pain, to mild, with some sensory and/or motor deficits affecting quality of life.

Functional recovery after nerve injury involves a complex series of steps, each of which may delay or impair the regenerative process. In cases involving any degree of nerve injury, it is useful initially to categorize these regenerative steps anatomically on a gross level. The sequence of regeneration may be divided into anatomical zones (4):

  1. the neuronal cell body
  2. the segment between the cell body and the injury site
  3. the injury site itself
  4. the distal segment between the injury site and the end organ
  5. the end organ itself

A delay in regeneration or unsuccessful regeneration may be attributed to pathological changes that impede normal reparative processes at one or more of these zones.

Nanotechnology for regenerative nerves: by Gunilla Elam

Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability.

In the past few years several techniques have been used to try and repair nerve defects and include:

  • Coaptation
  • Nerve autograph
  • Biological or polymeric nerve conduits (hollow nerve guidance conduits)

For example, When a direct repair of the two nerve ends is not possible, synthetic or biological nerve conduits are typically used for small nerve gaps of 1 cm or less. For extensive nerve damage over a few centimeters in length, the nerve autograft is the “gold standard” technique. The biggest challenges, however, are the limited number and length of available donor nerves, the additional surgery associated with donor site morbidity, and the few effective nerve graft alternatives.

Degeneration of the axonal segment in the distal nerve is an inevitable consequence of disconnection, yet the distal nerve support structure as well as the final target must maintain efficacy to guide and facilitate appropriate axonal regeneration. There is currently no clinical practice targeted at maintaining fidelity of the distal pathway/target, and only a small number of researchers are investigating ways to preserve the distal nerve segment, such as the use of electrical stimulation or localized drug delivery. Thus development of tissue-engineered nerve graft may be a better matched alternative (6,7,9).

The guidance conduit serves several important roles for nerve regeneration such as:
a) directing axonal sprouting from the regenerating nerve
b) protecting the regenerating nerve by restricting the infiltration of fibrous tissue
c) providing a pathway for diffusion of neurotropic and neurotophic factors

Early guidance conduits were primarily made of silicone due to its stability under physiological conditions, biocompatibility, flexibility as well as ease of processing into tubular structures. Although silicone  conduits have proven reasonably successful as conduits for small gap lengths in animal models (<5 mm). The non-biodegradability of silicone conduits has limited its application as a strategy for long-term repair and recovery. Tubes also eventually become encapsulated with fibrous tissue, which leads to nerve compression, requiring additional surgical intervention to remove the tube. Another limiting factor with inert guidance conduits is that they provide little or no nerve regeneration for gap lengths over 10 mm in the PNS unless exogenous growth factors are used (6,7).

In animal studies, biodegradable nerve guidance conduits have provided a feasible alternative, preventing neuroma formation and infiltration of fibrous tissue. Biodegradable conduits have been fabricated from natural or synthetic materials such as collagen, chitosan and poly-L-lactic acid.

Nanostructured Scaffolds for Neural Tissue Engineering: Fabrication and Design

At the micro- and nanoscale, cells of the CNS/PNS reside within functional microenvironments consisting of physical structures including pores, ridges, and fibers that make up the extracellular matrix (ECM) and plasma membrane cell surfaces of closely apposed neighboring cells. Cell-cell and cell-matrix interactions contribute to the formation and function of this architecture, dictating signaling and maintenance roles in the adult tissue, based on a complex synergy between biophysical (e.g. contact-mediated signaling, synapse control), and biochemical factors (e.g. nutrient support and inflammatory protection). Neural tissue engineering scaffolds are aimed toward recapitulating some of the 3D biological signaling that is known to be involved in the maintenance of the PNS and CNS and to facilitate proliferation, migration and potentially differentiation during tissue repair (9).

Nanotechnology and tissue engineering are based on two main approaches:

  • Electrospinning (top-down) – involves the production of a polymer filament using an electrostatic force. Electrospinning is a versatile technique that enables production of polymer fibers with diameters ranging from a few microns to tens of nanometers.
  • Molecular self-assembly of peptides (bottom-up) – Molecular self-assembly is mediated by weak, non-covalent bonds, such as van der Waals forces, hydrogen bonds, ionic bonds, and hydrophobic interactions. Although these bonds are relatively weak, collectively they play a major role in the conformation of biological molecules found in nature.

Pfister et al (6) very nicely summarized the various polymeric fibers been used to achieve the goal of nerve regeneration, even in humans. These material include a wide array of polymers from silica to PLGA/PEG and Diblock copolypeptides.

Many of these approaches also enlist many trophic factors that have been investigated in nerve conduits

Currently there are three general biomaterial approaches for local factor delivery:

  1. Incorporation of factors into a conduit filler such as a hydrogel
  2. Designing a drug release system from the conduit biomaterial such as microspheres
  3. Immobilizing factors on the scaffold that are sensed in place or liberated upon matrix degradation.

Maeda et al had a  creative approach to bridge larger gaps by using the combination of nerve grafts and open conduits in an alternating “stepping stone” assembly, which may perform better than an empty conduit alone (8).


Peripheral nerve repair is a growing field with substantial progress being made in more effective repairs. Nanotechnology and biomedical engineering have made significant contributions; from surgical instrumentation to the development of tissue engineered grafting substitutes.  However, to date the field of neural tissue engineering has not progressed much past the conduit bridging of small gaps and has not come close to matching the autograf. Much more studies are needed to understand the cell behaviour that can promote cell survival, neurite outgrowth, appropriate re-innervation and consequently the functional recovery post PNS/CNS injuries. This is since understanding of the cellular response to the combination of these external cues within 3D architectures is limited at this stage.


1a. Jaquet JB, Luijsterburg AJ, Kalmijn S, Kuypers PD, Hofman A, Hovius SE.  Median, ulnar, and combined median-ulnar nerve injuries:functional outcome and return to productivity. J Trauma 2001 51: 687-692. http://www.ncbi.nlm.nih.gov/pubmed/11586160

1b. Lundborg G, Rosen B. Hand function after nerve repair. Acta Physiol (Oxf) 2007 189: 207-217. http://www.ncbi.nlm.nih.gov/pubmed/17250571

1. Chang WC., Kliot M and Stretavan DW. Microtechnology and Nanotechnology in Nerve Repair. Neurological Research 2008; vol 30: 1053-1062. http://vision.ucsf.edu/sretavan/sretavanpdfs/2008b-Chang%20&%20Sretavan.pdf

2. Biazar E., Khorasani MT and Zaeifi D. Nanotechnology for peripheral nerve regeneration. Int. J. Nano. Dim. 2010 1(1): 1-23.  http://www.ijnd.ir/doc/2010-v1-i1/2010-V1-I1-1.pdf

3. Albert Aguayo. Nerve regeneration revisited. Nature Reviews Neuroscience 7, 601 (August 2006).


4. Burnett MG and  Zager EL. Pathophysiology of Peripheral Nerve Injury: A Brief Review. Neurosurg Focus. 2004;16(5) .


5. Dag Welin. Neuroprotection and axonal regeneration after peripheral nerve injury. MEDICAL DISSERTATIONS

Welin, D., Novikova, L.N., Wiberg, M., Kellerth, J-O. and Novikov, L.N. Survival and regeneration of cutaneous and muscular afferent neurons after peripheral nerve injury in adult rats. Experimental Brain Research, 186, 315-323, 2008.


6. Pfister BJ., Gordon T., Loverde JR., Kochar AS., Mackinnon SE and Cullen Dk. Biomedical Engineering Strategies for Peripheral Nerve Repair: Surgical Applications, State of the Art, and Future Challenges. Critical Reviews™ in Biomedical Engineering 2011, 39(2):81–124. http://www.med.upenn.edu/cullenlab/user_documents/2011Pfisteretal-PNIReviewArticleCritRevBME.pdf

7. Zhou K, Nisbet D, Thouas G,  Bernard C and Forsythe J. Bio-nanotechnology Approaches to Neural Tissue Engineering. Intechopen. Com. http://cdn.intechopen.com/pdfs/9811/InTech-Bio_nanotechnology_approaches_to_neural_tissue_engineering.pdf

8. Maeda T, Mackinnon SE, Best TJ, Evans PJ, Hunter DA, Midha RT. Regeneration across ‘stepping-stone’ nerve grafts. Brain Res. 1993;618(2):196–202. http://www.ncbi.nlm.nih.gov/pubmed/?term=Maeda+T+and+regeneration+across+stepping+stone

9. Sedaghati T., Yang SY., Mosahebi A., Alavijeh MS and Seifalian AM. Nerve regeneration with aid of nanotechnology and cellular engineering. Biotechnol Appl Biochem. 2011 Sep-Oct;58(5):288-300. http://www.ncbi.nlm.nih.gov/pubmed/21995532




Read Full Post »